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DISCRETE SPECTRUM
OF THIN 𝒫𝒯 -SYMMETRIC WAVEGUIDE

D.I. BORISOV

Abstract. In a thin multidimensional layer we consider a second order differential 𝒫𝒯 -
symmetric operator. The operator is of rather general form and its coefficients are arbitrary
functions depending both on slow and fast variables. The 𝒫𝒯 -symmetry of the operator
is ensured by the boundary conditions of Robin type with pure imaginary coefficient. In
the work we determine the limiting operator, prove the uniform resolvent convergence
of the perturbed operator to the limiting one, and derive the estimates for the rates of
convergence. We establish the convergence of the spectrum of perturbed operator to that
of the limiting one. For the perturbed eigenvalues converging to the limiting discrete ones
we prove that they are real and construct their complete asymptotic expansions. We also
obtain the complete asymptotic expansions for the associated eigenfunctions.

Keywords: 𝒫𝒯 -symmetric operator, thin domain, uniform resolvent convergence, estimates
for the rate of convergence, spectrum, asymptotic expansions.
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1. Introduction

In the end of the last century a new direction in mathematical physics appeared devoted to
𝒫𝒯 -symmetric operators. This notion indicates usually differential (or more general) operators
commuting with the composition 𝒫𝒯 , where 𝒯 is the operator of complex conjugation,
(𝒯 𝑢)(𝑥) = 𝑢(𝑥), and 𝒫 is a some operator describing symmetric transformation with respect
to spatial variable, say, (𝒫𝑢)(𝑥) = 𝑢(−𝑥). Such operators are usually non-self-adjoint and the
main interest is usually related with their various spectral properties. One of first pioneering
works initiated a impetuous study of 𝒫𝒯 -symmetric operators are the papers [1]–[9], see also
the survey [10] as well as the references in the cited works.

One of the most interesting properties of 𝒫𝒯 -symmetric operators is the fact that they
can possess real spectrum that gives a chance for quantum mechanical interpretation of these
operators. In particular, there was found a series of 𝒫𝒯 -symmetric operators with real spectra,
see, for instance, [11]–[18]. It should be stressed that the most part of studies was devoted to
the case of Schrödinger operator with 𝒫𝒯 -symmetric potential.

A more complicated model of 𝒫𝒯 -symmetric waveguide where the 𝒫𝒯 -symmetry was
originated by boundary conditions and not by the differential expression was suggested in
work [19]. Here there was considered the Laplace operator in an infinite straight strip with
Robin boundary condition. The coefficient in the boundary condition was pure imaginary that
ensures the required 𝒫𝒯 -symmetry. It was assumed that the coefficient differs to a constant just
by a finite function multiplied by a small parameter. The essential spectrum of such operator
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was found and it happened to be a fixed real semi-axis. The phenomenon of new eigenvalues
emerging from the threshold of essential spectrum was studied.

A series of numerical experiments performed in work [20] showed that in the case when the
aforementioned small parameter becomes finite and increases, in the spectrum of this model
there appear also pairs of complex conjugate isolated eigenvalues that behave in a quite fanciful
way. A similar model, but much more complicated, of Laplace-Beltrami operator in a strip on
a two-dimensional Riemann manifold was considered in [21]. There was obtained a series of
general results on the operator and its spectrum.

The described model in work [19] was in fact an operator with a small regular perturbation
that simplified essentially the studying. More complicated cases of singularly perturbed 𝒫𝒯 -
symmetric operators were considered in recent works [22], [23]. In [22] a model from [19] was
again studied but the coefficient in the boundary condition was a sufficiently smooth bounded
function and the perturbation was cutting out two small symmetric holes inside the strip.
The limiting operator here is the same 𝒫𝒯 -symmetric operator but without small holes. The
uniform resolvent convergence of the perturbed operator to the limiting one was proven and
the estimates for the rates of convergence were established. Moreover, we studied in details
the phenomenon of new eigenvalues emerging from the threshold of the essential spectrum. It
was shown that here the necessary and sufficient conditions for existence and absence of such
eigenvalues differ substantially from similar results for self-adjoint operators [24].

In work [23] one more extension of the model in [19] was studied. Here the strip was replaced
by a multi-dimensional layer and the singularity of the perturbation was a small width of the
layer. The main result of paper [23] is determination of the limiting operator for such model,
proving the uniform resolvent convergence of the perturbed operator to the limiting one and
establishing the estimates for the rates of convergence. The limiting operator happened to be
self-adjoint and it allowed us to state that even if the spectrum of the perturbed operator is
not real, at least, it is located near the real axis.

The present work is devoted to generalization and further developing of the results of work
[23]. We again consider 𝒫𝒯 -symmetric operator in a thin multi-dimensional layer. But in
contrast to [23], we consider an arbitrary second order scalar operator with variable coefficients,
not just the Laplacian. For the coefficients of the operator we impose rather weak smoothness
conditions as well as the conditions ensuring 𝒫𝒯 -symmetry. Moreover, these coefficients can
depend on fast (rescaled) variable in the transversal direction in the layer that in fact make
these coefficients fast oscillating. 𝒫𝒯 -symmetry of the operator is again originated by Robin
condition with pure imaginary coefficient.

The first part of the work is devoted to determining the form of the limiting operator. Such
operator is found, and it is essentially more complicated in comparison with [23]. It is related
to the presence of all coefficients in the perturbed operator and rather nontrivial formulae for
the coefficients of limiting operator. Here our main result is the proof of the uniform resolvent
convergence of the perturbed operator to the limiting one and establishing the estimates for
the rate of convergence. It is shown that the order of these estimates is the best possible, while
in [23] such result was absent.

In the second part of the work we consider the asymptotic behavior of the spectrum of the
perturbed operator. We first prove the convergence of the spectrum of perturbed operator to
that of the limiting operator. It should be stressed that here we can not employ the classical
theorems on spectrum convergence since the perturbed operator is not self-adjoint. Instead of
this we propose an approach based on a non-self-adjoint version of Birman-Schwinger principle
suggested in [25], [26] and we combine it the proven uniform resolvent convergence.

Then we study the behavior of perturbed eigenvalues converging to isolated limiting
eigenvalues. Here we succeeded to find a simple but original trick and to show that all such
perturbed eigenvalues are real no matter what the multiplicity is (5.17), (5.18), (5.19). We
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note that similar results on reality of considered eigenvalues in [19], [22] were based on their
simplicity.

We also construct the complete asymptotic expansions of aforementioned eigenvalues and
associated eigenfunctions. The asymptotics are constructed first formally on the basis of
multiscale method [34] and then they are justified. And if the formal construction does not really
differ from similar constructions for self-adjoint operators in thin domains (see, for instance,
[27]–[30], as well as [31], [32]), we failed to apply the standard justification technique from
the self-adjoint case [27], [33]. Here we have to develop certain functional approach for the
justification. It should be also stressed that no results on asymptotic behavior of the spectrum
were obtained in [23].

In conclusion let us describe the structure of the paper. In the next section we formulate
the problem and state the main results. In the third section we prove general qualitative
properties of the perturbed operator. The forth section is devoted to proving the uniform
resolvent convergence and obtaining the estimates for the rate of convergence. In the fifth
section we prove the convergence of the spectrum. In the sixth section we construct formally
the asymptotic expansions for the eigenvalues and the eigenfunctions of the perturbed operator,
while in the seventh section they are rigourously justified.

2. Statement of problem and main results

Let 𝑥 = (𝑥′, 𝑥𝑛) be Cartesian coordinates in R𝑛, 𝑛 > 2, Ω𝜀 := {𝑥 : −𝜀/2 < 𝑥𝑛 < 𝜀/2} be a
thin multi-dimensional layer in R𝑛, 𝜀 be a small positive parameter and 𝜀 6 𝜀0, where 𝜀0 is a
small fixed number. We denote

Ω := {(𝑥′, 𝜉) : 𝑥′ ∈ R𝑛−1, 𝜉 ∈ (−1/2, 1/2)}, Π := Ω × (0, 𝜀0).

In Π we define functions 𝐴𝑖𝑗 = 𝐴𝑖𝑗(𝑥
′, 𝜉, 𝜀), 𝐴𝑗 = 𝐴𝑗(𝑥

′, 𝜉, 𝜀), 𝐴0 = 𝐴0(𝑥
′, 𝜉, 𝜀) satisfying the

conditions

𝐴𝑖𝑗(·, ·, 𝜀), 𝐴𝑗(·, ·, 𝜀) ∈ 𝐶1(Ω), 𝐴0(·, ·, 𝜀) ∈ 𝐶(Ω), (2.1)

𝐴𝑗𝑖 = 𝐴𝑖𝑗,
𝑛∑︁

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥
′, 𝜉, 𝜀)𝜁𝑖𝜁𝑗 > 𝑐0|𝜁|2, 𝜁 ∈ R𝑛, (𝑥′, 𝜉, 𝜀) ∈ Π, (2.2)

where 𝑐0 is a positive constant independent of 𝑥′, 𝜉, 𝜀, and 𝜁. Functions 𝐴𝑖𝑗 are assumed to be
real-valued, while functions 𝐴𝑗, 𝐴0 are complex-valued and

𝐴𝑖𝑗, ∇𝑥,𝜉𝐴𝑖𝑗, 𝐴𝑗, ∇𝑥,𝜉𝐴𝑗, 𝐴0 ∈ 𝐿∞(Π).

Moreover, we suppose the following symmetry conditions
𝐴𝑖𝑗(𝑥

′,−𝜉, 𝜀) = 𝐴𝑖𝑗(𝑥
′, 𝜉, 𝜀), 𝐴𝑖𝑛(𝑥′,−𝜉, 𝜀) = −𝐴𝑖𝑛(𝑥′, 𝜉, 𝜀), 𝑖, 𝑗 = 1, . . . , 𝑛− 1,

𝐴𝑛𝑛(𝑥′,−𝜉, 𝜀) = 𝐴𝑛𝑛(𝑥′, 𝜉, 𝜀), 𝐴𝑗(𝑥
′,−𝜉, 𝜀) = 𝐴𝑗(𝑥

′, 𝜉, 𝜀), 𝑗 = 1, . . . , 𝑛− 1,

𝐴𝑛(𝑥′,−𝜉, 𝜀) = −𝐴𝑛(𝑥′, 𝜉, 𝜀), 𝐴0(𝑥
′,−𝜉, 𝜀) = 𝐴0(𝑥

′, 𝜉, 𝜀).

(2.3)

Let 𝑎 = 𝑎(𝑥′, 𝜀) be a real function belonging to 𝑊 1
∞(R𝑛−1) for each 𝜀 ∈ [0, 𝜀0]. We indicate

𝜂(𝜀) :=
𝑛∑︁

𝑖,𝑗=1

sup
Ω

|𝐴𝑖𝑗(𝑥
′, 𝜉, 𝜀) − 𝐴𝑖𝑗(𝑥, 𝜉, 0)| +

𝑛∑︁
𝑖,𝑗=1

sup
Ω

|∇𝑥,𝜉(𝐴𝑖𝑗(𝑥
′, 𝜉, 𝜀) − 𝐴𝑖𝑗(𝑥

′, 𝜉, 0))|

+
𝑛∑︁

𝑗=1

sup
Ω

|𝐴𝑗(𝑥
′, 𝜉, 𝜀) − 𝐴𝑗(𝑥

′, 𝜉, 0)| + sup
R𝑛−1

|𝛼(𝑥′, 𝜀) − 𝛼(𝑥′, 0)|.

In what follows functions 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0, 𝛼 are assumed to be continuous with respect to 𝜀 at the
point 𝜀 = 0, namely,

lim
𝜀→+0

𝜂(𝜀) = 0. (2.4)
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We let

𝐴𝜀
𝑖𝑗(𝑥) := 𝐴𝑖𝑗

(︁
𝑥′,

𝑥𝑛
𝜀
, 𝜀
)︁
, 𝐴𝜀

𝑗(𝑥) := 𝐴𝑗

(︁
𝑥′,

𝑥𝑛
𝜀
, 𝜀
)︁
,

𝐴𝜀
0(𝑥) := 𝐴0

(︁
𝑥′,

𝑥𝑛
𝜀
, 𝜀
)︁
, 𝛼𝜀(𝑥′) := 𝛼(𝑥′, 𝜀).

The main object of the study in the present work is the operator

ℋ𝜀
𝛼 = −

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴𝜀

𝑖𝑗

𝜕

𝜕𝑥𝑗
+

𝑛∑︁
𝑗=1

(︂
𝐴𝜀

𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴𝜀

𝑗

)︂
+ 𝐴𝜀

0 в Ω𝜀 (2.5)

subject to the boundary condition(︂
𝜕

𝜕𝜈𝜀
+ i𝛼

)︂
𝑢 = 0 на 𝜕Ω𝜀,

𝜕

𝜕𝜈𝜀
:=

𝑛∑︁
𝑗=1

𝐴𝜀
𝑛𝑗

𝜕

𝜕𝑥𝑗
+ 𝐴𝜀

𝑛, (2.6)

where i is the imaginary unit.
Rigourously we introduce operator ℋ𝜀

𝛼 as that in 𝐿2(Ω
𝜀) defined by the differential expression

(2.5) on the domain

𝒟(ℋ𝜀
𝛼) = {𝑢 ∈ 𝑊 2

2 (Ω𝜀) : condition (2.6) is satisfied}. (2.7)

In what follows we call this operator perturbed.
The main aim of the work is to study the asymptotic behavior of the resolvent and the

discrete spectrum of operator ℋ𝜀
𝛼 as 𝜀→ +0.

To formulate the main results we shall need additional notations. In 𝐿2(Ω
𝜀) we define the

mappings
(𝒫𝑢)(𝑥) := 𝑢(𝑥′,−𝑥𝑛), 𝒯 𝑢 := 𝑢. (2.8)

Our first result describe the qualitative properties of operator ℋ𝜀
𝛼.

