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GENERALIZED DUNKL OPERATOR

I.I. KARAMOV, V.V. NAPALKOV

Abstract. In the paper we introduce a generalized Dunkl operator acting in the space of
entire functions on C. We study problems of harmonic analysis related with this operator
and show its connection with the Gelfond-Leont’ev operator of generalized differentiation.

Keywords: Dunkl operator, eigenfunction, Dunkl convolution operator, Dunkl transform,
characteristic function, hypercyclic operator.

1. Introduction

Let 𝐻(C) be the space of entire functions with the topology of uniform convergence on
compact sets, 𝐻*(C) is the strongly dual space for 𝐻(C), 𝑃C is the space of entire functions
of exponential type. It is known that space 𝐻*(C) is isomorphic to 𝐻0({∞}), which is the
space of functions analytic in the vicinity of the point at infinity and vanishing at the point ∞
(see, for instance, [1]). Moreover, if 𝐹 ∈ 𝐻*(C) and 𝑔𝐹 ∈ 𝐻0({∞}) is the associated function
(according to the mentioned isomorphism), then

(𝐹, 𝑓) =
1

2𝜋𝑖

∫︁
𝐶

𝑓(𝑧)𝑔𝐹 (𝑧) 𝑑𝑧, (1.1)

where 𝑓 ∈ 𝐻(C), 𝐶 is a closed rectifiable contour enveloping all the singularities of function 𝑔𝐹
and located in the analyticity domain for this function.

Consider the generalized Dunkl operator Λ on 𝐻(C)

Λ𝑓(𝑧) =
𝑑

𝑑𝑧
𝑓(𝑧) +

𝑐

𝑧

𝑚−1∑︁
𝑗=0

𝛼𝑗𝑓(𝛼𝑗𝑧), 𝑧 ∈ C, (1.2)

where 𝛼𝑗 = 𝑒
2𝜋𝑖𝑗
𝑚 , 𝑗 = 0,𝑚− 1, 𝑓 ∈ 𝐻(C), 𝑚 is a fixed natural number obeying 𝑚 > 2.

Without loss of generality, in what follows we assume 𝑐 = 1.
This operator generalizes the studied before in work [2] Dunkl operator

𝐷𝑓(𝑧) =
𝑑

𝑑𝑧
𝑓(𝑧) +

𝑐

𝑧
(𝑓(𝑧) − 𝑓(−𝑧)), 𝑧 ∈ C.

Dunkl operators (cf. [3]) are differential-difference operators with finite groups of reflections
in some Euclidian spaces. These operators play an important role in various problems of
mathematics and physics (cf., for instance, [4]). We study problems of harmonic analysis
related with operator (1.2) (Dunkl shift operators, Dunkl convolution, Dunkl transform and so
forth).

Consider the function 𝑔 ∈ 𝐻0({∞})

𝑔(𝑧) =
1

𝑧2
+

𝑚−1∑︁
𝑗=0

𝑒
2𝜋𝑖𝑗
𝑚

𝑧 − 2𝜋𝑖𝑗
𝑚

.
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According to the aforementioned isomorphism, this function is associated with a functional

𝐹 ∈ 𝐻*(C). We take the Laplace transform of this functional ̂︀𝐹 (𝜇) = (𝐹, 𝑒𝜇𝑧). Applying (1.1),

the transform ̂︀𝐹 can be written as

̂︀𝐹 (𝜇) =
1

2𝜋𝑖

∫︁
𝐶

𝑒𝜇𝑧𝑔(𝑧) 𝑑𝑧 =
1

2𝜋𝑖

∫︁
𝐶

𝑒𝜇𝑧

(︃
1

𝑧2
+

𝑚−1∑︁
𝑗=0

𝑒
2𝜋𝑖𝑗
𝑚

𝑧 − 2𝜋𝑖𝑗
𝑚

)︃
𝑑𝑧 = 𝜇+

𝑚−1∑︁
𝑗=0

𝑒
2𝜋𝑖𝑗
𝑚

(𝜇+1). (1.3)

Here contour 𝐶 envelopes the origin and points 2𝜋𝑖𝑗
𝑚
, 𝑗 = 0,𝑚− 1. We introduce the function

𝑦(𝑧) = 1 +
∞∑︁
𝑘=1

𝑧𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
. (1.4)

In the second section we study the properties of eigenfunctions 𝑦𝜆 of operator Λ associated with
an eigenvalue 𝜆 and obeying condition 𝑦𝜆(0) = 1. We shall show that function 𝑦𝜆 is determined
by the solution 𝑦𝜆(𝑧) = 𝑦(𝜆𝑧), where function 𝑦 is defined by (1.4).

