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DYNAMICS OF LINEAR OPERATORS

CONNECTED WITH su(1, 1) ALGEBRA

V.E. KIM

Abstract. In the present work we consider a linear continuous operator in a separable
Fréchet space being one of the generators of Lie algebra su(1, 1). We study the discrete-
time dynamical system generated by iterations of this operator. We show that under
some additional conditions the operator that generates the indicated dynamical system is
frequently hypercyclic and chaotic (in the sense of Devaney). Applications of this result to
a study of specific operators are indicated.
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1. Introduction

Among dynamical systems with discrete time there is an important subclass comprising
systems described by iterations of some mapping (see, for instance, [1], [2]). Let 𝑋 be a
separable Fréchet space, 𝑇 : 𝑋 → 𝑋 be a continuous operator. Then iterations {𝑇 𝑛, 𝑛 =
0, 1, · · · } define a discrete dynamical system in space 𝑋. There exist various approaches for
defining chaotic dynamical system (see, for instance, [3]). In the present paper we shall make
use of the Devaney’s definition of chaotic mapping, see [1], [2]. Operator 𝑇 is chaotic (in
Devaney sense) if the following conditions hold:

1) operator 𝑇 is topologically transitive, i.e., there exists an element 𝑥 ∈ 𝑋 such that its
orbit Orb(𝑇, 𝑥) = {𝑇 𝑛𝑥, 𝑛 = 0, 1, · · · } is a dense subset in 𝑋;

2) the set of periodic points of operator 𝑇 is dense in 𝑋.
We recall that a point 𝑥 ∈ 𝑋 is called periodic for operator 𝑇 if there exists 𝑛 ∈ N such that
𝑇 𝑛𝑥 = 𝑥.

A linear topologically transitive operator is usually called hypercyclic operator. It is well-
known that the only topologically transitive operators in finite-dimensional spaces are non-linear
operators. However, in infinite-dimensional spaces there exist wide classes of hypercyclic and
linear chaotic operators. For instance, the well-known Godefroy-Shapiro theorem [4] states, in
particular, that all convolution operators (except the multiplication by a constant) in the space
of all entire functions 𝐻(C) are hypercyclic and chaotic. It was shown in work [5] that these
operators are also frequently hypercyclic.

The notion of frequently hypercyclic operator was first introduced in work [6]. Let 𝐴 ⊂ N
be a set. We denote by dens(𝐴) the lower density of set 𝐴, i.e.

dens(𝐴) = lim inf
𝑁→∞

#{𝑛 ∈ 𝐴 : 𝑛 6 𝑁}
𝑁

.

According to the definition given in work [6] a linear continuous operator 𝑇 : 𝑋 → 𝑋 is called
frequently hypercyclic if there exists an element 𝑥 ∈ 𝑋 such that for each non-empty open
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subset 𝑈 ⊂ 𝑋 one has dens{𝑛 ∈ N : 𝑇 𝑛𝑥 ∈ 𝑈} > 0. It is easy to see that each frequently
hypercyclic operators is hypercyclic. However, there are examples of hypercyclic operators not
being frequently hypercyclic. More detailed information about these and other questions of the
dynamics for these operators can be found, for instance, in book [7].

In the series of works (see, for instance, [8]–[11]) there was studied an issue on which operators
in space𝐻(C) apart from convolution operators are also hypercyclic. For instance, it was proven
in work [11] that a linear continuous non-injective operator 𝑇 : 𝐻(C) → 𝐻(C) is hypercyclic if
𝑇 satisfies commutation relation [︁

𝑇,
d

d𝑧

]︁
= 𝐼, (1)

where 𝐼 is the identity mapping. It is known that commutation condition like (1) generates Lie
algebra called usually Heisenberg-Weil algebra (see, for instance, [12]). The aim of the present
work is to show that the hypercyclic condition (as well as frequently hypercyclic and chaotic
condition) is obeyed for the operators satisfying commutation conditions generating another
Lie algebra, namely, algebra su(1, 1). As it is known (see, for instance, [12]), generators 𝐾0,
𝐾−, 𝐾+ of algebra su(1, 1) satisfy the following commutation conditions

