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PROBLEM OF MULTIPLE INTERPOLATION

IN CLASS OF ANALYTICAL FUNCTIONS

OF ZERO ORDER IN HALF-PLANE

O.A. BOZHENKO, K.G. MALYUTIN

Abstract. In the paper we consider the problem of multiple interpolation in a class
of functions of a zero order and type not exceeding normal in the upper half-plane of
the complex variable. This problem belongs to the class of problems of free interpolation
considered initially by A.F. Leont’ev. We find necessary and sufficient solvability conditions
for this problem. The found criteria are formulated in terms of the canonical products
constructed on interpolation nodes, and in terms of the Nevanlinna measure determined
by these nodes. The work is a continuation of researches of the second author considered
similar problems in classes of analytic functions in the upper half-plane of a nonzero order.
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1. Introduction

The classical interpolation problem is to find a function in a given class (analytic functions
with restrictions for the growth, in particular, entire functions, functions analytic in the upper
half-plane, functions of class H∞ and so forth) taken given values in given points, interpolation
nodes.

In 1948, A.F. Leont’ev [1] considered for the first time an interpolation problem in the class of
entire functions [𝜌,∞] of finite order 𝜌 > 0 called later free interpolation problem. These studies
were continued by A.F. Leont’ev in works [2, 3] in classes [𝜌,∞) of entire functions of normal
type and order 𝜌. In a more general class [𝜌(𝑟),∞), where 𝜌(𝑟) is a given proximate order, the
free interpolation problem was solved by O.S. Firsakova [5]. G.P. Lapin [4] extended the results
of A.F. Leont’ev on free interpolation in the class [𝜌,∞) to the problem on multiple interpola-
tion. Multiple interpolation theory in the spaces of entire functions described by a proximate
order 𝜌(𝑟) had a further development in works by A.V. Bratishchev [6], A.V. Bratishchev and
Yu.F. Korobeinika [7]. Similar problems in the classes of functions analytic in upper half-plane
were not studied well enough. We mention only the work [8], where there was solved the mul-
tiple interpolation problem in the class of analytic functions of non-zero finite order and of
normal type. The complete results for the half-plane are known for the class H∞ starting from
the famous Carleson theorem and numerous works devoted to this subject. The present work
is a continuation of the studies of the second author [8, 10].

O.A. Bozhenko, K.G. Malyutin, Problem of multiple interpolation in class of analytical
functions of zero order in half-plane.
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2. Classes of analytic function in half-plane

We shall make use of the terminology of works [8, 10]
We indicate by C+ = {𝑧 : Im 𝑧 > 0} the upper half-plane. By 𝐶(𝑎, 𝑟) we denote an open

ball of radius 𝑟 centered at 𝑎, while 𝐵(𝑎, 𝑟) stands for the similar closed ball. Let Ω+ be the
intersection of a set Ω with the half-plane C+: Ω+=Ω ∩ C+.

Let 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be a divisor, i.e., the set of different complex numbers {𝑎𝑛}∞𝑛=1 ⊂ C+

taken counting multiplicity {𝑞𝑛}∞𝑛=1 ⊂ N. Given a divisor 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1, 𝑎𝑛 = 𝑟𝑛𝑒
𝑖𝜃𝑛 , we

define measures 𝑛𝐷(𝐺) =
∑︀

𝑎𝑛∈𝐺 𝑞𝑛, �̃�+
𝐷(𝐺) =

∑︀
𝑎𝑛∈𝐺 𝑞𝑛Im 𝑎𝑛, 𝑛+

𝐷(𝐺) =
∑︀

𝑎𝑛∈𝐺∖𝐵(0,1) 𝑞𝑛 sin 𝜃𝑛 +

�̃�+
𝐷(𝐺 ∩ 𝐵(0, 1)). If it does not lead to ambiguity, we shall omit subscript 𝐷. The divisor of

roots for an arbitrary function 𝑓 will be indicated as 𝐷𝑓 . We denote 𝑛𝑓 = 𝑛𝐷𝑓
, 𝑛+

𝑓 = 𝑛+
𝐷𝑓

,

𝑛𝑓,𝑎(𝑟) = 𝑛𝑓 (𝐶(𝑎, 𝑟)), 𝑛+
𝑓,𝑎(𝑟) = 𝑛+

𝑓 (𝐶(𝑎, 𝑟)), 𝑛𝐷,𝑎(𝑟) = 𝑛𝐷(𝐶(𝑎, 𝑟)), 𝑛+
𝐷,𝑎(𝑟) = 𝑛+

𝐷(𝐶(𝑎, 𝑟)).

In particular, we let 𝑛𝑓 (𝑟) = 𝑛𝑓,0(𝑟), 𝑛
+
𝑓 (𝑟) = 𝑛+

𝑓,0(𝑟), 𝑛𝐷(𝑟) = 𝑛𝐷,0(𝑟), 𝑛
+
𝐷(𝑟) = 𝑛+

𝐷,0(𝑟). All
considered measured will be supposed to be continued into the complex plane assuming there
restrictions on C− being zero measure. Once we deal with internal measures defined on C+,
there restriction on the real axis is zero measure.

Dealing with divisor 𝐷𝑓 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 of zeroes of some function 𝑓 , we sometimes denote it
by {𝑧𝑛}∞𝑛=1, where in the sequence {𝑧𝑛}∞𝑛=1 the point 𝑎𝑛 appears exactly 𝑞𝑛 times.

