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ON ANALOGUES OF THIRD ORDER BESSEL FUNCTION

F.KH. BAICHOROVA

Abstract. We consider eigenfunctions of differential operators semi-invariant with respect
to to the group of translations. We obtain a solvability condition in terms of primitive
functions and show a connection of this condition with the theory of commutative rings of
differential operators.
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1. Introduction

We consider the eigenvalue problem for differential operators in the following special class
(cf. [1])

𝐴 = 𝑒𝑁𝑡𝑎(𝐷𝑡) = 𝑒𝑁𝑡

𝑁∏︁
𝑗=1

(𝐷𝑡 + 𝛼𝑗). (1)

Here 𝑎(𝐷𝑡) is arbitrary polynomial with constant coefficients of order 𝑁 depending on the
symbol 𝐷𝑡. After the change of independent variable

𝑥 = −𝑒−𝑡, 𝐷𝑥 = 𝑒𝑡𝐷𝑡, 𝐷𝑡 = −𝑥𝐷𝑥, (2)

operator (1) becomes Euler operator (cf. [2])

̃︀𝐴 =
1

(−𝑥)𝑁

𝑁∏︁
𝑗=1

(𝑥𝐷𝑥 − 𝛼𝑗), (3)

and as 𝑁 = 2 we get

̃︀𝐴 =
1

𝑥2
(𝑥𝐷𝑥 − 𝛼1)(𝑥𝐷𝑥 − 𝛼2) = 𝐷2

𝑥 +
𝛼

𝑥
𝐷𝑥 +

𝛽

𝑥2
. (4)

In other words, as 𝑁 = 2, the considered eigenvalue problem 𝐴𝜓 = 𝜆𝜓 is reduced to the Bessel
equation

𝑦
′′

+
1

𝑥
𝑦

′
=
𝑥2 + 𝑛2

𝑥2 𝑦, (5)

while as 𝑁 = 3, it reduces to a simplest generalization of equation (5).
Operators (1) are semi-invariant with respect to the translation 𝑡→ 𝑡+ 𝑐𝑜𝑛𝑠𝑡. By means of

the translation, without loss of generality we let 𝜆 = 1 in equation 𝐴𝜓 = 𝜆𝜓. We notice then
that the operation of conjugation with exponent is equivalent to the change 𝐷𝑡 → 𝐷𝑡 + 𝑐𝑜𝑛𝑠𝑡
for these operators. Indeed,

𝑒−𝑘𝑡 ∘𝐷𝑡 ∘ 𝑒𝑘𝑡 = 𝐷𝑡 + 𝑘 ⇒ 𝑒−𝑘𝑡 ∘ 𝑒𝑁𝑡𝑎(𝐷𝑡) ∘ 𝑒𝑘𝑡 = 𝑒𝑁𝑡𝑎(𝐷𝑡 + 𝑘). (6)
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Thus, as 𝑁 = 3, we choose one of the zeroes of operator (1) being zero and we reduce the
eigenvalue equation to the form

𝑒3𝑡𝐷𝑡(𝐷𝑡 + 𝛼2)(𝐷𝑡 + 𝛼3)𝜓 = 𝜓 ⇔ 𝜓
′′′

+
𝛼

𝑥
𝜓

′′
+
𝛽

𝑥2
𝜓

′
= 𝜓, (7)

where 𝛼 = 3 − 𝛼2 − 𝛼3, 𝛽 = 1 − 𝛼2 − 𝛼3 + 𝛼2𝛼3.
It is easy to see that the point 𝑥 = 0 is a regular critical point for equation (7). As it is

known, in a neighborhood of a regular critical point for this equation there exists a fundamental
system of three solutions represented by converging power series (see [3])

𝜓 = 𝑥𝑠( ̂︀𝐶0 + ̂︀𝐶1𝑥+ ̂︀𝐶2𝑥
2 + . . .) (8)

Generally speaking, in this formula the logarithm appears and in the case of “multiple” roots
the solution is to be sought as

𝜓 = 𝑥𝑠[𝜙1(𝑥) log(𝑥) + 𝜙2(𝑥)],

where 𝜙1(𝑥), 𝜙2(𝑥) are analytic at zero functions. The sufficient condition of absence of loga-
rithm is that numbers 𝛼2, 𝛼3 to be non-integer, this case is considered below (see (14)).

