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SPLITTING OF SOME SPACES OF ANALYTIC FUNCTIONS
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Abstract. For the Paley-Wiener space and the weighted Hardy spaces in the half-plane
we consider problems on splitting a function into a sum of two, each being “large” only in
their domain. For the first space the problem is solved completely, for the second we obtain
sufficient conditions of solvability.
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1. Introduction

We denote by 𝑊 𝑝
𝜎 , 1 6 𝑝 6 2, 𝜎 > 0, the Paley-Wiener space, i.e., the space of entire

functions 𝑓 of exponential type 6 𝜎 belonging to 𝐿𝑝(R). Space 𝑊 𝑝
𝜎 can be defined (cf. [1]) as

the space of entire functions satisfying the condition 𝐴(0; 2𝜋), where

𝐴(𝛼, 𝛽) := sup
𝜙∈(𝛼,𝛽)

⎧⎨⎩
+∞∫︁
0

|𝑓(𝑟𝑒𝑖𝜙)|𝑝𝑒−𝑝𝜎𝑟| sin𝜙|𝑑𝑟

⎫⎬⎭
1/𝑝

< +∞.

Spaces 𝑊 𝑝
𝜎 , 1 6 𝑝 6 2, 𝜎 > 0, are Banach ones with the norm ‖𝑓‖ := 𝐴(0; 2𝜋). The next

statement plays a fundamental role in the theory of Paley-Wiener spaces (see [2]).

Theorem (P.-W. theorem). Space 𝑊 2
𝜎 coincides with the space of functions represented as

𝑓(𝑧) =
1√
2𝜋

𝜎∫︁
−𝜎

𝜙(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡, 𝜙 ∈ 𝐿2(−𝜎, 𝜎). (1)

We denote by 𝐻𝑝
𝜎(C+), 1 6 𝑝 < +∞, 𝜎 > 0, the space of analytic in C+ = {𝑧 : Re 𝑧 > 0}

functions obeying the condition 𝐴(−𝜋
2
; 𝜋
2
) < +∞. Certain properties of this space were studied

by B.V. Vinnitskii and the author (see [6], [7], [18]). By 𝐻𝑝(C+), 1 6 𝑝 < +∞, we indicate the
Hardy space of analytic in C+ functions 𝑓 satisfying

‖𝑓‖𝑝 = sup
𝑥>0

⎧⎨⎩
+∞∫︁

−∞

|𝑓(𝑥+ 𝑖𝑦)|𝑝𝑑𝑦

⎫⎬⎭ < +∞.

A.M. Sedletskii showed [10] that in the case 𝜎 = 0 the space 𝐻𝑝
𝜎(C+) coincides with Hardy

space and hence we can regard 𝐻𝑝
𝜎(C+) as a weighted Hardy space. It is also easy to see that

𝐻𝑝
𝜎(C+) is an analogue of Paley-Wiener space 𝑊 𝑝

𝜎 of entire functions on a half-space. The
properties of Hardy spaces are exposed in quite a details in [9], [15]. A singular boundary
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26 V.N. DILNYI

function ℎ of a function 𝜓 ∈ 𝐻𝑝
𝜎(C+) is determined up to an additive constant and the values

are the continuity points by the identity

ℎ(𝑡2) − ℎ(𝑡1) = lim
𝑥→0+

𝑡2∫︁
𝑡1

log |𝜓(𝑥+ 𝑖𝑦)|𝑑𝑦 −
𝑡2∫︁

𝑡1

log |𝜓(𝑖𝑦)|𝑑𝑦.

The singular boundary function is non-increasing and ℎ′(𝑡) = 0 for a.e. 𝑡 ∈ R.

2. Problems

R.S. Yulmukhametov in [3], [4] considered the problem on splitting each function in Paley-
Wiener space into the product of two functions for the case when 𝜙 in the representation (1) is
infinitely differentiable. Yu.I. Lyubarskii in [25] studied the splitting of functions with a triangle
indicator diagram. We consider similar problems on splitting functions in Paley-Wiener space
into the sum of two functions each of those, in some sense, inherits the properties of the original
function.

The problems we consider in what follows are motivated by the studies [8, 14], where the
complete description of cyclic functions in the space 𝐻2

𝜎(C+) was obtained. It happened that
there are qualitative differences in comparison with the non-weighted case 𝐻𝑝(C+). For the
further advancing in this direction, namely, for the description of all subspaces in space 𝐻2

𝜎(C+)
translation invariant w.r.t. the shift operator, a key role is played by the following statement
[7], whose proof we know only in the case 𝑝 ∈ (1; 2].

