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ESTIMATES OF DECAY RATE

FOR SOLUTION TO PARABOLIC EQUATION

WITH NON-POWER NONLINEARITIES
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Abstract. We study the Dirichlet mixed problem for a class of parabolic equation with
double non-power nonlinearities in cylindrical domain 𝐷 = (𝑡 > 0) × Ω. By the Galerkin
approximations method suggested by Mukminov F.Kh. for a parabolic equation with dou-
ble nonlinearities we prove the existence of strong solutions in Sobolev-Orlicz space. The
maximum principle as well as upper and lower estimates characterizing powerlike decay of
solution as 𝑡 → ∞ in bounded and unbounded domains Ω ⊂ R𝑛 are established.
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1. Introduction

Let Ω be an arbitrary domain in the space R𝑛 = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)}, 𝑛 > 2. In the
cylindrical domain 𝐷 = {𝑡 > 0} × Ω we consider the equation

(𝛽(𝑥, 𝑢))𝑡 =
𝑛∑︁

𝑖=1

(𝑎𝑝𝑖(𝑥,∇𝑢))𝑥𝑖
, where 𝑎(𝑥,∇𝑢) = 𝑎(𝑥, 𝑝)

⃒⃒⃒
𝑝=∇𝑢

, (1)

with boundary and initial conditions

𝑢(𝑡, 𝑥)
⃒⃒⃒
𝑆

= 0, 𝑆 = {𝑡 > 0} × 𝜕Ω; (2)

𝑢(0, 𝑥) = 𝑢0(𝑥). (3)

Hereinafter the subscripts 𝑡, 𝑥𝑖, 𝑝𝑖 denote the derivatives w.r.t. the indicated variables.
Suppose that function 𝑎(𝑥, 𝑝) is convex w.r.t. 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) and satisfies Caratheodory

condition for 𝑝 ∈ R𝑛 and 𝑥 ∈ Ω. Function 𝛽(𝑥, 𝑢), 𝛽(𝑥, 0) = 0,

|𝛽(𝑥, 𝑢)| 6 𝑐𝛽|𝑢𝛽′
𝑢(𝑥, 𝑢)|, (4)

is absolutely continuous and increases w.r.t. 𝑢, as well as it is measurable w.r.t. 𝑥 ∈ Ω as
𝑢 ∈ R.

The existence and uniqueness of the solutions to nonlinear parabolic equations were con-
sidered in works [1]–[4], [7], [19]–[25] and others. The problem were mainly considered for a
bounded domain Ω and on a bounded time interval [0, 𝑇 ] for an arbitrary 𝑇 > 0. In work [1]
there was proven the existence of weak solutions to quasilinear second order parabolic equations
with a double-nonlinearity in a bounded domain. The existence of weak solution to a parabolic
equation with two variable nonlinearities in appropriate Sobolev-Orlicz space for a bounded
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domain Ω was proven in [2]. In [3] there were proven the existence and uniqueness theorems
for the generalized solution to the Dirichlet problem for degenerating parabolic equations lin-
ear w.r.t. ∇𝑢 and having a variable nonlinearity index w.r.t. 𝑢. The existence of 𝑊 - and
𝐻-solutions for second order parabolic equations with a variable nonlinearity index was proven
in work [4].

Dealing with a weak solution is troublesome in studying, say, the decay of solution as 𝑡 → ∞.
In the present work for constructing a strong solution to problem (1) − (3) on the whole time
interval [0,∞) we employ the Galerkin approximations method (domain Ω can be unbounded).
By this method the solution to a parabolic equation was constructed in work [5] on the bounded
time interval [0, 𝑇 ] for each 𝑇 > 0 and in work [6] on an unbounded time interval.

The Galerkin approximations are smooth functions that simplifies the proving necessary
estimates which then are extended by passage to the limit for the solution to problem (1)− (3).
In the present work we obtain both upper and lower estimates characterizing the power decay
of the solution as 𝑡 → ∞ in the case of both bounded and unbounded domains Ω ⊂ R𝑛.

Work [6] was devoted to the study of the behavior as 𝑡 → ∞ of solution to a mixed problem
for an isotropic parabolic equations with a double nonlinearity, while for anisotropic equations
with a double nonlinearity the same was done in works [7]–[9]. In work [10] there was studied the
degeneration property for the solution to a nonlinear parabolic equation with a non-standard
anisotropic growth conditions in a finite time interval. The same authors in [11] established the
sufficient conditions for the blow-up of the solution to the homogeneous Dirichlet problem for
an anisotropic parabolic equations with a variable nonlinearity in a finite time interval. In [12]
there were established the estimates of the higher integrability for a weak solution to a parabolic
system with a variable index of nonlinearity. The exact two-sided estimates for the decay rate
of the norm of solution to a linear and quasilinear parabolic equation in an unbounded domain
there were established in works [13, 14], while in [15] it was for an anisotropic parabolic equation.
The study of the behavior to linear and quasilinear parabolic equations was done in works [16]
– [18].

2. Functional spaces

Here we introduce functional spaces employed in the work and we also provide some known
facts in the theory of Sobolev-Orlicz spaces [26].

We shall say that 𝑁 -function 𝐵(𝑠) satisfies △2-condition for great values of 𝑠, if there exist
numbers 𝑘 > 0, 𝑠0 > 0, such that 𝐵(2𝑠) 6 𝑘𝐵(𝑠) ∀𝑠 > 𝑠0. △2-condition is equivalent to the
inequality

𝐵(𝑙𝑠) 6 𝑘𝑙𝑚𝐵(𝑠), (5)

for great values of 𝑠, where 𝑙 can be an arbitrary number greater than one, 𝑚 is positive.
Usually one considers bounded domains only and then condition (5) as 𝑠 > 𝑠0 > 1 is sufficient.
If the domain is unbounded, then (see, for instance, the proof of Lemma 1 below) one has to
let 𝑠0 = 0. In what follows we assume that all the considered 𝑁 -functions satisfy △2-condition
for all values of 𝑠 > 0 (i.e., 𝑠0 = 0). We shall indicate all 𝑁 -functions by capital Latin letters.

All the constants appearing in the work are positive.
The 𝑁 -function

𝐵(𝑧) = sup
𝑡>0

(𝑡|𝑧| −𝐵(𝑡))

is called additional. The following property of additional functions is known (cf. [26]):

|𝑧𝑠| 6 𝐵(𝑧) + 𝐵(𝑠). (6)

For 𝑁 -function we shall write 𝐵1(𝑠) ≺ 𝐵2(𝑠), if there exist constants 𝑠0, 𝑘 such that

𝐵1(𝑠) 6 𝐵2(𝑘𝑠), for 𝑠 > 𝑠0. (7)

Suppose that for a.e. 𝑥 ∈ Ω a function 𝛽1(𝑥, 𝑢) is absolutely continuous w.r.t. 𝑢 ∈ R and is
defined by the identity

𝛽′
1𝑢(𝑥, 𝑢) = 𝑢𝛽′

𝑢(𝑥, 𝑢), 𝛽1(𝑥, 0) = 0. (8)
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At that we assume that 𝛽′
𝑢(𝑥, 𝑢) > 0 is even w.r.t. 𝑢, bounded in each bounded domains of

(𝑥, 𝑢), not vanishing a.e. in each interval w.r.t. 𝑢.
Let for each 𝑢 ∈ R, ∈ R𝑛, and 𝑥 ∈ Ω the conditions

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥, 𝑝)𝑝𝑖 >
𝑛∑︁

𝑖=1

𝐵𝑖(𝑝𝑖); (9)

Γ
𝑛∑︁

𝑖=1

𝐵𝑖(𝑝𝑖) > 𝑎(𝑥, 𝑝) > 𝛿

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥, 𝑝)𝑝𝑖; (10)

𝑛∑︁
𝑖=1

𝐵𝑖(𝑎𝑝𝑖(𝑥, 𝑝)) 6 𝑐
𝑛∑︁

𝑖=1

𝐵𝑖(𝑝𝑖); (11)

𝑢𝛽′
1𝑢(𝑥, 𝑢) 6 𝛼𝛽1(𝑥, 𝑢), 𝛼 > 0, ∀𝑢 ∈ R. (12)

hold true. Here 𝐵1(𝑧), 𝐵2(𝑧), . . . , 𝐵𝑛(𝑧) are 𝑁 -functions.
We also suppose the existence of 𝑁 -function 𝐺(𝑠) (then 𝐺(𝑠2) is a 𝑁 -function as well) such

that

𝐺(𝑢2) 6 𝛽1(𝑥, 𝑢) 6 𝑐1𝐺(𝑢2); (13)

𝐺(𝛽′
𝑢(𝑥, 𝑢)) 6 𝑐2𝐺(𝑢2). (14)

Hereinafter by 𝑐1, 𝑐2, . . . we denote constants which generally saying do not coincide even for
the same subscripts.

By 𝐿𝐵(𝑄) we denote the Orlicz space corresponding to 𝑁 -function 𝐵(𝑠) with the Luxembourg
norm

‖𝑢‖𝐿𝐵(𝑄) = ‖𝑢‖𝐵,𝑄 = inf

⎧⎨⎩𝑘 > 0 :

∫︁
𝑄

𝐵

(︂
𝑢(𝑥)

𝑘

)︂
𝑑𝑥 6 1

⎫⎬⎭ .

In what follows as 𝑄 we can choose domains Ω, 𝐷𝑇 , and others.
The Orlicz spaces corresponding to the 𝑁 -function 𝐺(𝑠2) is indicated by 𝐿𝐺2(𝑄) and the

symbol 𝐿𝐺2
(𝑄) stands for its dual space.

We also define Sobolev-Orlicz space
∘
𝑊 1

𝐺,𝐵(Ω) as the completion of 𝐶∞
0 (Ω) w.r.t. the norm

‖𝑢‖𝑊 1
𝐺,𝐵(Ω) =

𝑛∑︁
𝑖=1

‖𝑢𝑥𝑖
‖𝐵𝑖,Ω + ‖𝑢‖𝐺2,Ω.

By 𝑉 (𝐷𝑇 ) we shall denote the completion of 𝐶∞
0 (𝐷𝑇 ) w.r.t. the norm

‖𝑢‖𝑉 (𝐷𝑇 ) =
𝑛∑︁

𝑖=1

‖𝑢𝑥𝑖
‖𝐵𝑖,𝐷𝑇 + ‖𝑢‖𝐺2,𝐷𝑇 .

The Luxembourg norm satisfies the inequality (cf. [26])

‖𝑢(𝑥)‖𝐿𝐵(𝑄) 6 1 +

∫︁
𝑄

𝐵(𝑢(𝑥))𝑑𝑥. (15)

The following simple statement holds true.

