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GROUP CLASSIFICATION OF A CLASS
OF SEMILINEAR PSEUDOPARABOLIC EQUATIONS

A.V. PANOV

Abstract. Group classification is implemented for a pseudoparabolic partial differential
equation with two parameters. Equivalence transformations groups are found and used for
classification of the equation parameters. Kernels of principal symmetries groups are found
for the equations. Principal symmetries groups are found for specifications of parameters
expanding the kernel of transformations groups. The obtained submodels are summarized
in a table at the end of the paper.
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1. Introduction

We consider the semilinear equation

𝛼𝑢𝑡 − 𝑢𝑡𝑥𝑥 = 𝑓(𝑢) (1.1)

of pseudoparabolic type (see the terminology in [1], [2]), where 𝛼 and 𝑓 = 𝑓(𝑧) are constant
and functional parameter, 𝑢 = 𝑢(𝑡, 𝑥) is the unknown function. As 𝑓(𝑧) = 𝑒𝑧 or 𝑓(𝑧) = 𝑧𝑒𝑧

2 ,
this equation describes physical phenomena in semiconductors counting Debye screening and
the sources of free charges [2]. In the case 𝑓(𝑧) = 𝑧3 the equation describes quasi-stationary
processes in semiconductors under a stationary distribution of sources free charges current [2],
and as 𝑓(𝑧) = 𝑧 one deals with the equation of volume charge stratification in a semiconductor
[2]. The applications of this equation is not limited by semiconductors only. For instance, as
𝑓(𝑧) = 𝑧 − 𝑎𝑧3, we obtain a famous Hoff equation describing flanged beam buckling [3].

Following “PODMODELI” program [4], we shall equation (1.1) with parameters “big model”.
The first step of “PODMODELI” program is the group classification. The aim of group
classification is calculating of transformations admitted by the equations for each value of
parameters. This group is the kernel of full symmetries groups [5]. The aim is also to find the
parameters specifications whose full groups expand the kernel.

In Section 2 we seek the group of equivalence transformations for equation (1.1) by employing
the approach suggested in [6, 7]. In Section 3 we seek the specifications and the associated full
symmetries groups for the equation expanding the kernel of full transformation groups. At that,
the form of specifications is reduced to the simplest possible by equivalence transformations
found in the second section.

As a result of group classification we find the kernels of full symmetries groups; for 𝛼 ̸= 0
the kernel consists of shifts w.r.t. independent variables, as 𝛼 = 0 the shifts are completed by
the dilatation generated by 𝑋3 = 𝑥𝜕𝑥− 2𝑡𝜕𝑡. We find all the parameters specifications reducing
additional equation symmetries. All nonlinear specifications expanding the kernel are in the
equivalence classes of functions 𝑒𝑢, 𝑢𝛽, 𝑢−3, 𝑒𝑢 ± 1. As 𝛼 ̸= 0, the biggest symmetries algebra
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corresponds to the equation with the function 𝑓 = 𝑢−3, its Lie algebra is five-dimensional. The
obtatined submodels are summarized in the table in the end of the work.

2. Equivalence transformations group

While implementing group classification, it is important to know which transformations
change the parameters in the equation keeping at the same time the differential structure
of the equation. These transformations determine equivalence transformations on the set of the
parameters of the equation. The symmetries groups of two differential equations corresponding
to a pair of different but equivalent parameters are isomorphic.

We write the original equation as

𝛼𝑢𝑡 − 𝑢𝑡𝑥𝑥 − 𝑓 = 0, (2.1)

assuming that 𝛼, 𝑓 are additional variables independent of independent variables 𝑡, 𝑥, 𝑢. We
shall seek the generators of continuous equivalence transformations groups as

𝑌 = 𝜏
𝜕

𝜕𝑡
+ 𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑢
+ 𝜇

𝜕

𝜕𝑓
+ 𝜈

𝜕

𝜕𝛼
,

where the functions 𝜏 , 𝜉, 𝜂, 𝜇, 𝜈 depend on 𝑡, 𝑥, 𝑢, 𝑓 , 𝛼 (cf. [6, 7, 8]). We supplement equation
(2.1) with equations

𝑓𝑡 = 0, 𝑓𝑥 = 0, (2.2)

𝛼𝑡 = 0, 𝛼𝑥 = 0, 𝛼𝑢 = 0, (2.3)

meaning that in the original formulation of the problem 𝑓 depends on 𝑢 only, while 𝛼 is a
constant.

We consider system (2.1)–(2.3) as a manifold N in the expanded space of corresponding
variables. In order to find the admitted groups for the manifold N, we employ the infinitesimal
criterion [5] applying the expanded operator

̃︀𝑌 = 𝑌 + 𝜙𝑡 𝜕

𝜕𝑢𝑡
+ 𝜙𝑡𝑥𝑥 𝜕

𝜕𝑢𝑡𝑥𝑥
+ 𝜇𝑡 𝜕

𝜕𝑓𝑡
+ 𝜇𝑥 𝜕

𝜕𝑓𝑥
+ 𝜇𝑢 𝜕

𝜕𝑓𝑢
+ 𝜈𝑡

𝜕

𝜕𝛼𝑡

+ 𝜈𝑥
𝜕

𝜕𝛼𝑥

+ 𝜈𝑢
𝜕

𝜕𝛼𝑢

to equations (2.1)–(2.3). We then restrict the result on manifold N and obtain the determining
equations

𝜈𝑢𝑡 + 𝛼𝜙𝑡 − 𝜙𝑡𝑥𝑥 − 𝜇|N = 0, (2.4)

𝜇𝑡|N = 0, 𝜇𝑥|N = 0, (2.5)

𝜈𝑡|N = 0, 𝜈𝑥|N = 0, 𝜈𝑢|N = 0. (2.6)

The coefficients of operator ̃︀𝑌 can be calculated by the expansion formulae involving the
differentiation operators

𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑢𝑡

𝜕

𝜕𝑢
+ (𝑓𝑡 + 𝑓𝑢𝑢𝑡)

𝜕

𝜕𝑓
+ (𝛼𝑡 + 𝛼𝑢𝑢𝑡)

𝜕

𝜕𝛼
+ 𝑢𝑡𝑡

𝜕

𝜕𝑢𝑡
+ 𝑢𝑡𝑥

𝜕

𝜕𝑢𝑥
+ . . . ,

𝐷𝑥 =
𝜕

𝜕𝑥
+ 𝑢𝑥

𝜕

𝜕𝑢
+ (𝑓𝑥 + 𝑓𝑢𝑢𝑥)

𝜕

𝜕𝑓
+ (𝛼𝑥 + 𝛼𝑢𝑢𝑥)

𝜕

𝜕𝛼
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑡𝑥

𝜕

𝜕𝑢𝑡
+ . . . ,

̃︀𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑓𝑡

𝜕

𝜕𝑓
+ 𝛼𝑡

𝜕

𝜕𝛼
+ . . . , ̃︀𝐷𝑥 =

𝜕

𝜕𝑥
+ 𝑓𝑥

𝜕

𝜕𝑓
+ 𝛼𝑥

𝜕

𝜕𝛼
+ . . . ,

̃︀𝐷𝑢 =
𝜕

𝜕𝑢
+ 𝑓𝑢

𝜕

𝜕𝑓
+ 𝛼𝑢

𝜕

𝜕𝛼
+ . . .
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In view of equations (2.2), (2.3), the operators become

𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑢𝑡

𝜕

𝜕𝑢
+ 𝑓𝑢𝑢𝑡

𝜕

𝜕𝑓
+ 𝑢𝑡𝑡

𝜕

𝜕𝑢𝑡
+ 𝑢𝑡𝑥

𝜕

𝜕𝑢𝑥
+ 𝑓𝑢𝑢𝑢𝑡

𝜕

𝜕𝑓𝑢
+ 𝑢𝑡𝑡𝑡

𝜕

𝜕𝑢𝑡𝑡
+ 𝑢𝑡𝑡𝑥

𝜕

𝜕𝑢𝑡𝑥
+ . . . ,

𝐷𝑥 =
𝜕

𝜕𝑥
+ 𝑢𝑥

𝜕

𝜕𝑢
+ 𝑓𝑢𝑢𝑥

𝜕

𝜕𝑓
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑡

𝜕

𝜕𝑢𝑡
+ 𝑓𝑢𝑢𝑢𝑥

𝜕

𝜕𝑓𝑢
+ . . . ,

̃︀𝐷𝑡 =
𝜕

𝜕𝑡
, ̃︀𝐷𝑥 =

𝜕

𝜕𝑥
, ̃︀𝐷𝑢 =

𝜕

𝜕𝑢
+ 𝑓𝑢

𝜕

𝜕𝑓
+ . . .

In accordance with the expansion formulae

𝜙𝑡 = 𝐷𝑡(𝜂) − 𝑢𝑡𝐷𝑡(𝜏) − 𝑢𝑥𝐷𝑡(𝜉), 𝜙𝑥 = 𝐷𝑥(𝜂) − 𝑢𝑡𝐷𝑥(𝜏) − 𝑢𝑥𝐷𝑥(𝜉),

𝜙𝑥𝑥 = 𝐷𝑥(𝜙𝑥) − 𝑢𝑡𝑥𝐷𝑥(𝜏) − 𝑢𝑥𝑥𝐷𝑥(𝜉), 𝜙𝑡𝑥𝑥 = 𝐷𝑡(𝜙
𝑥𝑥) − 𝑢𝑡𝑥𝑥𝐷𝑡(𝜏) − 𝑢𝑥𝑥𝑥𝐷𝑡(𝜉),

and thus

𝜙𝑡 =𝜂𝑡 + 𝑢𝑡𝜂𝑢 + 𝑢𝑡𝑓𝑢𝜂𝑓 − 𝑢𝑡𝜏𝑡 − 𝑢2𝑡 𝜏𝑢 − 𝑢2𝑡𝑓𝑢𝜏𝑓 − 𝑢𝑥𝜉𝑡 − 𝑢𝑡𝑢𝑥𝜉𝑢 − 𝑢𝑡𝑢𝑥𝑓𝑢𝜉𝑓 ,

𝜙𝑥 =𝜂𝑥 + 𝑢𝑥𝜂𝑢 + 𝑢𝑥𝑓𝑢𝜂𝑓 − 𝑢𝑡𝜏𝑥 − 𝑢𝑡𝑢𝑥𝜏𝑢 − 𝑢𝑡𝑢𝑥𝑓𝑢𝜏𝑓 − 𝑢𝑥𝜉𝑥 − 𝑢2𝑥𝜉𝑢 − 𝑢2𝑥𝑓𝑢𝜉𝑓 .

We first write out equations (2.5), (2.6) to shorten the calculations of coefficients 𝜙𝑥𝑥, 𝜙𝑡𝑥𝑥.
We obtain

𝜇𝑡|N = ( ̃︀𝐷𝑡(𝜇) − 𝑓𝑡 ̃︀𝐷𝑡(𝜏) − 𝑓𝑥 ̃︀𝐷𝑡(𝜉) − 𝑓𝑢 ̃︀𝐷𝑡(𝜂))|N = 𝜇𝑡 − 𝑓𝑢𝜂𝑡 = 0,

𝜇𝑥|N = ( ̃︀𝐷𝑥(𝜇) − 𝑓𝑡 ̃︀𝐷𝑥(𝜏) − 𝑓𝑥 ̃︀𝐷𝑥(𝜉) − 𝑓𝑢 ̃︀𝐷𝑥(𝜂))|N = 𝜇𝑥 − 𝑓𝑢𝜂𝑥 = 0,

𝜈𝑡|N = ( ̃︀𝐷𝑡(𝜈) − 𝛼𝑡
̃︀𝐷𝑡(𝜏) − 𝛼𝑥

̃︀𝐷𝑡(𝜉) − 𝛼𝑢
̃︀𝐷𝑡(𝜂))|N = 𝜈𝑡 = 0,

𝜈𝑥|N = ( ̃︀𝐷𝑥(𝜈) − 𝛼𝑡
̃︀𝐷𝑥(𝜏) − 𝛼𝑥

̃︀𝐷𝑥(𝜉) − 𝛼𝑢
̃︀𝐷𝑥(𝜂))|N = 𝜈𝑥 = 0,

𝜈𝑢|N = 𝜈𝑢 + 𝑓𝑢𝜈𝑓 = 0.