Then by (1.2) we construct Dunkl shift operator 𝜏𝑤 (Section 3):

(𝜏𝑤𝑓)(𝑧) = 𝑓(𝑧) +
∞∑︁
𝑘=1

𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
Λ𝑘𝑓(𝑧), 𝑧, 𝑤 ∈ C. (1.5)

Then Dunkl convolution operator of a functional 𝑇 ∈ 𝐻*(C) and a function 𝑓 ∈ 𝐻(C) is
determined as

𝑀𝑇 [𝑓 ](𝑧) = 𝑇 * 𝑓(𝑧) = ⟨𝑇𝑤, (𝜏𝑤𝑓)(𝑧)⟩, 𝑧, 𝑤 ∈ C. (1.6)

In conclusion we introduce Dunkl transform of functional 𝑇 ∈ 𝐻*(C)

D(𝑇 )(𝜆) = 𝑇 (𝜆) = ⟨𝑇, 𝑦(𝜆𝑧)⟩, 𝜆 ∈ C, (1.7)

which establishes a topological isomorphism between spaces 𝐻*(C) and 𝑃C. We also consider
generalized convolution equations, both homogeneous and non-homogeneous.

2. Eigenfunction of Dunkl operator Λ

Proposition 1. a) The eigenfunction 𝑦𝜆 of operator Λ associated with an eigenvalue 𝜆 and
obeying 𝑦𝜆(0) = 1 is unique and is determined by formula (1.4).

b) Function 𝑦(𝑧) is an entire function of exponential type, and its type is 𝜎 = 1.

Proof. a) Indeed, let 𝑦 is defined by (1.4), then

Λ(𝑦(𝜆𝑧)) = Λ

(︃
1 +

∞∑︁
𝑘=1

𝜆𝑘𝑧𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

)︃
=

∞∑︁
𝑘=1

𝜆𝑘Λ(𝑧𝑘)̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
. (2.1)

Taking into consideration that

Λ(𝑧𝑘) =
𝑑

𝑑𝑧
𝑧𝑘 +

1

𝑧

𝑚−1∑︁
𝑗=0

𝛼𝑗
(︀
𝛼𝑘𝑗 𝑧

𝑘
)︀

= 𝑘𝑧𝑘−1 +
1

𝑧

𝑚−1∑︁
𝑗=0

𝛼𝑘+1
𝑗 𝑧𝑘 =

=

(︃
𝑘 +

𝑚−1∑︁
𝑗=0

𝛼𝑘+1
𝑗

)︃
𝑧𝑘−1 = ̂︀𝐹 (𝑘)𝑧𝑘−1, 𝑘 ∈ N, ̂︀𝐹 (0) = 0, (2.2)

we obtain

Λ(𝑦(𝜆𝑧)) =
∞∑︁
𝑘=1

𝜆𝑘𝑧𝑘−1̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
̂︀𝐹 (𝑘) = 𝜆

(︃
1 +

∞∑︁
𝑘=1

𝜆𝑘𝑧𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

)︃
= 𝜆𝑦(𝜆𝑧).
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Let us prove the uniqueness of eigenfunction. Let 𝑑 ∈ 𝐻(C) be such that Λ(𝑑(𝜆𝑧)) = 𝜆𝑑(𝜆𝑧).
If 𝑑(𝑧) =

∑︀∞
𝑘=0 𝑏𝑘𝑧

𝑘, where 𝑏0 = 1, then

Λ(𝑑(𝜆𝑧)) =
∞∑︁
𝑘=0

𝑏𝑘𝜆
𝑘Λ(𝑧𝑘) =

∞∑︁
𝑘=1

𝑏𝑘𝜆
𝑘 ̂︀𝐹 (𝑘)𝑧𝑘−1 =

1

𝑧

∞∑︁
𝑘=0

𝑏𝑘 ̂︀𝐹 (𝑘)(𝜆𝑧)𝑘. (2.3)

On the other hand,

Λ(𝑑(𝜆𝑧)) = 𝜆
∞∑︁
𝑘=0

𝑏𝑘(𝜆𝑧)𝑘. (2.4)

Since 𝑏0 = 1, it follows from (2.3) and (2.4) that

𝑏𝑘 =
1̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

, 𝑘 = 1, 2, . . . .