Lemma 1. If 𝑢𝑗 → 𝑢 in 𝐿𝐵(Ω) and 𝐵 satisfies △2-condition, then there exists 𝐶 such that∫︁
Ω

𝐵(𝑢𝑗)𝑑𝑥 6 𝐶.
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Proof. Since sequence 𝑢𝑗 converges, we have ‖𝑢𝑗‖𝐿𝐵(Ω) 6 𝑐. Then by employing △2-condition
we obtain∫︁

Ω

𝐵(𝑢𝑗)𝑑𝑥 =

∫︁
Ω

𝐵

(︂
‖𝑢𝑗‖𝐿𝐵(Ω)

𝑢𝑗

‖𝑢𝑗‖𝐿𝐵(Ω)

)︂
𝑑𝑥 6

∫︁
Ω

𝐵

(︂
𝑐

𝑢𝑗

‖𝑢𝑗‖𝐿𝐵(Ω)

)︂
𝑑𝑥

6 𝑘𝑐𝑚
∫︁
Ω

𝐵

(︂
𝑢𝑗

‖𝑢𝑗‖𝐿𝐵(Ω)

)︂
𝑑𝑥 6 𝑘𝑐𝑚.

The proof is complete.

We define function ℎ(𝑠) as

ℎ(𝑠) = 𝑠−
1
𝑛

(︃
𝑛∏︁

𝑖=1

̃︀𝐵−1
𝑖 (𝑠)

)︃ 1
𝑛

, (16)

as

̃︀𝐵𝑖(𝑠) =

{︂
𝐵𝑖(𝑠), as |𝑠| > 1,

𝑠𝜅𝐵𝑖(1), as |𝑠| 6 1.

We note that since function 𝐵𝑖 are convex, then the inequality 𝐵′
𝑖(1+) > 𝐵𝑖(1) holds true. We

choose 𝜅 ∈ (1, 𝑛) to satisfy the inequalities

𝐵′
𝑖(1) > 𝜅𝐵𝑖(1), 𝑖 = 1, 2, . . . , 𝑛. (17)

We also define a 𝑁 -function 𝐵*(𝑧) by the formula

(𝐵*)−1(𝑧) =

|𝑧|∫︁
0

ℎ(𝑠)

𝑠
𝑑𝑠, (18)

if the integral

∞∫︁
0

ℎ(𝑠)

𝑠
𝑑𝑠 (19)

diverges to the infinity and

‖𝑢‖𝐵*,𝑄 = sup
𝑄

|𝑢|,

if integral (19) is bounded. The convergence of the latter integral at zero is ensured by the
inequality 𝜅 < 𝑛. There is a known embedding theorem of A. G. Korolev [27] implied by the
inequality

‖𝑢‖𝐵*,𝑄 6 𝐶

𝑛∑︁
𝑖=1

‖𝑢𝑥𝑖
‖ ̃︀𝐵𝑖,𝑄

, (20)

which is valid for functions 𝑢 ∈ 𝐶∞
0 (𝑄) in the case of convergence of the integral

1∫︀
0

ℎ(𝑠)
𝑠
𝑑𝑠 at

zero. We also note that inequality (20) proven in [27] for bounded domains is also true for
unbounded domains 𝑄 having finite measure.
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3. Formulation of main results

Theorem. Let 𝑢0 ∈
∘
𝑊 1

𝐺,𝐵(Ω) and suppose that conditions (9)–(14) hold true. Then there
exists a generalized solution to problem (1)–(3) satisfying the relations

𝑢 ∈ 𝐿∞([0,∞);
∘
𝑊

1
𝐺,𝐵(Ω)),

𝛽(𝑥, 𝑢) ∈ 𝐶([0,∞);𝐿𝐺2
(Ω)),

(𝛽(𝑥, 𝑢))𝑡 ∈ 𝐿𝐺2
(𝐷𝑇 ),

(𝛽′
𝑢(𝑥, 𝑢))

1
2𝑢𝑡 ∈ 𝐿2(𝐷

𝑇 ), ∀𝑇 > 0.

The uniqueness of solution to problem (1)–(3) with the properties established in Theorem 1
will proven in another work. Formally we can assume in the following statements we discuss
arbitrary solution with the properties established in Theorem 1.

Lemma 2. Let Ω be a bounded domain. If the initial function is bounded (𝑢0(𝑥) 6 𝑏), then
the generalized solution to problem (1)–(3) is bounded, i.e.,

vraisup
𝐷

𝑢(𝑡, 𝑥) 6 𝑏.

Remark. If the initial function satisfies the inequality 𝑢0(𝑥) > −𝑏, then the function −𝑢
is also a solution to some other equation belonging to the same class (due to the evenness of
𝑁 -function). This is why applying lemma to the function −𝑢, we obtain −𝑢 6 𝑏, or 𝑢 > −𝑏.

Lemma 3. Suppose that domain Ω is located in the half-space 𝑥1 > 0 and
∞∫︀
1

ℎ(𝑠)
𝑠
𝑑𝑠 = ∞,

and the condition
𝐵1 ≺ 𝐵* (21)

holds true. If the initial function is bounded (𝑢0(𝑥) 6 𝑏), then the generalized solution to
problem (1)–(3) is bounded, i.e.,

vraisup
𝐷

𝑢(𝑡, 𝑥) 6 𝑏. (22)

Lemma 4. Let domain Ω be arbitrary and
∞∫︀
1

ℎ(𝑠)
𝑠
𝑑𝑠 < ∞. Then for each function 𝑢 ∈ 𝑉 (𝐷𝑇 )

the inequality
vraisup

𝐷𝑇

|𝑢(𝑡, 𝑥)| 6 𝑐 (23)

holds true, where 𝑐 is an increasing function of ‖𝑢‖𝑉 (𝐷𝑇 ).

While estimating from below the norm of the solution to problem (1)–(3), we need the
following condition: there exist numbers 𝑞 > 1, 𝑐 > 0 such that the inequality

𝛽𝑞
1(𝑥, 𝑢) 6 𝑐(𝐵*(𝑢) + 1), 𝑥 ∈ Ω, 𝑢 ∈ R, (24)

is valid.

Theorem. Let Ω be bounded and conditions (9)–(14) be satisfied. Suppose also that condition
(24) holds true, if integral (19) diverges. Then there exists a positive number 𝐶 (𝐶 = 𝐶(𝑢0))
such that solution 𝑢(𝑡, 𝑥) to problem (1)–(3) satisfies inequalities∫︁

Ω

𝐺(𝑢2(𝑡, 𝑥))𝑑𝑥 >
∫︁
Ω

𝐺(𝑢2
0(𝑥))𝑑𝑥(1 + 𝐶𝑡)

1
1−𝛾 , as 𝛾 > 1, 𝑡 > 0, (25)

∫︁
Ω

𝐺(𝑢2(𝑡, 𝑥))𝑑𝑥 >
∫︁
Ω

𝐺(𝑢2
0(𝑥))𝑑𝑥(1 − 𝐶𝑡)

1
1−𝛾 , as 𝛾 < 1, 𝑡 6 1/𝐶, (26)

where 𝛾 = 1
Γ(max(2,𝛼))

.
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Remark. We roughen the case 𝛾 = 1 to 𝛾 < 1 by increasing Γ.
In the next statement we consider a domain Ω located along the axis 𝑂𝑥1. In what follows

we shall make use of the notation Ω𝑏
𝑎 = {𝑥 ∈ Ω|𝑎 < 𝑥1 < 𝑏}, the values 𝑎 = 0, 𝑏 = ∞ are

omitted. We let 𝑆(𝑟) = {𝑥 ∈ Ω|𝑥1 = 𝑟}. We assume that Ω0
−∞ = ⊘ and there exists number

𝑑 > 0 such that
mes(Ω𝑟) 6 𝑟𝑑, 𝑟 > 𝑟0. (27)

To study the decay of the solution to problem (1)–(3) as 𝑥1 → ∞, we define the function

𝜈(𝑟) = inf
𝑢∈𝐶∞

0 (Ω)
sup{𝑧 :

∫︁
𝑆(𝑟)

𝐵2(𝑧𝑢)𝑑𝑥′ 6
∫︁

𝑆(𝑟)

𝐵2(𝑢𝑥2)𝑑𝑥
′}, (28)

where 𝑥′ = {𝑥2, 𝑥3, . . . , 𝑥𝑛}. We shall assume that domain Ω satisfies the condition
∞∫︁
1

𝜈(𝑟)𝑑𝑟 = ∞. (29)

We suppose that the initial function has a compact support

supp𝑢0 ⊂ Ω𝑟0 , 𝑟0 > 0. (30)

Let
𝐵1(𝑠) 6 𝑔𝐵2(𝑠), 𝑠 < 1, 𝑔 > 1. (31)

Theorem. Suppose that conditions (9)–(14), (21), (29)-(31) hold true, domain Ω is located
along axis 𝑂𝑥1, and the inequalities

𝜈(𝑟) 6 𝜈0, as 𝑟 > 𝑟0; |𝑢0(𝑥)| 6 𝑣0, 𝑥 ∈ Ω, (32)

hold true. Then the solution 𝑢(𝑡, 𝑥) to problem (1)–(3) obeys the estimate∫︁
Ω𝑟

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥 6 𝑀 exp

⎛⎝−𝜆

𝑟∫︁
2𝑅0

𝜈(𝜌)𝑑𝜌

⎞⎠ (33)

for each 𝑡 > 0, 𝑟 > 2𝑟0 with some numbers 𝑀,𝜆 > 0.

In the next theorem we assume that there exists a number 𝑞 > 1 such that function 𝛽1(𝑥, 𝑢)
satisfies the relation

(𝛽1(𝑥, 𝑢))𝑞 6 𝑐3𝐵1(𝑢), ∀𝑢 ∈ R. (34)

We take 𝜇 so that
𝜇 > 𝑚 + 𝑑(𝑞 − 1), (35)

where 𝑚 is the number in △2-condition (5) for function 𝐵1 and 𝑑 is from (27). Let 𝑟(𝑡) be an
arbitrary positive function satisfying inequality

𝑀 exp

⎛⎝−𝜆

𝑟(𝑡)∫︁
2𝑟0

𝜈(𝜌)𝑑𝜌

⎞⎠ 6

(︂
𝑟𝜇(𝑡)

(𝑞 − 1)𝑡

)︂ 1
𝑞−1

(36)

for 𝑡 great enough to obey 𝑟(𝑡) > 2𝑟0.

