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CAUCHY–HADAMARD THEOREM
FOR EXPONENTIAL SERIES

S.G. MERZLYAKOV

Abstract. In this paper we study the connection between the growth of coefficients of
an exponentials series with its convergence domain in finite-dimensional real and complex
spaces. Among the first results of the subject is the well-known Cauchy–Hadamard formula.
We obtain exact conditions on the exponentials and a convex region in which there is
a generalization of the Cauchy–Hadamard theorem. To the sequence of coefficients of
exponential series we associate a space of sequences forming a commutative ring with unit.
A study of the properties of this ring allows us to obtain the results on solvability of non-
homogeneous systems of convolution equations.
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1. Introduction

In this paper we study the relation between the growth of the coefficients of exponential
series with its convergence domain.

The main result in this direction is the well-known Cauchy-Hadamard theorem after an
appropriate change of variables. An analogue of Cauchy-Hadamard theorem for exponential
series of one variable with non-negative exponents was proven by Valiron [1]. For the series
of exponential monomials of one complex variable it was studied in paper [2]. The case
of exponential series of many complex variables with complex exponents was considered in
paper [3].

2. Cauchy-Hadamard theorem

In what follows we shall make use of several notations. Let E be either space R𝑚 or C𝑚. For
elements 𝑧, 𝑤 ∈ E we indicate

𝑧𝑤 =
𝑚∑︁
𝑗=1

𝑧𝑗𝑤𝑗.

By B we denote a closed unit ball in space E centered at the origin.
The support function of a set 𝑀 ⊂ E is determined by the formula

𝐻(𝜆,𝑀) = sup
𝑧∈𝑀

Re𝜆𝑧, 𝜆 ∈ E.

It is a homogeneous convex function. At it is known, if set 𝑀 is non-empty, this function is
continuous.
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In the present paper we provide exact conditions for an arbitrary convex domain 𝑈 ⊂ E and
sequence последовательность Λ = {𝜆𝑛 ∈ E : 𝑛 ∈ N}, whose terms not necessary differ, under
those Cauchy-Hadamard statement holds true, namely, the absolute convergence of the series

∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, (1)

𝑐𝑛 ∈ C, in domain 𝑈 is equivalent to the relation

lim
𝑛→∞

ln |𝑐𝑛| + 𝐻(𝜆𝑛, 𝑈)

|𝜆𝑛|
6 0. (2)

If this equivalence is satisfied, we call sequence Λ a Cauchy-Hadamard system for domain 𝑈 .
It is easy to show there always exist coefficients 𝑐𝑛 > 0, 𝑛 ∈ N, for which series (1) converges

absolutely in the whole space. In this case it is obvious that Cauchy-Hadamard statement does
not hold once 𝐻(𝜆𝑛, 𝑈) = ∞ or 𝜆𝑛 = 0 for infinitely many indices. This is why without loss of
generality we assume that 𝐻(𝜆𝑛, 𝑈) < ∞, 𝜆𝑛 ̸= 0, 𝑛 ∈ N.

We note that each subsequence of Cauchy-Hadamard system for domain 𝑈 is also similar
system. Indeed, the exponential series with exponents in this subsequence can be complemented
by terms zero coefficients that makes influence neither on the convergence no on the mentioned
upper limit.

We let
𝑆 =

{︂
𝜆

|𝜆|
: 𝜆 ∈ Λ

}︂
. (3)

In what follows we shall employ several results on relation between the behavior of series (1)
with relations (2).

Lemma 1. Suppose that the coefficients of series (1) satisfy condition (2) and a compact
set 𝑅 ⊂ 𝑈 and a point 𝑧 ∈ 𝑈 obey the inclusion 𝑧 + 𝑅 ⊂ 𝑈 . Then inequality

ln |𝑐𝑛𝑒𝜆𝑛𝑧| 6 −𝛿(𝑧)|𝜆𝑛| −𝐻(𝜆𝑛, 𝑅), 𝛿(𝑧) > 0, 𝑛 > 𝑁(𝛿(𝑧)), (4)
holds true.