Theorem A1. A function ̃︀𝑓1 : 𝑖R→ C, such that ̃︀𝑓1(𝑖𝑦)𝑒−𝜎|𝑦| ∈ 𝐿𝑝(−∞; +∞) is the angular

boundary function of a function ̃︀𝑓 ∈ 𝐻𝑝
𝜎(C+), 1 < 𝑝 6 2, if and only if there exists a functioñ︀𝑓2 satisfying the conditions

a) ̃︀𝑓2 ∈ 𝐻𝑝
2𝜎(C+);

b) ̃︀𝑓3(𝑖𝑦) := 𝑒−𝜎𝑦 ̃︀𝑓1(𝑖𝑦) + ̃︀𝑓2(𝑖𝑦) ∈ 𝐿𝑝(−∞; 0);

c)
+∞∫︀
0

̃︀𝑓1(𝑖𝑣)𝑒−𝜎𝑡𝑒𝑖𝜏𝑣𝑑𝑣 + 1
𝑖

+∞∫︀
0

̃︀𝑓2(𝑢)𝑒𝜏𝑢𝑑𝑢+
0∫︀

−∞

̃︀𝑓3(𝑖𝑣)𝑒𝑖𝜏𝑣𝑑𝑣 = 0 for a.e. 𝜏 ∈ (−∞; 0].

In the case 𝜎 = 0 (then ̃︀𝑓2 ≡ 0) the conditions a), b) are trivial, while condition c) becomes

”
∫︀ +∞
−∞

̃︀𝑓1(𝑖𝑣)𝑒𝑖𝜏𝑣𝑑𝑣 = 0 for a.e. 𝜏 ∈ (−∞; 0].” Then this theorem coincides with one theorem
by Paley-Wiener (see [15]). For the case 𝑝 = 1 in [7] the following statement was obtained.

Theorem A2. Function ̃︀𝑓1 : 𝑖R → C, such that ̃︀𝑓1(𝑖𝑦)𝑒−𝜎|𝑦| ∈ 𝐿𝑝(−∞; +∞) is the angular

boundary function of a function ̃︀𝑓 ∈ 𝐻1
𝜎(C+), if there exists a function ̃︀𝑓2 satisfying a), b), c)

of the previous theorem and

d) function ̃︀𝑓2 admits the splitting ̃︀𝑓2 = ̃︀𝑓5 − ̃︀𝑓4, where ̃︀𝑓4(𝑧)𝑒−𝑖𝜎𝑧 ∈ 𝐻1
𝜎(C+),̃︀𝑓5(𝑧)𝑒𝑖𝜎𝑧 ∈ 𝐻1

𝜎(C+).
We do not know whether this theorem is valid without condition d).
In studying one equation of convolution type [24] it was shown that the absence of nontrivial

solution to this equation is equivalent to an analogue of Theorem A2 as 𝑝 = 1. The main

difference of this analogue and our formulation is that additionally one can regard ̃︀𝑓2 as the
product of two functions in 𝐻2

𝜎(C+). We do not know whether this addition is essential. i.e.,
whether each function 𝑓 ∈ 𝐻1

2𝜎(C+) admits the splitting into the product of two functions in
𝐻2

𝜎(C+). But such splitting, in addition to the splitting 𝐻2
𝜎(C+) = 𝑒𝑖𝜎𝑧𝐻2(C+)+𝑒−𝑖𝜎𝑧𝐻2(C+)+

𝑊 2
𝜎 obtained by B. Vinnitskii allows us to consider the following problem.
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Problem 1. Whether each function 𝑓 ∈ 𝑊 𝑝
𝜎 , 1 6 𝑝 6 2, admits the splitting 𝑓 = 𝑓2 − 𝑓3

with an entire function 𝑓2 obeying condition 𝐵(0;𝜋), where

𝐵(�̂�, 𝛽) : sup
𝜙∈(�̂�,𝛽)

⎧⎨⎩
+∞∫︁
0

|𝑓(𝑟𝑒𝑖𝜙)|𝑝𝑑𝑟

⎫⎬⎭
1/𝑝

< +∞,

and 𝑓3 obeying condition 𝐵(𝜋; 2𝜋)?
The positive solvablity of Problem 1 for 𝑝 = 1 would solve the aforementioned problem on

nontrivial solution of convolution type equations. However, as it will be show later, there exist
functions 𝑓 ∈ 𝑊 1

𝜎 , for which the required splitting is impossible. This is why one has to consider
the problem with less restrictive conditions, namely, Problem 2.

Problem 2. Whether each function 𝑓 ∈ 𝑊 𝑝
𝜎 , 1 6 𝑝 6 2, admits splitting 𝑓 = 𝑓4 − 𝑓5, where

functions 𝑓4 and 𝑓5 are analytic in C+, 𝑓4 obeys condition 𝐵
(︀
0; 𝜋

2

)︀
and 𝑓5 obeys condition

𝐵
(︀
−𝜋

2
; 0
)︀
?