Theorem. Suppose that conditions (9)–(14), (21), (29)–(32), (34) hold true and domain Ω
is located along axis 𝑂𝑥1. Then solution 𝑢(𝑡, 𝑥) to problem (1)–(3) satisfies the estimate∫︁

Ω

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥 6 𝐶(𝑟𝜇(𝑡)𝑡−1)
1

𝑞−1 , 𝐶 = 2(𝑞 − 1)
1

1−𝑞 (37)

for 𝑡 such that 𝑟(𝑡) > 2𝑟0.
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If instead of (29) a stronger requirement

lim
𝑟→∞

1

ln 𝑟

𝑟∫︁
1

𝜈(𝑡)𝑑𝑡 = ∞ (38)

is fulfilled, we can choose 𝑟(𝑡) = 𝑡
1
2𝜇 , and then estimate (37) casts into the form∫︁

Ω

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥 6 𝐶𝑡
−1

2(𝑞−1) . (39)

4. Proof of existence theorem

A generalized solution to problem (1)–(3) is a function 𝑢(𝑡, 𝑥) belonging to space 𝑉 (𝐷𝑇 ) for
each 𝑇 > 0 and satisfying the identity∫︁

𝐷𝑇

(︃
−𝛽(𝑥, 𝑢)𝜙𝑡(𝑡, 𝑥) +

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢)𝜙𝑥𝑖
(𝑡, 𝑥)

)︃
𝑑𝑥𝑑𝑡 =

∫︁
Ω

𝛽(𝑥, 𝑢0)𝜙(0, 𝑥)𝑑𝑥 (40)

for each 𝜙 ∈ 𝐶∞
0 (𝐷𝑇

−1).
We choose a sequence 𝜔𝑘 ∈ 𝐶∞

0 (Ω) of linearly independent functions whose linear span is

dense in
∘
𝑊 1

𝐺,𝐵(Ω). We let 𝐼𝑚 = ∪𝑚
𝑘=1supp𝜔𝑘. We seek the Galerkin approximations for the

solution as follows,

𝑢𝑚(𝑡, 𝑥) =
𝑚∑︁
𝑘=1

𝑐𝑚𝑘(𝑡)𝜔𝑘(𝑥),

where functions 𝑐𝑚𝑘(𝑡) are determined by the equations∫︁
Ω

(︃
𝜔𝑗

𝜕

𝜕𝑡

(︂
𝑢𝑚

𝑏𝑚
+ 𝛽(𝑥, 𝑢𝑚)

)︂
+

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)(𝜔𝑗)𝑥𝑖

)︃
𝑑𝑥 = 0, 𝑗 = 1, 2, . . . ,𝑚. (41)

We shall determine numbers 𝑏𝑚 > 0 later. Let us make sure that equations (41) are solvable
w.r.t. the derivatives 𝑐′𝑚𝑘. It is obvious that they read as

𝑚∑︁
𝑘=1

𝐴𝑗𝑘(𝑡)𝑐′𝑚𝑘 = 𝐹𝑗(𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑚).

For each 𝑡, the matrix of coefficients

𝐴𝑗𝑘(𝑡) =

∫︁
Ω

(︂
1

𝑏𝑚
+ 𝛽′

𝑢(𝑥, 𝑢𝑚)

)︂
𝜔𝑗𝜔𝑘𝑑𝑥

is the Gram matrix of linearly independent vectors 𝜔𝑘, 𝑘 = 1, 2, . . . ,𝑚, and thus it is invertible.

By equations (41) and the initial conditions 𝑐𝑚𝑘(0) chosen so that 𝑢𝑚(0, 𝑥) → 𝑢0(𝑥) in
∘
𝑊 1

𝐺,𝐵(Ω)
we find functions 𝑐𝑚𝑘(𝑡). First we find these functions on a small time interval, but the bound-
edness of Galerkin approximations allows us to define them on an infinite time interval. We
choose numbers 𝑏𝑚 so that ‖𝑢𝑚(0)‖22/𝑏𝑚 → 0 as 𝑚 → ∞.

Let us establish the estimates for the Galerkin approximations. We multiply equations (41)
by 𝑐𝑚𝑗(𝑡), sum up and use formula (8). Then∫︁

Ω

(︃(︂
𝑢2
𝑚

2𝑏𝑚

)︂
𝑡

+ 𝛽′
1𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡 +

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)𝑢𝑚𝑥𝑖

)︃
𝑑𝑥 = 0. (42)
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Employing inequality (9), we get∫︁
Ω

(︃(︂
𝑢2
𝑚

2𝑏𝑚

)︂
𝑡

+ (𝛽1(𝑥, 𝑢𝑚))𝑡 +
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑚𝑥𝑖
)

)︃
𝑑𝑥 6 0.

Integrating w.r.t. 𝑡, due to (13) we have∫︁
Ω

(︂
𝑢2
𝑚(𝑡, 𝑥)

2𝑏𝑚
+ 𝐺(𝑢2

𝑚(𝑡, 𝑥))

)︂
𝑑𝑥 +

∫︁
𝐷𝑡

0

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑚𝑥𝑖
)𝑑𝑥𝑑𝑡 6

6
∫︁
Ω

(︂
𝑢2
𝑚(0, 𝑥)

2𝑏𝑚
+ 𝑐1𝐺(𝑢2

𝑚(0, 𝑥))

)︂
𝑑𝑥.

The latter integral in the right hand side is bounded due to the chosen convergences. Hence,
we obtain the estimate ∫︁

Ω

𝐺(𝑢2
𝑚(𝑡, 𝑥))𝑑𝑥 +

∫︁
𝐷𝑡

0

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑚𝑥𝑖
)𝑑𝑥𝑑𝑡 6 𝑐. (43)

Now (43) implies the boundedness of sequence 𝑢𝑚 in the space 𝐿∞([0, 𝑇 ];𝐿𝐺2(Ω)) and in the
space 𝑉 (𝐷𝑇 ) for each 𝑇 > 0.

We multiply equations (41) by 𝑐′𝑚𝑗(𝑡) and sum up to obtain∫︁
Ω

(︃(︂
1

𝑏𝑚
+ 𝛽′

𝑢(𝑥, 𝑢𝑚)

)︂
(𝑢𝑚)2𝑡 +

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)(𝑢𝑚𝑥𝑖
)𝑡

)︃
𝑑𝑥 = 0,

or ∫︁
Ω

(︂(︂
1

𝑏𝑚
+ 𝛽′

𝑢(𝑥, 𝑢𝑚)

)︂
(𝑢𝑚)2𝑡 + 𝑎(𝑥,∇𝑢𝑚)𝑡

)︂
𝑑𝑥 = 0. (44)

We integrate the latter identity w.r.t. 𝑡:∫︁
𝐷𝑇

(︂
1

𝑏𝑚
+ 𝛽′

𝑢(𝑥, 𝑢𝑚)

)︂
(𝑢𝑚)2𝑡𝑑𝑥𝑑𝑡 +

∫︁
Ω

𝑎(𝑥,∇𝑢𝑚(𝑇, 𝑥))𝑑𝑥

=

∫︁
Ω

𝑎(𝑥,∇𝑢𝑚(0, 𝑥))𝑑𝑥 = 𝐼Ω.

(45)

To estimate integral 𝐼Ω, we employ inequality (10) and Lemma 1:

𝐼Ω 6 Γ

∫︁
Ω

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑚𝑥𝑖
(0, 𝑥))𝑑𝑥 6 𝐶.

Combining the obtained estimate and identity (45) and applying (10) and (9), we get∫︁
𝐷𝑇

(𝛽′
𝑢(𝑥, 𝑢𝑚)) (𝑢𝑚𝑡)

2𝑑𝑥𝑑𝑡 + 𝛿

∫︁
Ω

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑚𝑥𝑖
(𝑇, 𝑥))𝑑𝑥 6 𝐶.

Hence, by the latter inequality and (43) we prove the boundedness of the sequence (𝛽′
𝑢)

1
2 (𝑢𝑚)𝑡

in 𝐿2(𝐷
𝑇 ) for each 𝑇 > 0 and of sequence 𝑢𝑚 in the space 𝐿∞([0,∞];

∘
𝑊 1

𝐺,𝐵(Ω)).
The established facts, by the diagonal process, allow us to choose a sequence 𝑢𝑚𝑘

weakly
converging in the given below spaces. For the sake of simplifying the notations, we omit the
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subscript 𝑘 in the subsequences:

𝑢𝑚 →𝑢 weakly in 𝑉 (𝐷𝑇 ),

(𝛽′
𝑢(𝑥, 𝑢𝑚))

1
2 (𝑢𝑚)𝑡 →�̃� weakly in 𝐿2(𝐷

𝑇 ), ∀𝑇 > 0.

Let us show that by (11) the functional

̃︀𝑎(𝑢𝑚) = −
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)

is bounded on the unit ball in 𝑉 (𝐷𝑇 ):

(̃︀𝑎(𝑢𝑚), 𝑣) =
𝑛∑︁

𝑖=1

∫︁
𝐷𝑇

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)𝑣𝑥𝑖
𝑑𝑥𝑑𝑡 6

𝑛∑︁
𝑖=1

∫︁
𝐷𝑇

(𝐵𝑖(𝑣𝑥𝑖
) + 𝐵𝑖(𝑎𝑝𝑖(𝑥,∇𝑢𝑚)))𝑑𝑥𝑑𝑡

6
𝑛∑︁

𝑖=1

∫︁
𝐷𝑇

(𝐵𝑖(𝑣𝑥𝑖
) + 𝑐𝐵𝑖(𝑢𝑥𝑖

))𝑑𝑥𝑑𝑡 6 𝑐1, ‖𝑣‖𝑉 (𝐷𝑇 ) 6 1.

Therefore, ̃︀𝑎(𝑢𝑚) is a bounded sequence in space (𝑉 (𝐷𝑇 ))′ and we can choose a weakly con-
verging subsequence

�̃�(𝑢𝑚) → 𝜒 weakly in (𝑉 (𝐷𝑇 ))′.

The convergence holds true for each 𝑇 = 1, 2, . . ., at that, the limiting functions coincide on
the joint domain. Then, in fact, the convergence holds true for each 𝑇 > 0.

In what follows we shall show that �̃� = (𝛽′
𝑢(𝑥, 𝑢))

1
2 𝑢𝑡, 𝜒 = �̃�(𝑢), and function 𝑢 is a generalized

solution to problem (1)-(3). We split the appropriate arguments into three steps.

Step 1. Sequence 𝑢𝑚(𝑡) is bounded in the space
∘
𝑊 1

𝐺,𝐵(Ω) for each 𝑡 > 0:

‖𝑢𝑚(𝑡)‖𝑊 1
𝐺,𝐵(Ω) 6 𝐶, 𝑚 = 1, 2, . . .

We fix a countable dense set {𝑡𝑠} ⊂ [0,∞]. We can assume that 𝑡0 = 0. For each bounded
domain Ω𝑟 ⊂ Ω with a smooth boundary the compact embedding 𝑊 1

1 (Ω𝑟) ⊂ 𝐿1(Ω
𝑟) is known.

Since
∘
𝑊 1

𝐺,𝐵(Ω) ⊂ 𝑊 1
1 (Ω𝑟), by the diagonal process we choose a subsequence 𝑢𝑚𝑘

(𝑡𝑠) → ℎ𝑠

strongly in 𝐿1(Ω
𝑟) for each natural 𝑠. Choosing a subsequence once again and omitting the

subscripts, we can suppose that 𝑢𝑚(𝑡𝑠, 𝑥) → ℎ𝑠(𝑥) a.e. in Ω𝑟 for each 𝑡𝑠. In particular, as
𝑡0 = 0, we have 𝑢𝑚(0, 𝑥) → 𝑢0(𝑥) a.e. in Ω.

At the next step we make use of the lemma proven in [6].