Theorem 2.1. Operator ℋ𝜀
𝛼 is 𝑚-sectorial, 𝒯 -self-adjoint and 𝒫-pseudo-Hermitian, i.e.,

(ℋ𝜀
𝛼)* = 𝒯 ℋ𝜀

𝛼𝒯 , (ℋ𝜀
𝛼)* = 𝒫ℋ𝜀

𝛼𝒫 , (2.9)

and 𝒫𝒯 -symmetric
𝒫𝒯 ℋ𝜀

𝛼 = ℋ𝜀
𝛼𝒫𝒯 . (2.10)

The adjoint operator for ℋ𝜀
𝛼 is given by the identity

(ℋ𝜀
𝛼)* = ℋ𝜀

−𝛼. (2.11)

The spectrum of operator ℋ𝜀
𝛼 satisfies the inclusion

𝜎(ℋ𝜀
𝛼) ⊆ K,

K : =

{︂
𝑧 ∈ C : | Im𝜆| 6 𝑐3

𝑐0

(︂
𝑐1 +

√︁
𝑐21 + 𝑐0(|Re𝜆| + 𝑐2)

)︂
+ 𝑐2

}︂
⊆

{︃
𝑧 ∈ C : | Im𝜆| 6 𝑐3√

𝑐0

√︀
|Re 𝑧| +

(𝑐1 +
√︀
𝑐21 + 𝑐0𝑐2)𝑐3
𝑐0

+ 𝑐2

}︃
,

(2.12)

where

𝑐1 :=

(︃
𝑛∑︁

𝑗=1

sup
Π

2|𝐴𝑗(𝑥
′, 𝜉, 𝜀)|

)︃1/2

,

𝑐2 := sup
Π

2|𝐴0(𝑥
′, 𝜉, 𝜀)|, 𝑐3 := 2 sup

R𝑛−1×[0,𝜀0]

|𝛼(𝑥′, 𝜀)|.
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To describe the asymptotic behavior of the resolvent for operator ℋ𝜀
𝛼, we introduce the

limiting operator. Let

𝐴0
𝑖𝑗(𝑥

′) :=

1/2∫︁
−1/2

(︂
𝐴𝑖𝑗(𝑥

′, 𝜉, 0) − 𝐴𝑖𝑛(𝑥′, 𝜉, 0)𝐴𝑛𝑗(𝑥
′, 𝜉, 0)

𝐴𝑛𝑛(𝑥′, 𝜉, 0)

)︂
d𝜉,

𝐴0
𝑗(𝑥

′) :=

1/2∫︁
−1/2

(︂
𝐴𝑗(𝑥

′, 𝜉, 0) − 𝐴𝑛(𝑥′, 𝜉, 0)𝐴𝑛𝑗(𝑥
′, 𝜉, 0)

𝐴𝑛𝑛(𝑥′, 𝜉, 0)

)︂
d𝜉,

𝐴0
0(𝑥

′) :=

1/2∫︁
−1/2

(︂
𝐴0(𝑥

′, 𝜉, 0) +
𝛼2(𝑥′, 0)

𝐴𝑛𝑛(𝑥′, 𝜉, 0)

−2i𝛼(𝑥′, 0)
Re𝐴𝑛(𝑥′, 𝜉, 0)

𝐴𝑛𝑛(𝑥′, 𝜉, 0)
− |𝐴𝑛(𝑥′, 𝜉, 0)|2

𝐴𝑛𝑛(𝑥′, 𝜉, 0)

)︂
d𝜉,

(2.13)

where 𝑖, 𝑗 = 1, . . . , 𝑛− 1. In 𝐿2(R
𝑛−1) we define the operator

ℋ0
𝛼 := −

𝑛−1∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴0

𝑖𝑗

𝜕

𝜕𝑥𝑗
+

𝑛−1∑︁
𝑗=1

(︂
𝐴0

𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴0

𝑗

)︂
+ 𝐴0

0 (2.14)

on domain 𝑊 2
2 (R𝑛−1). By 𝒬𝜀 we denote the projector in 𝐿2(Ω

𝜀)

(𝒬𝜀𝑓)(𝑥′) := 𝜀−1

𝜀/2∫︁
−𝜀/2

𝑓(𝑥) d𝑥𝑛 (2.15)

and we let

𝐿𝜀 := 𝒬𝜀𝐿2(Ω
𝜀), 𝐿𝜀

⊥ := 𝒬𝜀
⊥𝐿2(Ω𝜀), 𝒬𝜀

⊥ := I −𝒬𝜀. (2.16)

Space 𝐿2(Ω
𝜀) can be represented as the direct sum

𝐿2(Ω
𝜀) = 𝐿𝜀 ⊕ 𝐿𝜀

⊥. (2.17)

In the sense of this expansion, the operator 𝜀−1/2(ℋ0
𝛼 − 𝜆)−1𝒬𝜀 acting in 𝐿𝜀 for appropriate

𝜆 ∈ C can be extended to the operator 𝜀−1/2(ℋ0
𝛼 − 𝜆)−1𝒬𝜀 ⊕ 0 acting in 𝐿2(Ω

𝜀).
Let us formulate the main result on asymptotic behavior of the resolvent for operator ℋ𝜀

𝛼.

Theorem 2.2. Operator ℋ0
𝛼 is self-adjoint. For each 𝜆 ∈ C ∖ (K ∪ 𝜎(ℋ0

𝛼)) and sufficiently
small 𝜀 the operators (ℋ𝜀

𝛼 − 𝜆)−1 and (ℋ0
𝛼 − 𝜆)−1 are well-defined and bounded. For each

𝑓 ∈ 𝐿2(Ω
𝜀) the uniform in 𝜀 and 𝑓 estimates⃦⃦
(ℋ𝜀

𝛼 − 𝜆)−1𝑓 −
(︀
(ℋ0

𝛼 − 𝜆)−1𝒬𝜀 ⊕ 0
)︀
𝑓
⃦⃦
𝐿2(Ω𝜀)

6 (𝜀+ 𝜂(𝜀))𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀) (2.18)

and ⃦⃦
(ℋ𝜀

𝛼 − 𝜆)−1𝑓 −
(︀
(ℋ0

𝛼 − 𝜆)−1𝒬𝜀 ⊕ 0
)︀
𝑓

− 𝜀𝒲𝜀(ℋ0
𝛼 − 𝜆)−1𝒬𝜀𝑓

⃦⃦
𝑊 1

2 (Ω
𝜀)
6 (𝜀+ 𝜂(𝜀))𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)

(2.19)
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hold true, where 𝐶(𝜆) are some constants independent of 𝜀, 𝑓 but dependent of 𝜆, and the
operator 𝒲𝜀 : 𝑊 2

2 (R𝑛−1) → 𝑊 1
2 (Ω𝜀) is determined as

(𝒲𝜀𝑢)(𝑥, 𝜀) := −
𝑛−1∑︁
𝑖,𝑗=1

𝜕𝑢

𝜕𝑥𝑗
(𝑥′)

𝑥𝑛
𝜀∫︁

0

𝐴𝑛𝑗(𝑥
′, 𝑡, 𝜀)

𝐴𝑛𝑛(𝑥′, 𝑡, 𝜀)
d𝑡− 𝑢(𝑥′)

𝑥𝑛
𝜀∫︁

0

𝐴𝑛(𝑥′, 𝑡, 𝜀) d𝑡

− i𝛼𝜀(𝑥′)𝑢(𝑥′)

𝑥𝑛
𝜀∫︁

0

d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡, 𝜀)
.

We discuss briefly the results of this theorem. We first note that in comparison with the
particular case in [23] the coefficients of the limiting operator are rather nontrivial and in fact
we have “mixing” of the coefficients of the perturbed operator, see (2.13).

It should be stressed independently that the estimates for the rates of convergence in
Theorem 2.2 have the best possible order. Namely, if the coefficients of the perturbed operator
and function 𝑓 are infinitely differentiable so that 𝜂(𝜀) = 𝐶𝜀, 𝐶 = 𝑐𝑜𝑛𝑠𝑡, on the basis of
multiscale method [34] one can construct the complete asymptotic expansion for the function
(ℋ𝜀

𝛼 − 𝜆)−1𝑓 . In what follows we employ similar anzätz to construct the asymptotics for the
eigenvalues. In our case they lead to the formulae

(ℋ𝜀
𝛼 − 𝜆)−1𝑓 =

(︀
(ℋ0

𝛼 − 𝜆)−1 ⊕ 0
)︀
𝑓 + 𝜀𝑢1 + 𝒪(𝜀2 + 𝜂2(𝜀))

in the norm of 𝐿2(Ω
𝜀) and

(ℋ𝜀
𝛼 − 𝜆)−1𝑓 =

(︀
(ℋ0

𝛼 − 𝜆)−1 ⊕ 0
)︀
𝑓 − 𝜀𝒲𝜀(ℋ0

𝛼 − 𝜆)−1𝒬𝜀𝑓 + 𝜀2𝑢2 + 𝒪(𝜀2)

in the norm of 𝑊 1
2 (Ω𝜀), where 𝑢1 = 𝑢1(𝑥

′, 𝑥𝑛𝜀
−1), 𝑢2 = 𝑢2(𝑥

′, 𝑥𝑛𝜀
−1) are some functions

depending on the choice 𝑓 . Exactly this fact implies the optimality of the estimates for the
rate of convergence in Theorem 2.2.

Our next result describes the convergence of the perturbed spectrum. We stress that in our
case we can not employ the classical theorems on spectrum convergence since the perturbed
operator ℋ𝜀

𝛼 is not self-adjoint. Moreover, the perturbed and the limiting operator act on
different spaces and for the perturbed operator this space also depends on 𝜀.

Theorem 2.3. The spectrum of operator ℋ𝜀
𝛼 converges to that of operator ℋ0

𝛼 as 𝜀 → +0.
Namely, for each compact set M ⊂ C, 𝛿 > 0 there exist 𝜅(M, 𝛿) > 0 such that for 0 < 𝜀 <
𝜅(M, 𝛿) the part of the spectrum 𝜎(ℋ𝜀

𝛼) ∩M of operator ℋ𝜀
𝛼 is located in the 𝛿-neighborhood of

the part of the spectrum 𝜎(ℋ0
𝛼)∩M of operator ℋ0

𝛼. If 𝜆0 is an isolated 𝑚-multiple eigenvalues of
operator ℋ0

𝛼, then there exist exactly 𝑚 eigenvalues of operator ℋ𝜀
𝛼 taken counting multiplicity

and converging to 𝜆0 as 𝜀→ +0. For sufficiently small 𝜀 these eigenvalues are real.

This theorem states the spectrum convergence in each compact part of the complex plane. At
that, it does not exclude the existence of points in the spectrum tending to infinity as 𝜀→ +0.
The statement on reality of eigenvalues converging to isolated limiting eigenvalues deserves
special attention. The only requirement is the finite multiplicity of the limiting eigenvalue, and
generally speaking, the perturbed eigenvalues converging to this limiting one are not necessary
simple. This is an advantage of our result in comparison with similar statements in [19], [22],
where the simplicity of the eigenvalues was the basis for the proof of the reality.

Our next result is devoted to obtaining the complete asymptotic expansions of the perturbed
operator converging to limiting eigenvalues of finite multiplicity as well as to obtaining the
complete asymptotic expansions for the associated eigenfunctions.
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Theorem 2.4. Suppose that the functions 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0, 𝑎 are independent of 𝜀, infinitely
differentiable with respect to 𝑥 so that for each 𝛽 ∈ Z𝑛−1

+

𝜕|𝛽|𝐴𝑖𝑗

𝜕𝑥′𝛽
,
𝜕|𝛽|𝐴𝑗

𝜕𝑥′𝛽
,
𝜕|𝛽|𝐴0

𝜕𝑥′𝛽
,
𝜕|𝛽|𝛼

𝜕𝑥′𝛽
∈ 𝐶2(Ω) ∩ 𝐿∞(Ω). (2.20)

Let 𝜆0 be an isolated 𝑚-multiple eigenvalue of operator ℋ0
𝛼. Then asymptotic expansions of

eigenvalues 𝜆𝜀𝑘, 𝑘 = 1, . . . ,𝑚, converging to 𝜆0 as 𝜀→ +0 read as

𝜆𝜀𝑘 = 𝜆0 +
∞∑︁
𝑝=1

𝜀𝑝Λ
(𝑝)
𝑘 , (2.21)

where numbers Λ
(𝑝)
𝑘 are defined in the sixth section. If there exists 𝑟 > 0 such that for all

sufficiently small 𝜀
|𝜆𝜀𝑘 − 𝜆𝜀𝑗| > 𝐶𝜀𝑟, 𝑘 ̸= 𝑗, (2.22)

where 𝐶 is a constant independent of 𝜀, 𝑘, 𝑗, then the eigenfunctions associated with 𝜆𝜀𝑘 can be
chosen so that they satisfy the asymptotics

𝜓𝜀
𝑘(𝑥) = 𝜀−1/2

(︃
𝜑𝑘(𝑥′) +

∞∑︁
𝑝=1

𝜀𝑝𝜑
(𝑝)
𝑘 (𝑥′, 𝜉)

)︃
(2.23)

in the norm of 𝑊 1
2 (Ω𝜀), where the terms of this series are determined in the sixth section.

It should be noticed that the independence of the functions 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0, 𝛼 of 𝜀 is inessential
and is made just for simplicity. In the case the coefficients depend on 𝜀, the construction remains
the same and all the formulae in the sixth section are kept unchanged, one just need to assume
that the coefficients of the asymptotics depend on 𝜀 and this dependence is originated by the
same dependence for 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0, 𝛼. At the same time, to justify the asymptotic expansions
one has to suppose the uniform 𝜀 boundedness in the norm of 𝐿∞(Ω) for all the derivatives in
(2.20). In the case, if the coefficients 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0, 𝛼 are expanded into asymptotic series with
respect to 𝜀, then one can substitute these expansions into the formulae for the coefficients of
asymptotics (2.21), (2.23), obtain similar expansions for the coefficients and substitute them
into series (2.21), (2.23). The obtained double asymptotic series are the asymptotics for the
eigenvalues and the eigenfunctions of the perturbed operator. The described constructions,
based on simple ideas, are rather cumbersome and bulky from technical point of views. This is
the reason why we do not provide these calculations in the work restricting ourselves just to
the case when functions 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0 are independent of 𝜀.

3. Qualitative properties of operator ℋ𝜀
𝛼

In the present section we prove Theorem 2.1. The main ideas are borrowed from [19, §3].
The proof is based on the theory of sectorial sesquilinear forms, cf. [35, Гл. VI]. In the space

𝐿2(Ω
𝜀) we define sesquilinear form

h𝜀𝛼(𝑢, 𝑣) :=
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝜀

𝑖𝑗

𝜕𝑢

𝜕𝑥𝑖
,
𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝜀

𝑗

𝜕𝑢

𝜕𝑥𝑗
, 𝑣

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝑢,𝐴𝜀

𝑗

𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+ (𝐴𝜀
0𝑢, 𝑣)𝐿2(Ω𝜀) + ib𝜀(𝛼𝜀𝑢, 𝑣),

(3.1)

b𝜀(𝑢, 𝑣) :=

∫︁
R𝑛−1

𝑢
(︁
𝑥′,

𝜀

2

)︁
𝑣
(︁
𝑥′,

𝜀

2

)︁
d𝑥′ −

∫︁
R𝑛−1

𝑢
(︁
𝑥′,−𝜀

2

)︁
𝑣
(︁
𝑥′,−𝜀

2

)︁
d𝑥′,

on the domain 𝒟(h𝜀𝛼) := 𝑊 1
2 (Ω𝜀). Here b𝜀 is to be treated as a sesquilinear form in 𝐿2(Ω

𝜀) on
the domain 𝑊 1

2 (Ω𝜀).
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According to [35, Гл. VI, §1.1], the real and imaginary parts of form h𝜀𝛼 read as

h𝜀𝛼,r(𝑢, 𝑣) :=
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝜀

𝑖𝑗

𝜕𝑢

𝜕𝑥𝑖
,
𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︃(︂
𝐴𝜀

𝑗

𝜕𝑢

𝜕𝑥𝑗
, 𝑣

)︂
𝐿2(Ω𝜀)

+

(︂
𝑢,𝐴𝜀

𝑗

𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

)︃

+
1

2

(︀
(𝐴𝜀

0𝑢, 𝑣)𝐿2(Ω𝜀) + (𝑢,𝐴𝜀
0𝑣)𝐿2(Ω𝜀)

)︀ (3.2)

and
h𝜀𝛼,i(𝑢, 𝑣) :=

1

2i

(︀
(𝐴𝜀

0𝑢, 𝑣)𝐿2(Ω𝜀) − (𝑢,𝐴𝜀
0𝑣)𝐿2(Ω𝜀)

)︀
+ b𝜀(𝛼𝜀𝑢, 𝑣). (3.3)

The domain of these forms is again the space 𝑊 1
2 (Ω𝜀).