Here we consider the most interesting from qualitative point of view cases 𝑝 = 2 and 𝑝 = 1.
The formulated problem are also of interest in the theory of integral operators and studies of
shift operators.

3. Representations

Statements analogous to Paley-Wiener theorem are also known for the cases 1 < 𝑝 < 2 and
𝑝 = 1 (see [16], [17], [22]).

Theorem B1. (Boas R., [23]) Space 𝑊 1
𝜎 coincides with the space of functions represented

by (1), where the function

𝜙*(𝑡) =

{︂
𝜙(𝑡),|𝑡| 6 𝜎,

0, |𝑡| > 𝜎,

has an absolutely convergent Fourier series on (−𝜎 − 𝛿;𝜎 + 𝛿) for some 𝛿 > 0.
It is well-known (see [5]) that if the Fourier series of function 𝜙* converges absolutely on

(−𝜎 − 𝛿;𝜎 + 𝛿) for some positive 𝜎 and 𝛿, then for each 𝛿1 ∈ [0; +∞) the Fourier series of
function 𝜙* converges absolutely on (−𝜎 − 𝛿1;𝜎 + 𝛿1).

In another form the criterion for belonging to space 𝑊 1
𝜎 was obtained by G. Ber.

Theorem B2. Space 𝑊 1
𝜎 coincides with the space of functions represented by (1), where

𝜙(𝑡) =
+∞∑︁

𝑘=−∞

𝑐𝑘𝑒
− 𝑖𝑘𝜋𝑡

𝜎 ,

at that, (𝑐𝑘) ∈ 𝑙1 and
+∞∑︁

𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

(−1)𝑘+𝑚𝑐𝑘+𝑚
𝑘

𝑘2 + 1

⃒⃒⃒⃒
⃒ < +∞.

Let us formulate the result of R. Boas in a more convenient for us form by employing Paley-
Wiener theorem.

Lemma 1. Function 𝑓 belongs to space 𝑊 1
𝜎 , 𝜎 > 0, if and only if it can be represented as

𝑓(𝑧) =
+∞∑︁

𝑘=−∞

(−1)𝑘𝑐𝑘
𝜋 sin𝜎𝑧

𝜎𝑧 − 𝜋𝑘
, (2)

where (𝑐𝑘) ∈ 𝑙2 and
+∞∑︁

𝑘=−∞

⃒⃒⃒⃒
𝑓

(︂
𝑘𝜋

𝜎
(1 − 𝛿)

)︂⃒⃒⃒⃒
< +∞ (3)
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for some 𝛿 ∈ (0; 1).

A general description of interpolation sequences in 𝑊 𝑝
𝜎 was obtained by A. Beurling,

Yu. Lyubarskii, K. Seip [19], [20]. For our purpose the formulated result is sufficient. We
note that condition (𝑐𝑘) ∈ 𝑙1 follows from condition (3).

Corollary 1. If 𝑓 ∈ 𝑊 1
𝜎 , 𝜎 > 0, then representation (2) holds true and

+∞∑︁
𝑘=−∞

(−1)𝑘𝑐𝑘 = 0.

Indeed, by Theorem B1, 𝜙(𝜎) = 0, but

𝜙(𝜎) =
+∞∑︁

𝑘=−∞

𝑐𝑘𝑒
−𝑖𝑘𝜋 =

+∞∑︁
𝑘=−∞

(−1)𝑘𝑐𝑘.

Corollary 2. Condition (3) is equivalent to
+∞∑︁

𝑘=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑠=−∞

(−1)𝑠𝑐𝑠
sin (𝑘𝜋 (1 − 𝛿))

𝑘(1 − 𝛿) − 𝑠

⃒⃒⃒⃒
⃒ < +∞.

4. Expansions in Paley-Wiener space

For the case 𝑝 = 2 we have a simple solution of Problem 1 based on Paley-Wiener theorem:

𝑓2(𝑧) =
1√
2𝜋

𝜎∫︁
0

𝜙(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡, 𝑓3(𝑧) = − 1√
2𝜋

0∫︁
−𝜎

𝜙(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡. (4)

But for 𝑝 = 1 the above splitting does not solve Problem 1 in the general case. For instance, if
𝜙(𝑡) = 𝜎 − |𝑡|, then

𝑓(𝑧) =

√︂
2

𝜋

1 − cos𝜎𝑧

𝑧2
∈ 𝑊 1

𝜎 ,

but

𝑓2(𝑧) =
1√
2𝜋

−𝑒𝑖𝜎𝑧 + 1 + 𝑖𝜎𝑧

𝑧2
/∈ 𝑊 1

𝜎 , 𝑓3(𝑧) =
1√
2𝜋

𝑒−𝑖𝜎𝑧 − 1 + 𝑖𝜎𝑧

𝑧2
/∈ 𝑊 1

𝜎 .