A differentiable on semi-axis (0,+∞) differentiable function 𝜌(𝑟) is called proximate order if
the conditions

1) lim
𝑟→∞

𝜌(𝑟) = 𝜌,

2) lim
𝑟→∞

𝑟𝜌′(𝑟) ln 𝑟 = 0.

hold true. The detailed exposition on the properties of proximate order can be found in
works [11, 12, 13]. In the paper we employ the notation 𝑉 (𝑟) = 𝑟𝜌(𝑟). In addition we as-
sume that 𝑉 (𝑟) ≡ 1 as 𝑟 ∈ [0, 1]. This assumption does not lead to the loss of generality but
simplifies some arguments.

Within the work we shall actively make use of a well-known property of proximate order
which we formulate as the next lemma.

Lemma 1. Let 𝜌(𝑟) be a proximate order. Then for each 𝑡 > 0

lim
𝑟→∞

𝑉 (𝑟𝑡)

𝑉 (𝑟)
= 𝑡𝜌, (1)

and the limit is uniform on a fixed segment [𝑎, 𝑏] ⊂ (0,+∞).

In the case number 𝜌 in the definition of the proximate order vanishes, proximate order 𝜌(𝑟)
called zero proximate order. In fact, we make no assumptions for the zero proximate order 𝜌(𝑟).
However, we assume the following addition condition:

lim
𝑟→+∞

𝑉 (𝑟)

ln 𝑟
= +∞ . (2)

proximate order 𝜌(𝑟) is called formal order of a function 𝑓 if there exists a constant 𝑀𝑓

depending on 𝑓 only such for each 𝑧 ∈ C+ the inequality

log |𝑓(𝑧)| < 𝑀𝑓𝑉 (|𝑧|) (3)

holds true.
We shall employ the symbol [𝜌(𝑟),∞)+ to indicate the class of analytic in C+ functions 𝑓 of

formal order 𝜌(𝑟).
proximate order 𝜌(𝑟) is called semi-formal order of an analytic in C+ function 𝑓 if 𝜌(𝑟) is

a formal order of a function 𝑓 and there holds the following Levin condition [11]: there exist
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numbers 𝑞 ∈ (0, 1), 𝛿 ∈ (0, 𝜋/2) such that in each domain

𝐷(𝑅, 𝑞, 𝛿) = {𝑧 : 𝑞𝑅 6 |𝑧| 6 1

𝑞
𝑅, 𝛿 < arg 𝑧 < 𝜋 − 𝛿}

there exists a point 𝑧, at which one has the inequality

log |𝑓(𝑧)| > −𝑀𝑓𝑉 (|𝑧|) .
The class of analytic in C+ functions having 𝜌(𝑟) as the semi-formal order is denoted by

[𝜌(𝑟),∞)ℎ+. This terminology is due to A.F. Grishin. It is clear that [𝜌(𝑟),∞)ℎ+ ⊂ [𝜌(𝑟),∞)+.
If 𝜌 = lim

𝑟→∞
𝜌(𝑟) > 1 and 𝜌(𝑟) is the formal order of a function 𝑓 in C+, then 𝜌(𝑟) is also the

semi-formal order for this function [14]. On the other hand, 𝜌(𝑟) ≡ 0 is the formal order for
the function 𝑒𝑖𝑧, and 𝜌(𝑟) ≡ 1 is the semi-formal order of this function. Indeed, function 𝑒𝑖𝑧

is bounded in the half-plane, and for each 𝑧 ∈ C+ the inequality |𝑒𝑖𝑧| > 𝑒−|𝑧| is satisfied.
Thus, the difference between formal and semi-formal order occurs in the half-plane only as

𝜌 6 1, and in particular, as 𝜌 = 0.
Functions 𝑓 in class [𝜌(𝑟),∞)+ possess the following propertiesl [15]:

a) log |𝑓(𝑧)| has a non-tangential limit log |𝑓(𝑡)|, 𝑡 ∈ R, almost everywhere on the real axis,
log |𝑓(𝑡)| ∈ 𝐿1

𝑙𝑜𝑐(−∞,∞);
b) on the real axis there exists a signed measure (charge) 𝜈 such that

lim
𝑦→+0

𝑏∫︁
𝑎

log |𝑓(𝑡+ 𝑖𝑦)| 𝑑𝑡 = 𝜈([𝑎, 𝑏]) − 1

2
(𝜈({𝑎}) + 𝜈({𝑏})) .

Measure 𝜈 is called boundary measure of a function 𝑓 ;
c) 𝑑𝜈(𝑡) = log |𝑓(𝑡)| 𝑑𝑡 + 𝑑𝜎(𝑡), where 𝜎 is a singular measure with respect to Lebesgue

measure.

Following [15], for a function 𝑓 ∈ [𝜌(𝑟),∞)+ we define the full measure 𝜆 as

𝜆(𝐺) = 2𝜋

∫︁
C+∩𝐺

Im 𝜁 𝑑𝜇(𝜁) − 𝜈(𝐺) ,

where 𝜇 is the Riesz measure for the subharmonic in the upper half-plane function log |𝑓 |.
Measure 𝜆 possesses the following properties

1) 𝜆 is a finite measure on each compact set 𝐺 ⊂ C,
2) 𝜆 is a nonnegative measure outside R,
3) 𝜆 vanishes in the half-plane C− = {𝑧 : Im 𝑧 < 0}.

We shall make use of the following lemma [15].