Substituting expansion of 𝜓 and its derivatives in equation (7) and equating the coefficients
at the like powers of 𝑥 to zero, we obtain equation

𝑠[(𝑠− 1)(𝑠− 2) + 𝛼(𝑠− 1) + 𝛽] = 0,

which determines exponent 𝑠. This equation is called determining equation. Its solutions are
0, 𝛼2, 𝛼3. The general case is a non-integer 𝑠.

Example 1. As 𝛼2 = 1, 𝛼3 = 2 eigenvalue equation (7) is reduced to the equation

(𝑒𝑡𝐷𝑡)
3 ̂︀𝜓 = 𝐷3

𝑥
̂︀𝜓 ⇔ ̂︀𝜓′′′

= ̂︀𝜓,
whose fundamental system of solutions is

̂︀𝜓1 = 𝑒𝑥, ̂︀𝜓2 = 𝑒𝑎𝑥, ̂︀𝜓3 = 𝑒𝑏𝑥,

where 𝑎 = −1
2
(1 + 𝑖

√
3), 𝑏 = 𝑎.

The main result of the work is the following statement.

Eigenvalue problem for the third order operator ̃︀𝐴 = 1
𝑥3 (𝑥𝐷𝑥 − 𝛼1)(𝑥𝐷𝑥 − 𝛼2)(𝑥𝐷𝑥 − 𝛼3) has

three solutions expressed in terms of primitive functions, namely,

𝜓𝑗 = 𝑒𝛼𝑗𝑥

𝑛∑︁
𝑘=0

𝐶𝑘𝑥
𝑘

if the condition

(0, 𝛼2, 𝛼3) ≡ (0, 1, 2) (𝑚𝑜𝑑 3). (9)

holds true.
In the case of second order Bessel equation, the condition similar (9) is written as

(0, 𝛼2) ≡ (0, 1) (𝑚𝑜𝑑 2),

that is equivalent to half-integer 𝑛 in equation (5).
It was shown in work [4] that integer 𝑛 in equation (5) correspond to commutative rings of

forth and sixth order differential operators (1).
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2. Eigenfunctions

While finding the coefficients of power in 𝑥 expansion (8) for solution, it is convenient to
rewrite the differential equation in terms of the powers of Euler operator 𝑥𝐷𝑥 = 𝜃. For instance,
differential operator

𝑃 = 𝑥(1 − 𝑥)𝜕2 − (𝑎+ 𝑏+ 1)𝑥𝜕 + 𝑐𝜕 − 𝑎𝑏, (10)

corresponding to the hypergeometric Gauss equation, can be rewritten as (cf. [5])

𝑥 · 𝑃 = 𝜃(𝜃 + 𝑐− 1) − 𝑥(𝜃 + 𝑎)(𝑎+ 𝑏). (11)

by employing Euler operator 𝜃 = 𝑥𝜕.
In the general case of third order operator

𝐴 = 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 𝛼2)(𝐷𝑡 + 𝛼3) =
1

𝑥3
𝜃(𝜃 − 𝛼2)(𝜃 − 𝛼3) =

1

𝑥3
𝑎(𝜃), (12)

it is more convenient to see an eigenfunction as the product of a polynomial and an exponential

𝜓 = 𝑒𝑥
𝑛∑︁

𝑘=0

𝐶𝑘𝑥
𝑘, 𝐶0 = 𝑐𝑜𝑛𝑠𝑡. (13)

At that, the coefficients ̂︀𝐶𝑘 and 𝐶𝑘 of expansions (8) and (13) for an eigenfunction are related
by the formulae ̂︀𝐶𝑘 =

∑︁
𝑖+𝑗=𝑘

𝐶𝑖

𝑗!
=
𝐶0

𝑘!
+ . . . 𝐶𝑘, 𝑘 > 0.

Moreover, the following statement holds true. In the general case

̂︀𝐶0 = 1, ̂︀𝐶1 = 0, ̂︀𝐶2 = 0, ̂︀𝐶3 =
1

𝑎(3)
, ..., ̂︀𝐶𝑘 =

̂︀𝐶𝑘−3

𝑎(𝑘)
(14)

and solutions to the problem 𝐴𝜓 = 𝜓 are entire functions.
Indeed, suppose that a solution to the problem 𝐴𝜓 = 𝜓 is represented by power series (8),

where ̂︀𝐶𝑘 are determined by (14).
Let us show that function (8) is entire. In order to do it, let us find the convergence domain

for series (8) by means of D’Alambert test

lim
𝑘→∞

⃒⃒⃒⃒
⃒ ̂︀𝐶3𝑘+3̂︀𝐶3𝑘

⃒⃒⃒⃒
⃒ = lim

𝑘→∞

⃒⃒⃒⃒
𝑥3𝑘+3

∏︀
𝑘(3𝑘[(3𝑘)2 + 3𝑘𝑏1 + 𝑏2])