Lemma 2. If for 𝑓 ∈ 𝑊 1
𝜎 Problem 1 is positively solvable, then under the notations of

Paley-Wiener theorem representations (4) are valid.

Proof. As 𝑝 = 1, function 𝑓2 satisfy conditions 𝐴(0;𝜋) and 𝐵(−𝜋; 0) that implies 𝑓2(𝑧)𝑒−𝑖𝜎𝑧/2 ∈
𝑊 1

𝜎/2. Hence, by Paley-Wiener theorem

𝑓2(𝑧) =
1√
2𝜋

𝜎∫︁
0

𝜙2(𝑡)𝑒
𝑖𝑡𝑧𝑑𝑡

for some function 𝜙2 ∈ 𝐿2[0;𝜎]. In the same way for a function 𝜙3 ∈ 𝐿2[−𝜎; 0] we obtain the
identity

𝑓3(𝑧) = − 1√
2𝜋

0∫︁
−𝜎

𝜙3(𝑡)𝑒
𝑖𝑡𝑧𝑑𝑡.

Function 𝑓 − 𝑓2 + 𝑓3 belongs to space 𝑊 2
𝜎 and thus it obeys the representation

𝑓(𝑧) − 𝑓2(𝑧) + 𝑓3(𝑧) =
1√
2𝜋

𝜎∫︁
−𝜎

̃︀𝜙(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡,
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for some function ̃︀𝜙 ∈ 𝐿2[−𝜎;𝜎]. But 𝑓 − 𝑓2 + 𝑓3 is identically zero, and thus ̃︀𝜙 ≡ 0. It implies
the statement of the lemma.

We shall provide two solvability criteria for Problem 1 basing on Boas and Ber theorems.

Theorem 1. If 𝑓 ∈ 𝑊 1
𝜎 , then Problem 1 is positively solvable if and only if

+∞∑︁
𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

𝑐𝑘
(−1)𝑚+𝑘𝑒𝑖𝜋𝛿𝑚 − 1

𝑚− 𝛿𝑚− 𝑘

⃒⃒⃒⃒
⃒ < +∞, (5)

for some 𝛿 ∈ (0; 1). At that we suppose that

(−1)𝑚+𝑘𝑒𝑖𝜋𝛿𝑚 − 1

𝑚− 𝛿𝑚− 𝑘
= 𝜋𝑖, if 𝑚− 𝛿𝑚− 𝑘 = 0.

Proof. If 𝑓 ∈ 𝑊 1
𝜎 , it obeys representation (1). By Lemma 2, Problem 1 is positively solvable if

and only if function 𝑓2 defined by the first identity in (4) belongs to 𝑊 1
𝜎 . Function 𝑓2 satisfies

the representation

𝑓2(𝑧) =
1√
2𝜋

𝜎∫︁
0

+∞∑︁
𝑘=−∞

𝑐𝑘𝑒
− 𝑖𝑘𝜋𝑡

𝜎 𝑒𝑖𝑡𝑧𝑑𝑡 =
1√
2𝜋

+∞∑︁
𝑘=−∞

𝑐𝑘

𝜎∫︁
0

𝑒𝑖𝑡(𝑧−
𝑘𝜋
𝜎 )𝑑𝑡

=
1√
2𝜋

+∞∑︁
𝑘=−∞

𝑐𝑘
𝑒𝑖𝜎(𝑧−𝑘𝜋/𝜎) − 1

𝑖(𝑧 − 𝑘𝜋/𝜎)
.

We note that

√
2𝜋𝑓2

(︁𝑚𝜋
𝜎

(1 − 𝛿)
)︁

=
+∞∑︁

𝑘=−∞

𝑐𝑘
𝑒𝑖𝜎(𝑚𝜋

𝜎
(1−𝛿)− 𝑘𝜋

𝜎 ) − 1

𝑖
(︀
𝑚𝜋
𝜎

(1 − 𝛿) − 𝑘𝜋
𝜎

)︀ =
+∞∑︁

𝑘=−∞

𝑐𝑘
𝜎𝑒𝑖𝜋(𝑚−𝛿𝑚−𝑘) − 1

𝑖𝜋(𝑚− 𝛿𝑚− 𝑘)

that implies condition (5). By Paley-Wiener theorem, 𝑓2 ∈ 𝑊 2
𝜎 and hence, the sequence of the

coefficients in expansion (2) belongs to 𝑙2. It remains to apply Lemma 1 to 𝑓2.