It is clear that form h𝜀𝛼,r is densely defined, symmetric, and closed. The elementary estimates⃒⃒⃒⃒
⃒

𝑛∑︁
𝑗=1

(︂
𝐴𝜀

𝑗

𝜕𝑢

𝜕𝑥𝑗
, 𝑢

)︂
𝐿2(Ω𝜀)

+

(︂
𝑢,𝐴𝜀

𝑗

𝜕𝑢

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

⃒⃒⃒⃒
⃒

6
𝑛∑︁

𝑗=1

sup
Ω

𝜀
|𝐴𝜀

𝑗|
⃦⃦⃦ 𝜕𝑢
𝜕𝑥𝑗

⃦⃦⃦
𝐿2(Ω𝜀)

‖𝑢‖𝐿2(Ω𝜀) 6 𝛿‖∇𝑢‖2𝐿2(Ω𝜀) + 𝑐1𝛿
−1‖𝑢‖2𝐿2(Ω𝜀),

(3.4)

𝛿 is arbitrary, and ⃒⃒
((Re𝐴𝜀

0)𝑢, 𝑢)𝐿2(Ω𝜀)

⃒⃒
6 𝑐2‖𝑢‖2𝐿2(Ω𝜀) (3.5)

imply the lower semi-boundedness of form h𝜀𝛼,r:

h𝜀𝛼,r(𝑢, 𝑢) > −𝑐1 + 𝑐2𝑐0
𝑐0

‖𝑢‖2𝐿2(Ω𝜀). (3.6)

It is easy to see that boundary term in form h𝜀𝛼,i can be estimated from below as

|b𝜀(𝛼𝜀𝑢, 𝑢)| =

⃒⃒⃒⃒
⃒⃒∫︁
Ω𝜀

𝛼𝜀(𝑥′)
𝜕|𝑢|2

𝜕𝑥𝑛
d𝑥

⃒⃒⃒⃒
⃒⃒ 6 𝑐3‖∇𝑢‖𝐿2(Ω𝜀)‖𝑢‖𝐿2(Ω𝜀). (3.7)

Together with estimate (3.4) for 𝛿 = 𝑐0/2 and for arbitrary 𝛿 it follows that form h𝜀𝛼,i is relatively
bounded with respect to form h𝜀𝛼,r. Namely, for each 𝛿 > 0 the estimate

|h𝜀𝛼,i(𝑢, 𝑢)| 6 𝛿|h𝜀𝛼,r(𝑢, 𝑢)| + 𝐶(𝛿)‖𝑢‖2𝐿2(Ω𝜀) (3.8)

holds true, where 𝐶(𝛿) is a constant independent of 𝑢. By [35, Гл. VI, §1, Теорема 1.33], the
obtained properties of forms h𝜀𝛼,r and h𝜀𝛼,i yield that form h𝜀𝛼 is sectorial. Applying then first
representation theorem [35, Гл. VI, §2.1, Теорема 2.1], we conclude that there exists 𝑚-sectorial
operator ̃︀ℋ𝜀

𝛼 such that
h𝜀𝛼(𝑢, 𝑣) = ( ̃︀ℋ𝜀

𝛼𝑢, 𝑣)𝐿2(Ω𝜀) (3.9)

for each 𝑢 ∈ 𝒟( ̃︀ℋ𝜀
𝛼), 𝑣 ∈ 𝒟(h𝜀𝛼). The domain of operator ̃︀ℋ𝜀

𝛼 consists of functions 𝑢 ∈ 𝒟(h𝜀𝛼)
such that there exists a function 𝑓 ∈ 𝐿2(Ω

𝜀) depending on the choice 𝑢 and satisfying identity

h𝜀𝛼(𝑢, 𝑣) = (𝑓, 𝑣)𝐿2(Ω𝜀) (3.10)

for each 𝑣 ∈ 𝒟(h𝜀𝛼). It is easy to make sure that 𝒟(ℋ𝜀
𝛼) ⊆ 𝒟( ̃︀ℋ𝜀

𝛼) and operator ̃︀ℋ𝜀
𝛼 is the

extension of operator ℋ𝜀
𝛼. To prove𝑚-sectoriality of the operator, now it is sufficient to check the

identity ℋ𝜀
𝛼 = ̃︀ℋ𝜀

𝛼 that is equivalent to the coinciding of domains. On the other hand, the latter
is equivalent to the fact that each solution of integral identity (3.10) for each 𝑓 ∈ 𝐿2(Ω

𝜀) belongs
to 𝒟(ℋ𝜀

𝛼). This fact means the validity of smoothness improving theorems for generalized
solutions of elliptic boundary value problems. In our case such theorem can be easily proven in
the standard way by analyzing difference quotients (see, for instance, [36, Гл. VI, §2], [19, Lm.
3.2]), and thus we do not provide the proof.
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We apply Theorem 2.5 from [35, Гл. VI, §2.1] to obtain that adjoint operator for ℋ𝜀
𝛼

corresponds to the adjoint form (h𝜀𝛼)* in the sense of the first representation theorem. According
to [35, Гл. VI, §1.1] and by idendities (3.3) the adjoint form reads as

(h𝜀𝛼)*(𝑢, 𝑣) = h𝜀𝛼(𝑢, 𝑣) = h𝜀−𝛼(𝑢, 𝑣)

that implies identity (2.11). Identities (2.9), (2.10) now can be proven by straightforward
calculations with employing the relations (2.3).

It remains to prove inclusion (2.12). The spectrum of 𝑚-sectorial operator is a subset of its
numerical range [35, Гл. V, §3.10] and thus it is sufficient to prove the inclusion for the range of
our operator. Immediately from estimates (3.4), (3.5), (3.7) and ellipticity condition (2.2) the
inequalities

|h𝜀𝛼,i(𝑢, 𝑢)| 6 𝑐3‖∇𝑢‖𝐿2(Ω𝜀)‖𝑢‖𝐿2(Ω𝜀) + 𝑐2‖𝑢‖2𝐿2(Ω𝜀),

|h𝜀𝛼,r(𝑢, 𝑢)| > 𝑐0‖∇𝑢‖2𝐿2(Ω𝜀) − 2𝑐1‖∇𝑢‖𝐿2(Ω𝜀)‖𝑢‖𝐿2(Ω𝜀) − 𝑐2‖𝑢‖2𝐿2(Ω𝜀)

(3.11)

follow. We let ‖𝑢‖𝐿2(Ω𝜀) = 1, solve the second inequality with respect to ‖∇𝑢‖𝐿2(Ω𝜀), and
substitute the obtained estimate for ‖∇𝑢‖𝐿2(Ω𝜀) into the first inequality for h𝜀𝛼,i(𝑢, 𝑢). Then we
get

|h𝜀𝛼,i(𝑢, 𝑢)| 6 𝑐3
𝑐0

(︁
𝑐1 +

√︁
𝑐21 + 𝑐0(|h𝜀𝛼,r(𝑢, 𝑢)| + 𝑐2)

)︁
+ 𝑐2

6
𝑐3√
𝑐0

√︁
|h𝜀𝛼,r(𝑢, 𝑢)| +

(𝑐1 +
√︀
𝑐21 + 𝑐0𝑐2)𝑐3
𝑐0

+ 𝑐2 при ‖𝑢‖𝐿2(Ω𝜀) = 1.

(3.12)

This inequality and the aforementioned inclusion of spectrum into numerical range yield (2.12).
The proof of Theorem 2.1 is complete.

4. Uniform resolvent convergence

In the present section we study the behavior of the resolvent for operator as 𝜀→ +0 and prove
Theorem 2.2. Throughout the section by 𝐶(𝜆) we denote inessential constants independent of
𝜀, 𝑥, and 𝑓 , but, generally speaking, they depend on 𝜆.

By Theorem 2.1 as 𝜆 ∈ C ∖ K the resolvent (ℋ𝜀
𝛼 − 𝜆)−1 is well-defined. The next lemma is

the key one in the proof of Theorem 2.2.

Lemma 4.1. Let 𝜆 ∈ C ∖K, 𝑓 ∈ 𝐿𝜀
⊥. Then the uniform in 𝜀 and 𝜆 estimate

‖(ℋ𝜀
𝛼 − 𝜆)−1𝑓‖𝑊 1

2 (Ω
𝜀) 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀).

Доказательство. Denote 𝑣𝜀 := (ℋ𝜀
𝛼−𝜆)−1𝑓 . Then the results of the previous section and the

belonging 𝑓 ∈ 𝐿𝜀
⊥ follow that function 𝑣𝜀 satisfies identity

h𝜀𝛼(𝑣𝜀, 𝑣𝜀) − 𝜆‖𝑣𝜀‖2𝐿2(Ω𝜀) = (𝑓, 𝑣𝜀)𝐿2(Ω𝜀) = (𝑓, 𝑣𝜀⊥)𝐿2(Ω𝜀), (4.1)

where 𝑣𝜀⊥ := 𝒬𝜀
⊥𝑣

𝜀 ∈ 𝐿𝜀
⊥. Since by the results of the previous section h𝜀𝛼(𝑣𝜀, 𝑣𝜀)/‖𝑣𝜀‖2𝐿2(Ω𝜀) ∈ K

(see (3.12)), by identity (4.1) we obtain

‖𝑣𝜀‖𝐿2(Ω𝜀) 6
‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀⊥‖𝐿2(Ω𝜀)

dist(K, 𝜆)
. (4.2)

We take now the real part of identity (4.1):

h𝜀𝛼,r(𝑣
𝜀, 𝑣𝜀) − Re𝜆‖𝑣𝜀‖2𝐿2(Ω𝜀) 6 ‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀⊥‖𝐿2(Ω𝜀)

and employ estimate (3.11):

𝑐0‖∇𝑣𝜀‖2𝐿2(Ω𝜀) − 2𝑐1‖∇𝑣𝜀‖𝐿2(Ω𝜀)‖𝑣𝜀‖𝐿2(Ω𝜀)

− (𝑐2 + Re𝜆)‖𝑣𝜀‖2𝐿2(Ω𝜀) 6 ‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀⊥‖𝐿2(Ω𝜀).
(4.3)
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By (4.2) we deduce
‖∇𝑣𝜀‖2𝐿2(Ω𝜀) 6 𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀⊥‖𝐿2(Ω𝜀). (4.4)

Expanding function 𝑣𝜀 into the standard Fourier series in variable 𝑥𝑛, we arrive at the
inequality

‖𝑣𝜀⊥‖𝐿2(Ω𝜀) 6
𝜀

2𝜋

⃦⃦⃦ 𝜕𝑣𝜀
𝜕𝑥𝑛

⃦⃦⃦
𝐿2(Ω𝜀)

6
𝜀

2𝜋
‖∇𝑣𝜀‖𝐿2(Ω𝜀). (4.5)

We substitute this estimate first into the left hand side of (4.4):

‖𝑣𝜀⊥‖𝐿2(Ω𝜀) 6 𝜀2𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀), (4.6)
and then into the right hand side:

‖∇𝑣𝜀‖𝐿2(Ω𝜀) 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀). (4.7)
It follows now from inequality (4.2) that

‖𝑣𝜀‖𝐿2(Ω𝜀) 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀). (4.8)
Together with (4.7) it completes the proof.

In the next lemma we prove self-adjointness of operator ℋ0
𝛼 and estimate its resolvent.

Lemma 4.2. Operator ℋ0
𝛼 is self-adjoint. For each 𝜆 ̸∈ 𝜎(ℋ0

𝛼) and each 𝐹 ∈ 𝐿2(R
𝑑−1) the

estimate
‖(ℋ0

𝛼 − 𝜆)−1𝐹‖𝑊 2
2 (R

𝑛−1) 6 𝐶(𝜆)‖𝐹‖𝐿2(R𝑛−1)

holds true, where 𝐶(𝜆) is a constant independent of 𝐹 .

Доказательство. It follows from identities (2.3), (2.13) that functions 𝐴0
𝑖𝑗, 𝐴0

0 are real and
the belongings 𝐴0

𝑖𝑗, 𝐴
0
𝑗 ∈ 𝑊 1

∞(R𝑛−1), 𝐴0
0 ∈ 𝐿∞(R𝑑−1) hold true. The coefficient 𝐴𝑛𝑛(𝑥′, 𝜉, 0)

is positive and is uniformly separated from zero by ellipticity condition (2.2) with 𝜁 = 𝜁* :=
(0, . . . , 0, 1). Let us show that similar ellipticity condition holds also for coefficients 𝐴0

𝑖𝑗.
By A we denote the matrix with coefficients 𝐴𝑖𝑗(𝑥

′, 𝜉, 0) and let 𝜁 ′ := (𝜁1, . . . , 𝜁𝑛−1, 0), 𝜁𝑗 ∈ R.
Then by (2.13) and (2.2) we get

𝑛−1∑︁
𝑖,𝑗=1

𝐴0
𝑖𝑗𝜁𝑖𝜁𝑗 =

1/2∫︁
−1/2

1

𝐴𝑛𝑛(𝑥′, 𝜉, 0)

(︀
(A𝜁*, 𝑧*)R𝑛(A𝜁 ′, 𝜁 ′)R𝑛 − (A𝜁 ′, 𝜁*)

2
R𝑛−1

)︀
d𝜉. (4.9)

Due to condition (2.3) the form (A·, ·)R𝑛 can be employed as an equivalent scalar product in
R𝑛 and thus by Cauchy-Schwarz inequality we obtain

(A𝜁 ′, 𝜁*)
2
R𝑛 < (A𝜁 ′, 𝜁 ′)R𝑛(A𝜁*, 𝜁*)R𝑛 .

This inequality is strict since vectors 𝜁 ′ and 𝜁* are noncollinear. Therefore,
min

‖𝜁′‖
R𝑛−1=1

(︀
(A𝜁 ′, 𝜁 ′)R𝑛(A𝜁*, 𝜁*)R𝑛 − (A𝜁 ′, 𝜁*)

2
R𝑛

)︀
> 𝐶 > 0.

By (4.9) it yields the desired ellipticity condition.
The proof of self-adjointness for operator ℋ0

𝛼 now can be easily performed by analogy with
the proof of 𝑚-sectoriality for operator ℋ𝜀

𝛼 in previous section. The analogue of form h𝜀𝛼 is

h00(𝑢, 𝑣) :=
𝑛−1∑︁
𝑖,𝑗=1

(︂
𝐴0

𝑖𝑗

𝜕𝑢

𝜕𝑥𝑗
,
𝜕𝑢

𝜕𝑥𝑖

)︂
𝐿2(R𝑛−1)

+
𝑛−1∑︁
𝑗=1

(︂
𝐴0

𝑗

𝜕𝑢

𝜕𝑥𝑗
, 𝑣

)︂
𝐿2(R𝑛−1)

+
𝑛−1∑︁
𝑗=1

(︂
𝑢,𝐴0

𝑗

𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(R𝑛−1)

+ (𝐴0
0𝑢, 𝑣)𝐿2(R𝑛−1).

The desired estimate for the resolvent can be proven on the basis of second fundamental
inequality, cf. [37, Гл. III, §8].
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We proceed to the proof of Theorem 2.2. Denote 𝑓 ∈ 𝐿2(Ω
𝜀), 𝜆 ∈ C ∖ (K ∪ 𝜎(ℋ0

𝛼)). We let

𝐹𝜀 := 𝜀−1/2𝒬𝜀𝑓, 𝐹 𝜀
⊥ := 𝒬𝜀

⊥𝑓, 𝑢𝜀 := (ℋ𝜀
𝛼 − 𝜆)−1𝑓,

𝑈 𝜀 := (ℋ𝜀
𝛼 − 𝜆)−1𝐹 𝜀, 𝑢0 := (ℋ0

𝛼 − 𝜆)−1𝐹 𝜀.