Доказательство. As it is easy to show, there exists a number 𝛿(𝑧) > 0 for which
𝑧 + 2𝛿(𝑧)B + 𝑅 ⊂ 𝑈 and thus Re𝜆𝑧 6 𝐻(𝜆, 𝑈) − 2𝛿(𝑧)|𝜆| − 𝐻(𝜆,𝑅), 𝜆 ∈ E. It follows from
inequality (2) that for each 𝜀 > 0 the formula ln |𝑐𝑛| 6 −𝐻(𝜆𝑛, 𝑈) + 𝜀|𝜆𝑛|, 𝑛 > 𝑁(𝜀), holds
true that completes the proof.

Corollary 1. Suppose that inequality (2) and relation

∀𝜀 > 0
∞∑︁
𝑛=1

𝑒−𝜀|𝜆𝑛|−𝐻(𝜆𝑛,𝑅) < ∞ (5)

hold true. Then series (1) converges absolutely in each point 𝑧 ∈ E with the property 𝑧+𝑅 ⊂ 𝑈 .

Corollary 2. Suppose that relation

∀𝜀 > 0
∞∑︁
𝑛=1

𝑒−𝜀|𝜆𝑛| < ∞ (6)

holds true and the left hand side of formula (2) equals −𝛿, 𝛿 > 0. Then series (1) converges
absolutely in domain 𝑈 + 𝛿B.

Indeed, in this case, as one can see easily, there hold inequality (2) with domain 𝑈 replaced
by 𝑈 + 𝛿B and relation (5) for 𝑅 = {0}.

Corollary 3. Inequality (2) implies pointwise boundedness for the terms of series (1) in
domain 𝑈 .
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Indeed, we obtain the desired statement once we let 𝑅 = {0}.
Under additional assumption the opposite holds.

Proposition 1. If function 𝐻(𝑠, 𝑈) is continuous on the closure of a set 𝑆, the terms of
series (1) are pointwise bounded in domain 𝑈 , and the identity

lim
𝑛→∞

|𝜆𝑛| = ∞ (7)

is satisfied, then relation (2) holds true.

Доказательство. Domain 𝑈 can be exhausted by an increasing sequence of compact sets 𝐾𝑝,
𝑝 ∈ N. At that, as one can show easily, relation

𝐻(𝑠,𝐾𝑝) ↑ 𝐻(𝑠, 𝑈)

holds true. By Dini theorem, this convergence is uniform on the compact set 𝑆, so for each
number 𝛿 > 0 there exists a compact set 𝐾 ⊂ 𝑈 obeying 𝐻(𝑠, 𝑈) 6 𝐻(𝑠,𝐾) + 𝛿, ∈ 𝑆.

Compact set 𝐾 is contained in the convex hull of some points 𝑧1, . . . , 𝑧𝑘 in domain 𝑈 (cf.
[4]), and thus for each element 𝑧 ∈ 𝐾 the relation

Re 𝑠𝑧 6 max {Re 𝑠𝑧1, . . . ,Re 𝑠𝑧𝑘} , 𝑠 ∈ 𝑆, (8)

holds true. Hence, we obtain

ln |𝑐𝑛| + 𝐻(𝜆𝑛, 𝑈) 6 ln |𝑐𝑛| + 𝐻(𝜆𝑛, 𝐾) + 𝛿|𝜆𝑛| 6
max {ln |𝑐𝑛| + Re𝜆𝑛𝑧1, . . . , ln |𝑐𝑛| + Re𝜆𝑛𝑧𝑘} + 𝛿|𝜆𝑛|.

The assumption for the terms of series (1) and the arbitrariness of number 𝛿 > 0 complete the
proof.

Corollary. Suppose that the identity

lim
𝑛→∞

ln𝑛

|𝜆𝑛|
6 𝑑 < ∞ (9)

holds true, and the terms of series (1) are pointwise bounded in some ball 𝑈 of a radius greater
than 𝑑. Then series (1) converges absolutely at the center of this series.

Indeed, it is obvious that condition (7) is satisfied and thus, the same is true for inequality
(2).