𝑥3𝑘
∏︀

𝑘[(3𝑘 + 3)((3𝑘 + 3)2 + (3𝑘 + 3)𝑏1 + 𝑏2)]

⃒⃒⃒⃒
= lim

𝑘→∞

⃒⃒⃒⃒
𝑥3

(3𝑘 + 3)((3𝑘 + 3)2 + (3𝑘 + 3)𝑏1 + 𝑏2)

⃒⃒⃒⃒
= |𝑥3| lim

𝑘→∞

⃒⃒⃒⃒
1

(3𝑘 + 3)((3𝑘 + 3)2 + (3𝑘 + 3)𝑏1 + 𝑏2)

⃒⃒⃒⃒
= 0.

The radius of the convergence circle equals ∞ and series (8) converges absolutely for each 𝑥.
An arbitrary polynomial 𝑎(𝜃) in (12) satisfies the following relations (cf. [5]):

𝑎(𝜃) ∙ 𝑥𝛼 = 𝑎(𝛼) · 𝑥𝛼, (15)

𝑎(𝜃)(𝑥𝑖) = 𝑥𝑖 · 𝑎(𝜃 + 𝑖), (16)

𝑎(𝜃)(𝑒𝑥𝑥𝑘) = 𝑥𝑘𝑎(𝜃 + 𝑘)(𝑒𝑥). (17)

Applying these formulae to 𝑎(𝜃) = 𝜃3 + 𝑏1𝜃
2 + 𝑏2𝜃, where 𝑏1 = −𝛼2 − 𝛼3, 𝑏2 = 𝛼2𝛼3, we obtain

𝑎(𝜃+𝑘) = 𝜃3 +(𝑏1 +3𝑘)𝜃2 +(3𝑘2 +2𝑏1𝑘+𝑏2)𝜃+𝑎(𝑘), 𝑎(𝑘) = 𝑘3 +𝑏1𝑘
2 +𝑏2𝑘, 𝑘 = 0, 1, 2, . . . .

(18)
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Hence,

𝑎(𝜃 + 𝑘)(𝑒𝑥) = 𝑒𝑥(𝑥3 + (𝑏1 + 3𝑘 + 3)𝑥2 + 𝑏2(𝑘)𝑥+ 𝑎(𝑘)),where 𝑏(𝑘) = 𝑎(𝑘 + 1) − 𝑎(𝑘). (19)

Let us find coefficients 𝐶𝑘 of series (13) by equation 𝐴𝜓 = 𝜓:

𝐴𝜓 =
1

𝑥3
𝑎(𝜃)(𝑒𝑥

𝑛∑︁
𝑘=0

𝐶𝑘𝑥
𝑘) = 𝑒𝑥

𝑛∑︁
𝑘=0

𝐶𝑘𝑥
𝑘.

We equate the coefficients at the like powers of 𝑥:

𝑎(1)(𝐶0 + 𝐶1) = 0,

(3 + 𝑎)𝐶0 + 𝑏(1)𝐶1 + 𝑎(2)𝐶2 = 0,

𝐶0 + (6 + 𝑎)𝐶1 + 𝑏(2)𝐶2 + 𝑎(3)𝐶3 = 𝐶0,

𝐶1 + (9 + 𝑎)𝐶2 + 𝑏(3)𝐶3 + 𝑎(4)𝐶4 = 𝐶1,

𝐶2 + (12 + 𝑎)𝐶3 + 𝑏(4)𝐶4 + 𝑎(5)𝐶5 = 𝐶2,

. . .

or, taking into consideration (19),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎(1)(𝐶0 + 𝐶1) = 0,

(3 + 𝑎)𝐶0 + [𝑎(2) − 𝑎(1)]𝐶1 + 𝑎(2)𝐶2 = 0,

(6 + 𝑎)𝐶1 + [𝑎(3) − 𝑎(2)]𝐶2 + 𝑎(3)𝐶3 = 0,

(9 + 𝑎)𝐶2 + [𝑎(4) − 𝑎(3))]𝐶3 + 𝑎(4)𝐶4 = 0,

(12 + 𝑎)𝐶3 + [𝑎(5) − 𝑎(4)]𝐶4 + 𝑎(5)𝐶5 = 0,

. . .