Lemma 2. Let 𝜆𝑓 be the full measure for a function 𝑓 ∈ [𝜌(𝑟),∞)+. Then inequality∫︁∫︁
𝐵+(0,𝑅)

𝑑|𝜆𝑓 |(𝜉)
1 + |𝜉|2

6𝑀𝑓

⎛⎝ 𝑅∫︁
0

𝑉 (𝑡)

1 + 𝑡2
𝑑𝑡+

𝑉 (𝑅)

𝑅

⎞⎠ (4)

holds true with some constant 𝑀𝑓 > 0 independent of 𝑅.

3. Formulation of interpolation problem in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+)

We denote Λ𝑧 = min{1; Im 𝑧}, Λ𝑛 = Λ𝑎𝑛 . Let 𝑓 ∈ [𝜌(𝑟),∞)+ (𝑓 ∈ [𝜌(𝑟),∞)ℎ+). The Cauchy
formula for the derivatives implies easily the inequality

|𝑓 (𝑘−1)(𝑧)| 6 (𝑘 − 1)!

Λ𝑘−1
𝑧

exp[𝑀𝑓𝑉 (|𝑧|)], 𝑘 ∈ N .
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This inequality leads us to a reasonability of introducing of the following definition.

Definition 1. Divisor 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 is called interpolation in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+), if for each sequence of complex numbers 𝑏𝑛,𝑘, 𝑘 = 1, 2, . . . , 𝑞𝑛, 𝑛 ∈ N satisfying
condition

sup
𝑛

1

𝑉 (|𝑎𝑛|)
sup

16𝑘6𝑞𝑛

log+ |𝑏𝑛,𝑘|Λ𝑘−1
𝑛

(𝑘 − 1)!
<∞ (5)

there exists a function 𝐹 ∈ [𝜌(𝑟),∞)+ (𝐹 ∈ [𝜌(𝑟),∞)ℎ+) with property

𝐹 (𝑘−1)(𝑎𝑛) = 𝑏𝑛,𝑘, 𝑘 = 1, 2, . . . , 𝑞𝑛, 𝑛 ∈ N . (6)

Given a divisor 𝐷, we define the families of functions

Φ+
𝐷(𝑧, 𝛼) =

𝑛+
𝐷(𝐶(𝑧, 𝛼|𝑧|) ∖ {𝑎𝑛})

𝑉 (|𝑧|)
, 𝛼 > 0 ,

where 𝑎𝑛 is the point in the support of divisor 𝐷 closest to point 𝑧 (if there exist several such
points, we choose any of them). We let

𝐼+𝐷(𝑧, 𝛿) = sin 𝜃

𝛿∫︁
0

Φ+
𝐷(𝑧, 𝛼) 𝑑𝛼

𝛼(𝛼 + sin 𝜃)2
, 𝜃 = arg 𝑧 .

We formulate the main theorem of our work.

Theorem. Let 𝜌(𝑟) be the zero proximate order. Then the following three statements are
equivalent.

1) Divisor 𝐷 is an interpolation one in the class [𝜌(𝑟),∞)+ (in class [𝜌(𝑟),∞)ℎ+).
2) The conditions hold:
2.1)

∞∑︁
𝑛=1

𝑞𝑛Im 𝑎𝑛
1 + |𝑎𝑛|2

<∞ , (7)

2.2) The canonical product

𝐸(𝑧) =
∏︁

|𝑎𝑛|61

(︂
𝑧 − 𝑎𝑛
𝑧 − �̄�𝑛

)︂𝑞𝑛 ∏︁
|𝑎𝑛|>1

(︂
𝑧 − 𝑎𝑛
𝑧 − �̄�𝑛

· �̄�𝑛
𝑎𝑛

)︂𝑞𝑛

of divisor 𝐷 satisfies condition:

sup
𝑛

1

𝑉 (|𝑎𝑛|)
log

|𝛾𝑛,1|
Λ𝑞𝑛

𝑛
<∞ , (8)

where

𝛾𝑛,𝑘 =
1

(𝑘 − 1)!

(︂
𝑑

𝑑𝑧

)︂𝑘−1
(𝑧 − 𝑎𝑛)𝑞𝑛

𝐸(𝑧)

⃒⃒⃒⃒
𝑧=𝑎𝑛

, 𝑘 = 1, . . . , 𝑞𝑛, 𝑛 ∈ N .

3) Conditions (7) are satisfied and
3.1) for each 𝛿 > 0

sup
𝑧∈C+

𝐼+𝐷(𝑧, 𝛿) <∞ ; (9)

3.2) it holds

sup
𝑛∈N

𝑞𝑛
𝑉 (|𝑎𝑛|)

log
2Im 𝑎𝑛

Λ𝑛

<∞ . (10)
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4. Necessary solvability conditions for interpolation problem

Theorem. Let 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be an interpolation divisor in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+) and 𝜌(𝑟) is the zero proximate order. Then condition (7) is satisfied.