We let 𝑅 = 𝑑B. In this case 𝐻(𝜆,𝑅) = 𝑑|𝜆|, 𝜆 ∈ E, and as one can easily see, relation (5) is
satisfied. Hence, the desired statement follows from Corollary 1 of Lemma 1.

The obtained result generalized Theorem 3.1.2 in monograph [5].
Exponential series possess the following property.

Proposition 2. Absolutely convergent in 𝑈 series (1) converges normally on compact sets
in this domain.

Доказательство. As it was mentioned above, for each compact set 𝐾 of domain 𝑈 there exist
points 𝑧1, . . . , 𝑧𝑘 in this domain satisfying relation (8) for points in compact set 𝐾 and we get

max
𝑧∈𝐾

|𝑐𝑛𝑒𝜆𝑛𝑧| 6 |𝑐𝑛|𝑒max{Re𝜆𝑛𝑧1,...,Re𝜆𝑛𝑧𝑘} 6 |𝑐𝑛|
(︀
|𝑒𝜆𝑛𝑧1| + · · · + |𝑒𝜆𝑛𝑧𝑘 |

)︀
.

Finally,
∞∑︁
𝑛=1

max
𝑧∈𝐾

|𝑐𝑛𝑒𝜆𝑛𝑧| < ∞. (10)

The proof is complete.



74 S.G. MERZLYAKOV

Let us adduce an example proving the exactness of Corollary of Proposition 1.
Example. Let

𝑈 = {𝑧 ∈ E : |𝑧| < 2} , lim
𝑛→∞

ln𝑛

|𝜆𝑛|
= 1, ln |𝑐𝑛| = −2|𝜆𝑛|.

The terms of series (1) are obviously pointwise bounded in ball 𝑈 and by Corollary of
Proposition 1, it converges absolutely in the ball {𝑧 ∈ E : |𝑧| < 1} but has no such property in
a ball of a bigger radius.

Indeed, suppose series (1) converges absolutely in the ball

{𝑧 ∈ E : |𝑧| < 1 + 𝛿} , 𝛿 > 0.

By the just proven result this series should converge normally on the ball B and it is equivalent
to the convergence of harmonic series. The obtained contradiction proves the desired statement.

Proposition 3. Suppose that the identity 𝑈 = 𝑅 + 𝑉 holds true for a convex compact set
𝑅 ⊂ E and a convex domain 𝑉 ⊂ E, function 𝐻(𝑠, 𝑈) is closed on the closure of set 𝑆 and for
each sequence of coefficients satisfying inequality (2) series (1) converges absolutely in domain
𝑉 . Then relation (5) holds true.

Доказательство. The representation for domain 𝑈 implies the identity

𝐻(𝜆, 𝑈) = 𝐻(𝜆,𝑅) + 𝐻(𝜆, 𝑉 ), 𝜆 ∈ E,

cf. [6]. By assumption, series (1) with coefficients

𝑐𝑛 = 𝑒−𝐻(𝜆𝑛,𝑈), 𝑛 ∈ N,

converges absolutely in domain 𝑉 and in accordance with Proposition 2 this convergence is
normal on each compact set in domain 𝑉 . As it was shown above, for arbitrary number 𝜀 > 0
there exists a compact set 𝐾 ⊂ 𝑉 such that 𝐻(𝑠, 𝑉 ) 6 𝐻(𝑠,𝐾) + 𝜀, 𝑠 ∈ 𝑆.

Thus,
∞∑︁
𝑛=1

𝑒−𝜀|𝜆𝑛|−𝐻(𝜆𝑛,𝑅) 6
∞∑︁
𝑛=1

𝑒𝐻(𝜆𝑛,𝐾)−𝐻(𝜆𝑛,𝑈) =
∞∑︁
𝑛=1

max
𝑧∈𝐾

|𝑐𝑛𝑒𝜆𝑛𝑧| < ∞,

and it completes the proof.