Lemma 5. Suppose a sequence 𝑣𝑚(𝑡) ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) possesses the properties:
1) 𝑣𝑚(𝑡𝑠, 𝑥) converges a.e. in Ω𝑟 for each 𝑡𝑠 and some 𝑟 > 0,
2) sequence 𝑣𝑚𝑡 is bounded in 𝐿2(𝐷

𝑇 ).
Then there exists a subsequence 𝑣𝑚𝑘

converging to a function 𝑣 in the space 𝐶([0, 𝑇 ];𝐿1(Ω
𝑟))

and 𝑣𝑚𝑘
→ 𝑣 a.e. in (0, 𝑇 ) × Ω𝑟.

Step 2. We apply Lemma 5 to the sequence 𝑣𝑚 = 𝑓(𝑥, 𝑢𝑚) =
𝑢𝑚∫︀
0

(𝛽′
𝑢(𝑥, 𝜏))

1
2𝑑𝜏 . Then (𝑣𝑚)𝑡 =

(𝛽′
𝑢)

1
2 (𝑢𝑚)𝑡. The belonging of 𝑣𝑚(𝑡) to 𝐿2(Ω) for each 𝑡 > 0 follows from the boundedness of the

support of function 𝑢𝑚(𝑡), its smoothness, and the boundedness of 𝛽′
𝑢(𝑥, 𝑢) on a bounded set of

the arguments. Thanks to the arbitrary choice of 𝑟 > 0 and 𝑇 = 1, 2, . . ., by the diagonal process
one can choose a subsequence 𝑣𝑚𝑘

converging a.e. in 𝐷. Since 𝛽′
𝑢 is not identically zero on

intervals, then the function 𝑓(𝑥, 𝑢𝑚) increasing in 𝑢𝑚 has the inverse function: 𝑢𝑚 = 𝑓−1(𝑥, 𝑣𝑚).
Then the convergence of sequence 𝑣𝑚𝑘

implies the convergence of sequence 𝑢𝑚𝑘
a.e. in 𝐷 to 𝑢.

The limiting function is exactly 𝑢 that is implied by the following statement (cf. [19, Ch. 1,
Sect. 1.4, Lm. 1.3]):
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Lemma 6. Suppose a sequence 𝑔𝑚 converges to 𝑔 a.e. in 𝑄 and is bounded in 𝐿𝑞(𝑄). Then
𝑔𝑚 → 𝑔 weakly in 𝐿𝑞(𝑄).

The inequality
∫︀
Ω𝑟

𝑢2𝑑𝑥 6
∫︀
Ω𝑟

(𝐺(𝑢2) + 𝐺(1))𝑑𝑥 implies the continuous embedding

𝑉 (𝐷𝑇 ) ⊂ 𝐿2([0, 𝑇 ] × Ω𝑟). This is why the weak convergence 𝑢𝑚 → 𝑢 in 𝑉 (𝐷𝑇 ) implies
the weak convergence 𝑢𝑚 → 𝑢 in 𝐿2([0, 𝑇 ] × Ω𝑟). It also follows from Lemma 6 that

𝑣𝑚𝑘
→ 𝑣 =

𝑢∫︀
0

(𝛽′
𝑢(𝑥, 𝜏))

1
2𝑑𝜏 weakly in 𝐿2(𝐷

𝑇 ) for each 𝑇 > 0.

By Lemma 5 we know that 𝑣𝑚𝑘
(𝑇 ) → 𝑣(𝑇 ) in 𝐿1(Ω

𝑟). Then we can select a subsequence
converging a.e. in Ω𝑟: 𝑣𝑚𝑘

(𝑇, 𝑥) → 𝑣(𝑇, 𝑥) ⇒ 𝑢𝑚𝑘
(𝑇, 𝑥) → 𝑢(𝑇, 𝑥) a.e. in Ω𝑟 (and hence in

Ω). Since the sequence 𝑢𝑚(𝑇 ) is bounded in the space
∘
𝑊 1

𝐺,𝐵(Ω), we can choose a subsequence
such that

𝑢𝑚𝑘
(𝑇 ) → 𝑢(𝑇 ) weakly in

∘
𝑊

1
𝐺,𝐵(Ω), for a fixed 𝑇. (46)

It follows that 𝑢 ∈ 𝐿∞([0,∞);
∘
𝑊 1

𝐺,𝐵(Ω)).

Then, ((𝑣𝑚)𝑡, 𝜙)𝐷𝑇 = −(𝑣𝑚, 𝜙𝑡)𝐷𝑇 𝜙 ∈ 𝐶∞
0 (𝐷𝑇 ). Passing to the limit as 𝑚 → ∞, we obtain

(�̃�, 𝜙)𝐷𝑇 = −(𝑣, 𝜙𝑡)𝐷𝑇 .

It follows that �̃� = 𝑣𝑡 = (𝛽′
𝑢(𝑥, 𝑢))

1
2𝑢𝑡.

Let us show that sequence 𝛽′
𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡 is bounded in 𝐿𝐺2

(𝐷𝑇 ). Indeed,

|(𝛽′
𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡, 𝜙)𝐷𝑇 | =|((𝛽′

𝑢))
1
2 (𝑢𝑚)𝑡, 𝜙(𝛽′

𝑢)
1
2 )𝐷𝑇 | 6 𝑐‖𝜙(𝛽′

𝑢)
1
2‖𝐿2(𝐷𝑇 ) 6

6𝑐1

⎛⎝∫︁
𝐷𝑇

𝐺(𝜙2)𝑑𝑥𝑑𝑡 +

∫︁
𝐷𝑇

𝐺(𝛽′
𝑢(𝑢𝑚))𝑑𝑥𝑑𝑡

⎞⎠ 1
2

< 𝑐2, ‖𝜙‖𝐺2,𝐷𝑇 6 1,

since the latter integral is estimated by formula (14). Then we can assume that
𝛽′
𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡 → 𝑢 weakly in 𝐿𝐺2

(𝐷𝑇 ).
Let us show that 𝛽(𝑥, 𝑢(𝑡, 𝑥)) belongs to the space 𝐶([0,∞];𝐿𝐺2

(Ω)). We introduce the
functional

𝑙(𝜙) =

∫︁
Ω

𝜙(𝑥)𝛽(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥.

Employing (4), let us show that it is bounded on the unit ball in the space 𝐿𝐺2(Ω)

|𝑙(𝜙)| 6 𝑐𝛽

∫︁
Ω

|𝜙𝑢𝛽′
𝑢(𝑥, 𝑢)|𝑑𝑥 6 𝑐𝛽

∫︁
Ω

(︀
𝐺(𝛽′

𝑢(𝑥, 𝑢)) + 𝐺(|𝜙𝑢|)
)︀
𝑑𝑥. (47)

The first integral in the right hand side of this inequality is bounded due to condition (14). We
estimate the second integral

𝐺(|𝜙𝑢|) 6 𝐺(
𝜙2 + 𝑢2

2
) 6 𝐺(𝜙2) + 𝐺(𝑢2).

Since
∫︀
Ω

𝐺(𝜙2)𝑑𝑥 6 1, the second integral in the right hand side of (47) is bounded. The upper

bound by a constant independent of 𝑡 ∈ [0,∞) is ensured for the functional by the belonging
of 𝛽(𝑥, 𝑢) to the space 𝐿∞([0,∞);𝐿𝐺2

(Ω)). Passing to limit in the identity

(𝛽(𝑥, 𝑢𝑚), 𝜙𝑡)𝐷𝑇 = −(𝛽′
𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡, 𝜙)𝐷𝑇 ,

we obtain that

(𝛽(𝑥, 𝑢), 𝜙𝑡)𝐷𝑇 = −(𝑢, 𝜙)𝐷𝑇 ,



ESTIMATES OF DECAY RATE FOR SOLUTION TO PARABOLIC EQUATION. . . 13

i.e., (𝛽(𝑥, 𝑢))𝑡 = 𝑢 ∈ 𝐿𝐺2
(𝐷𝑇 ). Therefore, since 𝑇 > 0 is arbitrary, 𝛽(𝑥, 𝑢) ∈ 𝐶([0,∞); 𝐿𝐺2

(Ω)).
At that,

𝛽(𝑥, 𝑢(0)) = 𝛽(𝑥, 𝑢0). (48)

Indeed, at the Step 1 we mentioned the convergence 𝑢𝑚(0, 𝑥) → 𝑢0(𝑥) a.e. in Ω. Then,
by Lemma 5, the convergence 𝑣𝑚(0) → 𝑣(0) in 𝐿1(Ω

𝑟), 𝑟 > 0, implies the convergence
𝑢𝑚(0, 𝑥) = 𝑓−1(𝑥, 𝑣𝑚(0, 𝑥)) → 𝑢(0, 𝑥) a.e. in Ω by a suitable subsequence. It guarantees the
validity of identity (48).

Step 3. We proceed to proving the identity 𝜒 = �̃�(𝑢). We multiply equation (41) by a
smooth function 𝑑𝑗(𝑡), integrate w.r.t. 𝑡 and pass to the limit as 𝑚 → ∞, denoting 𝑑𝑗(𝑡)𝜔𝑗(𝑥)
by 𝜙 in the final expression:

(𝛽𝑡(𝑥, 𝑢), 𝜙)𝐷𝑇 + (𝜒, 𝜙)𝐷𝑇 = 0. (49)

We note that(︁(𝑢𝑚)𝑡
𝑏𝑚

, 𝜙
)︁
𝐷𝑇

=
1

𝑏𝑚
(−(𝑢𝑚, 𝜙𝑡)𝐷𝑇 + (𝑢𝑚(𝑇 ), 𝜙(𝑇 ))Ω − (𝑢𝑚(0), 𝜙(0))Ω) → 0

by the boundedness of 𝑢𝑚 in 𝐿∞([0, 𝑇 ];𝐿𝐺2(Ω)) and since 𝑏𝑚 → ∞. It is also easy to see that
each function in 𝑉 (𝐷𝑇 ) can be approximated by linear combinations of the form

𝑁∑︁
𝑖=1

𝑑𝑗(𝑡)𝜔𝑗(𝑥).

Thus, (49) is valid for functions 𝜙 in space 𝑉 (𝐷𝑇 ) as well. Hence, 𝑢 is the generalized solution
to problem (1)–(3) once we show that 𝜒 = �̃�(𝑢).