By the arbitrariness of 𝑓𝑢 these equations imply that 𝜂𝑡 = 𝜂𝑥 = 0, 𝜇𝑡 = 𝜇𝑥 = 0, 𝜈𝑡 = 𝜈𝑥 = 𝜈𝑢 =
𝜈𝑓 = 0. This is why 𝜂 = 𝜂(𝑢, 𝛼, 𝑓), 𝜇 = 𝜇(𝑢, 𝛼, 𝑓), 𝜈 = 𝜈(𝛼).

We split equation (2.4) w.r.t. the differential variables. The coefficient at 𝑓𝑢𝑢𝑢 is 𝑢2𝑥𝑢𝑡𝜂𝑓 −
𝑢2𝑡𝑢

2
𝑥𝜏𝑓−𝑢3𝑥𝑢𝑡𝜉𝑓 . Equating it to zero, we obtain the identities 𝜂𝑓 = 𝜉𝑓 = 𝜏𝑓 = 0. Making the same

for the coefficients at 𝑓𝑢𝑢, we obtain 𝜉𝑥𝑢 = 0. We differentiate equation (2.4) by 𝑓 and taking into
consideration 𝜈𝑓 = 𝜉𝑓 = 𝜏𝑓 = 𝜂𝑓 = 0, we arrive at the equation 𝜂𝑢−2𝑢𝑡𝜏𝑢−2𝜉𝑥−3𝑢𝑥𝜉𝑢−𝜏𝑡−𝜇𝑓 =
0. Then 𝜉𝑢 = 𝜏𝑢 = 0 и 𝜇𝑓 = 𝜂𝑢−2𝜉𝑥−𝜏𝑡. Equating to zero the coefficients at various differential
variables, we obtain the identities

𝑢𝑡𝑡𝑥 : 𝜏𝑥 = 0,

𝑢𝑥𝑥𝑥 : 𝜉𝑡 = 0,

𝑢𝑥𝑥 : 2𝜉𝑥𝑡 − 𝑢𝑡𝜂𝑢𝑢 = 0.

Thus, 𝜏 = 𝜏(𝑡, 𝛼), 𝜉 = 𝜉(𝑥, 𝛼), 𝜂𝑢𝑢 = 0, 𝜂 = 𝜂(𝑢, 𝛼). We rewrite now equation (2.4):

𝜈𝑢𝑡 + 𝑢𝑡𝑥𝜉𝑥𝑥 + 𝑓𝜂𝑢 + 2𝛼𝑢𝑡𝜉𝑥 − 2𝑓𝜉𝑥 − 𝑓𝜏𝑡 − 𝜇 = 0.

We see that 𝜉𝑥𝑥 = 0, 𝜈 + 2𝛼𝜉𝑥 = 0, 𝑓𝜂𝑢 − 2𝑓𝜉𝑥 − 𝑓𝜏𝑡 − 𝜇 = 0. If we differentiate the latter
identity by 𝑡 and take into consideration that 𝜇𝑡 = 𝜉𝑡 = 𝜂𝑡 = 0, we obtain 𝜏𝑡𝑡 = 0. Thus,
the solution to the system of the determining equations are the functions 𝜏 = 𝑐1(𝛼) + 𝑐2(𝛼)𝑡,
𝜉 = 𝑐3(𝛼) + 𝑐4(𝛼)𝑥, 𝜂 = 𝑐5(𝛼) + 𝑐6(𝛼)𝑢, 𝜇 = 𝑓(𝑐6(𝛼) − 𝑐2(𝛼) − 2𝑐4(𝛼)), 𝜈 = −2𝛼𝑐4(𝛼). Here
𝑐𝑖(𝛼) are arbitrary functions of 𝛼. The basis operator can be chosen as follows,

𝑋1 = 𝑐1(𝛼)𝜕𝑡, 𝑋2 = 𝑐3(𝛼)𝜕𝑥, 𝑋3 = 𝑐5(𝛼)𝜕𝑢,

𝑋4 = 𝑐2(𝛼)𝑡𝜕𝑡 − 𝑐2(𝛼)𝑓𝜕𝑓 , 𝑋5 = 𝑐6(𝛼)𝑢𝜕𝑢 + 𝑐6(𝛼)𝑓𝜕𝑓 ,

𝑋6 = 𝑐4(𝛼)𝑥𝜕𝑥 − 2𝑐4(𝛼)𝑓𝜕𝑓 − 2𝑐4(𝛼)𝛼𝜕𝛼.
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For instance, as 𝑐4 = 1, by operator 𝑋6 we can transform constant 𝛼 to any other of the same
sign. We get three cases 𝛼 = 1, 𝛼 = −1, 𝛼 = 0. Then we do not use operator 𝑋6 any more in
order to keep 𝛼. Then other equivalence transformation operators form a five-dimensional Lie
algebra with the basis

𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑥, 𝑋3 = 𝜕𝑢, 𝑋4 = 𝑡𝜕𝑡 − 𝑓𝜕𝑓 , 𝑋5 = 𝑢𝜕𝑢 + 𝑓𝜕𝑓 .