[𝐾0, 𝐾+] = 𝐾+; [𝐾0, 𝐾−] = −𝐾−; [𝐾−, 𝐾+] = 2𝐾0. (2)

The paper is organized as follows. In Section 1 we prove the main result, Theorem 2. In
section 2 we provide examples demonstrating application of Theorem 2. These examples show
that by Theorem 2 we can describe some new classes of hypercyclic and chaotic operators, as
well as that this theorem implies some known results of hypercyclic operators.

2. Main results

In this section we shall formulate and prove the main result on hypercyclic and chaotic
character of operator 𝐾− satisfying commutation conditions (2). In the proof of this result we
shall make of the following theorem proven in work [6].

Theorem 1 (F. Bayart, S. Grivaux). Let 𝑋 be a separable Fréchet space, 𝑇 be a linear
continuous operator in 𝑋. Suppose there exists a dense subspace 𝑋0 ⊂ 𝑋 and a mapping
𝑆 : 𝑋0 → 𝑋0 such that

i: series
∑︀∞

𝑛=0 𝑇
𝑛𝑥 converges absolutely ∀𝑥 ∈ 𝑋0;

ii: series
∑︀∞

𝑛=0 𝑆
𝑛𝑥 converges absolutely ∀𝑥 ∈ 𝑋0;

iii: 𝑇𝑆𝑥 = 𝑥, ∀𝑥 ∈ 𝑋0.

Then operator 𝑇 is frequently hypercyclic and chaotic.

To prove the main theorem we shall employ the following auxiliary lemma.

Lemma 1. Let 𝑋 be a separable Fréchet space, 𝐾0, 𝐾−, 𝐾+ are linear continuous operators
in 𝑋 satisfying commutation conditions (2). Then for each 𝑛 ∈ N

𝐾0𝐾
𝑛
+ = 𝑛𝐾𝑛

+ +𝐾𝑛
+𝐾0. (3)

Proof. We prove by induction. It follows from relations (2) that 𝐾0𝐾+ = 𝐾+ +𝐾+𝐾0. Hence,
identity (3) is established for 𝑛 = 1 and this is the induction base. We take arbitrary 𝑚 ∈ N,
𝑚 > 1. Let us prove identity (3) for 𝑛 = 𝑚 assuming that (3) holds for 𝑛 = 𝑚− 1, i.e.,

𝐾0𝐾
𝑚−1
+ = (𝑚− 1)𝐾𝑚−1

+ +𝐾𝑚−1
+ 𝐾0.

We have

𝐾0𝐾
𝑚
+ =𝐾0𝐾+(𝐾

𝑚−1
+ ) = 𝐾𝑚

+ +𝐾+𝐾0𝐾
𝑚−1
+

=𝐾𝑚
+ + (𝑚− 1)𝐾𝑚

+ +𝐾𝑚
+𝐾0 = 𝑚𝐾𝑚

+ +𝐾𝑚
+𝐾0.
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The next theorem is the main result of the paper.

Theorem 2. Let 𝑋 be a separable Fréchet space, {𝑝𝑘}∞𝑘=1 be a family of semi-norms defin-
ing a topology in space 𝑋. Let 𝐾0, 𝐾−, 𝐾+ be linear continuous operators on 𝑋 obeying
commutation conditions (2). Suppose that there exists an element 𝑥 ∈ 𝑋 ∖ {0} such that

A: 𝑥 ∈ ker𝐾−;
B: system {𝐾𝑛

+𝑥, 𝑛 = 0, 1, · · · } is complete in 𝑋;
C: for each 𝑘 ∈ N

lim
𝑚→∞

(︁𝑝𝑘(𝐾𝑚
+ 𝑥)

(𝑚!)2

)︁1/𝑚

< 1;

D: 2𝐾0𝑥 = 𝑥.