Proof. Let 𝐹 be a function in class [𝜌(𝑟),∞)+ solving interpolation problem 𝐹 (𝑎1) = 1,
𝐹 (𝑘−1)(𝑎1) = 0, 𝑘 = 2, . . . , 𝑞1, 𝐹

(𝑘−1)(𝑎𝑛) = 0, 𝑘 = 1, . . . , 𝑞𝑛 as 𝑛 ≥ 2. By the hypothesis
of theorem such function exists. Since divisor 𝐷 except point 𝑎1 is a part of zeroes of function
𝐹 , it follows from inequality (4) in Lemma 2 that

∑︁
|𝑎𝑛|6𝑅

𝑞𝑛Im 𝑎𝑛
1 + |𝑎𝑛|2

6𝑀𝐹

⎛⎝ 𝑅∫︁
0

𝑉 (𝑡)

1 + 𝑡2
𝑑𝑡+

𝑉 (𝑅)

𝑅

⎞⎠ (11)

with some constant 𝑀𝐹 > 0 independent of 𝑅.
Since 𝜌(𝑟) is a zero proximate order, then 𝑉 (𝑅) 6 𝑀1𝑅

1/2 with some constant 𝑀1 > 0

independent of 𝑅. This is why lim
𝑅→∞

𝑉 (𝑅)

𝑅
= 0 and integral

∞∫︁
0

𝑉 (𝑡)

1 + 𝑡2
𝑑𝑡 converges. Then

by (11) it implies (7). The proof is complete.

Theorem. Let 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be the interpolation divisor in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+) and 𝜌(𝑟) is the zero proximate order. Then Item 2) of Theorem 3 holds true.

Proof. Condition 2.1) follows from Theorem 4. The proof of Condition 2.2) reproduces word-
by-word the proof of similar condition in work [8].

Theorem. Let 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be an interpolation divisor in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+) and 𝜌(𝑟) is the zero proximate order. Then Item 3) of Theorem 3.

The proof of Conditions 3.1) and 3.2) was made in work [8] for 𝜌 > 1. The analysis of these
statements shows that they are valid also for 0 6 𝜌 6 1.

Theorem. Let 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be a divisor such that Condition (7) holds true and 𝜌(𝑟) is
the zero proximate order. Then Items 2) and 3) Theorem 3 are equivalent.

In work [8] the equivalence of these conditions was proven 𝜌 > 1. And again one can make
sure that it is also true for 0 6 𝜌 6 1.

We shall make use of the following lemma in [8].

Lemma 3. Let divisor 𝐷 = {𝑎𝑛, 𝑞𝑛}∞𝑛=1 be interpolation in class [𝜌(𝑟),∞)+ (in class
[𝜌(𝑟),∞)ℎ+) and 𝜌(𝑟) is the zero proximate order. Then

sup
𝑛∈N

∞∑︁
𝑘=1

𝑞𝑘Im 𝑎𝑘Im 𝑎𝑛

|𝑎𝑛 − �̄�𝑘|2(1 + 𝑟2𝑘)
3
2

<∞ . (12)

We note [8] that if divisor 𝐷 satisfies condition (8), then condition (10) holds true. Moreover,
the following lemma is valid.

Lemma 4. Suppose that divisor 𝐷 satisfies condition (8), then

sup
𝑛∈N

1

𝑉 (𝑟𝑛)
max

16𝑘6𝑞𝑛

|𝛾𝑛,𝑘|
Λ𝑞𝑛−𝑘+1

𝑛

<∞ . (13)

Proof. In the proof we shall employ the following statement in work [9].
Let a function 𝐺(𝜁) be analytic in a circle 𝐶(0, 𝑟), |𝐺(𝜁)| 6 𝑀 , and let 𝐺(𝜁) have the zero

of multiplicity 𝑚 at the point 𝜁 = 0 and the zero of multiplicity 𝑞 at the point 𝜁 = 𝑎. Then

|𝑎|𝑞 > 𝐺(𝑚)(0)

𝑚!
· 𝑟

𝑚+𝑞

𝑀
. (14)
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We denote by 𝑙𝑛 the quantity

𝑙𝑛 = min {Λ𝑛/2, dist ({𝑎𝑖}∞𝑖=1 ∖ {𝑎𝑛}; {𝑎𝑛})} , 𝑛 ∈ N ,

where dist denotes the distance between the sets. Suppose, for instance, 𝑙𝑛 = |𝑎𝑘 − 𝑎𝑛|. We let
𝐺(𝜁) = 𝐸(𝑎𝑘 + 𝜁), 𝑟 = Λ𝑘. Noticing that in this case Λ𝑘 > Λ𝑛/2 > 𝑙𝑛 = |𝑎𝑘 − 𝑎𝑛|, we apply
inequality (14) to function 𝐺(𝜁). We have

𝑙𝑞𝑛𝑛 >
𝐸(𝑞𝑘)(𝑎𝑘)

𝑞𝑘!
· Λ𝑞𝑘+𝑞𝑛

𝑘

max
|𝜁−𝑎𝑘|6Λ𝑘

|𝐸(𝜁)|
.

This inequality, the boundedness of function 𝐸(𝜁) (|𝐸(𝜁)| 6 1, 𝜁 ∈ C+), conditions (8), (10),
and the properties of proximate order (1) yield that

𝑙𝑞𝑛𝑛 > Λ𝑞𝑛
𝑛 exp(−𝑀1𝑉 (|𝑎𝑛|)), 𝑛 ∈ N (15)

for some 𝑀1 > 0. By condition (10), this inequality is valid also for 𝑙𝑛 = Λ𝑛/2, 𝑛 ∈ N.
We define an analytic in the circle 𝐶(0, 1) function 𝜓(𝑡) by the identity 𝜓(𝑡)𝑡𝑞𝑛 = 𝐸(𝑎𝑛 + 𝑙𝑛𝑡).