It is clear that

‖𝐹 𝜀‖2𝐿2(Ω𝜀) + ‖𝐹 𝜀
⊥‖2𝐿2(Ω𝜀) = ‖𝑓‖2𝐿2(Ω𝜀), (4.10)

and by Lemma 4.1

‖𝑢𝜀 − 𝑈 𝜀‖𝑊 1
2 (Ω

𝜀) 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀). (4.11)

Hence, it is sufficient to estimate the norm of the difference 𝑈 𝜀 − 𝑢0. In order to do it, we
introduce an additional corrector, which will play the key role. In fact, this corrector is the
second term in the asymptotic expansion of function 𝑈 𝜀, if the latter is constructed on the
basis of multiscale method. Namely, we let

𝑤(𝑥′, 𝜉, 𝜀) := −
𝑛−1∑︁
𝑖,𝑗=1

𝜕𝑢0

𝜕𝑥𝑗
(𝑥′)

𝜉∫︁
0

𝐴𝑛𝑗(𝑥
′, 𝑡, 𝜀)

𝐴𝑛𝑛(𝑥′, 𝑡, 𝜀)
d𝑡− 𝑢0(𝑥′)

𝜉∫︁
0

𝐴𝑛(𝑥′, 𝑡, 𝜀) d𝑡

− i𝛼𝜀(𝑥′)𝑢0(𝑥′)

𝜉∫︁
0

d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡, 𝜀)
,

𝑤𝜀(𝑥) := 𝑤
(︁
𝑥′,

𝑥𝑛
𝜀
, 𝜀
)︁
≡ (𝒲𝜀𝑢0)

(︁
𝑥′,

𝑥𝑛
𝜀
, 𝜀
)︁
.

It is clear that 𝑤𝜀 ∈ 𝑊 1
2 (Ω𝜀) for each 𝜀 ∈ [0, 𝜀0]. Function 𝑤𝜀 is the above mentioned corrector

and in what follows our aim is to estimate the norm of difference of functions 𝑣𝜀(𝑥) := 𝑈 𝜀(𝑥)−
𝑊 𝜀(𝑥), 𝑊 𝜀(𝑥) := 𝑢0(𝑥′) − 𝜀𝑤𝜀(𝑥).

We first observe that function 𝜔 solves the equation

𝐴𝑛𝑛
𝜕𝜔

𝜕𝜉
+

𝑛−1∑︁
𝑗=1

𝐴𝑛𝑗
𝜕𝑢0

𝜕𝑥𝑗
+ (𝐴𝑛 + i𝛼)𝑢0 = 0, (𝑥′, 𝜉, 𝜀) ∈ Π. (4.12)

It follows from the definition of functions 𝑈 𝜀 and the proofs of Theorem 2.1 and of Lemma 4.1
that this function satisfies the integral identity

h𝜀𝛼(𝑈 𝜀, 𝑣) − 𝜆(𝑈 𝜀, 𝑣)𝐿2(Ω𝜀) = (𝐹 𝜀, 𝑣)𝐿2(Ω𝜀) (4.13)

for each 𝑣 ∈ 𝑊 1
2 (Ω𝜀). And Lemma 4.2 together with the smoothness of the coefficients of

operator ℋ0
𝛼 implies the relation

𝐹𝜀 =

(︃
−

𝑛−1∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴0

𝑖𝑗

𝜕

𝜕𝑥𝑗
+

𝑛−1∑︁
𝑗=1

(︂
𝐴0

𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴0

𝑗

)︂
+ (𝐴0

0 − 𝜆)

)︃
𝑢0. (4.14)

We let 𝑣 = 𝑣𝜀 in (4.13) and employ identity 𝑈 𝜀 = 𝑣𝜀 + 𝑢0 + 𝜀𝑤𝜀. Then we get

h𝜀𝛼(𝑣𝜀, 𝑣𝜀) − 𝜆‖𝑣𝜀‖𝐿2(Ω𝜀) = (𝐹 𝜀, 𝑣𝜀)𝐿2(Ω𝜀) − h𝜀𝛼(𝑊 𝜀, 𝑣𝜀) + 𝜆(𝑊 𝜀, 𝑣𝜀)𝐿2(Ω𝜀). (4.15)

The main idea of obtaining estimate for 𝑣𝜀 is that first we transform the right hand side of the
latter identity to a more convenient form and then we estimate it by a small quantity. It will
imply the estimate for 𝑣𝜀.



40 D.I. BORISOV

Let us transform the right hand side. Integrating by parts, we have

h𝜀𝛼(𝑢0, 𝑣𝜀) − 𝜆(𝑢0, 𝑣𝜀)𝐿2(Ω𝜀) = (𝑔𝜀1 + 𝑔𝜀2, 𝑣
𝜀)𝐿2(Ω𝜀) + b𝜀

(︂
𝜕𝑢0

𝜕𝜈𝜀
+ i𝛼𝜀𝑢0, 𝑣𝜀

)︂
, (4.16)

𝑔𝜀1 := −
𝑛−1∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴𝜀

𝑖𝑗

𝜕𝑢0

𝜕𝑥𝑗
+

𝑛−1∑︁
𝑗=1

(︂
𝐴𝜀

𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴𝜀

𝑗

)︂
𝑢0 + (𝐴𝜀

0 − 𝜆)𝑢0,

𝑔𝜀2 := −
𝑛−1∑︁
𝑗=1

𝜕𝐴𝜀
𝑛𝑗

𝜕𝑥𝑛

𝜕𝑢0

𝜕𝑥𝑗
− 𝜕𝐴𝜀

𝑛

𝜕𝑥𝑛
𝑢0.

We integrate by parts in the same way,

𝜀

𝑛∑︁
𝑖=1

(︂
𝐴𝜀

𝑖𝑛

𝜕𝜔𝜀

𝜕𝑥𝑛
,
𝜕𝑣𝜀

𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

= −𝜀
𝑛∑︁

𝑖=1

(︂
𝜕

𝜕𝑥𝑖
𝐴𝜀

𝑖𝑛

𝜕𝑤𝜀

𝜕𝑥𝑛
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

+ 𝜀b𝜀
(︂
𝐴𝜀

𝑛𝑛

𝜕𝜔𝜀

𝜕𝑥𝑛
, 𝑣𝜀
)︂
,

i𝜀b𝜀(𝛼𝜀𝑤𝜀, 𝑣𝜀) = i𝜀

(︂
𝛼𝜀𝑤𝜀,

𝜕𝑣𝜀

𝜕𝑥𝑛

)︂
𝐿2(Ω𝜀)

+ i𝜀

(︂
𝛼𝜀𝜕𝑤

𝜀

𝜕𝑥𝑛
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

.

(4.17)

By (4.12) we get

𝜀𝐴𝜀
𝑛

𝜕𝜔𝜀

𝜕𝑥𝑛
= − 𝐴𝜀

𝑛

𝐴𝜀
𝑛𝑛

(︃
𝑛−1∑︁
𝑗=1

𝐴𝜀
𝑛𝑗

𝜕𝑢0

𝜕𝑥𝑗
+ (𝐴𝜀

𝑛 + i𝛼𝜀)𝑢0

)︃
,

−𝜀
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖
𝐴𝜀

𝑖𝑛

𝜕𝑤𝜀

𝜕𝑥𝑛
=

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

𝐴𝜀
𝑖𝑛

𝐴𝜀
𝑛𝑛

(︃
𝑛−1∑︁
𝑗=1

𝐴𝜀
𝑛𝑗

𝜕𝑢0

𝜕𝑥𝑗
+ (𝐴𝜀

𝑛 + i𝛼𝜀)𝑢0

)︃
.

The latter identities and (4.16), (4.17), (4.12) imply

h𝜀𝛼(𝑊 𝜀, 𝑣𝜀) − 𝜆(𝑊 𝜀, 𝑣𝜀) = 𝜀𝐺𝜀
1(𝑤

𝜀, 𝑣𝜀) +𝐺𝜀
2(𝑢

0, 𝑣𝜀) +𝐺𝜀
3(𝑢

0, 𝑣𝜀), (4.18)

𝐺𝜀
1(𝑤

𝜀, 𝑣𝜀) :=
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=1

(︂
𝐴𝜀

𝑖𝑗

𝜕𝑤𝜀

𝜕𝑥𝑖
,
𝜕𝑣𝜀

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+
𝑛−1∑︁
𝑗=1

(︂
𝐴𝜀

𝑗

𝜕𝑤𝜀

𝜕𝑥𝑗
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

+
𝑛−1∑︁
𝑗=1

(︂
𝑤𝜀, 𝐴𝜀

𝑗

𝜕𝑣𝜀

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+ ((𝐴𝜀
0 − 𝜆0)𝑤

𝜀, 𝑣𝜀)𝐿2(Ω𝜀) + i𝜀

(︂
𝛼𝜀𝑤𝜀,

𝜕𝑣𝜀

𝜕𝑥𝑛

)︂
𝐿2(Ω𝜀)

,

𝐺𝜀
2(𝑢

0, 𝑣𝜀) := i
𝑛−1∑︁
𝑗=1

(︂
𝑢0
𝜕

𝜕𝑥𝑗

(︂
𝛼𝜀
𝜕𝐴𝜀

𝑗𝑛

𝐴𝜀
𝑛𝑛

)︂
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

𝐺𝜀
3(𝑢

0, 𝑣𝜀) := −
𝑛−1∑︁
𝑖,𝑗=1

(︂
𝜕

𝜕𝑥𝑖
𝐵𝑖𝑗

𝜕𝑢0

𝜕𝑥𝑗
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

+
𝑛−1∑︁
𝑗=1

(︂
𝐵𝑗
𝜕𝑢0

𝜕𝑥𝑗
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

−
𝑛−1∑︁
𝑗=1

(︂
𝜕

𝜕𝑥𝑗
𝐵𝑗𝑢

0, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

+
(︀
(𝐵0 − 𝜆)𝑢0, 𝑣𝜀

)︀
𝐿2(Ω𝜀)

,

where 𝐵𝜀
𝑖𝑗(𝑥) = 𝐵𝑖𝑗(𝑥

′, 𝑥𝑛𝜀
−1, 𝜀), 𝐵𝜀

𝑗 (𝑥) = 𝐵𝑗(𝑥
′, 𝑥𝑛𝜀

−1, 𝜀), 𝐵𝜀
0(𝑥) = 𝐵0(𝑥

′, 𝑥𝑛𝜀
−1, 𝜀),

𝐵𝑖𝑗 = 𝐵𝑖𝑗(𝑥
′, 𝜉, 𝜀), 𝐵𝑗 = 𝐵𝑗(𝑥

′, 𝜉, 𝜀), 𝐵0 = 𝐵0(𝑥
′, 𝜉, 𝜀),

𝐵𝑖𝑗 := 𝐴𝑖𝑗 −
𝐴𝑖𝑛𝐴𝑛𝑗

𝐴𝑛𝑛

, 𝐵𝑗 := 𝐴𝑗 −
𝐴𝑛𝐴𝑛𝑗

𝐴𝑛𝑛

,

𝐵0 := 𝐴0 +
𝛼2

𝐴𝑛𝑛

− i𝛼
𝐴𝑛 + 𝐴𝑛

𝐴𝑛𝑛

− |𝐴𝑛|2

𝐴𝑛𝑛

.

(4.19)
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Immediately from the definition of function 𝑤𝜀 and Lemma 4.2 it follows the estimate

|𝐺1
𝜀(𝑤

𝜀, 𝑣𝜀)| 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀). (4.20)

We let 𝑣𝜀⊥ := 𝒬𝜀
⊥𝑣

𝜀. By conditions (2.3) the identities hold
𝜀
2∫︁

− 𝜀
2

𝐴𝑗𝑛

(︀
𝑥′, 𝑥𝑛

𝜀
, 𝜀
)︀

𝐴𝑛𝑛

(︀
𝑥′, 𝑥𝑛

𝜀
, 𝜀
)︀ d𝑥𝑛 = 0 for each 𝑥′ ∈ R𝑛−1, 𝜀 ∈ [0, 𝜀0].

Since functions 𝛼𝜀 and 𝑢0 are independent of 𝜉, we have 𝑢0 𝜕
𝜕𝑥𝑗

𝛼𝜀𝐴
𝜀
𝑗𝑛

𝐴𝜀
𝑛𝑛

∈ 𝐿𝜀
⊥. Then quantity 𝐺𝜀

2

can be rewritten as

𝐺𝜀
2(𝑢

0, 𝑣𝜀) = i
𝑛−1∑︁
𝑗=1

(︂
𝑢0
𝜕

𝜕𝑥𝑗

(︂
𝛼𝜀
𝜕𝐴𝜀

𝑗𝑛

𝐴𝜀
𝑛𝑛

)︂
, 𝑣𝜀⊥

)︂
𝐿2(Ω𝜀)

that by Lemma 4.2 and inequality (4.5) yield the estimate

|𝐺𝜀
2(𝑢

0, 𝑣𝜀)| 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀). (4.21)

We let

𝐺4
𝜀(𝑢

0, 𝑣𝜀) := −
𝑛−1∑︁
𝑖,𝑗=1

(︂
𝜕

𝜕𝑥𝑖
𝐵0

𝑖𝑗

𝜕𝑢0

𝜕𝑥𝑗
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

+
𝑛−1∑︁
𝑗=1

(︂
𝐵0

𝑗

𝜕𝑢0

𝜕𝑥𝑗
, 𝑣𝜀
)︂

𝐿2(Ω𝜀)

−
𝑛−1∑︁
𝑗=1

(︂
𝜕

𝜕𝑥𝑗
𝐵0

𝑗𝑢
0, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

+
(︀
(𝐵0

0 − 𝜆)𝑢0, 𝑣𝜀
)︀
𝐿2(Ω𝜀)

,

where

𝐵0
𝑖𝑗(𝑥, 𝜀) := 𝐵𝑖𝑗

(︁
𝑥′,

𝑥𝑛
𝜀
, 0
)︁
, 𝐵0

𝑗 (𝑥, 𝜀) := 𝐵𝑗

(︁
𝑥′,

𝑥𝑛
𝜀
, 0
)︁
, 𝐵0

0(𝑥, 𝜀) := 𝐵0

(︁
𝑥′,

𝑥𝑛
𝜀
, 0
)︁
. (4.22)

Then the smoothness and the boundedness of functions 𝐴𝑖𝑗, 𝐴𝑗, 𝐴0 and of their derivatives and
Lemma 4.2 yield

|𝐺𝜀
4(𝑢

0, 𝑣𝜀) −𝐺𝜀
3(𝑢

0, 𝑣𝜀)| 6 𝜂(𝜀)𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀‖𝐿2(Ω𝜀). (4.23)

It follows immediately from definition (2.13) of functions 𝐴0
𝑖𝑗, 𝐴0

𝑗 , 𝐴0
0 and definition (4.19),

(4.22) of functions 𝐵0
𝑖𝑗, 𝐵0

𝑗 , 𝐵0
0 that

𝜀
2∫︁

− 𝜀
2

(︀
𝐴0

♭ (𝑥
′) −𝐵0

♭ (𝑥, 𝜀)
)︀

d𝑥𝑛 = 0, ♭ = 𝑖𝑗, ♭ = 𝑗, ♭ = 0.