(20)

By the obtained system one can deduce recurrent relation for the coefficients 𝐶𝑘:

𝐶𝑘+1 = −𝐶𝑘−1(𝑎+ 3𝑘) + [𝑎(𝑘 + 1) − 𝑎(𝑘)]𝐶𝑘

𝑎(𝑘 + 1)
.

3. Break conditions

Consider the case when the solutions for the eigenvalue problem

𝐴𝜓 = 𝜓

for operator (12) are the functions

𝜓 = 𝑒𝑥(𝐶0 + 𝐶1𝑥+ 𝐶2𝑥
2 + 𝐶3𝑥

3).

Let us solve above system (20) for the first, second and third power of the polynomial in
(13).

For the first power we vanish all the coefficients starting from 𝐶2, then system (20) casts into
the form ⎧⎪⎨⎪⎩

𝑎(1)(𝐶0 + 𝐶1) = 0,

(3 + 𝑎)𝐶0 + [𝑎(2) − 𝑎(1)]𝐶1 = 0,

(6 + 𝑎)𝐶1 = 0.

It splits into other two: ⎧⎪⎨⎪⎩
𝑎(1) = 0,

(3 + 𝑎)𝐶0 + [𝑎(2) − 𝑎(1)]𝐶1 = 0,

(6 + 𝑎)𝐶1 = 0,
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and ⎧⎪⎨⎪⎩
𝐶0 + 𝐶1 = 0,

(3 + 𝑎)𝐶0 + [𝑎(2) − 𝑎(1)]𝐶1 = 0,

(6 + 𝑎)𝐶1 = 0.

Solving these systems, we obtain
(1) 𝑏1 = −6, 𝑏2 = 5, 𝐶1 = −1

2
𝐶0, the eigenfunction for operator 𝐴 is 𝜓1 = 𝑒𝑥(𝐶0 − 1

2
𝐶0𝑥).

Or
(2) 𝑏1 = −6, 𝑏2 = 8, 𝐶1 = −𝐶0; 𝜓1 = 𝑒𝑥(𝐶0 − 𝐶0𝑥).
In the same way, for the second power we vanish all the coefficients starting from 𝐶3, while

for the third power we have 𝐶𝑖 = 0, 𝑖 = 4, 5 . . .
The associated solutions are
(3) 𝑏1 = −9, 𝑏2 = 8, 𝐶1 = −3

5
𝐶0, 𝐶2 = 𝐶0

10
; 𝜓1 = 𝑒𝑥

(︀
𝐶0 − 3

5
𝐶0𝑥+ 1

10
𝐶0𝑥

2
)︀
,

(4) 𝑏1 = −9, 𝑏2 = 20, 𝐶1 = −𝐶0, 𝐶2 = 1
2
𝐶0; 𝜓1 = 𝑒𝑥

(︀
𝐶0 − 𝐶0𝑥+ 1

2
𝐶0𝑥

2
)︀
,

(5) 𝑏1 = −9, 𝑏2 = 14, 𝐶1 = −𝐶0, 𝐶2 = 1
4
𝐶0; 𝜓1 = 𝑒𝑥

(︀
𝐶0 − 𝐶0𝑥+ 1

4
𝐶0𝑥

2
)︀
,

(6) 𝑏1 = −12, 𝑏2 = 11, 𝐶1 = −13
20
𝐶0, 𝐶2 = 3

20
𝐶0, 𝐶3 = − 1

80
𝐶0𝑥

3,

𝜓1 = 𝑒𝑥
(︂
𝐶0 −

13

20
𝐶0𝑥+

3

20
𝐶0𝑥

2 − 1

80
𝐶0𝑥

3

)︂
,

(7) 𝑏1 = −12, 𝑏2 = 35, 𝐶1 = −𝐶0, 𝐶2 = 𝐶0

2
, 𝐶3 = −𝐶0

8
;

𝜓1 = 𝑒𝑥
(︂
𝐶0 − 𝐶0𝑥+

𝐶0

2
𝑥2 − 1

8
𝐶0𝑥

3

)︂
,

(8) 𝑏1 = −12, 𝑏2 = 32, 𝐶1 = −𝐶0, 𝐶2 = 𝐶0

2
, 𝐶3 = −𝐶0

10
;

𝜓1 = 𝑒𝑥
(︂
𝐶0 − 𝐶0𝑥+

𝐶0

2
𝑥2 − 1

10
𝐶0𝑥

3

)︂
,

(9) 𝑏1 = −12, 𝑏2 = 20, 𝐶1 = −𝐶0, 𝐶2 = 9𝐶0

28
, 𝐶3 = −𝐶0

28
;

𝜓1 = 𝑒𝑥
(︂
𝐶0 − 𝐶0𝑥+

9𝐶0

28
𝑥2 − 1

28
𝐶0𝑥

3

)︂
.