Then operator 𝐾− is frequently hypercyclic and chaotic.

Proof. Let us prove first that

𝐾−𝐾
𝑛
+𝑥 = 𝑛2𝐾𝑛−1

+ 𝑥 (4)

for each 𝑛 ∈ N. We argue by induction. It follows from relations (2) and Conditions A and
D that 𝐾−𝐾+𝑥 = 𝑥. Thus, (4) holds true for 𝑛 = 1. The induction base is proven. We take
an arbitrary 𝑚 ∈ N, 𝑚 ≥ 1. Assuming that (4) is satisfied for 𝑛 = 𝑚, let us prove (4) for
𝑛 = 𝑚+ 1, i.e., that 𝐾−𝐾

𝑚+1
+ 𝑥 = (𝑚+ 1)2𝐾𝑚

+ 𝑥. Employing Conditions A and D, relation (2)
and Lemma, we obtain

𝐾−𝐾
𝑚+1
+ 𝑥 =𝐾−𝐾

𝑚+1
+ 𝑥+𝐾+(𝑚

2𝐾𝑚−1
+ 𝑥−𝐾−𝐾

𝑚
+ 𝑥) = 𝐾−𝐾

𝑚+1
+ 𝑥+𝑚2𝐾𝑚

+ 𝑥−𝐾+𝐾−(𝐾
𝑚
+ 𝑥)

=𝐾−𝐾
𝑚+1
+ 𝑥+𝑚2𝐾𝑚

+ 𝑥+ 2𝐾0𝐾
𝑚
+ 𝑥−𝐾−𝐾

𝑚+1
+ 𝑥

=𝑚2𝐾𝑚
+ 𝑥+ 2𝐾0𝐾

𝑚
+ 𝑥 = 𝑚2𝐾𝑚

+ 𝑥+ 2𝑚𝐾𝑚
+ 𝑥+𝐾𝑚

+ (2𝐾0𝑥) = (𝑚+ 1)2𝐾𝑚
+ 𝑥.

Thus, we have established that identity (4) is satisfied for each 𝑛 ∈ N. We observe that by
Condition B the set 𝑋0 = span{𝐾𝑛

+𝑥, 𝑛 = 0, 1, · · · } is dense in 𝑋. We take operator 𝐾− as
operator 𝑇 in Theorem 1 and let us show that the hypothesis of Theorem 1 holds.

It follows from relation (4) and Condition A that for each 𝑦 ∈ 𝑋0 there exists a number
𝑀 ∈ N such that 𝐾𝑚

− 𝑦 = 0 as 𝑚 ≥ 𝑀 . Hence, operator 𝐾− obeys Condition i of Theorem 1.
On set 𝑋0 we define a mapping 𝑆 as

𝑆𝐾𝑛
+ =

𝐾𝑛+1
+

(𝑛+ 1)2
.

Then as one can easily see, 𝐾−𝑆𝑦 = 𝑦 for each 𝑦 ∈ 𝑋0. Hence, Condition iii of Theorem 1 is
satisfied.

We note that

𝑆𝑚𝐾𝑛
+𝑥 =

(𝑛!)2𝐾𝑛+𝑚
+ 𝑥

((𝑛+𝑚)!)2
.

Then it follows from Condition C that series

∞∑︁
𝑚=0

𝑝𝑘(𝑆
𝑚𝐾𝑛

+), 𝑛 = 0, 1, . . .

converge for each 𝑘 ∈ N. It yields that series
∑︀∞

𝑚=0 𝑆
𝑚𝑦 converges absolutely ∀𝑦 ∈ 𝑋0.

Therefore, Condition ii of Theorem 1 is satisfied as well. Thus, operator 𝐾− is frequently
hypercyclic and chaotic.
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3. Examples

In this section we provide examples demonstrating application of Theorem 2 to studying the
dynamics of certain operators. We first prove a result concerning description of generators for
algebra su(1, 1). As a corolllary we shall obtain results on hypercyclic and chaotic character of
certain particular operator acting acting the space of entire functions 𝐻(C) with the topology of
uniform convergence on compact sets. We note that an equivalent description of the topology of
space 𝐻(C) can be given by means of a countable system of semi-norms 𝑝𝑘(𝑓) = max|𝑧|6𝑘 |𝑓(𝑧)|,
𝑘 ∈ N.