Theorem 2. If 𝑓 ∈ 𝑊 1
𝜎 , then Problem 1 is positively solvable if and only if

+∞∑︁
𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

𝑘

𝑘2 + 1

+∞∑︁
𝑠=−∞

𝑐𝑠
(−1)𝑠 − (−1)𝑘+𝑚

𝑘 +𝑚− 𝑠

⃒⃒⃒⃒
⃒ < +∞, (6)

+∞∑︁
𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

𝑐𝑘
(−1)𝑘+𝑚 − 1

𝑚− 𝑘

⃒⃒⃒⃒
⃒ < +∞, (7)

at that we suppose that

(−1)𝑠 − (−1)𝑘+𝑚

𝑘 +𝑚− 𝑠
= 𝜋𝑖, if 𝑠 = 𝑘 +𝑚, and

(−1)𝑘+𝑚 − 1

𝑚− 𝑘
= 𝜋𝑖, if 𝑚 = 𝑘.

Proof. In the proof of the previous theorem it was shown that

𝑓2(𝑧) =
1√
2𝜋

+∞∑︁
𝑘=−∞

𝑐𝑘
(−1)𝑘𝑒𝑖𝜎𝑧 − 1

𝑖(𝑧 − 𝑘𝜋/𝜎)
.

We apply Theorem B2 for 𝑓2 writing its conditions as

+∞∑︁
𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

(−1)𝑘+𝑚𝑓

(︂
𝑘 +𝑚

𝜎

)︂
𝑘

𝑘2 + 1

⃒⃒⃒⃒
⃒ < +∞.
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Then
+∞∑︁

𝑚=−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑘=−∞

(−1)𝑘+𝑚𝑘

𝑘2 + 1

+∞∑︁
𝑠=−∞

𝑐𝑠
(−1)𝑠𝑒𝑖𝜎

𝑘+𝑚
𝜎

𝜋 − 1

𝑖
(︀
𝑘+𝑚
𝜎
𝜋 − 𝑠𝜋

𝜎

)︀ ⃒⃒⃒⃒
⃒ < +∞

that yields condition (6). Since

𝑓
(︁𝜋𝑚
𝜎

)︁
=

1√
2𝜋

+∞∑︁
𝑘=−∞

𝑐𝑘
(−1)𝑘𝑒𝑖𝜋𝑚 − 1

𝑖(𝜋𝑚/𝜎 − 𝑘𝜋/𝜎)
,

the belonging of sequence of the coefficients in expansion (2) for function 𝑓2 to space 𝑙1 we
obtain condition (7).

The obtained conditions are rather complicated while checking them for particular functions.
Quite often it is more convenient to employ simpler necessary or sufficient conditions.

Corollary 3. If for a function 𝑓 ∈ 𝑊 1
𝜎 Problem 1 is positively solvable, its coefficients in

expansion (2) satisfy
+∞∑︁

𝑘=−∞

𝑐𝑘 = 0. (8)

Indeed, if 𝑓2 solves Problem 1, representation (4) holds true, and by Theorem B1, 𝜙(0) =

𝜙(𝜎) = 0. But 𝜙(0) =
+∞∑︀

𝑘=−∞
𝑐𝑘𝑒

0 =
+∞∑︀

𝑘=−∞
𝑐𝑘. It follows easily that for the function

𝑓(𝑧) =
1 − cos𝜎𝑧

𝑧2
∈ 𝑊 1

𝜎

Problem 1 is unsolvable since condition (8) fails:

+∞∑︁
𝑘=−∞

(−1)𝑘𝑓

(︂
𝑘𝜋

𝜎

)︂
> 0.

Theorem 3. If in representation (2) of function 𝑓 ∈ 𝑊 1
𝜎 coefficients 𝑐𝑘 vanish for all odd

𝑘 ∈ Z, Problem 1 is positively solvable for this function.

Proof. Let us show that the desired splitting reads as

𝑓2(𝑧) =
1

2𝑖

+∞∑︁
𝑘=−∞

𝑐2𝑘(𝑒𝑖𝜎𝑧 − 1)

𝑧 − 2𝑘𝜋/𝜎
, 𝑓3(𝑧) =

1

2𝑖

+∞∑︁
𝑘=−∞

𝑐2𝑘(𝑒−𝑖𝜎𝑧 − 1)

𝑧 − 2𝑘𝜋/𝜎
.

Indeed, 𝑓2 and 𝑓3 are entire functions of exponential type 6 𝜎. We observe that

𝑓2(𝑧) =
𝑓(𝑧) (𝑒𝑖𝜎𝑧 − 1)

2𝑖 sin𝜎𝑧
=

𝑓(𝑧)𝑒𝑖𝜎𝑧/2

2 cos(𝜎𝑧/2)
,

and hence function 𝑓 *
2 (𝑧) = 𝑓2(𝑧+𝑖) belongs to 𝐿1(R). Thus, by the definition, 𝑓 *

2 (𝑧)𝑒−𝑖𝜎𝑧 ∈ 𝑊 1
𝜎

that implies 𝑓2(𝑧)𝑒−𝑖𝜎𝑧 ∈ 𝑊 1
𝜎 . In the same way one can show that 𝑓3𝑒

𝑖𝜎𝑧 ∈ 𝑊 1
𝜎 .