We consider the action of the projections of these operators on space R2(𝑢, 𝑓). Operator
𝑋3 gives a shift of variable 𝑢. The projection pr(𝑢,𝑓) (−𝑋4) = 𝑓𝜕𝑓 gives the dilatation in 𝑓 .
The dilatation w.r.t. 𝑢 we obtain as the projectino pr(𝑢,𝑓) (𝑋4 + 𝑋5) = 𝑢𝜕𝑢. Immediately from
equation we see two discrete symmetries 𝑡 = −𝑡, 𝑓 = −𝑓 and �̄� = −𝑢, 𝑓 = −𝑓 which produce
the reflections in variables 𝑢 and 𝑓 .

3. Parameters specifications

Let us find the specifications of parameters 𝛼, 𝑓 under which additional symmetries of the
equation

𝛼𝑢𝑡 − 𝑢𝑡𝑥𝑥 = 𝑓(𝑢) (3.1)

appear.
We seek the generators of continuous transformations group as

𝑌 = 𝜏
𝜕

𝜕𝑡
+ 𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑢
,

where functions 𝜏 , 𝜉, 𝜂 depend on 𝑡, 𝑥, 𝑢.
We act by the expanded operator̃︀𝑌 = 𝑌 + 𝜙𝑡 𝜕

𝜕𝑢𝑡
+ 𝜙𝑡𝑥𝑥 𝜕

𝜕𝑢𝑡𝑥𝑥

to the function 𝐹 (𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑡𝑥𝑥) = 𝛼𝑢𝑡 − 𝑢𝑡𝑥𝑥 − 𝑓(𝑢) describing system (3.1) as 𝐹 = 0. By the
invariance criterion we obtain

(𝛼𝜙𝑡 − 𝜙𝑡𝑥𝑥 − 𝑓 ′(𝑢)𝜂)|𝐹=0 = 0. (3.2)

By the operators of total differentiation

𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑢𝑡

𝜕

𝜕𝑢
+ 𝑢𝑡𝑡

𝜕

𝜕𝑢𝑡
+ 𝑢𝑡𝑥

𝜕

𝜕𝑢𝑥
+ . . . , 𝐷𝑥 =

𝜕

𝜕𝑥
+ 𝑢𝑥

𝜕

𝜕𝑢
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑡

𝜕

𝜕𝑢𝑡
+ . . .

and in accordance with the expansion formulae

𝜙𝑡 = 𝐷𝑡(𝜂) − 𝑢𝑡𝐷𝑡(𝜏) − 𝑢𝑥𝐷𝑡(𝜉), 𝜙𝑥 = 𝐷𝑥(𝜂) − 𝑢𝑡𝐷𝑥(𝜏) − 𝑢𝑥𝐷𝑥(𝜉),

𝜙𝑥𝑥 = 𝐷𝑥(𝜙𝑥) − 𝑢𝑡𝑥𝐷𝑥(𝜏) − 𝑢𝑥𝑥𝐷𝑥(𝜉), 𝜙𝑡𝑥𝑥 = 𝐷𝑡(𝜙
𝑥𝑥) − 𝑢𝑡𝑥𝑥𝐷𝑡(𝜏) − 𝑢𝑥𝑥𝑥𝐷𝑡(𝜉)

we write out equation (3.2). We equate the coefficients at the third derivatives to zero

𝑢𝑡𝑡𝑥 : 𝜏𝑥 + 𝑢𝑥𝜏𝑢 = 0,

𝑢𝑥𝑥𝑥 : 𝜉𝑡 + 𝑢𝑡𝜉𝑢 = 0.

In the same way we obtain equations for the coefficients at the second derivatives

𝑢𝑡𝑥 : −2𝜂𝑢𝑥 + 𝜉𝑥𝑥 − 2𝑢𝑥𝜂𝑢𝑢 = 0,

𝑢𝑥𝑥 : −𝜂𝑡𝑢 − 𝑢𝑡𝜂𝑢𝑢 = 0.

Then 𝜂𝑢𝑢 = 0, 𝜂𝑡𝑢 = 0, 𝜉𝑥𝑥 = 2𝜂𝑥𝑢. We split the remaining equation by variable 𝑢𝑡 to arrive to
the identities

−𝜂𝑥𝑥𝑢 + 2𝛼𝜉𝑥 = 0,

𝛼𝜂𝑡 − 𝜂𝑡𝑥𝑥 + 𝑓(𝑢)𝜂𝑢 − 2𝑓(𝑢)𝜉′(𝑥) − 𝑓(𝑢)𝜏 ′(𝑡) − 𝑓 ′(𝑢)𝜂 = 0. (3.3)

It implies easily the following statements.
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Theorem 1. (i) The basis of the kernel of full Lie algebras for the equation −𝑢𝑡𝑥𝑥 = 𝑓(𝑢)
consists of the operators 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑥, 𝑋3 = 2𝑡𝜕𝑡 − 𝑥𝜕𝑥.

(ii) The basis of the kernel of full Lie algebras for equation (3.1) in the case 𝛼 ̸= 0 consists
of the operators 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑥.

The further calculation of the specifications splits into three cases: 𝛼 = 0, 𝛼 > 0, 𝛼 < 0. The
classification results are written in Table 1. In what follows, the number of the specification is
the number of the column and the row in the table.