Let 𝑤𝑚 = (𝛽1(𝑥, 𝑢𝑚))
1
2 , 𝑤𝑚 → 𝑤 = (𝛽1(𝑥, 𝑢))

1
2 a.e. in 𝐷. If we show that 𝑤 ∈ 𝐿2(𝐷

𝑇 ) has
the generalized derivative 𝑤𝑡 ∈ 𝐿2(𝐷

𝑇 ), it will imply the identity

𝑇∫︁
0

𝜕

𝜕𝑡
‖𝑤‖22𝑑𝑡 = ‖𝑤(𝑇 )‖𝐿2(Ω) − ‖𝑤(0)‖𝐿2(Ω). (50)

We employ (13): ∫︁
Ω

𝛽1(𝑥, 𝑢𝑚(𝑇, 𝑥))𝑑𝑥 6 𝑐1

∫︁
Ω

𝐺(𝑢2
𝑚(𝑇, 𝑥))𝑑𝑥 < 𝑐2. (51)

Hence, the sequence 𝑤𝑚(𝑇 ) is bounded in 𝐿2(Ω) and by Lemma 6 there exists a subsequence con-
verging to 𝑤(𝑇 ) weakly in 𝐿2(Ω). We note that then ‖𝑤‖22 = lim(𝑤,𝑤𝑚) 6 lim inf ‖𝑤‖2‖𝑤𝑚‖2.
It yields the inequality

lim inf ‖𝛽1(𝑥, 𝑢𝑚(𝑇 ))‖𝐿1(Ω) > ‖𝛽1(𝑥, 𝑢(𝑇 ))‖𝐿1(Ω). (52)

Integrating inequality (51) w.r.t. 𝑇 , we obtain that sequence 𝑤𝑚 is bounded in 𝐿2(𝐷
𝑇 ) and by

Lemma 6 we can choose a subsequence weakly converging to 𝑤 in 𝐿2(𝐷
𝑇 ).

To prove that 𝑤𝑡 ∈ 𝐿2(𝐷
𝑇 ), we apply condition (12), then∫︁

𝐷𝑇

(︁
(𝛽

1
2
1 (𝑥, 𝑢𝑚))𝑡

)︁2
𝑑𝑥𝑑𝑡 =

∫︁
𝐷𝑇

(︃
𝛽′
1𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡

2𝛽
1
2
1 (𝑥, 𝑢𝑚)

)︃2

𝑑𝑥𝑑𝑡 6

6
∫︁
𝐷𝑇

𝛼(𝛽′
1𝑢(𝑥, 𝑢𝑚))2(𝑢𝑚)2𝑡
4𝑢𝛽′

1𝑢(𝑥, 𝑢𝑚)
𝑑𝑥𝑑𝑡 =

𝛼

4

∫︁
𝐷𝑇

𝛽′
𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)2𝑡𝑑𝑥𝑑𝑡 < 𝑐.

The latter inequality follows from (45). Therefore, (𝑤𝑚)𝑡 weakly converges to 𝑤 in 𝐿2(𝐷
𝑇 ).

Then, (𝑤𝑚, 𝜙𝑡)𝐷𝑇 = −((𝑤𝑚)𝑡, 𝜙)𝐷𝑇 , 𝜙 ∈ 𝐶∞
0 (𝐷𝑇 ). Passing to the limit, we obtain

(𝑤,𝜙𝑡)𝐷𝑇 = −(𝑤,𝜙)𝐷𝑇 . Hence, 𝑤 = 𝑤𝑡.
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We substitute 𝜙 = 𝑢 into (49) and apply (50) to obtain

(−𝜒, 𝑢)𝐷𝑇 = ((𝛽(𝑥, 𝑢))𝑡, 𝑢)𝐷𝑇 =

∫︁
𝐷𝑇

𝛽′
1𝑢(𝑥, 𝑢)𝑢𝑡𝑑𝑥𝑑𝑡

=

𝑇∫︁
0

𝜕

𝜕𝑡
‖𝛽

1
2
1 (𝑥, 𝑢)‖22𝑑𝑡 = ‖𝛽1(𝑢(𝑇 ))‖𝐿1(Ω) − ‖𝛽1(𝑢(0))‖𝐿1(Ω).

(53)

Then we employ the monotonicity of operator ̃︀𝑎. It is easy to check (see [19, Ch. 2, Sect. 1,
Prop. 1.1]) that

𝑋𝑚 =

𝑇∫︁
0

(�̃�(𝑢𝑚(𝑡)) − �̃�(ℎ(𝑡)), 𝑢𝑚(𝑡) − ℎ(𝑡))Ω𝑑𝑡 > 0, ∀ℎ ∈ 𝑉 (𝐷𝑇 ).

Equations (41) imply easily the relations

(�̃�(𝑢𝑚), 𝑢𝑚)𝐷𝑇 =‖𝛽1(𝑢𝑚(0))‖𝐿1(Ω) − ‖𝛽1(𝑢𝑚(𝑇 ))‖𝐿1(Ω)

+
1

2𝑏𝑚

(︀
‖𝑢𝑚(0)‖22 − ‖𝑢𝑚(𝑇 )‖22

)︀
.

(54)

Hence,

𝑋𝑚 =‖𝛽1(𝑢𝑚(0))‖𝐿1(Ω) − ‖𝛽1(𝑢𝑚(𝑇 ))‖𝐿1(Ω) +
1

2𝑏𝑚
(‖𝑢𝑚(0)‖22 − ‖𝑢𝑚(𝑇 )‖22)

− (�̃�(𝑢𝑚), ℎ)𝐷𝑇 − (�̃�(ℎ), 𝑢𝑚 − ℎ)𝐷𝑇 .

Employing (52), we get

0 6 lim sup𝑋𝑚 6 ‖𝛽1(𝑢(0))‖𝐿1(Ω) − ‖𝛽1(𝑢(𝑇 ))‖𝐿1(Ω) − (𝜒, ℎ)𝐷𝑇 − (�̃�(ℎ), 𝑢− ℎ)𝐷𝑇 .

Applying 53), we obtain
(𝜒− �̃�(ℎ), 𝑢− ℎ)𝐷𝑇 > 0.

We let ℎ = 𝑢− 𝜆𝜔, 𝜆 > 0, 𝜔 ∈ 𝑉 (𝐷𝑇 ), then

𝜆(𝜒− �̃�(𝑢− 𝜆𝜔), 𝜔)𝐷𝑇 > 0.

Letting 𝜆 → 0, we have (𝜒− �̃�(𝑢), 𝜔) > 0, ∀𝜔. Hence, 𝜒 = �̃�(𝑢).
For further using we write (53) as

‖𝛽1(𝑢(𝑇 ))‖𝐿1(Ω) +
𝑛∑︁

𝑖=1

(𝑎𝑝𝑖(𝑥,∇𝑢), 𝑢𝑥𝑖
)𝐷𝑇 = ‖𝛽1(𝑢(0))‖𝐿1(Ω). (55)

5. Proof of Lemmata 2–4

We denote by {𝑢 > 𝑏} the set {(𝑡, 𝑥) ∈ 𝐷𝑇 |𝑢(𝑡, 𝑥) > 𝑏}. We note that

mes{𝑢 > 𝑏} <
𝑐

𝐺(𝑏2)
, 𝑢 ∈ 𝐿𝐺2(𝐷

𝑇 ). (56)

Indeed,

𝑐 >

∫︁
𝐷𝑇

𝐺(𝑢2)𝑑𝑥𝑑𝑡 >

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝐺(𝑏2)𝑑𝑥𝑑𝑡 = 𝐺(𝑏2)mes{𝑢 > 𝑏}

that yields inequality (56).
For a domain located along the axis 𝑂𝑥1 let us prove the following inequality∫︁

Ω𝑟

𝐵1(𝑣(𝑥))𝑑𝑥 6
∫︁
Ω𝑟

𝐵1(𝑟𝑣𝑥1(𝑥))𝑑𝑥, 𝑣 ∈ 𝐶∞
0 (Ω). (57)
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Let 𝑓(𝑥1) ∈ 𝐶[0, 𝑟], 𝑓(0) = 0. We employ Newton-Leibniz formula to get

|𝑓(𝑥1)| = |
𝑥1∫︁
0

𝑓 ′(𝑥1)𝑑𝑥1| 6
𝑟∫︁

0

|𝑓 ′(𝑥1)|𝑑𝑥1, 𝑥1 ∈ [0, 𝑟].

Now we apply Jensen integral inequality (see [26, Ch. 2, Sect. 8.2, Ineq. (8.2)]), then

𝐵1

(︂
𝑓(𝑥1)

𝑟

)︂
6 𝐵1

⎛⎜⎜⎝
𝑟∫︀
0

|𝑓 ′(𝑥1)|𝑑𝑥1

𝑟

⎞⎟⎟⎠ 6
1

𝑟

𝑟∫︁
0

𝐵1(𝑓
′(𝑥1))𝑑𝑥1.

We integrate the latter inequality w.r.t. 𝑥1

𝑟∫︁
0

𝐵1

(︂
𝑓(𝑥1)

𝑟

)︂
𝑑𝑥1 6

𝑟∫︁
0

𝐵1(𝑓
′(𝑥1))𝑑𝑥1.

Then, substituting 𝑓(𝑥1) = 𝑟𝑣(𝑥) and integrating w.r.t. 𝑥′ = {𝑥2, . . . , 𝑥𝑛}, we obtain (57).

Proof of Lemmata2, 3. Let us show that if 𝑢0(𝑥) 6 𝑏 for a.e. 𝑥 ∈ Ω, then (22) holds true. We
let 𝑢(𝑏)(𝑡, 𝑥) = max(𝑢(𝑡, 𝑥) − 𝑏, 0) and employ identity (49) for 𝜙 = 𝑢(𝑏)(𝑡, 𝑥)𝜉(𝑥), where 𝜉(𝑥) is
a Lipschitz compactly supported function(︀

(𝛽(𝑥, 𝑢))𝑡, 𝑢
(𝑏)(𝑡, 𝑥)𝜉(𝑥)

)︀
𝐷𝑇 −

(︃
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖

𝑎𝑝𝑖(𝑥,∇𝑢), 𝑢(𝑏)(𝑡, 𝑥)𝜉(𝑥)

)︃
𝐷𝑇

= 0,

(︀
(𝛽(𝑥, 𝑢))𝑡, 𝑢

(𝑏)(𝑡, 𝑥)𝜉(𝑥)
)︀
𝐷𝑇 +

𝑛∑︁
𝑖=1

(︀
𝑎𝑝𝑖(𝑥,∇𝑢), 𝑢(𝑏)

𝑥𝑖
(𝑡, 𝑥)𝜉(𝑥)

)︀
𝐷𝑇

+
𝑛∑︁

𝑖=1

(︀
𝑎𝑝𝑖(𝑥,∇𝑢), 𝑢(𝑏)(𝑡, 𝑥)𝜉𝑥𝑖

(𝑥)
)︀
𝐷𝑇 = 0.

(58)

We choose 𝜉 = 𝜂(𝑥1), where

𝜂(𝜌) =

⎧⎪⎪⎨⎪⎪⎩
1, as 𝜌 < 𝑟,

0, as 𝜌 > 𝑅,

𝑅− 𝜌

𝑅− 𝑟
, as 𝜌 ∈ [𝑟, 𝑅].