Applying l’Hospital rule as well as inequalities (8) and (15), we get

|𝜓(0)| = 𝑙𝑞𝑛𝑛
|𝐸(𝑞𝑛)(𝑎𝑛)|

𝑞𝑛!
> exp(−𝑀2𝑉 (|𝑎𝑛|))

for some 𝑀2 > 0. Moreover, as |𝑡| 6 1, function 𝜓(𝑡) is bounded since

|𝜓(𝑡)| 6 max
|𝑡|=1

|𝜓(𝑡)| = max
|𝑡|=1

|𝜓(𝑡)𝑡𝑞𝑛| = max
|𝑡|=1

|𝐸(𝑎𝑛 + 𝑙𝑛𝑡)| 6 1 .

We then apply the following theorem [11, Thm. 9, Ch. I, Sec. 6].

Theorem. Suppose that a holomorphic in the circle 𝐶(0, 𝑅) function 𝑓(𝑧) has no zeroes.
Then in a circle 𝐶(0, 𝑟), 𝑟 < 𝑅, the inequality

log |𝑓(𝑧)| > −2𝑟

𝑅− 𝑟
max
|𝜁|6𝑅

log |𝑓(𝜁)| (16)

holds true.

We let 𝑔(𝜁) = 𝜓(𝜁)𝜓−1(0). Since function 𝑔(𝜁) has no zeroes in the circle 𝐶(0, 1/2) and
𝑔(0) = 1, we can apply inequality (16), which for |𝜁| 6 𝑟 = 1/4 and 𝑅 = 1/2 implies 𝑔(𝜁) >
exp(−2𝑀2𝑉 (|𝑎𝑛|)) . Thus,

|𝐸(𝑎𝑛 + 𝜏)| > |𝜏 |𝑞𝑛
|𝑙𝑛|𝑞𝑛

exp(−𝑀3𝑉 (|𝑎𝑛|)), |𝜏 | 6 𝑙𝑛
4

(17)

for some 𝑀3 > 0.
Then by the definition we have

𝛾𝑛,𝑘 =
1

2𝜋𝑖

∫︁
|𝜁−𝑎𝑛|=𝑙𝑛/4

(𝜁 − 𝑎𝑛)𝑞𝑛−𝑘

𝐸(𝜁)
𝑑𝜁, 𝑘 ∈ 1, 𝑞𝑛, 𝑛 ∈ N .

Inequality (13) now follows from this relation, definition 𝑙𝑛, (17), and (10). The proof is
complete.
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5. Proof of implication 2) ⇒ 1) in Theorem 3

Denote

𝛼𝑛,𝑚 =
(−1)𝑚−1

(𝑚− 1)!

𝑞𝑛−𝑚∑︁
𝑖=𝑜

1

𝑖!
𝛾𝑛,𝑞𝑛+1−𝑚−𝑖𝑏𝑛,𝑖+1, 𝑚 ∈ 1, 𝑞𝑛, 𝑛 ∈ N . (18)

Re-ordering, if needed, the points of divisor 𝐷, we can assume that

Im 𝑎𝑛+1

1 + 𝑟2𝑛+1

6
Im 𝑎𝑛
1 + 𝑟2𝑛

, 𝑛 ∈ N . (19)

We let

𝛽𝑛(𝑧) =
∞∑︁
𝑘=𝑛

1 + �̄�𝑘(𝑧 + 𝑖Λ𝑛)

𝑖(�̄�𝑘 − 𝑧 − 𝑖Λ𝑛)

Im 𝑎𝑘

(1 + 𝑟2𝑘)
3
2

, 𝑛 ∈ N . (20)

The series determining functions 𝛽𝑛(𝑧) in (20) converges uniformly in each of domains

𝐷𝑛
𝑟,𝛿 = {𝑧 : |𝑧| 6 𝑟, Im 𝑧 > −Λ𝑛 + 𝛿, 𝛿 > 0} ,

since as 𝑧 ∈ 𝐷𝑛
𝑟,𝛿, 𝑟 > 2,⃒⃒⃒⃒

1 + �̄�𝑘(𝑧 + 𝑖Λ𝑛)

𝑖(�̄�𝑘 − 𝑧 − 𝑖Λ𝑛)

⃒⃒⃒⃒
Im 𝑎𝑘

(1 + 𝑟2𝑘)
3
2

6

√︀
(1 + 𝑟)(1 + 𝑟𝑘)

𝛿

Im 𝑎𝑘

(1 + 𝑟2𝑘)
3
2

,

and series (7) converges.
Let us estimate Re 𝛽𝑛(𝑧). We have

Re 𝛽𝑛(𝑧) =
∞∑︁
𝑘=𝑛

(Im 𝑎𝑘 + Im 𝑧 + Λ𝑛 + 𝑟2𝑘(Im 𝑧 + Λ𝑛) + |𝑧 + 𝑖Λ𝑛|2Im 𝑎𝑘)

|�̄�𝑘 − 𝑧 − 𝑖Λ𝑛|2
Im 𝑎𝑘

(1 + 𝑟2𝑘)
3
2

. (21)

Since Im 𝑎𝑛 > 0, Im �̄�𝑘 < 0, then |�̄�𝑘 − 𝑎𝑛 − 𝑖Λ𝑛| > |�̄�𝑘 − 𝑎𝑛|. By Lemma 3, inequality (19),
and (21) we obtain, in particular, that

Re 𝛽𝑛(𝑎𝑛) 6
∞∑︁
𝑘=𝑛

Im 𝑎𝑘(Im 𝑎𝑘(1 + |𝑎𝑛 + 𝑖Λ𝑛|2) + 2Im 𝑎𝑛(1 + 𝑟2𝑘))

|�̄�𝑘 − 𝑎𝑛|2(1 + 𝑟2𝑘)
3
2

6
∞∑︁
𝑘=𝑛

(︂
Im 𝑎𝑘
1 + 𝑟2𝑘

+
2Im 𝑎𝑛
1 + 4𝑟2𝑛

)︂
Im 𝑎𝑘(1 + 𝑟2𝑘)(1 + 4𝑟2𝑛)

|�̄�𝑘 − 𝑎𝑛|2(1 + 𝑟2𝑘)
3
2

6 5
1 + 4𝑟2𝑛
1 + 𝑟2𝑛

∞∑︁
𝑘=𝑛

Im 𝑎𝑛
|�̄�𝑘 − 𝑎𝑛|2

Im 𝑎𝑘

(1 + 𝑟2𝑘)
1
2

6 𝐾1 <∞ .