The first case is 𝛼 = 0. Since 𝜂𝑢𝑢 = 0, 𝜂𝑡𝑢 = 0, 𝜂𝑥𝑥𝑢 = 0, we have 𝜂 = (𝑐1𝑥+ 𝑐2)𝑢+ 𝑏(𝑡, 𝑥). It
follows from 𝜉𝑥𝑥 = 2𝜂𝑥𝑢 that 𝜉 = 𝑐1𝑥

2 + 𝑐3𝑥+ 𝑐4. We substitute these expressions into equation
(3.3) to obtain

−𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑓(𝑢)(𝑐1𝑥+ 𝑐2 − 4𝑐1𝑥− 2𝑐3 − 𝜏 ′(𝑡)) − 𝑓 ′(𝑢)((𝑐1𝑥+ 𝑐2)𝑢+ 𝑏(𝑡, 𝑥)) = 0. (3.4)

The case 𝑓 ′(𝑢) = 0 splits into other two.
1.1. If 𝑓 = 0, we obtain the equation 𝑏𝑡𝑥𝑥 = 0 giving the solution to the determining system

of equations

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1𝑥
2 + 𝑐3𝑥+ 𝑐4, 𝜂 = (𝑐1𝑥+ 𝑐2)𝑢+ 𝑐(𝑡)𝑥+ 𝑑(𝑡) + 𝑒(𝑥).

An infinite-dimensional Lie algebra is associated with this case.
1.2. if 𝑓 = const ̸= 0, by the dilatation in variable 𝑓 we can obtain 𝑓 = 1. Then the solution

is

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1𝑥
2 + 𝑐3𝑥+ 𝑐4,

𝜂 = (𝑐1𝑥+ 𝑐2)𝑢+
(︁𝑐2

2
− 𝑐3

)︁
𝑥2𝑡− 𝑐1

2
𝑥3𝑡− 𝜏(𝑡)

𝑥2

2
+ 𝑐(𝑡)𝑥+ 𝑑(𝑡) + 𝑒(𝑥).

As 𝑓 ′(𝑢) ̸= 0, we consider two different cases.
1.3. Let 𝑓 ′′(𝑢) = 0, then 𝑓 = 𝜎𝑢 + 𝛿, 𝜎 ̸= 0. Applying the shift and dilatation in 𝑢, we can

transform the specification to 𝑓 = 𝑢. After the splitting of equation (3.4) w.r.t. variables 𝑥, 𝑢
we obtain the identities

𝑐1 = 0, 𝜏 = −2𝑐3𝑡+ 𝑐5,

𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑏(𝑡, 𝑥) = 0. (3.5)

Thus, in this case the coefficients of the generators of symmetries groups read as

𝜏 = −2𝑐3𝑡+ 𝑐5, 𝜉 = 𝑐3𝑥+ 𝑐4, 𝜂 = 𝑐2𝑢+ 𝑏(𝑡, 𝑥),

where 𝑏(𝑡, 𝑥) is a solution to equation (3.5).
Suppose 𝑓 ′′(𝑢) ̸= 0. Then, differentiating equation (3.4) by 𝑢, we obtain

𝑓 ′(𝑢)(4𝑐1𝑥+ 2𝑐3 + 𝜏 ′(𝑡)) + 𝑓 ′′(𝑢)((𝑐1𝑥+ 𝑐2)𝑢+ 𝑏(𝑡, 𝑥)) = 0. (3.6)

Differentiating the latter equation w.r.t. 𝑡 and 𝑥 gives the identiy 𝑏𝑡𝑥(𝑡, 𝑥) = 0 and thus 𝑏(𝑡, 𝑥) =
𝑏1(𝑡) + 𝑏2(𝑥). We differentiate (3.6) w.r.t. 𝑡 and 𝑥 separately:

𝑓 ′(𝑢)𝜏 ′′(𝑡) + 𝑓 ′′(𝑢)𝑏′1(𝑡) = 0, (3.7)

4𝑐1𝑓
′(𝑢) + 𝑐1𝑢𝑓

′′(𝑢) + 𝑏′2(𝑥)𝑓 ′′(𝑢) = 0. (3.8)

In view of equation (3.7) two cases are possible: 𝜏 = 𝑐5𝑡 + 𝑐6, 𝑏1 is a constant; or 𝑏′1(𝑡) ̸= 0,
𝜏 ′′(𝑡) ̸= 0. In the second case, employing the dilatation and, if needed, the reflection by 𝑢, we
obtain the equation

𝑓 ′′(𝑢)

𝑓 ′(𝑢)
= −𝜏

′′(𝑡)

𝑏′1(𝑡)
= 1.
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Hence, 𝑏1(𝑡) = −𝜏 ′(𝑡) + 𝑐7, 𝑓 = 𝜎𝑒𝑢 + 𝜔 or 𝑓 = 𝑒𝑢 + 𝜔 after the dilatation in 𝑓 . Now equation
(3.8) yields that 𝑐1 = 0 and 𝑏2(𝑥) = 𝑐8 is a constant. We re-denote 𝑐7 + 𝑐8 by 𝑐7 and substitute
the obtained formulae into (3.4):

(𝑒𝑢 + 𝜔) (𝑐2 − 2𝑐3 − 𝜏 ′(𝑡)) − 𝑒𝑢 (𝑐2𝑢− 𝜏 ′(𝑡) + 𝑐7) = 0.

The case 𝜔 ̸= 0 does not lead us to the expansion of the kernel of the algebras. If 𝜔 = 0, then

𝜏 = 𝜏(𝑡), 𝜏 ′′(𝑡) ̸= 0, 𝜉 = 𝑐3𝑥+ 𝑐4, 𝜂 = −(𝜏 ′(𝑡) + 2𝑐3).