Then |𝜉𝑥1| 6 1
𝑅−𝑟

. We note that 𝑢(𝑏)(0, 𝑥) = 𝑢
(𝑏)
0 (𝑥) = 0 for a.e. 𝑥 ∈ Ω. We then estimate the

integrals involved in identity (58) by condition (9):

𝑛∑︁
𝑖=1

∫︁
𝐷𝑇

𝑎𝑝𝑖(𝑥,∇𝑢)𝑢(𝑏)
𝑥𝑖

(𝑡, 𝑥)𝜉(𝑥)𝑑𝑥𝑑𝑡 >
𝑛∑︁

𝑖=1

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝐵𝑖(𝑢𝑥𝑖
)𝜉(𝑥)𝑑𝑥𝑑𝑡. (59)

Now we transform the first integral in (58):

𝐼1 =

∫︁
𝐷𝑇

𝛽𝑡(𝑥, 𝑢)𝑢(𝑏)(𝑡, 𝑥)𝜉(𝑥)𝑑𝑥𝑑𝑡 =

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝛽′
𝑢(𝑥, 𝑢)𝑢𝑡(𝑡, 𝑥)𝑢(𝑏)(𝑡, 𝑥)𝜉(𝑥)𝑑𝑥𝑑𝑡

=

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝛽′
𝑢(𝑥, 𝑏 + 𝑢(𝑏))(𝑢(𝑏))𝑡𝑢

(𝑏)𝜉(𝑥)𝑑𝑥𝑑𝑡.
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We let ℎ(𝑥, 𝑦) =
𝑦∫︀
0

𝛽′
𝑢(𝑥, 𝑏+𝑣)𝑣𝑑𝑣, then ℎ′

𝑦(𝑥, 𝑢
(𝑏)) > 0, since 𝛽′

𝑢 > 0. Hence, integral 𝐼1 casts

into the form

𝐼1 =

∫︁
Ω

𝜉(𝑥)ℎ(𝑥, 𝑢(𝑏)(𝑡, 𝑥))|𝑇0 𝑑𝑥 =

∫︁
Ω

𝜉(𝑥)𝑢(𝑏)ℎ′
𝑦(𝑥, 𝜃(𝑥)𝑢(𝑏))|𝑡=𝑇𝑑𝑥 > 0, (60)

where 0 < 𝜃(𝑥) < 1.
In the case of a bounded domain Ω we choose 𝑟 so that it is contained in the ball of radius

𝑟. Then 𝜉𝑥𝑖
= 0 in 𝐷𝑇 and by (58), (59) we obtain the inequality

𝑛∑︁
𝑖=1

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝐵𝑖(𝑢𝑥𝑖
)𝜉(𝑥)𝑑𝑥𝑑𝑡 6 0.

It yields
𝐵𝑖(𝑢𝑥𝑖

) = 0, 𝑖 = 1, 2, . . . , 𝑛, (61)

for a.e. 𝑡, 𝑥 ∈ 𝐷𝑇 ∩ {𝑢 > 𝑏} ∩ {𝑥1 < 𝑟}. Applying inequality (57) to function 𝑢(𝑏)(𝑡, 𝑥), we find∫︁
Ω𝑟

𝐵1(𝑢
(𝑏)(𝑡, 𝑥))𝑑𝑥 6

∫︁
Ω𝑟

𝐵1(𝑟𝑢
(𝑏)
𝑥1

(𝑡, 𝑥))𝑑𝑥 = 0, for a.e. 𝑡 ∈ (0, 𝑇 ).

Therefore, 𝑢(𝑏)(𝑡, 𝑥) = 0 for a.e. 𝑥 ∈ Ω𝑟, 𝑡 ∈ (0, 𝑇 ).
To estimate the latter integral in (58) in the case of an unbounded domain Ω, we employ

sequentially inequalities (6) and (11):∫︁
𝐷𝑇

𝑎𝑝1(𝑥,∇𝑢)𝑢(𝑏)(𝑡, 𝑥)𝜉𝑥1(𝑥)𝑑𝑥𝑑𝑡 6
1

𝑅− 𝑟

∫︁
𝐷𝑇

|𝑎𝑝1(𝑥,∇𝑢)𝑢(𝑏)(𝑡, 𝑥)|𝑑𝑥𝑑𝑡

6
1

𝑅− 𝑟

∫︁
𝐷𝑇

(︀
𝐵1(𝑎𝑝1(𝑥,∇𝑢)) + 𝐵1(𝑢

(𝑏)(𝑡, 𝑥))
)︀
𝑑𝑥𝑑𝑡

6
1

𝑅− 𝑟

∫︁
𝐷𝑇

(︃
𝑐

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑥𝑖
) + 𝐵1(𝑢

(𝑏)(𝑡, 𝑥))

)︃
𝑑𝑥𝑑𝑡.

(62)

Taking into consideration (58)–(60), (62), we get

𝑛∑︁
𝑖=1

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝐵𝑖(𝑢𝑥𝑖
(𝑡, 𝑥))𝜉(𝑥)𝑑𝑥𝑑𝑡 6

𝑐

𝑅− 𝑟

∫︁
𝐷𝑇

(︃
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑥𝑖
) + 𝐵1(𝑢

(𝑏))

)︃
𝑑𝑥𝑑𝑡. (63)

Let us show that the integral
∫︀
𝐷𝑇

𝐵1(𝑢
(𝑏)(𝑡, 𝑥))𝑑𝑥𝑑𝑡 is bounded. We employ conditions (21),(5),

and (20)∫︁
𝐷𝑇

𝐵1(𝑢
(𝑏))𝑑𝑥𝑑𝑡 6

∫︁
𝐷𝑇∩{𝑢(𝑏)>𝑠0}

𝐵*(𝑘𝑢(𝑏))𝑑𝑥𝑑𝑡 +

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝐵1(𝑠0)𝑑𝑥𝑑𝑡

6
∫︁
𝐷𝑇

𝐵*
(︂
𝑘‖𝑢(𝑏)‖𝐵*,𝐷𝑇

𝑢(𝑏)

‖𝑢(𝑏)‖𝐵*,𝐷𝑇

)︂
𝑑𝑥𝑑𝑡 + 𝐵1(𝑠0)mes{𝑢 > 𝑏}

6 𝑘*(𝑘‖𝑢(𝑏)‖𝐵*,𝐷𝑇 )𝑚 + 𝑐3 6 𝑘*

(︃
𝐶𝑘

𝑛∑︁
𝑖=1

‖𝑢(𝑏)
𝑥𝑖
‖ ̃︀𝐵𝑖,𝐷𝑇

)︃𝑚

+ 𝑐3,

(64)

where 𝑘, 𝑠0 is taken from definition (7), and 𝑘*, 𝑚 come from definition (5).



ESTIMATES OF DECAY RATE FOR SOLUTION TO PARABOLIC EQUATION. . . 17

Let us show that
𝑛∑︁

𝑖=1

‖𝑢(𝑏)
𝑥𝑖
‖ ̃︀𝐵𝑖,𝐷𝑇 6 𝑐4. (65)

Applying (56), as well as inequality (15), we obtain

𝑛∑︁
𝑖=1

‖𝑢(𝑏)
𝑥𝑖
‖ ̃︀𝐵𝑖,𝐷𝑇 6 𝑛 +

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝑛∑︁
𝑖=1

̃︀𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡

= 𝑛 +

∫︁
𝐷𝑇∩{|𝑢𝑥𝑖 |>1}∩{𝑢>𝑏}

𝑛∑︁
𝑖=1

̃︀𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡 +

∫︁
𝐷𝑇∩{|𝑢𝑥𝑖 |61}∩{𝑢>𝑏}

𝑛∑︁
𝑖=1

̃︀𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡

6 𝑛 +

∫︁
𝐷𝑇∩{|𝑢𝑥𝑖 |>1}

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡 +

∫︁
𝐷𝑇∩{𝑢>𝑏}

𝑛∑︁
𝑖=1

𝐵𝑖(1)𝑑𝑥𝑑𝑡 6 𝑐4.

The boundedness of the integral
∫︀
𝐷𝑇

𝐵1(𝑢
(𝑏)(𝑡, 𝑥))𝑑𝑥𝑑𝑡 is proven.

Hence, the right hand side of (63) tends to zero as 𝑅 → ∞. Thus, (61) is valid for an
unbounded domain Ω as well. Then 𝑢(𝑏)(𝑡, 𝑥) = 0 a.e. (0, 𝑇 ) × Ω𝑟. Since 𝑟 > 0, 𝑇 > 0 are
arbitrary, it implies that 𝑢(𝑡, 𝑥) 6 𝑏 for a.e. (𝑡, 𝑥) ∈ 𝐷.

Proof of Lemma 4. We take an arbitrary 𝑏 > 0 and employ (20) and (65) to obtain

‖𝑢(𝑏)‖∞,𝐷𝑇 6 𝐶
𝑛∑︁

𝑖=1

‖𝑢(𝑏)
𝑥𝑖
‖ ̃︀𝐵𝑖,𝐷𝑇 6 𝑐4.

Since 𝑢(𝑡, 𝑥) 6 𝑏 + 𝑢(𝑏)(𝑡, 𝑥), inequality (23) is valid.

6. Proof of Theorem 2

Suppose that domain Ω is bounded. Let us establish the lower estimates for the decay rate
of solution to problem (1)–(3) as 𝑡 → ∞.

We introduce the notations

𝑒𝑚(𝑡) = 𝑒(𝑡) =

∫︁
Ω

(︂
𝛽1(𝑥, 𝑢𝑚(𝑡, 𝑥)) +

𝑢2
𝑚(𝑡, 𝑥)

2𝑏𝑚

)︂
𝑑𝑥,

ℎ(𝑡) =

∫︁
Ω

𝑎(𝑥,∇𝑢𝑚)𝑑𝑥,

omitting the subscript 𝑚 if it is possible. It follows from (42) that

𝑒′(𝑡) = −
∫︁
Ω

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)𝑢𝑚𝑥𝑖
𝑑𝑥. (66)

By (44) we have

− ℎ′(𝑡) =

∫︁
Ω

(︂
1

𝑏𝑚
+ 𝛽′

𝑢(𝑥, 𝑢𝑚)

)︂
𝑢2
𝑚𝑡𝑑𝑥.
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Thus,

(𝑒′(𝑡))2 =

⎛⎝∫︁
Ω

(︂
𝛽′
1𝑢(𝑥, 𝑢𝑚)(𝑢𝑚)𝑡 +

𝑢𝑚(𝑡)𝑢𝑚𝑡(𝑡)

𝑏𝑚

)︂
𝑑𝑥

⎞⎠2

6

(︂
‖(𝑢𝑚)𝑡(𝛽

′
𝑢(𝑥, 𝑢𝑚))

1
2‖2‖𝑢𝑚(𝛽′

𝑢(𝑥, 𝑢𝑚))
1
2‖2 +

‖𝑢𝑚(𝑡)‖2‖𝑢𝑚𝑡(𝑡)‖2
𝑏𝑚

)︂2

.

We apply Cauchy-Schwarz inequality for the scalar product in R2 and employ condition (12).
Then

(𝑒′(𝑡))2 6
∫︁
Ω

(︂
𝛽′
𝑢(𝑥, 𝑢𝑚)((𝑢𝑚)𝑡)

2 +
𝑢2
𝑚𝑡(𝑡)

𝑏𝑚

)︂
𝑑𝑥

∫︁
Ω

(︂
𝛽′
𝑢(𝑥, 𝑢𝑚)𝑢2

𝑚 +
𝑢2
𝑚(𝑡)

𝑏𝑚

)︂
𝑑𝑥

6− 𝛼ℎ′(𝑡)𝑒(𝑡), 𝛼 = max(𝛼, 2).