Theorem 3. Let 𝑋 be a topological vector space, 𝑇 , 𝐴 be linear continuous operators in 𝑋
satisfying commutation condition

[𝑇,𝐴] = 𝐼, (5)

where 𝐼 is the identity mapping on 𝑋. Then operators 𝐾− = 𝑇 + 𝐴𝑇 2, 𝐾+ = 𝐴, 𝐾0 =
(1/2)𝐼 + 𝐴𝑇 satisfy commutation conditions (2), i.e., they are generators of algebra su(1, 1).

Proof. We note that it follows from relation (5) that [𝑇,𝐴𝑛] = 𝑛𝐴𝑛−1, [𝑇 𝑛, 𝐴] = 𝑛𝑇 𝑛−1, 𝑛 ∈ N.
Employing this fact, we obtain

[𝐾−, 𝐾+] = [𝑇 + 𝐴𝑇 2, 𝐴] = [𝑇,𝐴] + [𝐴𝑇 2, 𝐴] = 𝐼 + 𝐴𝑇 2𝐴− 𝐴2𝑇 2

= 𝐼 + 𝐴[𝑇 2, 𝐴] = 𝐼 + 2𝐴𝑇 = 2𝐾0.

Let us check the validity of other relations. We have

[𝐾0, 𝐾+] = [(1/2)𝐼 + 𝐴𝑇,𝐴] = [(1/2)𝐼, 𝐴] + [𝐴𝑇,𝐴] = 𝐴𝑇𝐴− 𝐴2𝑇 = 𝐴[𝑇,𝐴] = 𝐴 = 𝐾+;

[𝐾0, 𝐾−] = [(1/2)𝐼 + 𝐴𝑇, 𝑇 + 𝐴𝑇 2] = [𝐴𝑇, 𝑇 + 𝐴𝑇 2] = [𝐴𝑇, 𝑇 ] + [𝐴𝑇,𝐴𝑇 2].

We note that

[𝐴𝑇, 𝑇 ] = 𝐴𝑇 2 − 𝑇𝐴𝑇 = 𝐴𝑇 2 − 𝑇 (𝑇𝐴− 𝐼) = 𝐴𝑇 2 − 𝑇 2𝐴+ 𝑇 = −2𝑇 + 𝑇 = −𝑇 ;

[𝐴𝑇,𝐴𝑇 2] = 𝐴𝑇𝐴𝑇 2 − 𝐴𝑇 2𝐴𝑇 = 𝐴𝑇 (𝐴𝑇 2 − 𝑇𝐴𝑇 ) = 𝐴𝑇 (−𝑇 ) = −𝐴𝑇 2.

We finally get

[𝐾0, 𝐾−] = −𝑇 − 𝐴𝑇 2 = −𝐾−.

Thus, commutation relations (2) hold true.

Corollary 1. The operator Φ acting in space 𝐻(C) by the rule

Φ𝑓(𝑧) = 𝑓 ′(𝑧) + 𝑧𝑓 ′′(𝑧) (6)

is frequently hypercyclic and chaotic.

Proof. We observe that
[︁

d
d𝑧
, z
]︁
= 𝐼, where z stands for the operator of multiplication by the

independent variable 𝑧 in space𝐻(C). Hence, by Theorem 6 operator Φ is a generator of algebra
su(1, 1). It is well-known that system {z𝑛(1) = 𝑧𝑛, 𝑛 = 0, 1, · · · } is complete 𝐻(C). Moreover,
it is obvious, Φ(1) = 0, (𝐼 + 2z d

d𝑧
)(1) = 1. Thus, Conditions A, B, and D of Theorem 2 are

satisfied. We note that

lim
𝑚→∞

(︁𝑝𝑘(𝑧𝑚)
(𝑚!)2

)︁1/𝑚

= lim
𝑚→∞

𝑘

(𝑚!)2/𝑚
= 0, ∀𝑘 ∈ N.