Hence, 𝑑(𝜆𝑧) ≡ 𝑦(𝜆𝑧).
b) We recall that function 𝑓 ∈ 𝐻(C) is entire of exponential type if

∃ 𝐶, 𝑎 > 0: |𝑓(𝑧)| 6 𝐶𝑒𝑎|𝑧|, 𝑧 ∈ C.
It follows from (1.4) that

|𝑦(𝑧)| 6 1 +
∞∑︁
𝑘=1

|𝑧|𝑘

| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)|
. (2.5)

Let us estimate | ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)|. We have

| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)| = | ̂︀𝐹 (1)|| ̂︀𝐹 (2)| . . . | ̂︀𝐹 (𝑘)| =

=

⃒⃒⃒⃒
⃒1 +

𝑚−1∑︁
𝑗=0

𝑒
4𝜋𝑖𝑗
𝑚

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒2 +

𝑚−1∑︁
𝑗=0

𝑒
6𝜋𝑖𝑗
𝑚

⃒⃒⃒⃒
⃒ . . .

⃒⃒⃒⃒
⃒𝑘 +

𝑚−1∑︁
𝑗=0

𝑒
2(𝑘+1)𝜋𝑖𝑗

𝑚

⃒⃒⃒⃒
⃒ 6

6

(︃
1 +

𝑚−1∑︁
𝑗=0

⃒⃒⃒
𝑒

4𝜋𝑖𝑗
𝑚

⃒⃒⃒)︃(︃
2 +

𝑚−1∑︁
𝑗=0

⃒⃒⃒
𝑒

6𝜋𝑖𝑗
𝑚

⃒⃒⃒)︃
. . .

(︃
𝑘 +

𝑚−1∑︁
𝑗=0

⃒⃒⃒
𝑒

2(𝑘+1)𝜋𝑖𝑗
𝑚

⃒⃒⃒)︃
=

= (1 +𝑚)(2 +𝑚) . . . (𝑘 +𝑚) =
(𝑘 +𝑚)!

𝑚!
.

Since ̂︀𝐹 (𝑘) takes the values:

̂︀𝐹 (𝑘) =

{︃
𝑘 +𝑚, if 𝑘 = 𝑙𝑚− 1, 𝑙 ∈ N;

𝑘, if 𝑘 ̸= 𝑙𝑚− 1, 𝑙 ∈ N,

then it is obvious that
| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)| > 𝑘!. (2.6)

Thus,

𝑘! 6 | ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)| 6 (𝑘 +𝑚)!

𝑚!
. (2.7)

By (2.6) we get

|𝑦(𝑧)| 6 1 +
∞∑︁
𝑘=1

|𝑧|𝑘

𝑘!
= 𝑒|𝑧|. (2.8)

Consider the function 𝜓(𝑧) = 1 +
∞∑︁
𝑘=1

𝑚!

(𝑘 +𝑚)!
𝑧𝑘 and let us calculate its order. We recall that

the order of an arbitrary entire function 𝑓(𝑧) =
∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 can be calculated by the formula (cf.
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[5])

𝜌𝑓 = lim
𝑘→∞

𝑘 ln 𝑘

ln | 1
𝑎𝑘
|
.

Therefore,

𝜌𝜓 = lim
𝑘→∞

𝑘 ln 𝑘

ln (𝑘+𝑚)!
𝑚!

= lim
𝑘→∞

𝑘 ln 𝑘

ln(𝑘 +𝑚)! − ln𝑚!

= lim
𝑘→∞

𝑘 ln 𝑘

ln 𝑘!
= lim

𝑘→∞

𝑘 ln 𝑘

ln
√

2𝜋𝑘 + 𝑘(ln 𝑘 − 1)
= 1.

Since
1

| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)|
>

𝑚!

(𝑘 +𝑚)!
, the orders of corresponding functions satisfy inequality

𝜌𝑦 > 𝜌𝜓. Employing estimate (2.8), we conclude 1 6 𝜌𝑦 6 1. The latter means that the order
of function 𝑦 is also 1.

Let us calculate the type for 𝑦. Since 𝜌𝑦 = 1, we can employ formula (cf. [5])

lim
𝑘→∞

𝑘
1
𝜌𝑓 𝑘
√︀
|𝑎𝑘| = (𝜎𝑓𝑒𝜌𝑓 )

1
𝜌𝑓 , (2.9)

where 𝑎𝑘 the coefficients of function 𝑓 ∈ 𝐻(C), 0 < 𝜌𝑓 <∞ and 𝜎𝑓 is the order and type of 𝑓 ,
respectively.

In our case

𝑎𝑘 =
1̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

, 𝑘 = 1, 2, . . . , 𝑎0 = 1.

Then, employing estimate (2.6) and Stirling approximation 𝑘! ≈
√

2𝜋𝑘(𝑘
𝑒
)𝑘, we deduce

lim
𝑘→∞

𝑘
1
𝜌𝑦 𝑘
√︀

|𝑎𝑘| = lim
𝑘→∞

𝑘 𝑘

√︃
1

| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)|
= lim

𝑘→∞
𝑘

1
𝑘
√
𝑘!