By means of (66) we rewrite the latter as

𝑒′(𝑡)

⎛⎝∫︁
Ω

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢𝑚)𝑢𝑚𝑥𝑖
𝑑𝑥

⎞⎠ > 𝛼ℎ′(𝑡)𝑒(𝑡).

By the left inequality in (10) and by (9) it yields

𝑒′(𝑡)

𝑒(𝑡)
>

𝛼ℎ′(𝑡)

ℎ(𝑡)

ℎ(𝑡)∫︀
Ω

∑︀𝑛
𝑖=1 𝑎𝑝𝑖(𝑥,∇𝑢𝑚)𝑢𝑚𝑥𝑖

𝑑𝑥
> 𝛼Γ

ℎ′(𝑡)

ℎ(𝑡)
,

or

𝛾
𝑒′(𝑡)

𝑒(𝑡)
>

ℎ′(𝑡)

ℎ(𝑡)
, where 𝛾 =

1

𝛼Γ
.

After the integration we have

ℎ(𝑡) 6
ℎ(0)𝑒𝛾(𝑡)

𝑒𝛾(0)
.

Then, in view of (66) and condition (10),

𝑒′(𝑡) > −ℎ(𝑡)/𝛿 > −ℎ(0)𝑒𝛾(𝑡)

𝛿𝑒𝛾(0)
,

or
𝑒′

𝑒𝛾
> − ℎ(0)

𝛿𝑒𝛾(0)
.

It yields

𝑒1−𝛾(𝑡) − 𝑒1−𝛾(0) 6 (𝛾 − 1)
ℎ(0)𝑡

𝛿𝑒𝛾(0)
for the case 𝛾 > 1;

𝑒1−𝛾(𝑡) − 𝑒1−𝛾(0) > −(1 − 𝛾)
ℎ(0)𝑡

𝛿𝑒𝛾(0)
for the case 𝛾 < 1.

Thus, we obtain

𝑒(𝑡) > 𝑒(0)

(︂
1 + (𝛾 − 1)

ℎ(0)𝑡

𝛿𝑒(0)

)︂ 1
1−𝛾

, for 𝛾 > 1; (67)

𝑒(𝑡) > 𝑒(0)

(︂
1 − (1 − 𝛾)

ℎ(0)𝑡

𝛿𝑒(0)

)︂ 1
1−𝛾

, for 𝛾 < 1, 𝑡 ∈
[︂
0,

𝛿𝑒(0)

(1 − 𝛾)ℎ(0)

)︂
. (68)
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Let us prove the passage to the limit∫︁
Ω

𝛽1(𝑥, 𝑢𝑚)𝑑𝑥 →
∫︁
Ω

𝛽1(𝑥, 𝑢)𝑑𝑥. (69)

If integral (19) converges, by Lemma 4, |𝑢𝑚| 6 𝑐. Then Lebesgue’s dominated convergence
theorem allows us to pass to the limit as in (69). Assume now that integral (19) diverges and
condition (24) is obeyed. By Egorov’s theorem, the convergence 𝑢𝑚(𝑡, 𝑥) → 𝑢(𝑡, 𝑥) for a.e.
𝑥 ∈ Ω implies the uniform convergence on the set Ω𝛿 ⊂ Ω, mes Ω/Ω𝛿 < 𝛿. If for sufficiently
large 𝑚 the inequality

|𝑢𝑚(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)| < 𝜀, 𝑥 ∈ Ω𝛿

holds true, then
𝛽1(𝑥, 𝑢𝑚) 6 𝑐1𝐺(𝑢2

𝑚(𝑡, 𝑥)) 6 𝑐1𝐺((|𝑢(𝑡, 𝑥)| + 𝜀)2).

This is why the Lebesgue’s dominated convergence theorem yields
∫︀
Ω𝛿

𝛽1(𝑥, 𝑢𝑚)𝑑𝑥 →∫︀
Ω𝛿

𝛽1(𝑥, 𝑢)𝑑𝑥. Then

𝐼𝑚,𝛿 =

∫︁
Ω/Ω𝛿

|𝛽1(𝑥, 𝑢𝑚)|𝑑𝑥 6 ‖𝛽1(𝑥, 𝑢𝑚)‖𝐿𝑞(Ω)‖1‖𝐿𝑞(Ω/Ω𝛿)

6𝛿1/𝑞‖𝛽1(𝑥, 𝑢𝑚)‖𝐿𝑞(Ω).

Employing condition (24), as well as the assertions (64) and (65), we obtain

𝐼𝑚,𝛿 6 𝑐𝛿1/𝑞

⎛⎝∫︁
Ω

(𝐵*(𝑢𝑚) + 1)𝑑𝑥

⎞⎠1/𝑞

6 𝑐𝛿1/𝑞.

Now it is easy to complete the proof of (69).
The functions

𝑢𝑚(𝑡) =
𝑛∑︁

𝑘=1

𝑐𝑚𝑘(𝑡)𝜔𝑘

belong to the linear space of functions 𝜔1, 𝜔2, . . . , 𝜔𝑚. In a finite-dimensional space all the
norms are equivalent and hence∫︁

Ω

𝑢2
𝑚(𝑡)𝑑𝑥 6 𝑐𝑚‖𝑢𝑚(𝑡)‖2𝐿𝐺2

(Ω) 6 ̃︁𝑐𝑚,∀𝑡 > 0.

We choose numbers 𝑏𝑚 so that ̃︁𝑐𝑚 6 𝑏𝑚/𝑚. Then employing (69), by means of formula (13)
we obtain

𝑒𝑚(𝑡) →
∫︁
Ω

𝛽1(𝑥, 𝑢)𝑑𝑥 6 𝑐1

∫︁
Ω

𝐺(𝑢2(𝑡))𝑑𝑥.

By the passage to the limit as 𝑚 → ∞ in (67) and (68), where 𝑒(𝑡) = 𝑒𝑚(𝑡), we obtain estimates
(25), (26).

6.1. Proof of Theorem 3. Let 𝜃(𝜌), 𝜌 > 0, be an absolutely continuous function being one
as 𝜌 > 𝑟, vanishing as 𝜌 6 𝑟0, being linear as 𝜌 ∈ [𝑟0, 2𝑟0], and satisfying the equation

𝜃′(𝜌) = 𝜆𝜈(𝜌)𝜃(𝜌), 𝜌 ∈ (2𝑟0, 𝑟); (70)

we shall define constant 𝜆 later. Solving this equation, we find

𝜃(𝜌) = exp

⎛⎝−𝜆

𝑟∫︁
𝜌

𝜈(𝑡)𝑑𝑡

⎞⎠ , 𝜌 ∈ (2𝑟0, 𝑟).
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As 𝜌 ∈ (𝑟0, 2𝑟0), we have

𝜃′(𝜌) =
𝜃(2𝑟0)

𝑟0
=

1

𝑟0
exp

⎛⎝−𝜆

𝑟∫︁
2𝑟0

𝜈(𝑡)𝑑𝑡

⎞⎠ , 𝜌 ∈ (𝑟0, 2𝑟0). (71)

Let 𝜉(𝑥) be a Lipschitz non-negative cut-off function. Substituting 𝜙 = 𝑢𝜉 into (49), we
obtain

(𝛽(𝑥, 𝑢)𝑡, 𝑢𝜉)𝐷𝑇 + (𝜒, 𝑢𝜉)𝐷𝑇 = 0.

We rewrite it as ∫︁
𝐷𝑇

(︃
𝛽′
1𝑢(𝑥, 𝑢)𝑢𝑡𝜉 +

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢)(𝑢𝜉)𝑥𝑖

)︃
𝑑𝑥𝑑𝑡 = 0.

We let 𝜉(𝑥) = 𝜃(𝑥1). Employing (9) and bearing in mind that the supports of 𝜉 and 𝑢0 do not
intersect, by the integrating of the first term w.r.t. 𝑡 and applying (70), (71), we get∫︁

Ω

𝛽1(𝑥, 𝑢(𝑇 ))𝜃(𝑥1)𝑑𝑥 +

∫︁
𝐷𝑇

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑥𝑖
)𝜃(𝑥1)𝑑𝑥𝑑𝑡

6
∫︁
𝐷𝑇

|𝑢𝑎𝑝1(𝑥,∇𝑢)𝜃′(𝑥1)|𝑑𝑥𝑑𝑡 6
∫︁

𝐷𝑇∩{2𝑟0<𝑥1<𝑟}

|𝑢𝑎𝑝1(𝑥,∇𝑢)𝜆𝜈(𝑥1)𝜃(𝑥1)|𝑑𝑥𝑑𝑡

+

∫︁
𝐷𝑇∩{𝑟0<𝑥1<2𝑟0}

⃒⃒⃒⃒
𝑢𝑎𝑝1(𝑥,∇𝑢)

𝜃(2𝑟0)

𝑟0

⃒⃒⃒⃒
𝑑𝑥𝑑𝑡 = 𝐼1 + 𝐼2.

(72)

We note that 𝐵(𝑠𝑢) 6 𝑠𝐵(𝑢) as 𝑠 6 1. Employing then the boundedness of functions 𝜈 (𝜈 6 𝜈0)
and 𝑢 (|𝑢| 6 𝑣0) (see (32)), by means of (6), (11), (31) we estimate the first integral

𝐼1 6
∫︁

𝐷𝑇∩{2𝑟0<𝑥1<𝑟}

𝜃(𝑥1)

(︂
𝐵1(𝜀𝑎𝑝1(𝑥,∇𝑢)) + 𝐵1(𝑢𝜈

𝜆

𝜀
)

)︂
𝑑𝑥𝑑𝑡

6
∫︁

𝐷𝑇∩{2𝑟0<𝑥1<𝑟}

𝜃(𝑥1)

(︃
𝜀𝑐

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑥𝑖
) + 𝑔𝐵2(𝑢𝜈

𝜆

𝜀
)

)︃
𝑑𝑥𝑑𝑡.

We choose 𝜀 = 1
2𝑐

and 𝜆 so that 𝜆
𝜀
𝜈0𝑣0 6 1 and 𝜆

𝜀
𝑔 6 1

2
. Then employing the definition of

function 𝜈, we obtain

𝐼1 6
1

2

∫︁
𝐷𝑇∩{2𝑟0<𝑥1<𝑟}

𝜃(𝑥1)
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡 +

1

2

𝑇∫︁
0

𝑑𝑡

𝑟∫︁
2𝑟0

𝑑𝑥1𝜃(𝑥1)

∫︁
𝛾(𝑥1)

𝐵2(𝑢𝜈)𝑑𝑥′

6
1

2

∫︁
𝐷𝑇∩{2𝑟0<𝑥1<𝑟}

𝜃(𝑥1)
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡 +

1

2

𝑇∫︁
0

𝑑𝑡

𝑟∫︁
2𝑟0

𝑑𝑥1𝜃(𝑥1)

∫︁
𝛾(𝑥1)

𝐵2(𝑢𝑥2)𝑑𝑥
′

6
1

2

∫︁
𝐷𝑇

𝜃(𝑥1)

(︃
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑥𝑖
) + 𝐵2(𝑢𝑥2)

)︃
𝑑𝑥𝑑𝑡.
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For 𝐼2, employing inequality (11), we obtain the estimate

𝐼2 6
𝜃(2𝑟0)

𝑟0

∫︁
𝐷𝑇∩{𝑟0<𝑥1<2𝑟0}

(𝐵1(𝑢) + 𝐵1(𝑎𝑝1(𝑥,∇𝑢)))𝑑𝑥𝑑𝑡

6
𝜃(2𝑟0)

𝑟0

∫︁
𝐷𝑇∩{𝑟0<𝑥1<2𝑟0}

(𝐵1(𝑢) + 𝑐
𝑛∑︁

𝑖=1

𝐵𝑖(𝑢𝑥𝑖
))𝑑𝑥𝑑𝑡.