These identities and Lemma 4.2 yield that the relation

(𝐹𝜀, 𝑣
𝜀)𝐿2(Ω𝜀) −𝐺4

𝜀(𝑢
0, 𝑣𝜀) = (𝑔𝜀3, 𝑣

𝜀)𝐿2(Ω𝜀)

is satisfied, where function 𝑔𝜀3 belongs to space 𝐿𝜀
⊥ and obeys the estimate

‖𝑔𝜀3‖𝐿2(Ω𝜀) 6 𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀).

By analogy with the deducing of (4.21), one can check easily the inequality

|(𝐹𝜀, 𝑣
𝜀)𝐿2(Ω𝜀) −𝐺4

𝜀(𝑢
0, 𝑣𝜀)| 6 (𝜀+ 𝜂(𝜀))𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀‖𝐿2(Ω𝜀).

By this estimate and (4.15), (4.18), (4.20), (4.21), (4.23) we conclude that the right hand side
in (4.15) is estimated by the quantity (𝜀+ 𝜂(𝜀))𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀)‖𝑣𝜀|𝑊 1

2 (Ω
𝜀). Now it is sufficient to

reproduce the arguments in the proof of Lemma 4.1 to obtain the required estimate for 𝑣𝜀:

‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀) 6 (𝜀+ 𝜂(𝜀))𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀).
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We also observe one more obvious inequality implied directly from the definition of function
𝑤𝜀:

‖𝑤𝜀‖𝐿2(Ω𝜀) 6 𝜀𝐶(𝜆)‖𝑓‖𝐿2(Ω𝜀).

The last two estimates and (4.11) imply the statement of Theorem 2.2.

5. Convergence of spectrum

This section is devoted to the proof of Theorem 2.3.
Let 𝜆 lie in a compact set in the complex plane and 𝜇 ∈ C be a fixed number separated by

the distance 1 from the set K ∪ 𝜎(ℋ0
𝛼). Consider the equation

(ℋ𝜀
𝛼 − 𝜆)𝑢 = 𝑓, 𝑓 ∈ 𝐿2(Ω

𝜀) (5.1)

and let us study its solvability. We rewrite it as

(ℋ𝜀
𝛼 − 𝜇+ 𝜇− 𝜆)𝑢 = 𝑓

and apply operator (ℋ𝜀
𝛼 − 𝜇)−1 which is well-defined by Theorem 2.2. Denoting

𝒯 𝜀
1 := (ℋ𝜀

𝛼 − 𝜇)−1 − (ℋ0
𝛼 − 𝜇)−1𝒬𝜀 ⊕ 0, we get

𝑢+ (𝜇− 𝜆)(ℋ0
𝛼 − 𝜇)−1𝒬𝜀𝑢⊕ 0 + (𝜇− 𝜆)𝒯 𝜀

1 𝑢 = 𝑓 𝜀
1 , 𝑓 𝜀

1 := (ℋ𝜀
𝛼 − 𝜇)−1𝑓. (5.2)

By Theorem 2.2 the norm of operator 𝒯 𝜀
1 : 𝐿2(Ω

𝜀) → 𝐿2(Ω
𝜀) tends to zero as 𝜀 → +0. This is

why for all sufficiently small 𝜀 the operator I + (𝜇− 𝜆)𝒯 𝜀
1 is invertible and

𝑢 = 𝒯 𝜀
2 (𝜆)𝑓 𝜀

1 − (𝜇− 𝜆)𝒯 𝜀
2 (𝜆)(ℋ0

𝛼 − 𝜇)−1𝒬𝜀𝑢⊕ 0, (5.3)

𝒯 𝜀
2 (𝜆) := (I + (𝜇− 𝜆)𝒬𝜀𝒯 𝜀

1 )−1.

This identity means that to solve equation (5.1), it is sufficient to find function 𝒬𝜀𝑢. We also
note that operator 𝒯 𝜀

2 (𝜆) is holomorphic with respect to 𝜆. The derivative of this operator with
respect to 𝜆 is as follows,

𝜕𝒯 𝜀
2

𝜕𝜆
(𝜆) = (I + (𝜇− 𝜆)𝒬𝜀𝒯 𝜀

1 )−1𝒬𝜀𝒯 𝜀
1 (I + (𝜇− 𝜆)𝒬𝜀𝒯 𝜀

1 )−1, (5.4)

and its norm tends to zero as 𝜀→ +0.
We apply operator 𝒬𝜀 to equation (5.2) and substitute then formula (5.3) into the definition

of 𝒯 𝜀
1 and employ then easily checked identities

I + (𝜇− 𝜆)(ℋ0
𝛼 − 𝜇)−1 = (ℋ0

𝛼 − 𝜆)(ℋ0
𝛼 − 𝜇)−1, (ℋ0

𝛼 − 𝜇)−1𝒬𝜀 = 𝒬𝜀(ℋ0
𝛼 − 𝜇)−1𝒬𝜀.

We then obtain

(ℋ0
𝛼 − 𝜆+ 𝒯 𝜀

3 (𝜆))(ℋ0
𝛼 − 𝜇)−1𝒬𝜀𝑢 = 𝑓 𝜀

2 , (5.5)

𝑓 𝜀
2 :=

(︀
I − (𝜇− 𝜆)𝒬𝜀𝒯 1

𝜀 (𝜆)𝒯 2
𝜀 (𝜆)

)︀
𝒬𝜀𝑓 1

𝜀 ,

𝒯 𝜀
3 (𝜆) := −(𝜇− 𝜆)2𝒬𝜀𝒯 𝜀

1 𝒯 𝜀
2 (𝜆)𝒬𝜀.

We consider the obtained identity as an equation for (ℋ0
𝛼 − 𝜇)−1𝒬𝜀𝑢. It is equivalent to the

original equation (5.1), since once we find (ℋ0
𝛼 − 𝜇)−1𝒬𝜀𝑢, by formula (5.3) we can recover

solution to equation (5.1).
We note that identifying spaces 𝐿2(R

𝑛−1) and 𝐿𝜀, for each 𝑣 ∈ 𝐿2(R
𝑛−1) we get the obvious

identity ‖𝒬𝜀𝑣‖𝐿2(Ω𝜀) = 𝜀1/2‖𝑣‖𝐿2(R𝑛−1). By the definition of operator 𝒯 𝜀
3 (𝜆) : 𝐿2(R

𝑛−1) →
𝐿2(R

𝑛−1) it yields that its norm tends to zero as 𝜀→ +0. Moreover, this operator is holomorphic
with respect to 𝜆 and by (5.4) the norm of its derivative with respect to 𝜆 vanishes in the limit
𝜀→ +0.

If now 𝜆 is separated from the spectrum of operator ℋ0
𝛼 for all sufficiently small 𝜀, equation

(5.5) is uniquely solvable

(ℋ0
𝛼 − 𝜇)−1𝒬𝜀𝑢 = (ℋ0

𝛼 − 𝜆+ 𝒯 𝜀
3 (𝜆))−1𝑓 𝜀

2 . (5.6)
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Therefore, the spectrum of operator ℋ𝜀
𝛼 converges to that of operator ℋ0

𝛼 in the sense as it was
stated in Theorem 2.3.

Let 𝜆0 be an isolated 𝑚-multiple eigenvalue of operator ℋ0
𝛼, 𝜑1, . . . , 𝜑𝑚 be the associated

eigenfunctions orthonormalized in 𝐿2(R
𝑛−1). We let 𝑓 = 0 in (5.1), i.e., we shall consider the

eigenvalue equation for the perturbed operator. For its study we shall make use of the modified
Birman-Schwinger principle from [25], [26].

For 𝜆 close to 𝜆0 the representation [35, Гл. V, §3.5]

(ℋ0
𝛼 − 𝜆)−1 =

𝑚∑︁
𝑗=1

(·, 𝜑𝑗)𝐿2(R𝑛−1)

𝜆0 − 𝜆
𝜑𝑗 + 𝒯4(𝜆) (5.7)

holds true, where operator 𝒯4(𝜆) acts from 𝐿2(R
𝑛−1) into the subset 𝑊 2

2 (R𝑛−1) comprising the
functions orthogonal to 𝜑1, . . . , 𝜑𝑚 in 𝐿2(R

𝑛−1). Moreover, operator 𝒯4(𝜆) is holomorphic with
respect to 𝜆 in a sufficiently small neighborhood of 𝜆0. We denote

𝑈 := (ℋ0
𝛼 − 𝜆)−1𝒬𝜀𝑢 (5.8)

and invert the operator (ℋ0
𝛼 − 𝜆) in (5.5) taking into consideration (5.7):

(I + 𝒯4(𝜆)𝒯 𝜀
3 (𝜆))𝑈 +

𝑚∑︁
𝑗=1

(𝒯 𝜀
3 (𝜆)𝑈, 𝜑𝑗)𝐿2(R𝑛−1)

𝜆0 − 𝜆
𝜑𝑗 = 0.

Since the operator 𝒯 𝜀
3 (𝜆) is small and operator 𝒯4(𝜆) is holomorphic, operator (I +𝒯4(𝜆)𝒯 𝜀

3 (𝜆))
is invertible and

𝑈 +
𝑚∑︁
𝑗=1

(𝒯 𝜀
3 (𝜆)𝑈, 𝜑𝑗)𝐿2(R𝑛−1)

𝜆0 − 𝜆
(I + 𝒯4(𝜆)𝒯 𝜀

3 (𝜆))−1𝜑𝑗 = 0. (5.9)

We let
𝑍 = (𝑧1, . . . , 𝑧𝑚)𝑡, 𝑧𝑗 := (𝒯 𝜀

3 (𝜆)𝑈, 𝜑𝑗)𝐿2(R𝑛−1). (5.10)

As it follows from (5.9), knowing quantities 𝑧𝑗, one can determine function 𝑈 and solve then
equation (5.1) with 𝑓 = 0 by means of (5.3), (5.8). In order to determine vector 𝑧, we apply
operator 𝒯 𝜀

2 (𝜆) to equation (5.9) and calculate then the scalar product with 𝜑𝑖 in 𝐿2(R
𝑛−1).

Then we obtain the matrix equation(︀
(𝜆0 − 𝜆)E𝑚 + B𝜀(𝜆)

)︀
𝑍 = 0, (5.11)

where E𝑚 is the unit 𝑚×𝑚 matrix, B𝜀(𝜆) is the matrix with the components

𝐴𝜀
𝑖𝑗(𝜆) :=

(︀
𝒯 𝜀
3 (𝜆)(I + 𝒯4(𝜆)𝒯 𝜀

3 (𝜆))−1𝜑𝑖, 𝜑𝑗

)︀
𝐿2(𝑅𝑛−1)

.

The points at which the matrix (𝜆0−𝜆)E𝑚 +B𝜀(𝜆) is non-invertible are exactly the eigenvalues
of operator ℋ𝜀

𝛼. Indeed, if 𝜆 is one of such points, equation (5.11) has finitely many linear
independent solutions. By formulae (5.9), (5.10), (5.3) with 𝑓 𝜀

1 = 0, each such solution is
associated with an eigenfunction of operator ℋ𝜀

𝛼:

𝑢 = 𝒯 𝜀
2 (𝜆)𝑈, 𝑈 =

𝑚∑︁
𝑗=1

𝑧𝑗(I + 𝒯4(𝜆)𝒯 𝜀
3 (𝜆))−1𝜑𝑗. (5.12)

The factors 1/(𝜆 − 𝜆0) in the formula for 𝑈 and (𝜇 − 𝜆) in that for 𝑢 can be omitted since
the eigenfunction is determined up to a multiplicative constant. It is also easy to make sure
that linearly independent vectors 𝑧 are associated with linearly independent eigenfunctions of
operator ℋ𝜀

𝛼. Thus, the multiplicity of an eigenvalue 𝜆 of operator ℋ𝜀
𝛼 coincides with the number

of linearly independent solutions to equation (5.11).
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The properties of operator 𝒯 𝜀
3 (𝜆) and 𝒯4(𝜆) imply that the entries of matrix B𝜀(𝜆) are

holomorphic with respect to 𝜆. Moreover, these entries and their derivatives with respect to 𝜆
tends to zero as 𝜀→ +0 uniformly in 𝜆 in a small neighborhood of point 𝜆0. We denote

𝑅𝜀(𝜆) := det(𝜆− 𝜆0 − B𝜀(𝜆)).

Lemma 5.1. The function 𝜆 ↦→ 𝑅𝜀(𝜆) has exactly 𝑚 zeroes (counting the orders) converging
to 𝜆0 as 𝜀→ +0.

Доказательство. It is clear that

𝑅𝜀(𝜆) = (𝜆− 𝜆0)
𝑚 +𝑅𝜀

1(𝜆),

where function 𝑅𝜀
1(𝜆) is holomorphic with respect to 𝜆 in a small neighborhood of point 𝜆0 and

tends to zero as 𝜀 → +0 uniformly in 𝜆. Employing this representation and applying Rouché
theorem, we complete the proof.

Let 𝜆𝜀 be a zero of function 𝑅𝜀(𝜆) of order 𝑘(𝜀) described in Lemma 5.1. Equation (5.11) has
𝑞(𝜀) linearly independent solutions associated with this zero and 𝑞(𝜀) is also the multiplicity of
𝜆𝜀 regarded as an eigenvalues of operator lℋ𝜀

𝛼. Let us prove that this multiplicity of 𝜆𝜀 coincides
with its order once we regard it as a zero of function 𝑅𝜀(𝜆).

Lemma 5.2. For all sufficiently small 𝜀 and all zeroes of function 𝑅𝜀(𝜆) the identity 𝑝(𝜀) =
𝑞(𝜀) holds true.

Доказательство. Let 𝑍1, . . . , 𝑍𝑞 be linearly independent solutions to equation (5.11)
associated with 𝜆 = 𝜆𝜀. Without loss of generality we choose vectors 𝑍𝑗 orthonormalized in C𝑚.
Since 𝑞 6 𝑚, we complement these vectors by vectors 𝑍𝑗, 𝑗 = 𝑞 + 1, . . . ,𝑚, in such a way that
the obtained systems forms an orthonormalized basis in C𝑚. By S we denote the matrix with
the columns 𝑍𝑗, 𝑗 = 1, . . . ,𝑚. Since vectors 𝑍𝑗 are orthonormalized, matrix S is non-degenerate
and orthogonal S−1 = S*.

By the aforementioned properties of matrix B𝜀(𝜆) and Hadamard lemma the representation

B𝜀(𝜆) − B𝜀(𝜆𝜀) = (𝜆− 𝜆𝜀)B𝜀
1(𝜆)

is valid, where matrix B𝜀
1(𝜆) is holomorphic with respect to 𝜆 in a small neighborhood of point

𝜆0, and its elements tends to zero as 𝜀→ +0 uniformly in 𝜆. Employing this representation, by
straightforward calculations we check that

S−1
(︀
(𝜆− 𝜆0)E𝑚 − B𝜀(𝜆)

)︀
S = (𝜆− 𝜆𝜀)

(︀
E𝑚 + S−1B𝜀

1(𝜆)S
)︀

+ S−1
(︀
(𝜆𝜀 − 𝜆0)E𝑚 − B𝜀(𝜆𝜀)

)︀
S =

(︀
E𝑚 + S−1B𝜀

1(𝜆)S
)︀(︀

(𝜆− 𝜆𝜀)E𝑚 + B𝜀
2

)︀
,

(5.13)

B𝜀
2(𝜆) := S−1

(︀
E𝑚 + B𝜀

1(𝜆)
)︀−1(︀

(𝜆𝜀 − 𝜆0)E𝑚 − B𝜀(𝜆𝜀)
)︀
S.