(22)

And also

Re 𝛽𝑛(𝑧) >
∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(1 + 𝑟2𝑘)
3
2

1

|�̄�𝑘 − 𝑧 − 𝑖Λ𝑛|2
. (23)

We then let

𝑃𝑛(𝑧) =

𝑞𝑛∑︁
𝑚=1

𝛼𝑛,𝑚

[︂
𝜙𝑛(𝑧)

𝑧 − 𝑎𝑛

]︂(𝑚−1)

, (24)

where

𝜙𝑛(𝑧) =

(︂
1 + 𝑧�̄�𝑛
1 + 𝑟2𝑛

)︂3
𝑔(𝑧)

𝑔(𝑎𝑛)

(︂
2Im 𝑎𝑛
𝑧 − �̄�𝑛

)︂2

exp[𝛽𝑛(𝑎𝑛) − 𝛽𝑛(𝑧)] ,

𝑔(𝑧) is an entire function of class [𝜌(𝑟),∞)+ (class [𝜌(𝑟),∞)ℎ+) which will be determined below.
We note that

𝜙𝑛(𝑎𝑛) = 1, 𝑛 ∈ N . (25)
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Moreover, employing an elementary inequality 1 + 𝑥 6
√︀

2(1 + 𝑥2), for |𝑧| > 1 we obtain⃒⃒⃒⃒
1 + 𝑧�̄�𝑛
1 + 𝑟2𝑛

⃒⃒⃒⃒
6

|𝑧|(1 + 𝑟𝑛)

1 + 𝑟2𝑛
6

√
2|𝑧|√︀

1 + 𝑟2𝑛
.

It yields that

|𝜙𝑛(𝑧)| 6 4

(︃ √
2|𝑧|√︀

1 + 𝑟2𝑛

)︃3
|𝑔(𝑧)|
|𝑔(𝑎𝑛)|

(Im 𝑎𝑛)2

|𝑧 − �̄�𝑛|2
exp{Re [𝛽𝑛(𝑎𝑛) − 𝛽𝑛(𝑧)]}, 𝑛 ∈ N . (26)

The formal series

𝐹 (𝑧) = 𝐸(𝑧)
∞∑︁
𝑛=1

𝑃𝑛(𝑧) (27)

solves interpolation problem (6) [8].
Let us show that under an appropriate choice choice of function 𝑔(𝑧), function 𝐹 (𝑧) belongs

to class [𝜌(𝑟),∞)+ ([𝜌(𝑟),∞)ℎ+). It follows from condition (5), inequality (13) and identity (18)
that for each 𝑚 = 1, . . . , 𝑞𝑛, 𝑛 ∈ N,

|𝛼𝑛,𝑚| 6
𝑞𝑛 −𝑚+ 1

(𝑚− 1)!
Λ𝑚

𝑛 exp[𝐾2𝑉 (𝑟𝑛)] . (28)

We denote

𝑢𝑛,𝑚(𝑧) =

[︂
𝜙𝑛(𝑧)

𝑧 − 𝑎𝑛

]︂(𝑚−1)

, 𝑚 = 1, . . . , 𝑞𝑛, 𝑛 ∈ N .

Let us estimate 𝑢𝑛,𝑚(𝑧) for 𝑧 ∈ C+, 𝑧 /∈ 𝐶(𝑎𝑛,Λ𝑛/2). We note that if |𝑡 − 𝑧| = Λ𝑛/4, then
first,

|𝑡− 𝑎𝑛| > Λ𝑛/4, 𝑛 ∈ N , (29)

and second, |𝑡 − �̄�𝑛| > Im 𝑎𝑛 − Λ𝑛/4 ≥ 3Im 𝑎𝑛/4 (𝑛 ∈ N), |𝑧 − �̄�𝑛| 6 |𝑧 − 𝑡| + |𝑡− �̄�𝑛| =
= Λ𝑛/4 + |𝑡− �̄�𝑛| 6 Im 𝑎𝑛/4 + |𝑡 − �̄�𝑛| 6 7|𝑡 − �̄�𝑛|/3, and |𝑡− �̄�𝑛| 6 |𝑧 − 𝑡| + |𝑧 − �̄�𝑛| =
= Λ𝑛/4 + |𝑧 − �̄�𝑛| 6 Im 𝑎𝑛/4 + |𝑧 − �̄�𝑛| 6 5|𝑧 − �̄�𝑛|/4, i.e.,

3|𝑧 − �̄�𝑛|/7 6 |𝑡− �̄�𝑛| 6 5|𝑧 − �̄�𝑛|/4 . (30)

Moreover, if |𝑧 − 𝑡| = Λ𝑛/4, then

|𝑡+ 𝑖Λ𝑛 − �̄�𝑛| > 3Λ𝑛/4 + Im 𝑧 + Im 𝑎𝑛 . (31)

Employing integral Cauchy formula for the derivatives for the circle 𝐶𝑧,𝑛 = {𝑡 : |𝑡− 𝑧| = Λ𝑛/4},
by (26), (29), (30), and (31) we get

|𝑢𝑛,𝑚(𝑧)| =
(𝑚− 1)!