Then, in view of (57), (5),∫︁
𝐷𝑇∩{𝑥1<2𝑟0}

𝐵1(𝑢)𝑑𝑥𝑑𝑡 6
∫︁

𝐷𝑇∩{𝑥1<2𝑟0}

𝐵1(2𝑟0𝑢𝑥1)𝑑𝑥𝑑𝑡 6 𝑐

∫︁
𝐷𝑇

𝐵1(𝑢𝑥1)𝑑𝑥𝑑𝑡.

Employing the estimates for 𝐼1, 𝐼2 in (72), we find∫︁
Ω

𝛽1(𝑥, 𝑢(𝑇 ))𝜃(𝑥1)𝑑𝑥 6
𝜃(2𝑟0)

𝑟0

∫︁
𝐷𝑇

𝑐1

𝑛∑︁
𝑖=1

𝐵𝑖(𝑢𝑥𝑖
)𝑑𝑥𝑑𝑡.

The boundedness of the latter integral is obtained from (43) by passing to the limit as 𝑚 → ∞.
Since 𝜃(𝑥1) = 1 as 𝑥1 > 𝑟, we arrive at inequality (33).

6.2. Proof of Theorem 4. We choose a positive number 𝑟 > 2𝑟0. We introduce the notation

𝜀(𝑟) = 𝑀 exp(−𝜆

𝑟∫︁
2𝑟0

𝜈(𝑡)𝑑𝑡)

and employing (33), we write the relation

Φ(𝑡) ≡
∫︁
Ω

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥 6
∫︁
Ω𝑟

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥 + 𝜀(𝑟).

Let 𝑡𝑟 be a point in the interval (0,∞) such that Φ(𝑡𝑟) = 𝜀(𝑟). If there is no such point,
then either Φ(𝑡) > 𝜀(𝑟) for each 𝑡 > 0 and we let 𝑡𝑟 = ∞, or Φ(𝑡) < 𝜀(𝑟) for each 𝑡 > 0. In
the latter case the desired estimate (74) holds true. It follows from (55) that function Φ(𝑡) is
non-increasing, and thus

0 6 Φ(𝑡) − 𝜀(𝑟) 6
∫︁
Ω𝑟

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑑𝑥, 𝑡 ∈ [0, 𝑡𝑟). (73)

Employing condition (34), (27), we write the inequalities

Φ(𝑡) − 𝜀(𝑟) 6

⎛⎝∫︁
Ω𝑟

𝛽1(𝑥, 𝑢(𝑡, 𝑥))𝑞𝑑𝑥

⎞⎠1/𝑞

(mesΩ𝑟)1/𝑞 6

⎛⎝𝑐3

∫︁
Ω𝑟

𝐵1(𝑢(𝑡, 𝑥))𝑑𝑥

⎞⎠1/𝑞

𝑟𝑑/𝑞, 𝑟 > 𝑟0.

We employ inequality (57) as well as △2-condition (5), (9), (35), and (55), and obtain

Φ(𝑡) − 𝜀(𝑟) 6

⎛⎝𝑐3

∫︁
Ω𝑟

𝐵1(𝑟𝑢𝑥1)𝑑𝑥

⎞⎠1/𝑞

𝑟𝑑/𝑞 6 𝑐4𝑟
𝑑/𝑞

⎛⎝∫︁
Ω𝑟

𝑟𝑚𝐵1(𝑢𝑥1)𝑑𝑥

⎞⎠1/𝑞

.

We shall assume that numbers 𝜇, 𝑟0 are chosen so that the inequality 𝑐4𝑟
𝑑/𝑞+𝑚/𝑞 6 𝑟𝜇/𝑞 holds

as 𝑟 > 𝑟0. Then

Φ(𝑡) − 𝜀(𝑟) 6 𝑟𝜇/𝑞

⎛⎝∫︁
Ω

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥,∇𝑢)𝑢𝑥𝑖
𝑑𝑥

⎞⎠1/𝑞

= 𝑟𝜇/𝑞

⎛⎝− 𝑑

𝑑𝑡

∫︁
Ω

𝛽1(𝑥, 𝑢(𝑡))𝑑𝑥

⎞⎠1/𝑞

.
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Solving this differential inequality, we find

Φ(𝑡) 6 𝜀(𝑟) +

(︂
𝑟𝜇

(𝑞 − 1)𝑡

)︂ 1
𝑞−1

. (74)

The latter inequality is valid for each 𝑟 > 2𝑟0. Letting 𝑟 = 𝑟(𝑡) (see (36)), we obtain (37). The
proof is complete.

7. Examples

We adduce examples of equations satisfying conditions (4), (9) − (14), (24), (34).

7.1. Example 1. We introduce the following notation

𝑡[𝑎,𝑏] =

{︃
|𝑡|𝑎, as |𝑡| < 1,

|𝑡|𝑏, as |𝑡| > 1.

Let 𝑛 = 2. We choose 𝑁 -functions 𝐵1(𝑠), 𝐵2(𝑠), 𝐺(𝑠), and functions 𝛽(𝑥, 𝑢), 𝑎(𝑥, 𝑝) as follows

𝐵1(𝑠) = 𝑠[2,5/2], 𝐵2(𝑠) = 𝑠[5/4,3/2], 𝐺(𝑠) = 𝑠[5/4,11/10],
2∑︁

𝑖=1

𝑎𝑝𝑖(𝑥, 𝑝)𝑝𝑖 = 𝐵1(𝑝1) + 𝐵2(𝑝2)
2 + |𝑥|
1 + |𝑥|

.

It is clear that the dependence on 𝑥 can appear in function 𝛽(𝑥, 𝑢), but in order to avoid bulky
formulae, we restrict ourselves by the simplest example of the dependence on 𝑥:

𝛽(𝑢) =

⎧⎪⎨⎪⎩
5

3
|𝑢|

3
2 , as |𝑢| < 1,

5

3
+

11

6
(|𝑢|

6
5 − 1), as |𝑢| > 1.

By formula (8) we find function

𝛽1(𝑢) = 𝑢[5/2,11/5].

It is easy to check that these functions satisfy conditions (4),(9)–(14), (24), (31), (34). Then
by formula (16) for 𝜅 = 3

2
we obtaiñ︀𝐵1(𝑠) = 𝑠[3/2,5/2], ̃︀𝐵2(𝑠) = |𝑠|3/2, ℎ(𝑠) = 𝑠[1/6,1/30].

Since integral (19) diverges to infinity, by formula (18) we find

(𝐵*)−1(𝑧) =

{︃
6𝑧

1
6 , as |𝑧| < 1,

30𝑧
1
30 − 24, as |𝑧| > 1,

𝐵*(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
(
𝑠

6
)6, as |𝑠| < 6,(︂

|𝑠| + 24

30

)︂30

, as |𝑠| > 6.

In view of conditions (10), (12) one can see easily that it is possible to take Γ = 8
5
, 𝛼 = 5

2
.

Thus, by (26) we obtain the estimate in the case of a bounded domain Ω∫︁
Ω

𝐺(𝑢2(𝑡, 𝑥))𝑑𝑥 >
∫︁
Ω

𝐺(𝑢2
0(𝑥))𝑑𝑥(1 − 𝐶𝑡)

4
3 , as 𝑡 6 1/𝐶.

Now as Ω we choose the following domain

Ω(𝑓) = {𝑥|𝑥1 > 0, −𝑥
1
2
1 + 𝑓(𝑥1) 6 𝑥2 6 𝑥

1
2
1 + 𝑓(𝑥1)},
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where 𝑓 is an arbitrary continuous function. Then mes Ω𝑟(𝑓) = 4
3
𝑟

3
2 6 𝑟2, 𝑟 > 2. By (28) we

find 𝜈(𝑟) = 1
2
√
𝑟
. It is easy to make sure that domain Ω(𝑓) satisfies conditions (29), (38). Then

in condition (34) we can choose 𝑞 = 25
22

. And then by (39) we find the upper estimates∫︁
Ω(𝑓)

𝛽1(𝑢(𝑡, 𝑥))𝑑𝑥 6 𝐶𝑡
−11
3 .

7.2. Example 2. Let 𝑛 = 2. We define 𝑁 -functions 𝐵1(𝑠), 𝐵2(𝑠), 𝐺(𝑠) and functions 𝛽(𝑥, 𝑢),
𝑎(𝑥, 𝑝) as

𝐵1(𝑠) = 𝑠[9/2,6], 𝐵2(𝑠) = 𝑠[17/4,6], 𝐺(𝑠) = 𝑠[3/2,2],

2∑︁
𝑖=1

𝑎𝑝𝑖(𝑝)𝑝𝑖 = 𝐵1(𝑝1) + 𝐵2(𝑝2);

𝛽(𝑢) =

⎧⎪⎨⎪⎩
3

2
|𝑢|2, as |𝑢| < 1,

3

2
+

4

3
(|𝑢|3 − 1), as |𝑢| > 1.

By formula (8) we get

𝛽1(𝑢) = 𝑢[3,4].

It is easy to make sure that these functions satisfy conditions (4), (9)–(14), (31), (34). By
formula (16) for 𝜅 = 3

2
we obtaiñ︀𝐵1(𝑠) = 𝑠[3/2,6], ̃︀𝐵2(𝑠) = 𝑠[3/2,6], ℎ(𝑠) = 𝑠[1/6,−1/3].

Hence, integral (19) converges.
Due to conditions (10), (12) one can easily make sure that one can take Γ = 4

17
, 𝛼 = 4. Then

from (25) we get the estimate in the case of a bounded domain Ω∫︁
Ω

𝐺(𝑢2(𝑡, 𝑥))𝑑𝑥 >
∫︁
Ω

𝐺(𝑢2
0(𝑥))𝑑𝑥(1 + 𝐶𝑡)−16, as 𝑡 > 0.

In condition (34) we can choose 𝑞 = 3
2
. Then (39) implies the upper estimate∫︁

Ω(𝑓)

𝛽1(𝑢(𝑡, 𝑥))𝑑𝑥 6 𝐶𝑡−1.

Remark. Since for |𝑢| < 1 and |𝑢| > 1 the functions have different growth indices, the
power upper and lower estimates have also different exponents.
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