We return back to the case 𝜏 = 𝑐5𝑡+ 𝑐6, 𝑏 = 𝑏1 + 𝑏2(𝑥). Consider equation (3.8). Let 𝑐1 = 0,
then 𝑏′2(𝑥) = 0 and equation (3.4) casts into the form

𝑓(𝑢)(𝑐2 − 2𝑐3 − 𝑐5) − 𝑓 ′(𝑢)(𝑐2𝑢+ 𝑏) = 0, (3.9)

where 𝑏 is a constant. Here two cases are possible.
1.4. Let 𝑐2 = 0, then condition 𝑏 ̸= 0 is necessary for expansion of kernel of Lie algebra. By

the dilatation and reflection w.r.t. 𝑢 equation (3.9) can be reduced to 𝑓 ′(𝑢) = 𝑓(𝑢). In this
case the solution of the equation is 𝑓 = 𝜎𝑒𝑢 and after the dilatation in 𝑓 we obtain 𝑓 = 𝑒𝑢.
Substituting this expression for 𝑓 into (3.4), we find the solution

𝜏 = 𝑐5𝑡+ 𝑐6, 𝜉 = 𝑐3𝑥+ 𝑐4, 𝜂 = −(2𝑐3 + 𝑐5).

Combining it with the above found solution for the function 𝑓 = 𝑒𝑢, we obtain

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐3𝑥+ 𝑐4, 𝜂 = −(𝜏 ′(𝑡) + 2𝑐3).

1.5. If 𝑐2 ̸= 0, by a shift in 𝑢 we can vanish 𝑏 and get the equation 𝑢𝑓 ′(𝑢) = 𝛽𝑓(𝑢), where
𝛽 = 𝑐2−2𝑐3−𝑐5

𝑐2
. A nonlinear solution as 2𝑐3 + 𝑐5 ̸= 0, 2𝑐3 + 𝑐5 ̸= 𝑐2 is 𝑓 = 𝜎𝑢𝛽 or 𝑓 = 𝑢𝛽 after

the dilatation w.r.t. 𝑓 . At that, the linear cases 𝛽 = 0, 𝛽 = 1 are excluded from consideration.
Substituting into (3.4), we obtain 𝑏 = 0 and the solution to this specification

𝜏 = ((1 − 𝛽)𝑐2 − 2𝑐3)𝑡+ 𝑐6, 𝜉 = 𝑐3𝑥+ 𝑐4, 𝜂 = 𝑐2𝑢.

It remains to study the case 𝑐1 ̸= 0. Equation (3.8) can be represented as
4𝑓 ′(𝑢) + 𝑢𝑓 ′′(𝑢)

𝑓 ′′(𝑢)
=

−𝑏′(𝑥)

𝑐1
.

The left hand side is a function of 𝑢, the right hand side is a function of 𝑥. Thus, these functions

are constant. Let
−𝑏′(𝑥)

𝑐1
= 𝑐7, then 𝑏 = −𝑐1𝑐7𝑥+𝑐8. After the shift in 𝑢 by 𝑐7 we get the equation

4𝑓 ′(𝑢) + 𝑓 ′′(𝑢)𝑢 = 0.

Its solution 𝑓 = 𝜎𝑢−3 + 𝛿 or after the dilatation 𝑓 = 𝑢−3 + 𝛿. We substitute these functions 𝑓 ,
𝑏 into (3.4) and multiply by 𝑢4. We obtain the equation

𝑢(𝑐2 − 2𝑐3 − 𝜏 ′(𝑡)) + 3(𝑐2𝑢− 𝑐1𝑐7𝑥+ 𝑐8) + 𝛿𝑢4(𝑐2 − 3𝑐1𝑥− 2𝑐3 − 𝜏 ′(𝑡)) = 0.

The case 𝛿 ̸= 0 does not give the expansion for the kernel of the algebras. Consider the case
𝛿 = 0. Splitting the latter equation in 𝑥, 𝑢, we obtain

4𝑐2 − 2𝑐3 − 𝜏 ′(𝑡) = 0, 𝑐7 = 𝑐8 = 0.

It shows that 𝜏 = (4𝑐2 − 2𝑐3)𝑡+ 𝑐6, 𝑏 = 0 and thus 𝜂 = (𝑐1𝑥+ 𝑐2)𝑢.
1.6. Thus, for the function 𝑓 = 𝑢−3 we obtain the solution

𝜏 = (4𝑐2 − 2𝑐3)𝑡+ 𝑐6, 𝜉 = 𝑐1𝑥
2 + 𝑐3𝑥+ 𝑐4, 𝜂 = (𝑐1𝑥+ 𝑐2)𝑢.

This case expands the algebra obtained for an arbitrary power function. Thus, the case 𝛼 = 0
is completely studied.

As 𝛼 > 0, each equation can be reduced to an equivalent equation with 𝛼 = 1, and as 𝛼 < 0,
to the equation 𝛼 = −1.
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We return back to equation (3.3) of the determining system assuming 𝛼 = 1. Then employing
identity 𝜉𝑥𝑥 = 2𝜂𝑥𝑢, we obtain

𝜂𝑥𝑥𝑢 =
𝜉𝑥𝑥𝑥

2
, −𝜉𝑥𝑥𝑥 + 4𝜉𝑥 = 0.

The general solution to the latter equation reads as

𝜉 = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥 + 𝑐3,

then
𝜂 = (𝑐1𝑒

2𝑥 − 𝑐2𝑒
−2𝑥 + 𝑐4)𝑢+ 𝑏(𝑡, 𝑥).

Substituting it to equation (3.3), we get

𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑓(𝑢)(𝑐4 − 3𝑐1𝑒
2𝑥 + 3𝑐2𝑒

−2𝑥 − 𝜏 ′(𝑡))

− 𝑓 ′(𝑢)((𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)𝑢+ 𝑏(𝑡, 𝑥)) = 0.
(3.10)

2.1. The case 𝑓 = 0 gives the equation 𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) = 0 that implies 𝑏 = 𝜎(𝑡)𝑒𝑥 +
𝛿(𝑡)𝑒−𝑥 + 𝛾(𝑥). Thus,

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥 + 𝑐3,

𝜂 = (𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)𝑢+ 𝜎(𝑡)𝑒𝑥 + 𝛿(𝑡)𝑒−𝑥 + 𝛾(𝑥).