In literature condition (5) is often used and this is why let us find out its connection with
condition (5) for the case 𝑅 = 𝑑B, i.e.,

∀𝜀 > 0
∞∑︁
𝑛=1

𝑒−𝜀|𝜆𝑛|−𝑑|𝜆𝑛| < ∞. (11)

It is obvious that the latter condition follows from relation (5). The opposite is not true, as
one can show easily, points 𝜆𝑛 can be transposed by a permutation 𝑟 : N → N so that

lim
𝑛→∞

ln𝑛

|𝜆𝑟(𝑛)|
= ∞,

and condition (11) remains unchanged. But under additional assumption these conditions are
equivalent.

Proposition 4. Suppose that a sequence {|𝜆𝑛| : 𝑛 ∈ N} is monotonically increasing and
satisfies relation (11). Then inequality (5) holds true.

Доказательство. For each 𝜀 > 0 the terms of series (11) decrease monotonically and as it is
well known it implies identity

lim
𝑛→∞

𝑛𝑒−(𝑑+𝜀)|𝜆𝑛| = 0
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that yields
lim
𝑛→∞

ln𝑛− (𝑑 + 𝜀)|𝜆𝑛| = −∞.

Finally,

lim
𝑛→∞

ln𝑛

|𝜆𝑛|
6 𝑑 + 𝜀.

The statement follows from the arbitrariness of 𝜀.

Let us provide examples on applications of obtained results.
Example 1. Given a series

∞∑︁
‖𝑘‖=0

𝑐𝑘(𝑧 − 𝑎)𝑘, 𝑐𝑘 ∈ C, 𝑘 ∈ N𝑚
0 , 𝑧 ∈ C𝑚,

let 𝑟 ∈ R𝑚
+ be its dual convergence radii (see [7]), where by N0 we denote the set of non-negative

integers and ‖𝑏‖ =
∑︀𝑚

𝑗=1 |𝑏𝑗|, 𝑏 ∈ E.
Making the change

𝑧 − 𝑎 = (𝑒𝑤1 , . . . , 𝑒𝑤𝑚),

we obtain the series of exponentials with exponents {𝑘 : 𝑘 ∈ N𝑚
0 }, whose terms are bounded in

domain
𝑈 = {𝑤 ∈ E : Re𝑤1 < ln 𝑟1, . . . ,Re𝑤𝑚 < ln 𝑟𝑚} .

As one can see easily, the support function of this domain is defined by the identities
𝐻(𝜆, 𝑈) = 𝜆 ln 𝑟, if 𝜆1 > 0, . . . , 𝜆𝑚 > 0, and 𝐻(𝜆, 𝑈) = ∞ otherwise. It is clear that function
𝐻 is continuous on set 𝑆, the sequence {𝑘 : 𝑘 ∈ N𝑚

0 } tends to infinity, and for an arbitrary
point 𝑏 ∈ E inequalities

‖𝑏‖√
𝑚

6 |𝑏| 6
√
𝑚‖𝑏‖

hold true so that
∞∑︁

‖𝑘‖=0

𝑒−𝜀|𝑘| 6
∞∑︁

‖𝑘‖=0

𝑒−𝜀‖𝑘‖/
√
𝑚 =

𝑒𝜀
√
𝑚

(1 − 𝜀/
√
𝑚)𝑚

, 𝜀 > 0.

In this case by Proposition 1 we obtain

lim
‖𝑘‖→∞

‖𝑘‖
√︀
|𝑐𝑘|𝑟𝑘 6 1.

The left hand side of this relation can not be less than one otherwise by Corollary 2
of Lemma 1 the power series converges absolutely on some swelling of the polycircle
{𝑧 ∈ E : |𝑧1 − 𝑎1| < 𝑟1, . . . , |𝑧𝑚 − 𝑎𝑚| < 𝑟𝑚} that contradicts to the definition of dual
convergence radii.