By the definition of matrix S matrix B𝜀
2 has a block structure

B𝜀
2(𝜆) =

(︂
0 B𝜀

3(𝜆)
0 B𝜀

4(𝜆)

)︂
,

where the zero block in the upper left corner is of the size 𝑞 × 𝑚, the zero block in the left
lower corner has the size (𝑚− 𝑞) ×𝑚, while the blocks B𝜀

3 and B𝜀
4 are respectively of the size

𝑞 × (𝑚− 𝑞) and (𝑚− 𝑞) × (𝑚− 𝑞). By the properties of matrix B𝜀
1 it implies

𝑅𝜀(𝜆) = (𝜆− 𝜆𝜀)𝑞𝑅𝜀
1(𝜆), (5.14)

𝑅1
𝜀(𝜆) := det −1(E𝑚 + S−1B𝜀

1(𝜆)S) det
(︀
(𝜆− 𝜆𝜀)E𝑚−𝑞 − B𝜀

4(𝜆)
)︀
.

Identity (5.13) with 𝜆 = 𝜆𝜀 and the assumption

rank
(︀
(𝜆𝜀 − 𝜆0)E𝑚 − B𝜀(𝜆𝜀)

)︀
= 𝑚− 𝑞
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yields that rank A𝜀
4(𝜆

𝜀) = 𝑚− 𝑞, and hence 𝑅1
𝜀(𝜆

𝜀) ̸= 0. Together with (5.14) it completes the
proof.

Remark 5.1. We note that similar lemma was proven in [38, Lm. 6.3] within the framework
on the basis of the modified Birman-Schwinger approach. At the same time, in the mentioned
work the self-adjointness of both the perturbed and limiting operators was employed essentially.
In the present work we succeeded to get rid of this assumption for the perturbed operator.

Lemmata 5.1, 5.2 imply the second part of Theorem 2.3 on convergence of eigenvalues. It
remains to prove the reality for the eigenvalues of perturbed operator converging to 𝜆0.

Let 𝜆𝜀 be one of such eigenvalues, and 𝜓𝜀 is the associated eigenfunction. Then 𝜓𝜀 satisfies
representation (5.12) with 𝑢 replaced by 𝜓𝜀. Normalizing nontrivial solution 𝑍 to equation
(5.11) as follows

‖𝑍‖C𝑚 = 𝜀−1. (5.15)
Then it follows from (5.12), the definition of operators 𝒯 𝜀

2 , 𝒯 𝜀
3 , 𝒯4 and Theorem 2.2 that

𝜓𝜀 =
𝑚∑︁
𝑗=1

𝑧𝑗𝜑𝑗 + 𝒪(𝜀+ 𝜂) in the norm of 𝐿2(Ω
𝜀). (5.16)

Employing identities (2.9), (2.11) and eigenvalue equation for 𝜓𝜀, by straightforward
calculations we check that

0 =
(︀
(ℋ𝜀

𝛼 − 𝜆𝜀)𝜓𝜀,𝒫𝜓𝜀
)︀
𝐿2(Ω𝜀)

=
(︀
𝜓𝜀, (ℋ𝜀

−𝛼 − 𝜆𝜀)𝒫𝜓𝜀
)︀
𝐿2(Ω𝜀)

=
(︀
𝜓𝜀,𝒫(ℋ𝜀

𝛼 − 𝜆𝜀)𝜓𝜀
)︀
𝐿2(Ω𝜀)

= (𝜆𝜀 − 𝜆𝜀)(𝜓𝜀,𝒫𝜓𝜀)𝐿2(Ω𝜀).
(5.17)

It follows from the definition of operator 𝒫 and (5.16) that

𝒫𝜓𝜀 =
𝑚∑︁
𝑗=1

𝑧𝑗𝜑𝑗 + 𝒪(𝜀+ 𝜂) in the norm of 𝐿2(Ω
𝜀), (5.18)

and thus by (5.15), (5.16) and the orthonormality of 𝜑𝑗 in 𝐿2(R
𝑛−1)

(𝜓𝜀,𝒫𝜓𝜀)𝐿2(Ω𝜀) = 1 + 𝒪(𝜀+ 𝜂). (5.19)

It yields that identity (5.17) is possible only for real 𝜆𝜀. The proof of Theorem 2.3 is complete.

6. Asymptotic expansions: formal construction

In the present section we provide the first part of the proof for Theorem 2.4 which is the
formal construction of asymptotic expansions for the eigenvalues and eigenfunctions of the
perturbed operator. The second part of the proof, a rigorous justification and estimates for the
error terms, will be given in the next section.

Let 𝜆0 be an isolated 𝑚-multiple eigenvalue of operator ℋ0
𝛼, and 𝜑𝑘 = 𝜑𝑘(𝑥′), 𝑘 = 1, . . . ,𝑚,

are the associated real-valued eigenfunctions orthonormalized in 𝐿2(R
𝑛−1). In accordance with

Theorem 2.3, there exist exactly 𝑚 eigenvalues 𝜆𝜀𝑘, 𝑘 = 1, . . . ,𝑚, of perturbed operator
converging to 𝜆0 as 𝜀→ +0. We construct the asymptotics for these eigenvalues as

𝜆𝜀𝑘 = 𝜆0 +
∞∑︁
𝑝=1

𝜀𝑝Λ
(𝑝)
𝑘 , 𝑘 = 1, . . . ,𝑚, (6.1)

and the asymptotics of the associated eigenfunctions are constructed as

𝜓𝜀
𝑘(𝑥) = 𝜑𝑘(𝑥′) +

∞∑︁
𝑝=1

𝜀𝑝𝜑
(𝑝)
𝑘 (𝑥′, 𝜉), 𝑘 = 1, . . . ,𝑚, (6.2)
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where 𝜉 = 𝑥𝑛𝜀
−1 is a rescaled variable, Λ

(𝑝)
𝑘 and 𝜓

(𝑝)
𝑘 are some numbers and functions and to

determine them is the main aim of the formal construction. We construct the asymptotics by
the multiscale method [34].

In what follows it is convenient to regard the eigenfunctions of the perturbed operator as
generalized solutions to the boundary value problem(︃

−
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴𝜀

𝑖𝑗

𝜕

𝜕𝑥𝑗
+

𝑛∑︁
𝑗=1

(︂
𝐴𝜀

𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴𝜀

𝑗

)︂
+ 𝐴𝜀

0

)︃
𝜓𝜀
𝑘 = 𝜆𝜀𝑘𝜓

𝜀
𝑘 in Ω𝜀,(︂

𝜕

𝜕𝜈𝜀
+ i𝛼𝜀

)︂
𝜓𝜀
𝑘 = 0 on 𝜕Ω𝜀.

(6.3)

We substitute series (6.1), (6.2) into this boundary value problem, take into consideration the
dependence of functions 𝜑(𝑝)

𝑘 on variable 𝜉, and collect then the coefficients at the like powers
of 𝜀. Then we obtain the recurrent system of boundary value problems

− 𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑
(𝑝)
𝑘

𝜕𝜉
+

𝜕

𝜕𝜈*
𝜕𝜑

(𝑝−1)
𝑘

𝜕𝜉
− 𝜕

𝜕𝜉

𝜕𝜑
(𝑝−1)
𝑘

𝜕𝜈

+ 𝒯5𝜑
(𝑝−2)
𝑘 = 𝜆0𝜑

(𝑝−2)
𝑘 +

𝑝−2∑︁
𝑞=1

Λ
(𝑞)
𝑘 𝜑

(𝑝−𝑞−2)
𝑘 в Ω,

𝐴𝑛𝑛
𝜕𝜑

(𝑝)
𝑘

𝜕𝜉
+
𝜕𝜑

(𝑝−1)
𝑘

𝜕𝜈
= 0 на 𝜕Ω, 𝑝 > 1,

(6.4)

where we have denoted

𝜕

𝜕𝜈
:=

𝑛−1∑︁
𝑗=1

𝐴𝑛𝑗
𝜕

𝜕𝑥𝑗
+ 𝐴𝑛 + i𝛼,

𝜕

𝜕𝜈*
:= −

𝑛−1∑︁
𝑗=1

𝐴𝑛𝑗
𝜕

𝜕𝑥𝑗
+ 𝐴𝑛 + i𝛼,

𝒯5 := −
𝑛−1∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
𝐴𝑖𝑗

𝜕

𝜕𝑥𝑗
+

𝑛−1∑︁
𝑗=1

(︂
𝐴𝑗

𝜕

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
𝐴𝑗

)︂
+ 𝐴0,

𝜑
(0)
𝑘 := 𝜑𝑘, 𝜑

(−1)
𝑘 := 0.

In order to solve problem (6.4), we shall make use of the following auxiliary lemma.

Lemma 6.1. Let 𝐹 = 𝐹 (𝑥′, 𝜉) be a function such that 𝐹 (𝑥′, ·) ∈ 𝐿2(−1/2, 1/2) for each
𝑥′ ∈ R𝑛−1, 𝑔± = 𝑔±(𝑥′) be some functions. The boundary value problem

− 𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑

𝜕𝜉
+ 𝐹 = 0 в Ω, 𝐴𝑛𝑛

𝜕𝜑
(𝑝)
𝑘

𝜕𝜉
+ 𝑔± = 0 при 𝜉 = ±1/2, (6.5)

is solvable if and only if
1
2∫︁

− 1
2

𝐹 (𝑥′, 𝜉) d𝜉 = 𝑔−(𝑥′) − 𝑔+(𝑥′) для всех 𝑥′ ∈ R𝑛−1. (6.6)

There exists the unique solution to problem (6.5) obeying condition
1
2∫︁

− 1
2

𝜑(𝑥′, 𝜉) d𝜉 = 0 для всех 𝑥′ ∈ R𝑛−1. (6.7)
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This solution is given by the formula

𝜑(𝑥′, 𝜉) = − 𝑔−(𝑥′)

⎛⎜⎝ 𝜉∫︁
− 1

2

d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡)
+

1
2∫︁

− 1
2

(𝑡− 1
2
) d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡)

⎞⎟⎠

+

⎛⎜⎝ 𝜉∫︁
− 1

2

d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡)

𝑡∫︁
− 1

2

𝐹 (𝑥′, 𝑠) d𝑠+

1
2∫︁

− 1
2

d𝑡
𝑡− 1

2

𝐴𝑛𝑛(𝑥′, 𝑡)

𝑡∫︁
− 1

2

𝐹 (𝑥′, 𝑠) d𝑠

⎞⎟⎠ .

(6.8)

The general solution is the sum of the latter and an arbitrary function depending on 𝑥′ only.

The statement of this lemma can be checked by straightforward calculations.
We proceed to solving problems (6.4). We first consider independently these problems for 𝑝 =

1, 2, 3, and then we construct the solutions for arbitrary 𝑝. We have to consider separately the
cases 𝑝 = 1, 2, 3, since to construct the solution for arbitrary 𝑝, one has to employ constructions
for the cases 𝑝 = 1, 2, 3.

As 𝑝 = 1, problem (6.4) casts into the form

− 𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑
(1)
𝑘

𝜕𝜉
− 𝜕

𝜕𝜉

𝜕𝜑𝑘

𝜕𝜈
= 0 in Ω, 𝐴𝑛𝑛

𝜕𝜑
(1)
𝑘

𝜕𝜉
+
𝜕𝜑𝑘

𝜕𝜈
= 0 on 𝜕Ω.

It implies

𝐴𝑛𝑛
𝜕𝜑

(1)
𝑘

𝜕𝜉
+
𝜕𝜑𝑘

𝜕𝜈
= 0, (6.9)

𝜑
(1)
𝑘 = 𝜑

(1)
𝑘 + Φ

(1)
𝑘 , 𝜑

(1)
𝑘 := 𝒯6𝜑𝑘, (6.10)

where Φ
(1)
𝑘 = Φ

(1)
𝑘 (𝑥′) is a function which will be determined below,

(𝒯6𝜑)(𝑥′, 𝜉) :=
𝑛−1∑︁
𝑗=1

𝐺𝑗(𝑥
′, 𝜉)

𝜕𝜑

𝜕𝑥𝑗
(𝑥′) +𝐺0(𝑥

′, 𝜉)𝜑(𝑥′), (6.11)

𝐺𝑗(𝑥
′, 𝜉) := −

𝜉∫︁
− 1

2

𝐴𝑛𝑗(𝑥
′, 𝑡) d𝑡

𝐴𝑛𝑛(𝑥′, 𝑡)
−

1
2∫︁

− 1
2

𝑡𝐴𝑛𝑗(𝑥
′, 𝑡)

𝐴𝑛𝑛(𝑥′, 𝑡)
d𝑡,

𝐺0(𝑥
′, 𝜉) := −

𝜉∫︁
− 1

2

𝐴𝑛(𝑥′, 𝑡) + i𝛼(𝑥′)

𝐴𝑛𝑛(𝑥′, 𝑡)
d𝑡−

1
2∫︁

− 1
2

(︂
𝑡− 1

2

)︂
𝐴𝑛(𝑥′, 𝑡) + i𝛼(𝑥′)

𝐴𝑛𝑛(𝑥′, 𝑡)
d𝑡.

In view of identities (2.3) it is easy to check that function 𝜑(1)
𝑘 obeys condition (6.7).

We write down problem (6.4) for 𝑝 = 2:

− 𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑
(2)
𝑘

𝜕𝜉
+

𝜕

𝜕𝜈*
𝜕𝜑

(1)
𝑘

𝜕𝜉
− 𝜕

𝜕𝜉

𝜕𝜑
(1)
𝑘

𝜕𝜈
+ 𝒯5𝜑𝑘 = 𝜆0𝜑𝑘 in Ω,

𝐴𝑛𝑛
𝜕𝜑

(2)
𝑘

𝜕𝜉
+
𝜕𝜑

(1)
𝑘

𝜕𝜈
= 0 on 𝜕Ω.

(6.12)
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We write the solvability condition (6.6):
1
2∫︁

− 1
2

𝜕

𝜕𝜈*
𝜕𝜑

(1)
𝑘

𝜕𝜉
d𝜉 −

1
2∫︁

− 1
2

𝜕

𝜕𝜉

𝜕𝜑
(1)
𝑘

𝜕𝜈
d𝜉 +

1
2∫︁

− 1
2

(𝒯5𝜑𝑘 − 𝜆0𝜑𝑘) d𝜉 = −𝜕𝜑
(1)
𝑘

𝜕𝜈

⃒⃒⃒⃒𝜉= 1
2

𝜉=− 1
2

,

which yields
1
2∫︁

− 1
2

(︂
𝜕

𝜕𝜈*
𝜕

𝜕𝜉
𝒯6 + 𝒯5 − 𝜆0

)︂
𝜑𝑘 d𝜉 = 0.