Thus, Condition C of Theorem 2 is satisfied and thus operator Φ is frequently hypercyclic and
chaotic.

We note that the hypercyclic character of operator (6) follows from the results of work [9],
since it is a particular case of Gel’fond-Leont’ev operator.

In the next statement we establish new classes of hypercyclic and chaotic operators in space
𝐻(C).
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Corollary 2. Let 𝑇 be an operator in space 𝐻(C) acting by the rule 𝑇𝑓(𝑧) = 𝑃 ( d
d𝑧
)𝑓(𝑧) −

𝑧𝑓(𝑧), where 𝑃 ∈ 𝐻(C) is some polynomial. Then operator Φ = 𝑇 + d
d𝑧
𝑇 2 is frequently

hypercyclic and chaotic operator in space 𝐻(C).

Proof. We note that
[︁
𝑇, d

d𝑧

]︁
= 𝐼 (see [9]). Therefore, by Theorem 6 operator Φ is a generator

of algebra su(1, 1). It follows from general of linear differential equations in complex plane
that there exists a function 𝐹 ∈ 𝐻(C) such that 𝐹 ∈ ker𝑇 , 𝐹 ̸≡ 0. It was shown in [9]
that the system {𝐹 (𝑛), 𝑛 = 0, 1, · · · } is complete 𝐻(C). Moreover, it is obvious, Φ(𝐹 ) = 0,
(𝐼 + 2 d

d𝑧
𝑇 )(𝐹 ) = 𝐹 . Thus, Conditions A, B, and D of Theorem 2 are satisfied. We also note

that for each 𝑘 ∈ N

lim
𝑚→∞

(︁𝑝𝑘(𝐹 (𝑚))

(𝑚!)2

)︁1/𝑚

6 lim
𝑚→∞

(︁𝑚!𝑝2𝑘(𝐹 )

𝑘𝑚(𝑚!)2

)︁1/𝑚

= lim
𝑚→∞

1

𝑘(𝑚!)1/𝑚
= 0.

Thus, Condition C of Theorem 2 holds true. Therefore, operator Φ is frequently hypercyclic
and chaotic.

Let us provide an example of a particular operator in space 𝐻(C) satisfying the hypothesis
of Corollary 2. If as 𝑇 we take the operator 𝑇 = d

d𝑧
− z, then as 𝐹 we can take the function

𝐹 (𝑧) = exp(𝑧2/2). Then operator Φ reads as Φ𝑓(𝑧) = 𝑓 ′′′(𝑧) − 𝑧𝑓 ′′(𝑧) − 𝑓 ′(𝑧) − 𝑧𝑓(𝑧). In
accordance with Corollary 2, this operator is frequently hypercyclic and chaotic in space 𝐻(C).
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9. V.É. Kim. Hypercyclicity and chaotic character of generalized convolution operators generated by
Gel’fond-Leont’ev operators. Matem. zametki. 85:6, 849-856 (2009). [Math. Notes. 85:6, 807-813
(2009).]

10. J. Conejero, V. Muller. On the universality of multipliers on 𝐻(C). J. Approx. Theory. 162:5,
1025-1032 (2010).

11. V.E. Kim. Commutation relations and hypercyclic operators. Arch. Math. 99:3, 247-253 (2012).
12. A.M. Perelomov. Generalized coherent states and some of their applications. Uspekhi fiz. nauk.

123:9, 23-55 (1977). [Soviet Physics Uspekhi. 20:9, 703-720 (1977).]

Vitalii Eduardovich Kim,
Institute of Mathematics CC USC RAS,
Chernyshevskii str., 112,
450008, Ufa, Russia
E-mail: kim@matem.anrb.ru


	to1. Introduction
	to2. Main results
	to3. Examples
	 References