It proves classical Cauchy-Hadamard formula.
Example 2. Let E = C𝑚, set 𝐷 be a domain in space R𝑚, Re𝜆𝑛 ̸= 0, 𝐻(𝜆𝑛, 𝐷) ̸= ∞, 𝑛 ∈ N,

function 𝐻(Re 𝑠,𝐷) is continuous on the closure of the set{︂
Re𝜆

|Re𝜆|
: 𝜆 ∈ Λ

}︂
,

and

∀𝜀 > 0
∞∑︁
𝑛=1

𝑒−𝜀|Re𝜆𝑛| < ∞.

Then absolute convergence of series (1) on set 𝐷 is equivalent to the inequality

lim
𝑛→∞

ln |𝑐𝑛| + 𝐻(Re𝜆𝑛, 𝐷)

|Re𝜆𝑛|
6 0.
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Indeed, as one can easily make sure, it is reduced to applying of Proposition 1 and Corollary 1
of Lemma 1 for the case E = R𝑚.

Proposition 1 and Corollary 1 of Lemma1 for the case 𝑅 = {0} strengthen one of the results
of paper [3], namely,

Theorem. Let 𝑈 be a bounded convex domain in space C𝑚, 𝑐𝑛 ∈ C, 𝜆𝑛 ∈ C𝑚, 𝑛 ∈ N.
If series (1) converges uniformly on compact sets in domain 𝑈 , and sequence {𝜆𝑛 : 𝑛 ∈ N}
satisfies condition (7), then relation (2) holds true.

Vice versa, if inequality (2) is obeyed and

lim
𝑛→∞

ln𝑛

|𝜆𝑛|
= 0, (12)

then series (1) converges normally on compact sets in domain 𝑈 .

We note that Cauchy-Hadamard formula for power series is not implied from this results
since after the change of variables we always get unbounded domains.

We are in position to formulate the main result of the present paper.

Theorem 1. Sequence Λ is a Cauchy-Hadamard system for domain 𝑈 if and only if
1. The restriction of function 𝐻(𝑠, 𝑈) on the closure of set (3) is continuous.
2. Relation (6) holds true.

Доказательство. It is obvious that sufficiency follow from Proposition 1 and Corollary 1 of
Lemma 1 for the case 𝑅 = {0}.

Suppose that sequence is a Cauchy-Hadamard system for domain 𝑈 and let us show that
Conditions 1 and 2 of Theorem are satisfied.

First we prove identity (7). Indeed, by assumption, series (1) with ln |𝑐𝑛| = −𝐻(𝜆𝑛, 𝑈),
𝑛 ∈ N, converges absolutely in domain 𝑈 , and this is why the series

∞∑︁
𝑛=1

𝑒𝑐𝑛𝑒
𝜆𝑛𝑧

satisfies the same. By assumption it implies inequality

lim
𝑛→∞

1

|𝜆𝑛|
6 0,

which is equivalent to the original identity.
We take an arbitrary point 𝑠 ∈ 𝑆 and prove the identity

lim
𝜆→𝑠,𝜆∈𝑆

𝐻(𝜆, 𝑈) = 𝐻(𝑠, 𝑈). (13)

Function 𝐻(𝑠, 𝑈) is lower semi-continuous as an upper envelope for a family of continuous
function (cf. [8]), and hence it is sufficient to prove inequality

lim
𝜆→𝑠,𝜆∈𝑆

𝐻(𝜆, 𝑈) 6 𝐻(𝑠, 𝑈). (14)

We indicate the left hand side of this formula as 𝑏.
There exists a mapping 𝑟 : N → N obeying condition

lim
𝑛→∞

𝜆𝑟(𝑛)

|𝜆𝑟(𝑛)|
= 𝑠, lim

𝑛→∞

𝐻
(︀
𝜆𝑟(𝑛), 𝑈

)︀
|𝜆𝑟(𝑛)|

= 𝑏.

If function 𝑟 is bounded, then obviously 𝑏 = 𝐻(𝑠, 𝑈), and we shall assume that this function
is unbounded.
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It is easy to construct the mapping 𝑝 : N → N such that the superposition 𝑙 = 𝑟 ∘ 𝑝 : N → N
is strictly increasing and, taking into consideration the identity (7), it satisfies the condition

lim
𝑛→∞

ln𝑛

|𝜆𝑙(𝑛)|
= 0.