Substituting here the expressions for 𝜕
𝜕𝜈*

and identities (6.9), (6.10), we obtain equations for
eigenfunctions 𝜑𝑘:

ℋ0
𝛼𝜑𝑘 = 𝜆0𝜑𝑘,

which holds by the definition of eigenfunctions 𝜑𝑘 and eigenvalue 𝜆0. Returning back to problem
(6.12), we substitute there formulae (6.9), (6.10), take into consideration the identity

𝜕𝜑
(1)
𝑘

𝜕𝜉
=
𝜕𝜑

(𝑘)
1

𝜕𝜉
(6.13)

and write down then the solution by Lemma 6.1. As a result we get

𝜑
(2)
𝑘 (𝑥′, 𝜉) = 𝜑

(2)
𝑘 (𝑥′, 𝜉) + 𝜑

(2)
𝑘 (𝑥′, 𝜉) + Φ

(2)
𝑘 (𝑥′), (6.14)

𝜑
(2)
𝑘 = 𝒯6Φ

(1)
𝑘 , 𝜑

(2)
𝑘 = 𝒯7Φ

(1)
𝑘 , (6.15)

where 𝒯7𝜑 is the function defined by formula (6.8) with

𝐹 =

(︂
𝜕

𝜕𝜈*
𝜕

𝜕𝜉
𝒯6 −

𝜕

𝜕𝜉

𝜕

𝜕𝜈
𝒯6 + 𝒯5 − 𝜆0

)︂
𝜑, 𝑔− =

𝜕

𝜕𝜈
𝒯6𝜑

⃒⃒⃒⃒
𝜉=− 1

2

.

We proceed to the case 𝑝 = 3. Here problem (6.4) casts into the form

− 𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑
(3)
𝑘

𝜕𝜉
+

𝜕

𝜕𝜈*
𝜕𝜑

(2)
𝑘

𝜕𝜉
− 𝜕

𝜕𝜉

𝜕𝜑
(2)
𝑘

𝜕𝜈
+ 𝒯5𝜑

(1)
𝑘 = 𝜆0𝜑

(1)
𝑘 + Λ

(1)
𝑘 𝜑𝑘 in Ω,

𝐴𝑛𝑛
𝜕𝜑

(3)
𝑘

𝜕𝜉
+
𝜕𝜑

(2)
𝑘

𝜕𝜈
= 0 on 𝜕Ω.

(6.16)

We write down solvability condition (6.6) for this problem and bear in mind formulae (6.10),
(6.14), (6.14) and identity (6.7) for 𝜑(1)

𝑘 , 𝜑(2)
𝑘 , 𝜑(2)

𝑘 . We get

(ℋ0
𝛼 − 𝜆0)Φ

(1)
𝑘 = ℎ

(1)
𝑘 + 𝜆

(1)
𝑘 𝜑𝑘, (6.17)

ℎ
(1)
𝑘 := −

1
2∫︁

− 1
2

(︃
𝜕

𝜕𝜈*
𝜕𝜑

(2)
𝑘

𝜕𝜉
+ 𝒯5𝜑

(1)
𝑘

)︃
d𝜉 = −

1
2∫︁

− 1
2

(︂
𝜕

𝜕𝜈*
𝜕

𝜕𝜉
𝒯7 + 𝒯5𝒯6

)︂
𝜑𝑘 d𝜉.

Since 𝜆0 is an 𝑚-multiple eigenvalue of operator ℋ0
𝛼 and the latter is self-adjoint, the obtained

equation is solvable if and only if the right hand side is orthogonal to all 𝜑𝑠, 𝑠 = −1, . . . ,𝑚, in
𝐿2(R

𝑛−1):
(ℎ

(1)
𝑘 , 𝜑𝑠)𝐿2(R𝑛−1) + 𝜆

(1)
𝑘 𝛿𝑘𝑠 = 0, 𝑘, 𝑠 = 1, . . . ,𝑚, (6.18)

where 𝛿𝑘𝑠 is the Kronecker delta. Let us show that numbers Λ
(1)
𝑘 and functions 𝜑𝑘 can be chosen

so that these identities are satisfied. We first prove that the matrix composed by the numbers
−(ℎ

(1)
𝑘 , 𝜑𝑠)𝐿2(R𝑛−1) is Hermitian. We indicate this matrix by L.
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The definition implies immediately that

− (ℎ
(1)
𝑘 , 𝜑𝑠)𝐿2(R𝑛−1) =

(︃
𝜕

𝜕𝜈*
𝜕𝜑

(2)
𝑘

𝜕𝜉
, 𝜑𝑠

)︃
𝐿2(Ω)

+ (𝒯5𝜑
(1)
𝑘 , 𝜑𝑠)𝐿2(Ω). (6.19)

Integrating by parts and employing (6.9), (6.13), (6.15), we have(︃
𝜕

𝜕𝜈*
𝜕𝜑

(2)
𝑘

𝜕𝜉
, 𝜑𝑠

)︃
𝐿2(Ω)

=

(︃
𝜕𝜑

(2)
𝑘

𝜕𝜉
,
𝜕𝜑𝑠

𝜕𝜈*

)︃
𝐿2(Ω)

= −

(︃
𝜕𝜑

(2)
𝑘

𝜕𝜉
, 𝐴𝑛𝑛

𝜕𝜑
(1)
𝑠

𝜕𝜉

)︃
𝐿2(Ω)

= −
∫︁

R𝑛−1

𝐴𝑛𝑛
𝜕𝜑

(2)
𝑘

𝜕𝜉
𝜑
(1)
𝑠

⃒⃒⃒⃒𝜉= 1
2

𝜉=− 1
2

d𝑥′ +

(︃
𝜕

𝜕𝜉
𝐴𝑛𝑛

𝜕𝜑
(2)
𝑘

𝜕𝜉
, 𝜑(1)

𝑠

)︃
𝐿2(Ω)

= −
∫︁

R𝑛−1

𝐴𝑛𝑛
𝜕𝜑

(2)
𝑘

𝜕𝜉
𝜑
(1)
𝑠

⃒⃒⃒⃒𝜉= 1
2

𝜉=− 1
2

d𝑥′ −

(︃
𝜕

𝜕𝜉

𝜕𝜑
(1)
𝑘

𝜕𝜈
− 𝜕

𝜕𝜈*
𝜕𝜑

(1)
𝑘

𝜕𝜉
− 𝒯5𝜑𝑘, 𝜑

(1)
𝑠

)︃
𝐿2(Ω)

=

(︃
𝜕𝜑

(1)
𝑘

𝜕𝜈
,
𝜕𝜑

(1)
𝑠

𝜕𝜉

)︃
𝐿2(Ω)

+

(︃
𝜕𝜑

(1)
𝑘

𝜕𝜉
,
𝜕𝜑

(1)
𝑠

𝜕𝜈

)︃
𝐿2(Ω)

+
(︁
𝒯5𝜑𝑘, 𝜑

(1)
𝑠

)︁
𝐿2(Ω)

.

These identities and (6.19) prove that matrix L is Hermitian. By the theorem on
simultaneous diagonalization of two quadratic forms we conclude that keeping eigenfunctions 𝜑𝑘

orthonormalized in 𝐿2(R
𝑛−1), we can choose them so that L is diagonal. In this case identities

(6.18) obviously hold true, once we let Λ
(1)
𝑘 equal to the eigenvalues of matrix L. In what follows

the quantities Λ
(1)
𝑘 and eigenfunctions 𝜑𝑘 are assumed to chosen exactly in this way.

Since solvability conditions (6.18) are satisfied, equation (6.17) has the unique solution
orthogonal to all eigenfunctions 𝜑𝑠, 𝑠 = 1, . . . ,𝑚, in 𝐿2(R

𝑛−1). We denote this solution by
Ψ

(1)
𝑘 ; then the general solution to equation (6.17) is given by the formula

Φ
(1)
𝑘 = Ψ

(1)
𝑘 +

𝑚∑︁
𝑠=1

𝑏
(1)
𝑘,𝑠𝜑𝑠, (6.20)

where 𝑏(1)𝑘,𝑠 are some constants. Having solved equation (6.17), we return back to the boundary
value problem (6.16) and we find its solution by means of Lemma 6.1.

In what follows we assume additionally that the eigenvalues of matrix L are different. Such
assumption is technical and inessential; it is made just to simplify further calculations, see
Remark 6.1 below.

The further process of solving boundary value problem (6.4) for arbitrary 𝑝 is similar to
above arguments. Namely, writing out solvability condition (6.6) for problem (6.4), we obtain
equation for the function Φ

(𝑝−2)
𝑘 (𝑥′) appearing while solving problem (6.4) for (𝑝 − 2) as an

arbitrary term in the general solution. Equation for function Φ
(𝑝−2)
𝑘 is analogous to equation

(6.17) but from some other right hand side. The solvability condition of this equation, the
orthogonality of the right hand side to all the eigenfunctions 𝜑𝑞, 𝑞 = 1, . . . ,𝑚, in 𝐿2(R

𝑛−1),
allows us to determine numbers Λ

(𝑝−2)
𝑘 . We then solve the obtained equation for Φ

(𝑝−2)
𝑘 and by

Lemma 6.1 we solve problem (6.4). Functions 𝜑(𝑝)
𝑘 and numbers Λ

(𝑝)
𝑘 are described in the next

statement.

Lemma 6.2. There exist numbers Λ
(𝑝)
𝑘 , 𝑝 > 1, such that the boundary value problem (6.4)

is solvable for each 𝑝 > 1. Solutions to these problems are represented as

𝜑
(𝑝)
𝑘 (𝑥′, 𝜉) = 𝜑

(𝑝)
𝑘 (𝑥′, 𝜉) + 𝜑

(𝑝)
𝑘 (𝑥′, 𝜉) + 𝜑

(𝑝)
𝑘 (𝑥′, 𝜉) + Φ

(𝑝)
𝑘 (𝑥′), (6.21)
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where

𝜑
(𝑝)
𝑘 = 𝒯6Φ

(𝑝−1)
𝑘 , 𝜑

(𝑝)
𝑘 = 𝒯7Φ

(𝑝−2)
𝑘 , (6.22)

Φ
(𝑝)
𝑘 = Ψ

(𝑝)
𝑘 +

𝑚∑︁
𝑠=1

𝑏
(𝑝)
𝑘,𝑠𝜑𝑠, (6.23)

Ψ
(𝑝)
𝑘 is the solution to the equation

(ℋ0
𝛼 − 𝜆0)Ψ

(𝑝)
𝑘 = ℎ

(𝑝)
𝑘 +

𝑝∑︁
𝑞=1

Λ
(𝑞)
𝑘 Φ

(𝑝−𝑞)
𝑘 , (6.24)

ℎ
(𝑝)
𝑘 = ℎ̌

(𝑝)
𝑘 −

𝑚∑︁
𝑠=1

𝑏
(𝑝−1)
𝑘,𝑠

1
2∫︁

− 1
2

(︂
𝜕

𝜕𝜈*
𝜕

𝜕𝜉
𝒯7 + 𝒯5𝒯6

)︂
𝜑𝑠 d𝜉,

ℎ̌
(𝑝)
𝑘 := −

1
2∫︁

− 1
2

𝜕

𝜕𝜈*
𝜕

𝜕𝜉

(︁
𝜑
(𝑝+1)
𝑘 + 𝒯7Ψ

(𝑝−1)
𝑘

)︁
d𝜉 −

1
2∫︁

− 1
2

𝒯5

(︁
𝜑
(𝑝)
𝑘 + 𝜑

(𝑝)
𝑘 + 𝒯6Ψ

(𝑝−1)
𝑘

)︁
d𝜉,

which is orthogonal to all eigenfunctions 𝜑𝑞, 𝑞 = 1, . . . ,𝑚, in 𝐿2(R
𝑛−1), and numbers 𝑏(𝑝)𝑘,𝑠 and

Λ
(𝑝)
𝑘 are determined by the identities

Λ
(𝑝)
𝑘 = −(ℎ̌

(𝑝)
𝑘 , 𝜑𝑘)𝐿2(R𝑛−1) −

𝑝−1∑︁
𝑞=2

Λ
(𝑞)
𝑘 𝑏

(𝑝−𝑞)
𝑘,𝑞 ,

𝑏
(𝑝)
𝑘,𝑘 = 0, 𝑏

(𝑝)
𝑘,𝑠 =

(ℎ̌
(𝑝+1)
𝑘 , 𝜑𝑠)𝐿2(R𝑛−1) +

𝑝∑︀
𝑞=2

Λ
(𝑞)
𝑘 𝑏

(𝑝−𝑞+1)
𝑘,𝑞

Λ
(1)
𝑠 − Λ

(1)
𝑘

.

(6.25)

Functions 𝜑(𝑝)
𝑘 are given by formula (6.8) with

𝐹 =

(︂
𝜕

𝜕𝜈*
𝜕

𝜕𝜉
− 𝜕

𝜕𝜉

𝜕

𝜕𝜈
+ 𝒯5

)︂(︁
𝜑
(𝑝−1)
𝑘 + 𝜑

(𝑝−1)
𝑘

)︁
− 𝜆0

(︁
𝜑
(𝑝−1)
𝑘 + 𝜑

(𝑝−1)
𝑘 + 𝜑

(𝑝−1)
𝑘

)︁
+

𝑝−2∑︁
𝑞=1

Λ
(𝑞)
𝑘 𝜑

(𝑝−𝑞−2)
𝑘 ,

𝑔− =
𝜕

𝜕𝜈

(︁
𝜑
(𝑝−1)
𝑘 + 𝜑

(𝑝−1)
𝑘 + Φ

(𝑝−1)
𝑘

)︁⃒⃒⃒
𝜉=− 1

2

.

Functions 𝜑(𝑝)
𝑘 are infinitely differentiable with respect to 𝑥′ and for each 𝛽 ∈ Z𝑛−1

+ the belongings

𝜕|𝛽|𝜑
(𝑝)
𝑘

𝜕𝑥𝛽
∈ 𝐶2(Ω) ∩ 𝐿∞(Ω)

hold true.

The lemma can be proven easily by induction employing the expressions for functions 𝜑(1)
𝑘 , 𝜑(2)

𝑘

obtained above. At that, one should assume that 𝜑(1)
𝑘 = 𝜑

(2)
𝑘 = 𝜑

(2)
𝑘 = 0.

Remark 6.1. The assumption on different eigenvalues for matrix L was employed in
Lemma 6.2 for obtaining formulae (6.25). If this assumption does not hold, it just means that
there is no complete splitting of leading terms in the asymptotics for the perturbed eigenvalues.
In this case it is a not a complicated problem to determine the terms of series (6.1), (6.2).
The only difference is that on the next steps there appears a matrix similar to L which will



DISCRETE SPECTRUM OF THIN 𝒫𝒯 -SYMMETRIC WAVEGUIDE 51

determine the appropriate choice of eigenfunctions 𝜑𝑘. It imply no essential changes in the
scheme of constructing the solutions to problem (6.4).

Thus, no matter how the eigenvalues of matrix L look like, it is possible to construct
asymptotic series (6.1), (6.2) so that the next lemma holds true.

Lemma 6.3. Let 𝑁 be an arbitrary natural number. The functions

𝜑
(𝜀,𝑁)
𝑘 (𝑥) = 𝜀−1/2

(︃
𝜑𝑘(𝑥′) +

𝑁∑︁
𝑝=1

𝜀𝑝𝜑
(𝑝)
𝑘 (𝑥′, 𝑥𝑛𝜀

−1)

)︃
, 𝜆

(𝜀,𝑁)
𝑘 = 𝜆0 +

𝑁−2∑︁
𝑝=1

𝜀𝑝Λ
(𝑝)
𝑘

satisfy the estimates

‖𝜑(𝜀,𝑁)
𝑘 − 𝜀−1/2𝜑𝑘‖𝐿2(Ω𝜀) 6 𝐶𝜀, |𝜆(𝜀,𝑁)

𝑘 − 𝜆0| 6 𝐶𝜀, (6.26)

‖𝑓 (𝜀,𝑁)
𝑘 ‖𝐿2(Ω𝜀) 6 𝐶𝜀𝑁−1, 𝑓

(𝜀,𝑁)
𝑘 := (ℋ𝜀

𝛼 − 𝜆
(𝜀,𝑁)
𝑘 )𝜑

(𝜀,𝑁)
𝑘 . (6.27)

Here 𝐶 are some constants independent of 𝜀 but depending, generally speaking, on 𝑁 , while
estimate (6.27) involves the statement on belonging function 𝜑

(𝜀,𝑁)
𝑘 to domain of operator ℋ𝜀

𝛼.