= lim
𝑘→∞

𝑘
𝑒

𝑘(2𝜋𝑘)
1
2𝑘

= 𝑒 lim
𝑘→∞

1

(2𝜋𝑘)
1
2𝑘

= 𝑒.

Applying (2.9), we find 𝜎𝑦𝑒 = 𝑒. Therefore, 𝜎𝑦 = 1. Thus, 𝑦 ∈ 𝑃C.

Proposition 2. The following product formula

𝑦(𝜆𝑧) · 𝑦(𝜆𝑤) = 𝜏𝑤(𝑦(𝜆.))(𝑧), 𝑧, 𝑤 ∈ C. (2.10)

holds true.

Proof. Employing (1.4), we obtain

𝑦(𝜆𝑧) · 𝑦(𝜆𝑤) =

(︃
1 +

∞∑︁
𝑘=1

𝜆𝑘𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

)︃
· 𝑦(𝜆𝑧) = 𝑦(𝜆𝑧) +

∞∑︁
𝑘=1

𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
𝜆𝑘𝑦(𝜆𝑧).

Since Λ𝑘𝑦(𝜆𝑧) = 𝜆𝑘𝑦(𝜆𝑧), then

𝑦(𝜆𝑧) · 𝑦(𝜆𝑤) =𝑦(𝜆𝑧) +
∞∑︁
𝑘=1

𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
𝜆𝑘𝑦(𝜆𝑧)

=𝑦(𝜆𝑧) +
∞∑︁
𝑘=1

𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
Λ𝑘𝑦(𝜆𝑧) = 𝜏𝑤(𝑦(𝜆.))(𝑧).
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3. Dunkl shift operator. Dunkl convolution

We consider first the properties of operator (1.2).

Proposition 3. Operator Λ is a continuous mapping from 𝐻(C) into 𝐻(C).

Proof. Let 𝑓 ∈ 𝐻(C). Without loss of generality we can let 𝑓(0) = 1. We write (1.2) as

Λ𝑓(𝑧) =𝑓 ′(𝑧) +
1

𝑧

𝑚−1∑︁
𝑗=0

𝛼𝑗(𝑓(𝛼𝑗𝑧) − 1) +
1

𝑧

𝑚−1∑︁
𝑗=0

𝛼𝑗

=𝑓 ′(𝑧) +
𝑚−1∑︁
𝑗=0

𝛼𝑗
(𝑓(𝛼𝑗𝑧) − 1)

𝑧
= 𝑓 ′(𝑧) +

𝑚−1∑︁
𝑗=0

𝛼2
𝑗

1∫︁
0

𝑓 ′(𝛼𝑗𝑧𝑡)𝑑𝑡.

(3.1)

Then employing Cauchy integral formula, for each 𝑅 > 0 we obtain

‖Λ𝑓‖𝑅 6 ‖𝑓 ′‖𝑅 +
𝑚−1∑︁
𝑗=0

|𝛼𝑗|2‖𝑓 ′‖𝑅 = (𝑚+ 1)‖𝑓 ′‖𝑅 6 (𝑚+ 1)
‖𝑓‖2𝑅
𝑅

,

where ‖𝑓‖𝑅 = max
|𝑧|6𝑅

|𝑓(𝑧)|. Thus, Λ: 𝐻(C) → 𝐻(C) is a continuous operator.

Theorem 1. If 𝑓 ∈ 𝐻(C), 𝑓(0) = 1, then 𝑓 can be represented as

𝑓(𝑧) = 1 +
∞∑︁
𝑘=1

(Λ𝑘𝑓)(0)̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
𝑧𝑘, 𝑧 ∈ C.

Proof. Let

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛, 𝑎0 = 1, 𝑧 ∈ C. (3.2)

Then by the continuity of operator Λ for each 𝑘 ∈ N

(Λ𝑘𝑓)(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛Λ𝑘(𝑧𝑛),

Λ𝑘(𝑧𝑛) = ̂︀𝐹 (𝑛) ̂︀𝐹 (𝑛− 1) . . . ̂︀𝐹 (𝑛− 𝑘 + 1)𝑧𝑛−𝑘, 𝑘 = 1, 𝑛, 𝑛 = 1, 2, . . . .

In particular, Λ𝑘(𝑧𝑘) = ̂︀𝐹 (𝑘) ̂︀𝐹 (𝑘 − 1) . . . ̂︀𝐹 (1) and Λ𝑘(𝑧𝑛) = 0 as 𝑛 < 𝑘 or 𝑛 > 𝑘. Hence,

(Λ𝑘𝑓)(0) = 𝑎𝑘 ̂︀𝐹 (𝑘) ̂︀𝐹 (𝑘 − 1) . . . ̂︀𝐹 (1).