We let 𝜇𝑛 = 𝜆𝑙(𝑛), 𝑛 ∈ N. Thus, {𝜇𝑛 : 𝑛 ∈ N} is a subsequence of sequence {𝜆𝑛, 𝑛 ∈ N}.
Hence, it is a Cauchy-Hadamard system for domain 𝑈 and it satisfies the relations

lim
𝑛→∞

𝜇𝑛

|𝜇𝑛|
= 𝑠, lim

𝑛→∞

𝐻(𝜇𝑛, 𝑈)

|𝜇𝑛|
= 𝑏, lim

𝑛→∞

ln𝑛

|𝜇𝑛|
= 0. (15)

Let us show that 𝑏 < ∞. Indeed, otherwise we let ln |𝑐𝑛| = |𝜇𝑛| −𝐻(𝜇𝑛, 𝑈) and estimate the
terms of the series

∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜇𝑛𝑧. (16)

For each fixed number 𝑧 we have

ln |𝑐𝑛| + Re𝜇𝑛𝑧 = |𝜇𝑛| −𝐻(𝜇𝑛, 𝑈) + Re𝜇𝑛𝑧 6 −|𝜇𝑛|,
if number 𝑛 ∈ N is large enough. By the third identity in relations (15) we conclude that series
(16) converges absolutely in whole space E, and on the other hand,

ln |𝑐𝑛| + 𝐻(𝜇𝑛, 𝑈)

|𝜇𝑛|
= 1, 𝑛 ∈ N.

The obtained contradiction proves the desired statement.
The lower semi-continuity of function 𝐻 implies the estimate 𝐻(𝑠, 𝑈) 6 𝑏, so that

𝐻(𝑠, 𝑈) < ∞. Let us show the convergence of series (16) with coefficients ln |𝑐𝑛| = −𝐻(𝑠, 𝑈)|𝜇𝑛|
in domain 𝑈 .

We fix a point 𝑧 in domain 𝑈 . This point lies in the domain with a neighborhood and hence,
there exists 𝜀 > 0 satisfying

𝐻(𝑠, 𝑈) > Re 𝑠𝑧 + 𝜀.

The first formula in identities (15) implies that for 𝛿 > 0 the inequality

Re𝜇𝑛𝑧 6 |𝜇𝑛|Re 𝑠𝑧 + 𝛿|𝜇𝑛|, 𝑛 > 𝑁(𝛿)

holds true. Thus, we have

ln |𝑐𝑛𝑒𝜇𝑛𝑧| 6 (𝛿 − 𝜀)|𝜇𝑛|, 𝑛 > 𝑁(𝛿),

and taking 𝛿 < 𝜀, we obtain the convergence of series (16) at point 𝑧. The analogue of inequality
(2) for the sequence {𝜇𝑛 : 𝑛 ∈ N} and the second identity in formulae (15) implies the relation
𝑏 6 𝐻(𝑠, 𝑈) and it completes the proof of identity (13).

Thus, we have shown that for each point 𝑠 ∈ 𝑆 identity (13) is satisfied and 𝐻(𝑠, 𝑈) < ∞
that implies the continuity of function 𝐻(𝑠, 𝑈) on set 𝑆, see. [9].

Condition 2 of Theorem follows from Proposition 3. The proof is complete.

Let us provide an example of a sequence not being Cauchy-Hadamard system.
Example. Let

𝑈 =
{︀
𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 2𝑥 + 𝑦2 < 0

}︀
, 𝜆𝑛 = 1 + 𝑖𝑛, 𝑛 ∈ N.

In this for the points 𝜆 = 𝑢 + 𝑖𝑣 ∈ C we have

𝐻(𝜆, 𝑈) =

⎧⎨⎩ 𝑣2/2𝑢, as 𝑢 > 0,
0, as 𝑢 = 0, 𝑣 = 0,

+∞, otherwise.
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As one can easily make sure, the support function of domain 𝑈 is discontinuous будет разрыв-
ной на множестве 𝑆.