In order to construct two other solutions, we shall consider the right operator of Darboux
transformation 𝑅 relating operator 𝐴 of the form (1) and the operator 𝐴0 = (𝑒𝑡𝐷𝑡)

3 = 𝐷3
𝑥

in Example 1. It was shown in work [1] that this operator exists, if condition (9) holds true.
It can be checked by straightforward calculations that this condition is satisfied for the above
cases (1)–(9).

At that,

𝐴𝑅 = 𝑅𝐴0 ⇒ 𝐴𝜓 = 𝜓 as 𝜓 = 𝑅 ̂︀𝜓,
and operator 𝑅 maps eigenfunctions of operator 𝐴0 the eigenfunctions of operator 𝐴. For
instance, for the operator 𝐴 = 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 1)(𝐷𝑡 + 5) we have

𝜓2 = 𝑅 ̂︀𝜓2 = (𝐷𝑡 + 2)𝑒𝛼𝑥 = (−𝑥𝐷𝑥 + 2)𝑒𝛼𝑥 = 𝑒𝛼𝑥(2 − 𝑥𝛼)

and

𝜓3 = 𝑅 ̂︀𝜓3 = (−𝑥𝐷𝑥 + 2)𝑒𝛽𝑥 = 𝑒𝛽𝑥(2 − 𝑥𝛽).

In the same way one can find eigenfunctions for each of cases (1)–(9).
The above formulae for 𝜓1 allow one to find explicitly operator 𝑅 (cf. [1]) for each of cases

(1)–(9). For instance, let us find the operator 𝑅 = (𝐷𝑡 + 𝛾1)(𝐷𝑡 + 𝛾2) by eigenfunction (3),
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rewriting 𝑅 in terms of 𝑥:

𝑅 = (−𝑥𝐷𝑥 + 𝛾1)(−𝑥𝐷𝑥 + 𝛾2) = 𝑥2𝐷𝑥 + (1 − 𝛾1 − 𝛾2)𝑥𝐷𝑥 + 𝛾1𝛾2,

𝑅𝑒𝑥 = 𝑒𝑥(𝑥2 + (1 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝛾2) = 𝑒𝑥(10 − 6𝑥+ 𝑥2) = 𝜓1,

that yields {︃
1 − 𝛾1 − 𝛾2 = −6,

𝛾1𝛾1 = 10,

or 𝛾1 = 2, 𝛾1 = 5 and 𝑅 = (𝐷𝑡 + 2)(𝐷𝑡 + 5).
In the next table we provide operators 𝐴 and related transformation operators 𝑅:

No. 𝐴 𝑅

(1) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 1)(𝐷𝑡 + 5) 𝐷𝑡 + 2

(2) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 2)(𝐷𝑡 + 4) 𝐷𝑡 + 1

(3) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 1)(𝐷𝑡 + 8) (𝐷𝑡 + 2)(𝐷𝑡 + 5)

(4) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 4)(𝐷𝑡 + 5) (𝐷𝑡 + 1)(𝐷𝑡 + 2)

(5) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 2)(𝐷𝑡 + 7) (𝐷𝑡 + 1)(𝐷𝑡 + 4)

(6) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 1)(𝐷𝑡 + 11) (𝐷𝑡 + 2)(𝐷𝑡 + 5)(𝐷𝑡 + 8)

(7) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 5)(𝐷𝑡 + 7) (𝐷𝑡 + 1)(𝐷𝑡 + 2)(𝐷𝑡 + 4)

(8) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 4)(𝐷𝑡 + 8) (𝐷𝑡 + 1)(𝐷𝑡 + 2)(𝐷𝑡 + 5)

(9) 𝑒3𝑡𝐷𝑡(𝐷𝑡 + 2)(𝐷𝑡 + 10) (𝐷𝑡 + 1)(𝐷𝑡 + 4)(𝐷𝑡 + 7)

(21)
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