5. Expansions in weighted Hardy space

Let us formulate a corollary of one of the results by B. Vinnitskii [6].
Theorem C. Space 𝐻2

𝜎(C+) coincides with the space of functions represented as

𝑓(𝑧) =
1√
2𝜋

∫︁
𝜕𝐷𝜎

𝜙(𝑡)𝑒𝑡𝑧𝑑𝑡,

where 𝜙 ∈ 𝐿2[𝜕𝐷𝜎], 𝐷𝜎 = {𝑧 : |Im 𝑧| < 𝜎,Re 𝑧 < 0}.
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This statement implies the following solution to Problem 2 in the case 𝑝 = 2:

𝑓4(𝑧) =
1√
2𝜋

∫︁
𝜕𝐷𝜎∩C+

𝜙(𝑡)𝑒𝑡𝑧𝑑𝑡, 𝑓5(𝑧) = − 1√
2𝜋

∫︁
𝜕𝐷𝜎∩C−

𝜙(𝑡)𝑒𝑡𝑧𝑑𝑡,

where C+ = {𝑧 : Im 𝑧 > 0}, C− = {𝑧 : Im 𝑧 < 0} .
Remark 1. For the function

𝑓(𝑧) =
1 − cos𝜎𝑧

𝑧2
∈ 𝑊 1

𝜎

Problem 2 is solvable. Indeed,

𝑓4(𝑧) = − 1√
2𝜋

𝑒𝑖𝜎𝑧 − 1 − 𝑖𝜎𝑧 + 𝑖𝜎
𝑧+𝜋

𝑧2

𝑧2
, 𝑓5(𝑧) = − 1√

2𝜋

𝑒−𝑖𝜎𝑧 − 1 + 𝑖𝜎𝑧 − 𝑖𝜎
𝑧+𝜋

𝑧2

𝑧2
.

We denote by ̂︀𝐻1
𝜎(C+) the set of all possible products 𝑓1𝑓2, where 𝑓1 ∈ 𝐻2

𝜎/2(C+), 𝑓2 ∈
𝐻2

𝜎/2(C+). It is obvious that ̂︀𝐻1
𝜎(C+) ⊂ 𝐻1

𝜎(C+). We do not know whether space ̂︀𝐻1
𝜎(C+)

coincides with 𝐻1
𝜎(C+). The positive solvability of Problem 2 implies a more general result.

Lemma 3. If Problem 2 is positively solvable for 𝑊 1
𝜎 , it is positively solvable for each func-

tion in space ̂︀𝐻1
𝜎(C+).

Proof. By Theorem C, if 𝑓1 ∈ 𝐻2
𝜎/2(C+), then 𝑓1(𝑧) = 𝑒

𝑖𝜎𝑧
𝑧 ℎ1(𝑧) + ℎ2(𝑧) + 𝑒−

𝑖𝜎𝑧
𝑧 ℎ3(𝑧), where

ℎ1(𝑧) =
1√
2𝜋

0∫︁
−∞

𝑓
(︁
𝑡+ 𝑖

𝜎

2

)︁
𝑒𝑡𝑧𝑑𝑡, ℎ2(𝑧) = − 𝑖√

2𝜋

𝜎
2∫︁

𝜎
2

𝑓(𝑖𝑡)𝑒𝑖𝑡𝑧𝑑𝑡,

ℎ3(𝑧) =
1√
2𝜋

−∞∫︁
0

𝑓
(︁
𝑡− 𝑖

𝜎

2

)︁
𝑒𝑡𝑧𝑑𝑡.

In accordance with Paley-Wiener theorems (see above and [15]), we have ℎ1 ∈ 𝐻2(C+), ℎ2 ∈
𝑊 2

𝜎
2
, ℎ3 ∈ 𝐻2(C+). In the same way, if 𝑓 *

1 ∈ 𝐻2
𝜎
2
, then 𝑓 *

1 (𝑧) = 𝑒
𝑖𝜎𝑧
2 ℎ*1(𝑧) + ℎ2(𝑧) + 𝑒−

𝑖𝜎𝑧
2 ℎ*3(𝑧),

where ℎ*1 ∈ 𝐻2(C+), ℎ*2 ∈ 𝑊 2
𝜎
2
, ℎ*3 ∈ 𝐻2(C+). Conditions 𝐴

(︀
−𝜋

2
; 0
)︀

and 𝐵
(︀
0; 𝜋

2

)︀
hold true

for the functions 𝑒
𝑖𝜎𝑧
2 ℎ1(𝑧)𝑓 *

1 (𝑧) + ℎ2(𝑧)𝑒
𝑖𝜎𝑧
2 ℎ*1(𝑧), while conditions 𝐴

(︀
0; 𝜋

2

)︀
and 𝐵

(︀
−𝜋

2
; 0
)︀

are

satisfied for the function 𝑒−
𝑖𝜎𝑧
2 ℎ3(𝑧)𝑓 *

1 (𝑧)+ℎ2(𝑧)𝑒−
𝑖𝜎𝑧
2 ℎ*3(𝑧) 𝑝 = 1. Thus, Problem 2 is positively

solvable for the function 𝑓1𝑓
*
1 if and only if the same is true for the function ℎ1ℎ

*
1.