3. Spaces of sequences

We introduce the space of sequences

𝐴 =

{︃
𝑐 ∈ C∞ : ∀𝑧 ∈ 𝑈

∞∑︁
𝑛=1

|𝑐𝑛𝑒𝜆𝑛𝑧| < ∞

}︃
,

and the space 𝐿 with elements satisfying inequality (2).
In space 𝐴 we introduce a topology by means of the family of semi-norms

‖𝑐‖𝐴,𝐾 =
∞∑︁
𝑛=1

|𝑐𝑛|𝑒𝐻(𝜆𝑛,𝐾), 𝑐 ∈ 𝐴,

where 𝐾 is a compact set in domain 𝑈 , while for space 𝐿 we let

‖𝑐‖𝐿,𝜀 = sup
𝑛∈N

|𝑐𝑛|𝑒𝐻(𝜆𝑛,𝑈)−𝜀|𝜆𝑛|, 𝑐 ∈ 𝐿, 𝜀 > 0.

As one can show easily, these are Fréchet spaces.
Spaces 𝐴 and 𝐿 are related as follows.

Proposition 5. Once relation (6) is satisfied, the inclusion 𝐿 ⊂ 𝐴 is valid and the embedding
𝐿 → 𝐴 is continuous.

If the restriction of function 𝐻(𝑠, 𝑈) on the closure of set (3) is continuous, then the
embedding 𝐴 → 𝐿 is continuous as well.

Доказательство. As it mentioned above, for an arbitrary compact set 𝐾 ⊂ 𝑈 the inequality
𝐻(𝜆𝑛, 𝐾) 6 𝐻(𝜆𝑛, 𝑈) − 2𝜀|𝜆𝑛|, 𝑛 ∈ N, 𝜀 > 0, holds true, and this is why

‖𝑐‖𝐴,𝐾 6 ‖𝑐‖𝐿,𝜀
∞∑︁
𝑛=1

𝑒−𝜀|𝜆𝑛|.

It proves the first part of the proposition.
Under the hypothesis of the second part for each 𝜀 > 0 there exists a compact set 𝐾 ⊂ 𝑈

such that 𝐻(𝜆𝑛, 𝑈) − 𝜀|𝜆𝑛| 6 𝐻(𝜆𝑛, 𝐾), and therefore,

‖𝑐‖𝐿,𝜀 6 ‖𝑐𝐴,𝐾‖.
The proof is complete.

With exponential series the space of sequences

K =

{︂
𝑎 ∈ C∞ : lim

𝑛→∞

ln |𝑎𝑛|
𝛼𝑛

6 0

}︂
,

is closely related. Here {𝛼𝑛 : 𝑛 ∈ N} is a fixed sequence of positive numbers tending to infinity.
It is obvious that set K is invariant with respect to term-wise multiplication.

Elements 𝑎, 𝑏 ∈ K satisfy inequalities

ln |𝑎𝑛| 6 𝜀𝛼𝑛, ln |𝑏𝑛| 6 𝜀𝛼𝑛, 𝜀 > 0, 𝑛 > 𝑁(𝜀),

and hence
ln |𝑎𝑛 + 𝑏𝑛| 6 ln(|𝑎𝑛| + |𝑏𝑛|) 6 ln 2 + 𝜀𝛼𝑛, 𝑛 > 𝑁(𝜀).

Thus, sense K is invariant also with respect to term-wise summation. Therefore, set K is
obviously is a commutative ring with unity. It is easy to see that the multiplication in this
ring is directly connected with the convolution.
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In ring K we introduce the topology by means of the family of semi-norms
‖𝑎‖𝜀 = sup

𝑛∈N
|𝑎𝑛|𝑒−𝛼𝑛𝜀, 𝑎 ∈ K, 𝜀 ∈ N.

It is easy to show that with this topology ring K is a Fréchet space and ring operations are
continuous.

Under condition (7), space of sequences 𝐴 is obviously topologically isomorphic to ring K for
𝛼𝑛 = |𝜆𝑛|, 𝑛 ∈ N.
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