Thus,

𝑎𝑘 =
(Λ𝑘𝑓)(0)̂︀𝐹 (𝑘) ̂︀𝐹 (𝑘 − 1) . . . ̂︀𝐹 (1)

, 𝑘 = 1, 2, . . .

Substituting the latter into (3.2), we complete the proof.

Proposition 4. Series (1.5) converges in 𝐻(C) and 𝜏𝑤: 𝐻(C) → 𝐻(C) is a continuous
operator.
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Proof. Let 𝑓 ∈ 𝐻(C). By (3.1) we obtain

(Λ2𝑓)(𝑧) =𝑓 ′′(𝑧) +
𝑚−1∑︁
𝑗1=0

𝛼2
𝑗1

1∫︁
0

(1 + 𝛼𝑗1𝑡)𝑓
′′(𝛼𝑗1𝑧𝑡) 𝑑𝑡

+
𝑚−1∑︁
𝑗1=0

𝑚−1∑︁
𝑗2=0

𝛼3
𝑗1
𝛼2
𝑗2

1∫︁
0

1∫︁
0

𝑡1𝑓
′′(𝛼𝑗1𝛼𝑗2𝑧𝑡1𝑡2) 𝑑𝑡1𝑑𝑡2,

(Λ3𝑓)(𝑧) =𝑓 ′′′(𝑧) +
𝑚−1∑︁
𝑗1=0

𝛼2
𝑗1

1∫︁
0

(1 + 𝛼𝑗1𝑡+ 𝛼2
𝑗1
𝑡2)𝑓 ′′′(𝛼𝑗1𝑧𝑡) 𝑑𝑡

+
𝑚−1∑︁
𝑗1=0

𝑚−1∑︁
𝑗2=0

𝛼3
𝑗1
𝛼2
𝑗2

1∫︁
0

1∫︁
0

𝑡1(1 + 𝛼𝑗1𝑡1 + 𝛼𝑗1𝛼𝑗2𝑡1𝑡2)𝑓
′′′(𝛼𝑗1𝛼𝑗2𝑧𝑡1𝑡2) 𝑑𝑡1𝑑𝑡2

+
𝑚−1∑︁
𝑗1=0

𝑚−1∑︁
𝑗2=0

𝑚−1∑︁
𝑗3=0

𝛼4
𝑗1
𝛼3
𝑗2
𝛼2
𝑗3

1∫︁
0

1∫︁
0

1∫︁
0

𝑡21𝑡2𝑓
′′′(𝛼𝑗1𝛼𝑗2𝛼𝑗3𝑧𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3.

By induction we get

(Λ𝑛𝑓)(𝑧) = 𝑓 (𝑛)(𝑧) +
𝑛∑︁
𝑘=1

𝑚−1∑︁
𝑗1=0

. . .
𝑚−1∑︁
𝑗𝑘=0

𝛼𝑘+1
𝑗1

𝛼𝑘𝑗2 . . . 𝛼
2
𝑗𝑘

·
1∫︁

0

. . .

1∫︁
0

𝑃𝑘,𝑛(𝑡1, . . . , 𝑡𝑘)𝑓
(𝑛)(𝛼𝑗1 . . . 𝛼𝑗𝑘𝑧𝑡1 . . . 𝑡𝑘) 𝑑𝑡1 . . . 𝑑𝑡𝑘,

where 𝑃𝑘,𝑛 is a polynomial in 𝑡1, . . . , 𝑡𝑘, 1 6 𝑘 6 𝑛, satisfying inequality

|𝑃𝑘,𝑛(𝑡1, . . . , 𝑡𝑘)| 6
(︂
𝑛

𝑘

)︂
, 𝑡1, . . . , 𝑡𝑘 ∈ [0, 1].

Then taking into consideration that |𝛼𝑗1| = |𝛼𝑗2 | = . . . = |𝛼𝑗𝑘 | = 1, 𝑘 = 1, . . . , 𝑛, 𝑛 = 1, 2, . . .,
we obtain

‖Λ𝑛𝑓‖𝑅 6‖𝑓 (𝑛)‖𝑅 +
𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂𝑚−1∑︁
𝑗1=0

. . .
𝑚−1∑︁
𝑗𝑘=0

|𝛼𝑗1|𝑘+1|𝛼𝑗2 |𝑘 . . . |𝛼𝑗𝑘 |2‖𝑓 (𝑛)‖𝑅

=

(︃
1 +

𝑚−1∑︁
𝑗1=0

. . .

𝑚−1∑︁
𝑗𝑘=0

(2𝑛 − 1)

)︃
‖𝑓 (𝑛)‖𝑅 = (1 + (2𝑛 − 1)𝑚𝑛)‖𝑓 (𝑛)‖𝑅

By Cauchy integral formula, for each 𝑅 > 0

‖𝑓 (𝑛)‖𝑅 6
𝑛!