Theorem 4. If representation (2) for a function 𝑓 ∈ 𝑊 1
𝜎 involves only finitely many non-

zero coefficients 𝑐𝑘, then Problem 2 is positively solvable for this function.

Proof. For the sake of simplifying the arguing, we assume that 𝜎 = 𝜋. The hypothesis of the
theorem implies

𝑓(𝑧) = sin𝜋𝑧

(︂
(−1)𝑘1𝑐𝑘1
𝑧 − 𝑘1

+
(−1)𝑘2𝑐𝑘2
𝑧 − 𝑘2

+ . . .+
(−1)𝑘𝑛𝑐𝑘𝑛
𝑧 − 𝑘𝑛

)︂
, 𝑘𝑛 ∈ 𝑍.

By Corollary 1, the function in the brackets is rational and after reducing to the common
denominator the degree of the latter exceeds that of the numerator at least by two. We let

𝑓4(𝑧) =
𝑒𝑖𝜋𝑧 − 𝑎𝑛−1𝑧𝑛−1+...+𝑎1𝑧+𝑎0

(𝑧+1)𝑛−1

2𝑖

(︂
(−1)𝑘1𝑐𝑘1
𝑧 − 𝑘1

+
(−1)𝑘2𝑐𝑘2
𝑧 − 𝑘2

+ . . .+
(−1)𝑘𝑛𝑐𝑘𝑛
𝑧 − 𝑘𝑛

)︂
,

𝑓5(𝑧) =
𝑒−𝑖𝜋𝑧 − 𝑎𝑛−1𝑧𝑛−1+...+𝑎1𝑧+𝑎0

(𝑧+1)𝑛−1

2𝑖

(︂
(−1)𝑘1𝑐𝑘1
𝑧 − 𝑘1

+
(−1)𝑘2𝑐𝑘2
𝑧 − 𝑘2

+ . . .+
(−1)𝑘𝑛𝑐𝑘𝑛
𝑧 − 𝑘𝑛

)︂
,
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where 𝑎0, . . . , 𝑎𝑛−1 are unknown coefficients. We choose them as solutions to the system of
equations

𝑒±𝑖𝜋𝑧 − 𝑎𝑛−1𝑧
𝑛−1 + . . .+ 𝑎1𝑧 + 𝑎0

(𝑧 + 1)𝑛−1

⃒⃒⃒⃒
𝑧=𝑘1,...,𝑘𝑛

= 0.

The equivalent system is

cos𝜋𝑧(𝑧 + 1)𝑛−1 − 𝑎𝑛−1𝑧
𝑛−1 − . . .− 𝑎1𝑧 − 𝑎0

⃒⃒
𝑧=𝑘1,...,𝑘𝑛

= 0.

We write it as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎0 + 𝑎1𝑘1 + 𝑎2𝑘

2
1 + . . .+ 𝑎𝑛−1𝑘

𝑛−1
1 = (−1)𝑘1(𝑘1 + 1)𝑛−1

𝑎0 + 𝑎1𝑘2 + 𝑎2𝑘
2
2 + . . .+ 𝑎𝑛−1𝑘

𝑛−1
2 = (−1)𝑘2(𝑘2 + 1)𝑛−1

. . .

𝑎0 + 𝑎1𝑘𝑛 + 𝑎2𝑘
2
𝑛 + . . .+ 𝑎𝑛−1𝑘

𝑛−1
𝑛 = (−1)𝑘𝑛(𝑘𝑛 + 1)𝑛−1.

The determinant of this system is Vandermondian⃒⃒⃒⃒
⃒⃒⃒⃒ 1 𝑘1 · · · 𝑘𝑛−1

1

1 𝑘2 · · · 𝑘𝑛−1
2

...
...

. . .
...

1 𝑘𝑛 · · · 𝑘𝑛−1
𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒ =

∏︁
16𝑚<𝑠6𝑛

(𝑘𝑚 − 𝑘𝑠) ̸= 0,

hence, there exists the unique solution to the above system. Thus, functions 𝑓4 and 𝑓5 solve
Problem 2.