2𝜋

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
𝐶𝑧,𝑛

𝜙𝑛(𝑡) 𝑑𝑡

(𝑡− 𝑎𝑛)(𝑡− 𝑧)𝑚

⃒⃒⃒⃒
⃒⃒⃒ 6 4𝑚(𝑚− 1)!

Λ𝑚
𝑛

max
𝑡∈𝐶𝑧,𝑛

|𝜙𝑛(𝑡)| 6

6
4𝑚49(𝑚− 1)!(Im 𝑎𝑛)2

9Λ𝑚
𝑛 |𝑧 − �̄�𝑛|2

(︃√
2(|𝑧| + 1/4)√︀

1 + 𝑟2𝑛

)︃3
|𝑔(

√
2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

max
𝑡∈𝐶𝑧,𝑛

exp[Re (𝛽𝑛(𝑎𝑛) − 𝛽𝑛(𝑡))] .

In view of (22), (23), and (31) it finally follows that

|𝑢𝑛,𝑚(𝑧)| 64𝑚49(𝑚− 1)!𝑒𝐾1(
√

2(|𝑧| + 1/4))3

9Λ𝑚
𝑛 |𝑧 − �̄�𝑛|2

(Im 𝑎𝑛)2

(1 + 𝑟2𝑛)
3
2

× |𝑔(
√

2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

exp

[︃
−

∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + Im 𝑧 + Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

]︃
,

(32)

𝑚 = 1, . . . , 𝑞𝑛, 𝑛 ∈ N.
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Then by (24), (28), and (32) we get as 𝑧 ∈ C+, 𝑧 /∈ 𝐶(𝑎𝑛,Λ𝑛/2), inequality

|𝑃𝑛(𝑧)| 6
𝑞𝑛∑︁

𝑚=1

|𝛼𝑛𝑚||𝑢𝑛𝑚(𝑧)| 6 49

9
exp[𝐾3𝑉 (𝑟𝑛)]

(
√

2(|𝑧| + 1/4))3(Im 𝑎𝑛)2

(1 + 𝑟2𝑛)
3
2 |𝑧 − �̄�𝑛|2

|𝑔(
√

2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

×
𝑞𝑛∑︁

𝑚=1

4𝑚(𝑞𝑛 −𝑚+ 1) exp

[︃
−

∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + Im 𝑧 + Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

]︃

6
|𝑔(

√
2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

(Im 𝑎𝑛)2

|𝑧 − �̄�𝑛|2(1 + 𝑟2𝑛)
3
2

49

18
𝑞𝑛(𝑞𝑛 + 1) exp[𝐾3𝑉 (𝑟𝑛) + 𝑞𝑛 ln 4]×

× (
√

2(|𝑧| + 1/4))3 exp

[︃
−

∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + Im 𝑧 + Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

]︃
, 𝑛 ∈ N,

(33)
holds true. Employing (10), by (33) for 𝑧 ∈ C+, 𝑧 /∈ 𝐶(𝑎𝑛,Λ𝑛/2) we obtain

|𝑃𝑛(𝑧)| 6 exp[𝐾4𝑉 (𝑟𝑛)](
√

2(|𝑧| + 1/4))3
|𝑔(

√
2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

(Im 𝑎𝑛)2

|𝑧 − �̄�𝑛|2(1 + 𝑟2𝑛)
3
2

×

× exp

[︃
−

∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + Im 𝑧 + Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

]︃
, 𝑛 ∈ N .

(34)

We then note that once |𝑡− 𝑎𝑛| 6 Λ𝑛/2, and |𝑧 − 𝑎𝑛| = Λ𝑛/2, we have

|𝑧| 6 |𝑡| + 1 (35)

and

3|𝑡− �̄�𝑛|/5 6 |𝑧 − �̄�𝑛| 6 5|𝑡− �̄�𝑛|/3 . (36)

Applying maximum modulus principle to an analytic in C+ function Φ𝑛(𝑧) = 𝐸(𝑧)𝑃𝑛(𝑧),
employing inequalities (34), (35), (36) and Lemma 1, and taking into consideration that Im 𝑡 >
Im 𝑧/4 for 𝑡 ∈ 𝐶(𝑎𝑛,Λ𝑛/2), we get

|Φ𝑛(𝑡)| 6 max
|𝑧−𝑎𝑛|=Λ𝑛/2

|𝐸(𝑧)||𝑃𝑛(𝑧)| 6 exp[𝐾5(𝑉 (𝑟𝑛) + 𝑉 (|𝑧|))] |𝑔(
√

2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

25(Im 𝑎𝑛)2

9|𝑡− �̄�𝑛|2(1 + 𝑟2𝑛)
3
2

exp

[︃
−

∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + 4Im 𝑡+ Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

]︃
.

(37)

By (34) inequality (37) holds true for each 𝑡 ∈ C+. We denote

𝜆𝑛(𝑧) =
∞∑︁
𝑘=𝑛

(Im 𝑎𝑘)2

(3Λ𝑛/4 + 4Im 𝑧 + Im 𝑎𝑘)2(1 + 𝑟2𝑘)
3
2

,

so that

𝜆𝑛(𝑧) − 𝜆𝑛+1(𝑧) =
(Im 𝑎𝑛)2

(3Λ𝑛/4 + 4Im 𝑧 + Im 𝑎𝑛)2(1 + 𝑟2𝑛)
3
2

, 𝑛 ∈ N .