𝑅𝑛
‖𝑓‖2𝑅.

Then

‖Λ𝑛𝑓‖𝑅 6 (1 + (2𝑛 − 1)𝑚𝑛)
𝑛!

𝑅𝑛
‖𝑓‖2𝑅. (3.3)

Employing (3.3), we find that for each 𝑅 > 0 and |𝑧| 6 𝑅

lim
𝑛→∞

⃒⃒⃒⃒
⃒ 𝑤𝑛(Λ𝑛𝑓)(𝑧)̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑛)

⃒⃒⃒⃒
⃒
1
𝑛

6 lim
𝑛→∞

⃒⃒⃒⃒
𝑤𝑛‖Λ𝑛𝑓‖𝑅

𝑛!

⃒⃒⃒⃒ 1
𝑛

6
2𝑚|𝑤|
𝑅

.
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It implies that for each 𝑧, 𝑤 ∈ C series (1.5) converges uniformly on each compact set C × C.
Thus, 𝜏𝑤𝑓 ∈ 𝐻(C). Let us show that ‖𝜏𝑤𝑓‖𝑅 6𝑀(𝑅,𝑤)‖𝑓‖2𝑅+4𝑚|𝑤|. This estimate will imply
the continuity of operator 𝜏𝑤. Indeed, applying (3.3), we obtain

‖𝜏𝑤𝑓‖𝑅 6‖𝜏𝑤𝑓‖𝑅+2𝑚|𝑤| =

⃦⃦⃦⃦
⃦𝑓(𝑧) +

∞∑︁
𝑘=1

𝑤𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
Λ𝑘𝑓(𝑧)

⃦⃦⃦⃦
⃦
𝑅+2𝑚|𝑤|

6

(︃
1 +

∞∑︁
𝑘=1

|𝑤|𝑘

(𝑅 + 2𝑚|𝑤|)𝑘
(1 + (2𝑘 − 1)𝑚𝑘)

)︃
‖𝑓‖2(𝑅+2𝑚|𝑤|) 6𝑀(𝑅,𝑤)‖𝑓‖2𝑅+4𝑚|𝑤|.

The obtained series converges since

lim
𝑘→∞

(︂
(1 + (2𝑘 − 1)𝑚𝑘)|𝑤|𝑘

(𝑅 + 2𝑚|𝑤|)𝑘

)︂ 1
𝑘

=
2𝑚|𝑤|

𝑅 + 2𝑚|𝑤|
< 1.

Therefore, 𝜏𝑤 is a continuous operator.

The following statement characterizes the relation between generalized Dunkl operator and
Gel’fond-Leont’ev operator.

Theorem 2. Operator (1.2) is a particular case of Gel’fond-Leont’ev generalized differenti-
ation operator.

Proof. We take a function 𝑓 ∈ 𝐻(C):

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛.

Gel’fond-Leont’ev generalized differentiation operator (cf. [6]) acts on function 𝑓 as

𝐷𝑘[𝑓 ](𝑧) =
∞∑︁
𝑛=𝑘

𝑎𝑛
𝑏𝑛−𝑘
𝑏𝑛

𝑧𝑛−𝑘,

where 𝑏𝑛 are the coefficients of some entire function 𝐹 (𝑧) of order 𝜌 (0 < 𝜌 < ∞) and type 𝜎
(0 < 𝜎 <∞), at that 𝑏𝑛 ̸= 0, 𝑛 > 0, and there exists

lim
𝑛→∞

𝑛
1
𝜌 𝑛
√︀
|𝑏𝑛| = (𝜎𝑒𝜌)

1
𝜌 . (3.4)

Consider the function

𝑦(𝑧) =
∞∑︁
𝑛=0

𝑏𝑛𝑧
𝑛 = 1 +

∞∑︁
𝑛=1

1̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑛)
𝑧𝑛, 𝑏0 = 1.

It is obvious that 𝑏𝑛 ̸= 0, 𝑛 > 0. Since function 𝑦 is of exponential type, taking into consider-
ation that 𝜎 = 1, employing estimate (2.7) and Stirling’s approximation, we obtain

lim
𝑛→∞

𝑛 𝑛
√︀
|𝑏𝑛| = lim

𝑛→∞
𝑛

1

𝑛

√︁
| ̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑛)|

= lim
𝑛→∞

𝑛
1

𝑛
√
𝑛!

= lim
𝑛→∞

𝑛
𝑒

𝑛(2𝜋𝑛)
1
2𝑛

= 𝑒 lim
𝑛→∞

1

(2𝜋𝑛)
1
2𝑛

= 𝑒.