In view of the above theorem there appears a question on possibility of applying this method
for the case, when 𝑓 has infinitely mane non-zero coefficients. That is, the problem is to find a
function ℎ ∈ 𝐻∞(C+), 𝑝 > 1, such that 𝑒𝑖𝜋𝑧 − ℎ(𝑧)|𝑧∈𝑁 ⋃︀

{0} = 0 instead of

𝑎𝑛−1𝑧
𝑛−1 + . . .+ 𝑎1𝑧 + 𝑎0

(𝑧 + 1)𝑛−1
.

Indeed, if 𝑓1(𝑧) = 𝑒−
𝑖𝜋𝑧
2 (𝑒𝑖𝜋𝑧 − ℎ(𝑧)), then 𝑓1 ∈ 𝐻∞

𝜋/2 and the zero sets of functions 𝑒𝑖𝜋𝑧−ℎ(𝑧)

and 𝑓1 coincide. B. Vinnitskii showed [6] that for the sequence of zeroes (𝜆𝑛) in C+ for function
𝐻∞

𝜋/2 the condition

lim sup
𝑟→+∞

⎛⎝ ∑︁
1<|𝜆𝑛|6𝑟

(︂
1

|𝜆𝑛|
− |𝜆𝑛|

𝑟2

)︂
Re𝜆𝑛
|𝜆𝑛|

− 1

2
ln 𝑟

⎞⎠ < +∞

is necessary and sufficient. But the sequence 𝜆𝑛 = 𝑛 does not satisfy this criterion since∑︁
1<|𝜆𝑛|6𝑟

(︂
1

|𝜆𝑛|
− |𝜆𝑛|

𝑟2

)︂
Re𝜆𝑛
|𝜆𝑛|

=

[𝑟]∑︁
𝑛=2

(︂
1

𝑛
− 𝑛

𝑟2

)︂
𝑛

𝑛

= ln[𝑟] − [𝑟]([𝑟] + 1)

2

1

𝑟2
+𝑂(1) = ln 𝑟 +𝑂(1), 𝑟 → +∞.

Theorem 5. If in representation (2) for a function 𝑓 ∈ 𝑊 1
𝜎 coefficients 𝑐𝑘 vanish for odd

𝑘 ∈ N, then Problem 2 is positively solvable.

Proof. Let us show that the desired expansion reads as

𝑓4(𝑧) =
1

2𝑖

+∞∑︁
𝑘=−∞

𝑐2𝑘(𝑒𝑖𝜎𝑧 − 1)

𝑧 − 2𝑘𝜋/𝜎
, 𝑓5(𝑧) =

1

2𝑖

+∞∑︁
𝑘=−∞

𝑐2𝑘(𝑒−𝑖𝜎𝑧 − 1)

𝑧 − 2𝑘𝜋/𝜎
.



SPLITTING OF SOME SPACES OF ANALYTIC FUNCTIONS 33

As in the proof of Theorem 3, one can show that

𝑓4(𝑧) =
𝑓(𝑧)𝑒𝑖𝜎𝑧/2

2 cos(𝜎𝑧/2)
.

The statement of the theorem for 𝑓4 follows from the inequalities [21]

sup
𝑦∈R

⎧⎨⎩
+∞∫︁
0

|𝑓 *
4 (𝑥+ 𝑖𝑦)|𝑒−𝜎|𝑦|𝑑𝑥

⎫⎬⎭ < +∞; sup
𝑥>0

⎧⎨⎩
+∞∫︁

−∞

|𝑓 *
4 (𝑥+ 𝑖𝑦)|𝑒−𝜎|𝑦|𝑑𝑦

⎫⎬⎭ < +∞,

where 𝑓 *
4 (𝑧) = 𝑓4(𝑧)𝑒−𝑖𝜎𝑧/2. The former of them together with

sup
𝑦∈R∖[−1;1]

⎧⎨⎩
+∞∫︁
0

|𝑓 *
4 (𝑥+ 𝑖𝑦)|𝑒−𝜎|𝑦|𝑑𝑥

⎫⎬⎭ < +∞

are obvious. To prove the condition

sup
𝑦∈[−1;1]

⎧⎨⎩
+∞∫︁
0

|𝑓 *
4 (𝑥+ 𝑖𝑦)|𝑒−𝜎|𝑦|𝑑𝑥

⎫⎬⎭ < +∞,

we note that the factorization theorem [18] for the spaces 𝐻𝑝
𝜎(C+) implies the existence of

𝑐 ∈ R such that 𝑓 *
4 (𝑧)𝑒−𝑐𝑧 ∈ 𝐻1

𝜎(C+). This is why to complete the proof it remains to employ
a Phrágmen-Lindelöf type theorem for the half-strip. The statement on 𝑓5 can be checked in
the same way.

It is obvious that similar result is true once instead of vanishing the coefficients with odd
indices we can assume the same for the even indices. In view of Theorem 4, the solvability
conditions for Problem 2 given in Theorem 5, can be weakened. One can assume that only
finitely many with either odd or even indices are non-zero.
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