2.2. As 𝑓 = 1, we obtain the equation

𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) = 3𝑐1𝑒
2𝑥 − 3𝑐2𝑒

−2𝑥 − 𝑐4 + 𝜏 ′(𝑡).

This equation is integrated first for function 𝑏𝑡 and then we integrate it w.r.t. 𝑡. The general
solution reads as

𝑏 = 𝑑1(𝑡)𝑒
𝑥 + 𝑑2(𝑡)𝑒

−𝑥 + (−𝑐1𝑒2𝑥 + 𝑐2𝑒
−2𝑥 − 𝑐4)𝑡+ 𝜏(𝑡) + 𝑑3(𝑥),

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥 + 𝑐3,

𝜂 = (𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)(𝑢− 𝑡) + 𝑑1(𝑡)𝑒
𝑥 + 𝑑2(𝑡)𝑒

−𝑥 + 𝜏(𝑡) + 𝑑3(𝑥).

2.3. Let 𝑓 = 𝑢, then after the substitution into (3.10) we get

𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑢(−4𝑐1𝑒
2𝑥 + 4𝑐2𝑒

−2𝑥 − 𝜏 ′(𝑡)) − 𝑏(𝑡, 𝑥) = 0,

this is why 4𝑐1𝑒
2𝑥 − 4𝑐2𝑒

−2𝑥 + 𝜏 ′(𝑡) = 0, 𝑐1 = 0, 𝑐2 = 0, 𝜏 = 𝑐5. We obtain the coefficients of
the generators

𝜏 = 𝑐5, 𝜉 = 𝑐3, 𝜂 = 𝑐4𝑢+ 𝑏(𝑡, 𝑥),

where 𝑏 is the solution to equation

𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) − 𝑏(𝑡, 𝑥) = 0. (3.11)

Suppose now that 𝑓 is a nonlinear function. We differentiate equation (3.10) w.r.t. 𝑢

𝑓 ′(𝑢)(4𝑐1𝑒
2𝑥 − 4𝑐2𝑒

−2𝑥 + 𝜏 ′(𝑡)) + 𝑓 ′′(𝑢)((𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)𝑢+ 𝑏(𝑡, 𝑥)) = 0. (3.12)

Differentiating equation (3.12) w.r.t. 𝑡, we obtain

𝑓 ′(𝑢)𝜏 ′′(𝑡) + 𝑓 ′′(𝑢)𝑏𝑡(𝑡, 𝑥) = 0. (3.13)

If 𝑏𝑡 = 0, then 𝜏 = 𝑐5𝑡 + 𝑐6. We consider one more differential consequence of equation (3.12)
by differentiating it w.r.t. 𝑥:

(8𝑓 ′(𝑢) + 2𝑢𝑓 ′′(𝑢))(𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥) + 𝑓 ′′(𝑢)𝑏′(𝑥) = 0. (3.14)

If 𝑐1 = 𝑐2 = 0, then 𝑏 is a constant. Substituting the obtained expression into (3.10), we get

𝑓(𝑢)(𝑐4 − 𝑐5) − 𝑓 ′(𝑢)(𝑐4𝑢+ 𝑏) = 0.

As 𝑐4 = 𝑐5 = 0 we have 𝑏 = 0 and there are no symmetries additional to the kernel.
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2.4. If 𝑐4 = 0, applying the dilatation in 𝑢, we obtain equation 𝑓 ′(𝑢) = 𝑓(𝑢) with solution
𝑓 = 𝑒𝑢 (after the dilatation in 𝑓). The coefficients of the generator read as

𝜏 = 𝑐5𝑡+ 𝑐6, 𝜉 = 𝑐3, 𝜂 = −𝑐5.
2.5. If 𝑐4 ̸= 0, by a shift in 𝑢 we can vanish 𝑏. The solution of the remaining equation after

a dilatation in 𝑓 is the function 𝑓 = 𝑢𝛽, where 𝛽 = 𝑐4−𝑐5
𝑐4

, 𝛽 ̸= 0, 𝛽 ̸= 1. The coefficients of the
symmetries operator cast into the form

𝜏 = (1 − 𝛽)𝑐4𝑡+ 𝑐6, 𝜉 = 𝑐3, 𝜂 = 𝑐4𝑢.

The second case is 𝑐1 ̸= 0 or 𝑐2 ̸= 0. Then equation (3.14) becomes

−8𝑓 ′(𝑢) + 2𝑢𝑓 ′′(𝑢)

𝑓 ′′(𝑢)
=

𝑏′(𝑥)

𝑐1𝑒2𝑥 + 𝑐2𝑒−2𝑥
= 𝛾, 𝑐21 + 𝑐22 ̸= 0, 𝛾 = const.

After the shift in 𝑢, we arrive at the equation 4𝑓 ′(𝑢) + 𝑢𝑓 ′′(𝑢) = 0 for the function 𝑓 .
2.6. One can see that 𝑓 = 𝑢−3 + 𝛿. We substitute this function into (3.10)

(𝑢−3 + 𝛿)(−3𝑐1𝑒
2𝑥 + 3𝑐2𝑒

−2𝑥 + 𝑐4 − 𝑐5) + 3𝑢−4((𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)𝑢+ 𝑏) = 0

or
𝑢−3(4𝑐4 − 𝑐5) + 𝛿(−3𝑐1𝑒

2𝑥 + 3𝑐2𝑒
−2𝑥 + 𝑐4 − 𝑐5) + 3𝑏𝑢−4 = 0.

The case 𝛿 ̸= 0 gives no additional symmetries. Suppose 𝛿 = 0. Then 𝑏 = 0, 𝑐5 = 4𝑐4. The
solution to the determining equations is

𝜏 = 4𝑐4𝑡+ 𝑐6, 𝜉 = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥 + 𝑐3, 𝜂 =
(︀
𝑐1𝑒

2𝑥 − 𝑐2𝑒
−2𝑥 + 𝑐4

)︀
𝑢.