Therefore, condition (3.4) is satisfied. We apply operator Λ to 𝑓 ∈ 𝐻(C):

Λ𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛Λ(𝑧𝑛).
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It follows from (2.2) that Λ(𝑧𝑛) = ̂︀𝐹 (𝑛)𝑧𝑛−1. Therefore,

Λ𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛 ̂︀𝐹 (𝑛)𝑧𝑛−1 =
∞∑︁
𝑛=1

𝑎𝑛
𝑏𝑛−1

𝑏𝑛
𝑧𝑛−1,

Λ2𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛 ̂︀𝐹 (𝑛)Λ(𝑧𝑛−1) =
∞∑︁
𝑛=2

𝑎𝑛 ̂︀𝐹 (𝑛) ̂︀𝐹 (𝑛− 1)𝑧𝑛−2 =
∞∑︁
𝑛=2

𝑎𝑛
𝑏𝑛−2

𝑏𝑛
𝑧𝑛−2.

By induction in 𝑘, we see that if identity

Λ𝑘−1𝑓(𝑧) =
∞∑︁

𝑛=𝑘−1

𝑎𝑛 ̂︀𝐹 (𝑛) ̂︀𝐹 (𝑛− 1) . . . ̂︀𝐹 (𝑛− 𝑘 + 2)𝑧𝑛−𝑘+1 =
∞∑︁

𝑛=𝑘−1

𝑎𝑛
𝑏𝑛−𝑘+1

𝑏𝑛
𝑧𝑛−𝑘+1

is satisfied, then

Λ𝑘𝑓(𝑧) =Λ(Λ𝑘−1𝑓(𝑧)) =
∞∑︁

𝑛=𝑘−1

𝑎𝑛 ̂︀𝐹 (𝑛) ̂︀𝐹 (𝑛− 1) . . . ̂︀𝐹 (𝑛− 𝑘 + 2)Λ(𝑧𝑛−𝑘+1)

=
∞∑︁
𝑛=𝑘

𝑎𝑛 ̂︀𝐹 (𝑛) ̂︀𝐹 (𝑛− 1) . . . ̂︀𝐹 (𝑛− 𝑘 + 2) ̂︀𝐹 (𝑛− 𝑘 + 1)𝑧𝑛−𝑘 =
∞∑︁
𝑛=𝑘

𝑎𝑛
𝑏𝑛−𝑘
𝑏𝑛

𝑧𝑛−𝑘.

Thus, we have obtained the required representation.

Let us provide some properties of Dunkl convolution operator (1.6). Let 𝑋 be a topological
vector space, 𝐿 be a linear continuous operator in 𝑋.

Definition 1. A linear continuous operator 𝐿: 𝑋 → 𝑋 is called hypercyclic, if there exists
an element 𝑥 ∈ 𝑋 (called hypercyclic vector of operator 𝐿), such that its orbit {𝐿𝑛𝑥, 𝑛 =
0, 1, 2, . . . } is dense in 𝑋.

Each hypercyclic operator 𝐿 is topologically transitive in the sense of dynamical system,
i.e., for each pair of open and non-empty subsets 𝑈 and 𝑉 in 𝑋 there exists 𝑛 ∈ N such that
𝐿𝑛(𝑈) ∩ 𝑉 ̸= ∅.

Definition 2. Point 𝑥 ∈ 𝑋 is called periodic for 𝐿 if 𝐿𝑛𝑥 = 𝑥 for some 𝑛 ∈ N.

Definition 3. Operator 𝐿: 𝑋 → 𝑋 is called chaotic if it is topologically transitive and its
has dense set of periodic points.

Proposition 5. Let 𝑇 ∈ 𝐻*(C).
1) Operator (1.6) acts continuously from 𝐻(C) into 𝐻(C).
2) Dunkl convolution operator is hypercyclic and chaotic on 𝐻(C).

Proof. 1) Consider sequence (𝑓𝑛)𝑛∈N ∈ 𝐻(C) :

𝑓𝑛 → 𝑓, 𝑀𝑇 [𝑓𝑛] → 𝑔 as 𝑛→ ∞, 𝑓, 𝑔 ∈ 𝐻(C).

For each 𝑤 ∈ C it follows from Proposition 4 that

𝜏𝑤𝑓𝑛 → 𝜏𝑤𝑓 as 𝑛→ ∞ in 𝐻(C).

Then
𝑀𝑇 [𝑓𝑛](𝑧) →𝑀𝑇 [𝑓 ](𝑧) as 𝑛→ ∞ for each 𝑧 ∈ C.

Applying theorem on closed graph, we obtain that 𝑀𝑇 : 𝐻(C) → 𝐻(C) is a continuous operator.
2) Since Dunkl generalized differentiation operator is a particular case of Gel’fond-Leont’ev

generalized differentiation operator, Theorem 1 in work [7] holds true which implies that Dunkl
convolution operator (1.6) is hypercyclic and chaotic.