It is clear that 𝜆𝑛(𝑧) ↓ 0 as 𝑛→ ∞, 𝑧 ∈ C+. Noticing that as 𝑧 ∈ C+ inequality

3Λ𝑛/4 + 4Im 𝑧 + Im 𝑎𝑛 6 4Im 𝑧 + 7Im 𝑎𝑛/4 6 4(Im 𝑧 + Im 𝑎𝑛) 6 4|𝑧 − �̄�𝑛|

holds true, by (37) we obtain

|Φ𝑛(𝑧)| 6 16 exp[−𝜆𝑛(𝑧)][𝜆𝑛(𝑧) − 𝜆𝑛+1(𝑧)]
exp[𝑀𝑉 (𝑟𝑛) +𝑀𝑉 (|𝑧|)]|𝑔(

√
2(|𝑧| + 1/4))|

|𝑔(𝑎𝑛)|
.
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Applying an elementary inequality 𝑡 6 𝑒𝑡 − 1, 𝑡 > 0, as 𝑡 = 𝜆𝑛(𝑧) − 𝜆𝑛+1(𝑧), we get

|Φ𝑛(𝑧)| 6 exp[𝐾5(𝑉 (𝑟𝑛) + 𝑉 (|𝑧|))][exp[−𝜆𝑛+1(𝑧)] − exp[−𝜆𝑛(𝑧)]]
|𝑔(

√
2(|𝑧| + 1/4))|
|𝑔(𝑎𝑛)|

. (38)

We choose a function 𝑔(𝑧) so that function 𝐹 (𝑧) defined by series (27) belongs to class
[𝜌(𝑟),∞)+. As 𝑔(𝑧) we take an entire function of completely regular growth of order 𝜌(𝑟),
whose indicator equals 𝐾5 + 1 and whose zeroes are located on the negative imaginary semi-
axis 𝑖R− = {𝑧 : Im 𝑧 6 −1}. Since 𝜌(𝑟) is the zero proximate order, this function exists [16].

Outside 𝐶 0-set the asymptotic identity [16]

ln |𝑔(𝑧)| ≈ (𝐾5 + 1)𝑉 (|𝑧|)
holds true.

Since zeroes of function 𝑔(𝑧) are located on the semi-axis 𝑖R−, we can assume that exceptional
circles forming 𝐶 0-set are located in the lower half-plane. Then inequality

ln |𝑔(𝑎𝑛)| > 𝐾5𝑉 (𝑟𝑛)

holds true for all sufficiently large 𝑛. Multiplying if needed function 𝑔(𝑧) for a sufficiently large
positive number, we can assume this inequality is satisfied for each natural 𝑛.

By (38) we then obtain for each natural 𝑁 > 1

|𝐸(𝑧)
𝑁∑︁

𝑛=1

𝑃𝑛(𝑧)| 6
𝑁∑︁

𝑛=1

|𝐸(𝑧)𝑃𝑛(𝑧)| 6 exp[𝐾6𝑉 (|𝑧|)]{exp[−𝜆𝑁+1(𝑧)] − exp[−𝜆1(𝑧)]}

6 exp[𝐾6𝑉 (|𝑧|)] .

It follows the convergence of series (27) on compact sets in C+ and the belonging of function
𝐹 to class [𝜌(𝑟),∞)+. In order function 𝐹 to belong to class[𝜌(𝑟),∞)ℎ+, we need to obey also
B.Ya. Levin’s condition. We note that the canonical function 𝐸 belongs to class [𝜌(𝑟),∞)ℎ+.
The results of work [16] follow that outside the set 𝐶𝜂 with an arbitrarily small upper density
𝜂 > 0 everywhere in the half-plane C+ the inequality

log |𝐸(𝑧)| > −𝑀𝜂𝑉 (|𝑧|)
holds true.

Let 𝑔1(𝑧) be an entire function of completely regular growth of order 𝜌(𝑟), whose indicator
equals 2𝐾5 +𝑀𝜂 + 1. Then outside 𝐶 0-set the inequality

log |𝑔1(𝑧)| > (2𝐾5 +𝑀𝜂)𝑉 (|𝑧|)
holds true.

The set 𝐶𝜂 = 𝐶𝜂 ∪ 𝐶 0 has the upper density not exceeding 𝜂. Outside 𝐶𝜂 inequality

log |𝑔1(𝑧)𝐸(𝑧)| > 2𝐾5𝑉 (|𝑧|)
holds everywhere in C+.

The function
𝐹1(𝑧) = 𝐹 (𝑧) + 𝑔1(𝑧)𝐸(𝑧)

possesses property (6) and outside 𝐶𝜂-set the estimate

log |𝐹1(𝑧)| = log |𝑔1(𝑧)𝐸(𝑧)| + log

⃒⃒⃒⃒
1 +

𝐹 (𝑧)

𝑔1(𝑧)𝐸(𝑧)

⃒⃒⃒⃒
>

> 2𝐾5𝑉 (|𝑧|) + log(1 − 1/𝑒)

holds true. Therefore, function 𝐹1 belongs to class [𝜌(𝑟),∞)ℎ+. The implication 2) ⇒ 1) in
Theorem 3 is proven.
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