7. Asymptotic expansions: justification

In the present section we complete the proof of Theorem 2.4 and justify the formal asymptotic
expansions constructed in the previous section. First we prove two auxiliary statement and then
we proceed to the justification. непосредственно обоснованием.

Lemma 7.1. Eigenfunctions 𝜓𝜀
𝑘 of the perturbed operator can be chosen so that they satisfy

the relations
(𝜓𝜀

𝑘,𝒫𝜓𝜀
𝑗 )𝐿2(Ω𝜀) = 𝛿𝑗𝑘, 𝑗, 𝑘 = 1, . . . ,𝑚. (7.1)

Доказательство. In accordance with the results of the fifth section, each eigenfunction of
the perturbed operator satisfy identities (5.16) and (5.19). Multiplying the eigenfunctions by
appropriate constants, by (5.19) we get (7.1) for 𝑗 = 𝑘. In view of these relations the form
( · ,𝒫 ·)𝐿2(Ω𝜀) is a scalar product on an eigenspace of the perturbed operator associated with an
eigenvalue. This is why these eigenfunctions can be chosen so that they satisfy relations (7.1).

Suppose now eigenfunctions 𝜓𝜀
𝑘 and 𝜓𝜀

𝑗 are associated with different eigenvalues 𝜆𝜀𝑘 and 𝜆𝜀𝑗 .
Then taking into consideration the reality of these eigenvalues, by analogy with (5.17) it is easy
to check that

0 =
(︀
(ℋ𝜀

𝛼 − 𝜆𝜀𝑘)𝜓𝜀
𝑘,𝒫𝜓𝜀

𝑗

)︀
𝐿2(Ω𝜀)

= (𝜆𝜀𝑗 − 𝜆𝜀𝑘)
(︀
𝜓𝜀
𝑘,𝒫𝜓𝜀

𝑗

)︀
𝐿2(Ω𝜀)

,

that implies the desired identity (7.1).

Lemma 7.2. For 𝜆 in a small fixed neighborhood of point 𝜆0 and all sufficiently small 𝜀 the
resolvent (ℋ𝜀

𝛼 − 𝜆)−1 can be represented as

(ℋ𝜀
𝛼 − 𝜆)−1 =

𝑚∑︁
𝑘=1

( · ,𝒫𝜓𝜀
𝑘)𝐿2(Ω𝜀)

𝜆𝜀𝑘 − 𝜆
𝜓𝜀
𝑘 + 𝒯 𝜀

8 (𝜆), (7.2)

where operator 𝒯 𝜀
8 (𝜆) : 𝐿2(Ω

𝜀) → 𝑊 1
2 (Ω𝜀) is bounded uniformly in 𝜆 and 𝜀 and holomorphic

with respect to 𝜆, while functions 𝜓(𝜀)
𝑘 are chosen in accordance with Lemma 7.1.

Доказательство. Let 𝛾 be a circle of small radius centered at point 𝜆0 and containing no
other points of the spectrum of operator ℋ0

𝛼. Then by Theorem 2.3 for sufficiently small
𝜀 all the eigenvalues of perturbed operator converging to 𝜆0 as 𝜀 → +0 are located inside
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the circumference 𝛾 and are separated from it by a positive distance. Now it follows from
Theorem 2.2 that the convergence

− 1

2𝜋i

∫︁
𝛾

(ℋ𝜀
𝛼 − 𝜆)−1 d𝜆→ − 1

2𝜋i

∫︁
𝛾

(ℋ0
𝛼 − 𝜆)−1 ⊕ 0 d𝜆 (7.3)

holds true in the sense of norm of operator in 𝐿2(Ω
𝜀). According to [35, Гл. III, §6.5], both sides

of this convergence are the projectors in 𝐿2(Ω
𝜀) and by the self-adjointness of operator ℋ0

𝛼 and
[35, Гл. V, §3.5] it holds

− 1

2𝜋i

∫︁
𝛾

(ℋ0
𝛼 − 𝜆)−1 ⊕ 0 d𝜆 =

𝑚∑︁
𝑘=1

𝜀−1(·, 𝜑𝑘)𝐿2(Ω𝜀)

𝜆0 − 𝜆
𝜑𝑘. (7.4)

According to [35, Гл. I, §4.6], it implies that the dimension of the projector in the left hand
side of (7.3) also equals 𝑚 for all sufficiently small 𝜀.

The definition of eigenfunction yields immediately that

(ℋ𝜀
𝛼 − 𝜆)−1𝜓𝜀

𝑘 = (𝜆𝜀𝑘 − 𝜆)−1𝜓𝜀
𝑘,

and thus by [35, Гл. III, §6.5, урав. (6.36)] we have

− 1

2𝜋i

∫︁
𝛾

(ℋ𝜀
𝛼 − 𝜆)−1𝜓𝜀

𝑘 d𝜆 = 𝜓𝜀
𝑘.

Thus, the projector in the left hand side of (7.3) is that on the finite dimensional space spanned
over functions 𝜓𝜀

𝑘, 𝑘 = 1, . . . ,𝑚. We stress that generally speaking it is not an operator of
orthogonal projection, since operator ℋ𝜀

𝛼 is non-self-adjoint. Thus,

− 1

2𝜋i

∫︁
𝛾

(ℋ𝜀
𝛼 − 𝜆)−1 d𝜆 =

𝑚∑︁
𝑘=1

𝑐𝜀𝑘(·)𝜓𝜀
𝑘, (7.5)

where 𝑐𝜀𝑘 : 𝐿2(Ω
𝜀) → C are some functionals.

Let us determine functionals 𝑐𝜀𝑘. For an arbitrary function 𝑓 ∈ 𝐿2(Ω
𝜀) and 𝜆 ∈ 𝛾 by analogy

with (5.17) we deduce

(𝑓,𝒫𝜓𝜀
𝑘)𝐿2(Ω𝜀) =

(︀
(ℋ𝜀

𝛼 − 𝜆)𝑢,𝒫𝜓𝜀
𝑘

)︀
𝐿2(Ω𝜀)

= (𝜆𝜀𝑘 − 𝜆)(𝑢,𝒫𝜓𝜀
𝑘)𝐿2(Ω𝜀),

that by (7.5) and Lemma 7.1 implies

𝑐𝜀𝑘(𝑓) = (𝑓,𝒫𝜓𝜀
𝑘)𝐿2(Ω𝜀). (7.6)

In the sense of [35, Гл. III, §6.5], to each eigenvalue 𝜆𝜀𝑘 an quasinilpotent operator is associated
and it reads as

− 1

2𝜋i
(ℋ𝜀

𝛼 − 𝜆𝜀𝑘)

∫︁
𝛾𝜀
𝑘

(ℋ𝜀
𝛼 − 𝜆)−1 d𝜆.

Here 𝛾𝜀𝑘 is a small circle centered at 𝜆𝜀𝑘 containing no other eigenvalues of perturbed operator
except 𝜆𝜀𝑘. Since the integral − 1

2𝜋i

∫︀
𝛾𝜀
𝑘

(ℋ𝜀
𝛼 − 𝜆)−1 d𝜆 is a part of the corresponding projector in

(7.3), by (7.5), (7.6), the aforementioned operator vanishes. Hence, by (7.5), (7.6) and [35, Гл.
III, §6.5, урав. (6.35)] we get representation (7.2), where 𝒯 𝜀

8 (𝜆) is a bounded in 𝐿2(Ω
𝜀) operator

holomorphic with respect to 𝜆. It remains to prove that it is uniformly bounded in 𝜀 and 𝜆 and
is holomorphic with respect to 𝜆 as an operator from 𝐿2(Ω

𝜀) into 𝑊 1
2 (Ω𝜀).

For an arbitrary 𝑓 ∈ 𝐿2(Ω
𝜀) by estimates (3.11), the norm ‖∇(ℋ𝜀

𝛼−𝜆)−1𝑓‖𝐿2(Ω𝜀) is uniformly
estimated by the norms ‖𝑓‖𝐿2(Ω𝜀) and ‖(ℋ𝜀

𝛼−𝜆)−1𝑓‖𝐿2(Ω𝜀). By means of this estimate it is easy
to check that operator 𝒯 𝜀

8 (𝜆) is holomorphic with respect to 𝜆 also as an operator from 𝐿2(Ω
𝜀)

into 𝑊 1
2 (Ω𝜀).
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By Theorem 2.2, as 𝜆 ∈ 𝛾, the operator (ℋ𝜀
𝛼 − 𝜆)−1 converges to (ℋ0

𝛼 − 𝜆)−1 ⊕ 0 as 𝜀→ +0.
Expressing operator 𝒯 𝜀

8 (𝜆) by (7.2), for 𝑓 ∈ 𝐿2(Ω
𝜀), 𝜆 ∈ 𝛾, and sufficiently small 𝜀 we get the

uniform estimate
‖𝒯 𝜀

8 (𝜆)𝑓‖𝑊 1
2 (Ω

𝜀) 6 𝐶‖𝑓‖𝐿2(Ω𝜀), (7.7)
where 𝐶 is a constant independent of 𝑓 , 𝜆, and sufficiently small 𝜀. By the modulus maximum
principle for holomorphic function, estimate (7.7) is valid also for 𝜆 lying inside circle 𝛾. The
proof is complete.

We proceed to the justification. It follows from Lemmata 6.3, 7.2 that

𝜑
(𝜀,𝑁)
𝑘 =

𝑚∑︁
𝑞=1

(︀
𝑓
(𝜀,𝑁)
𝑘 ,𝒫𝜓𝜀

𝑞

)︀
𝐿2(Ω𝜀)

𝜆𝜀𝑞 − 𝜆
(𝜀,𝑁)
𝑘

𝜓𝜀
𝑞 + 𝒯 𝜀

8 (𝜆
(𝜀,𝑁)
𝑘 )𝑓

(𝜀,𝑁)
𝑘 , 𝑘 = 1, . . . ,𝑚. (7.8)

Employing Lemma 7.1, we get(︁
𝜑
(𝜀,𝑁)
𝑘 − 𝒯 𝜀

8 (𝜆
(𝜀,𝑁)
𝑘 )𝑓

(𝜀,𝑁)
𝑘 ,𝒫

(︀
𝜑
(𝜀,𝑁)
𝑗 − 𝒯 𝜀

8 (𝜆
(𝜀,𝑁)
𝑗 )𝑓

(𝜀,𝑁)
𝑗

)︀)︁
𝐿2(Ω𝜀)

=
𝑚∑︁
𝑞=1

(︀
𝑓
(𝜀,𝑁)
𝑘 ,𝒫𝜓𝜀

𝑞

)︀
𝐿2(Ω𝜀)

𝜆𝜀𝑞 − 𝜆
(𝜀,𝑁)
𝑘

⎛⎝(︀𝑓 (𝜀,𝑁)
𝑗 ,𝒫𝜓𝜀

𝑞

)︀
𝐿2(Ω𝜀)

𝜆𝜀𝑞 − 𝜆
(𝜀,𝑁)
𝑗

⎞⎠ (7.9)

(︀
𝜑
(𝜀,𝑁)
𝑘 − 𝒯 𝜀

8 (𝜆
(𝜀,𝑁)
𝑘 )𝑓

(𝜀,𝑁)
𝑘 ,𝒫𝜓𝜀

𝑗

)︀
𝐿2(Ω𝜀)

=

(︀
𝑓
(𝜀,𝑁)
𝑘 ,𝒫𝜓𝜀

𝑗

)︀
𝐿2(Ω𝜀)

𝜆𝜀𝑗 − 𝜆
(𝜀,𝑁)
𝑘

. (7.10)

Lemmata 6.3, 7.2 yield the convergence

‖𝒯 𝜀
8 (𝜆

(𝜀,𝑁)
𝑘 )𝑓

(𝜀,𝑁)
𝑘 ‖𝐿2(Ω𝜀) → 0 as 𝜀→ +0,

and estimates (6.26) follow the relations(︀
𝜑
(𝜀,𝑁)
𝑘 ,𝒫𝜑(𝜀,𝑁)

𝑗

)︀
𝐿2(Ω𝜀)

= 𝛿𝑘𝑗 + 𝑜(1), 𝜀→ +0,

|𝐹 𝜀
𝑘𝑗| 6 𝐶, 𝐹 𝜀

𝑘𝑗 :=

(︀
𝑓
(𝜀,𝑁)
𝑘 ,𝒫𝜓𝜀

𝑗

)︀
𝐿2(Ω𝜀)

𝜆𝜀𝑗 − 𝜆
(𝜀,𝑁)
𝑘

, (7.11)

where constant 𝐶 is independent of 𝜀, 𝑘, 𝑗. It follows that the determinant of the matrix formed
by the left hand sides of identities (7.9) tends to one as 𝜀→ +0. On the other hand, the matrix
formed by the right hand sides of identities (7.9) can be represented as the product F𝜀(F𝜀)*,
where F𝜀 is the matrix with entries 𝐹 𝜀

𝑘𝑗. We thus get

| det F𝜀| → 1 при 𝜀→ +0.

Therefore, for each sufficiently small 𝜀 there exists permutation 𝑞1, . . . , 𝑞𝑚 such that⃒⃒⃒⃒
⃒
𝑚∏︁
𝑘=1

𝐹 𝜀
𝑘𝑞𝑘

⃒⃒⃒⃒
⃒ > 1

𝑚!
.

By (7.11) it implies

|𝐹 𝜀
𝑘𝑞𝑘

| > 1

𝐶𝑚−1𝑚!
.

Substituting here the definition of 𝐹 𝜀
𝑘𝑞𝑘

in (7.11) and employing estimates (6.27), we arrive at
the identities

𝜆𝜀𝑘𝑞𝑘 − 𝜆
(𝜀,𝑁)
𝑘 = 𝒪(𝜀𝑁−1),

which prove asymptotics (2.21) for the perturbed eigenvalues after an appropriate re-ordering.
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We proceed to the justification of the asymptotics for the eigenfunctions. Suppose that
condition (2.22) is satisfied. Then it follows from asymptotics (2.21) that

|𝜆𝜀𝑗 − 𝜆
(𝜀,𝑁)
𝑘 | > 𝐶𝜀𝑟

as 𝑁 > 𝑟, and hence by (6.27)
|𝐹 𝜀

𝑘𝑗| 6 𝐶𝜀𝑁−𝑟−1,

where 𝐶 is a constant independent of 𝜀, 𝑘, 𝑗. We substitute the latter estimates and (6.27) into
identity (7.8) and move term 𝐹 𝜀

𝑘𝑘𝜓
𝜀
𝑘 into the left hand side. Then we obtain

‖𝜑(𝜀,𝑁)
𝑘 − 𝐹 𝜀

𝑘𝑘𝜓
𝜀
𝑘‖𝑊 1

2 (Ω
𝜀) 6 𝐶𝜀𝑁−𝑟−1.

Since 𝐹 𝜀
𝑘𝑘 is a number, 𝐹 𝜀

𝑘𝑘𝜓
𝜀
𝑘 is an eigenfunction associated with 𝜆𝜀𝑘. This is why the latter

estimate proves asymptotics (2.23) for the perturbed eigenfunctions. The proof of Theorem 2.4
is complete.
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