4. Corollaries of Theorem 2

Theorem 2 implies a series of important corollaries.
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4.1. Dunkl transform. Denote by 𝑃𝑎(C) the space of entire functions of exponential type:

|𝑓(𝑧)| 6 𝐶𝑒𝑎|𝑧|, 𝑧 ∈ C, 𝐶, 𝑎 > 0,

where constant 𝐶 depends on 𝑓 . In this space we introduce norm 𝑝𝑎

𝑝𝑎(𝑓) = sup
𝑧∈C

|𝑓(𝑧)|𝑒−𝑎|𝑧|.

As it is known 𝑃𝑎(C) is a Banach space. Then

𝑃C =
⋃︁
𝑎>0

𝑃𝑎(C).

Space 𝑃C is equipped by the topology of inductive limit. We define Dunkl functional 𝑇 ∈ 𝐻*(C)
by the formula

D(𝑇 )(𝑧) = ⟨𝑇𝑤, 𝑦(𝑤𝑧)⟩ = 𝑎0 +
∞∑︁
𝑛=1

𝑎𝑛̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑛)
𝑧𝑛,

where 𝑎𝑛 = ⟨𝑇𝑤, 𝑤𝑛⟩, 𝑛 ≥ 0, 𝑧 ∈ C.
Applying the result of work [8], we obtain

Corollary 1. Dunkl transform D makes a topological isomorphism between spaces 𝐻*(C)
and 𝑃 (C).

4.2. Convolution equation generated by generalized Dunkl operator. Consider
Dunkl convolution operator 𝑀𝑇 [𝑓 ](𝑧) = ⟨𝑇𝑤, (𝜏𝑤𝑓)(𝑧)⟩, 𝑧, 𝑤 ∈ C. In view of (1.5) we rewrite
it as

𝑀𝑇 [𝑓 ](𝑧) = 𝑎0𝑓(𝑧) +
∞∑︁
𝑘=1

𝑎𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
Λ𝑘𝑓(𝑧) =

∞∑︁
𝑘=0

𝑐𝑘Λ
𝑘𝑓(𝑧), (4.1)

where

𝑐0 = 𝑎0, 𝑐𝑘 =
𝑎𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)

, 𝑎𝑘 = ⟨𝑇𝑤, 𝑤𝑘⟩, 𝑘 = 1, 2, . . . .

4.2.1. Homogeneous convolution equation. Homogeneous convolution equation is an equation
of the form 𝑀𝑇 [𝑓 ](𝑧) = 0. By (4.1) we get

𝑀𝑇 [𝑓 ](𝑧) =
∞∑︁
𝑘=0

𝑐𝑘Λ
𝑘𝑓(𝑧) = 0. (4.2)

The characteristic function of equation (4.2) is

𝑇 (𝜆) = ⟨𝑇, 𝑦(𝜆𝑧)⟩ = 𝑎0 +
∞∑︁
𝑘=1

𝑎𝑘̂︀𝐹 (1) ̂︀𝐹 (2) . . . ̂︀𝐹 (𝑘)
𝜆𝑘 =

∞∑︁
𝑘=0

𝑐𝑘𝜆
𝑘.

Taking into consideration Theorem 2 and the result of work [9], we obtain that equation (4.2)
has solutions of the form 𝑧𝑚𝑦(𝑚)(𝜆𝑛𝑧), 𝑚 = 0, 1, . . . , 𝑝𝑛 − 1, 𝑛 = 1, 2, . . ., where 𝜆1, 𝜆2, . . . are

the zeroes of characteristic function 𝑇 (𝜆) of multiplicities 𝑝1, 𝑝2, . . . , respectively.
We call the solution of the form 𝑧𝑚𝑦(𝑚)(𝜆𝑛𝑧), 𝑚 = 0, 1, . . . , 𝑝𝑛 − 1, 𝑛 = 1, 2, . . . primitive

solutions to equation (4.2). We indicate the set of such solutions by 𝐸. Let 𝑊 be a set of all
entire solutions to equation (4.2). Then [9, Thm. 3.3.5] implies

Corollary 2. The closure of linear span of set 𝐸 in 𝐻(C) coincides with 𝑊 .

In 𝐻(C) we consider the non-homogeneous convolution equation

𝑀𝑇 [𝑓 ](𝑧) = 𝑔(𝑧), 𝑔(𝑧) ∈ 𝐻(C). (4.3)

Corollary 3 ([9])). Equation (4.3) is solvable in 𝐻(C) for each function 𝑔 ∈ 𝐻(C).
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