Suppose now 𝑏𝑡 ̸= 0, then equation (3.13) can be transformed to

𝑓 ′′(𝑢)

𝑓 ′(𝑢)
= − 𝜏 ′′(𝑡)

𝑏𝑡(𝑡, 𝑥)
= 𝛾 = const ̸= 0.

We can achieve 𝛾 = 1 by the dilatation in 𝑢. Then 𝑏(𝑡, 𝑥) = −𝜏 ′(𝑡) + 𝜓(𝑥), 𝑓 = 𝜎𝑒𝑢 + 𝛿.
Employing a shift in 𝑢 and a dilatation in 𝑓 , we can obtain 𝑓 = 𝑒𝑢 + 𝛿, where 𝛿 = 0 or 𝛿 = ±1.
We substitute these functions into (3.10) to obtain equation

−𝜏 ′′(𝑡) + (𝑒𝑢 + 𝛿)(−3𝑐1𝑒
2𝑥 + 3𝑐2𝑒

−2𝑥 + 𝑐4 − 𝜏 ′(𝑡))

− 𝑒𝑢((𝑐1𝑒
2𝑥 − 𝑐2𝑒

−2𝑥 + 𝑐4)𝑢− 𝜏 ′(𝑡) + 𝜓(𝑥)) = 0.

It yields 𝑐1 = 𝑐2 = 𝑐4 = 0, 𝜓(𝑥) = 0, 𝜏 ′′(𝑡) + 𝛿𝜏 ′(𝑡) = 0. The case 𝛿 = 0 leads us to the same
solution as in Item 2.4.

2.7. Let 𝛿 ̸= 0, then 𝜏 = 𝑐5𝑒
−𝛿𝑡 + 𝑐6, 𝑏 = 𝑐5𝛿𝑒

−𝛿𝑡. The coefficients of the operator for the case
𝑓 = 𝑒𝑢 + 𝛿, 𝛿 ̸= 0, become

𝜏 = 𝑐5𝑒
−𝛿𝑡 + 𝑐6, 𝜉 = 𝑐3, 𝜂 = 𝑐5𝛿𝑒

−𝛿𝑡.

It remains to study the case 𝛼 = −1. Arguing as for 𝛼 = 1, we obtain the equation for 𝜉

𝜉𝑥𝑥𝑥 + 4𝜉𝑥 = 0.

Its solution is 𝜉 = 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥 + 𝑐3, then 𝜂𝑥𝑢 = 1
2
𝜉𝑥𝑥 = −2𝑐1 cos 2𝑥 − 2𝑐2 sin 2𝑥. It

yields 𝜂𝑢 = −𝑐1 sin 2𝑥 + 𝑐2 cos 2𝑥 + 𝑐4, since 𝜂𝑢𝑢 = 𝜂𝑡𝑢 = 0. Thus, 𝜂 = (−𝑐1 sin 2𝑥 + 𝑐2 cos 2𝑥 +
𝑐4)𝑢 + 𝑏(𝑡, 𝑥). Proceeding as in the case 𝛼 = 1, one can obtain similar specifications with the
symmetries groups given in the table.

Substituting the obtained results into equation (3.3), we get

−𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑓(𝑢)(3𝑐1 sin 2𝑥− 3𝑐2 cos 2𝑥+ 𝑐4 − 𝜏 ′(𝑡))

− 𝑓 ′(𝑢)((−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)𝑢+ 𝑏(𝑡, 𝑥)) = 0.
(3.15)
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3.1. As 𝑓 = 0, equation (3.15) becomes 𝑏𝑡(𝑡, 𝑥) + 𝑏𝑡𝑥𝑥(𝑡, 𝑥) = 0, then 𝑏 = 𝑐5(𝑡) sin𝑥 +
𝑐6(𝑡) cos𝑥+ 𝑐7(𝑥). The solution to the determining equations is

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1 cos 2𝑥+ 𝑐2 sin 2𝑥+ 𝑐3,

𝜂 = (−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)𝑢+ 𝑐5(𝑡) sin𝑥+ 𝑐6(𝑡) cos𝑥+ 𝑐7(𝑥).

3.2. Let 𝑓 = 1, we then obtain the equation

𝑏𝑡(𝑡, 𝑥) + 𝑏𝑡𝑥𝑥(𝑡, 𝑥) = 3𝑐1 sin 2𝑥− 3𝑐2 cos 2𝑥+ 𝑐4 − 𝜏 ′(𝑡)).

The general solution to this equation is

𝑏(𝑡, 𝑥) = 𝑑(𝑡) sin𝑥+ 𝑒(𝑡) cos𝑥+ (−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)𝑡− 𝜏(𝑡) + ℎ(𝑥).

The coefficients of the generators then become

𝜏 = 𝜏(𝑡), 𝜉 = 𝑐1 cos 2𝑥+ 𝑐2 sin 2𝑥+ 𝑐3,

𝜂 = (−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)(𝑢+ 𝑡) + 𝑑(𝑡) sin𝑥+ 𝑒(𝑡) cos𝑥− 𝜏(𝑡) + ℎ(𝑥).

3.3. Let 𝑓 = 𝑢. We substitute this function into (3.15), we obtain

−𝑏𝑡(𝑡, 𝑥) − 𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑢(4𝑐1 sin 2𝑥− 4𝑐2 cos 2𝑥− 𝜏 ′(𝑡)) − 𝑏(𝑡, 𝑥) = 0.

Therefore, 𝑐1 = 𝑐2 = 0, 𝜏 = 𝑐5. The coefficients of the generators read as

𝜏 = 𝑐5, 𝜉 = 𝑐3, 𝜂 = 𝑐4𝑢+ 𝑏(𝑡, 𝑥),

where 𝑏 solves the equation

𝑏𝑡(𝑡, 𝑥) + 𝑏𝑡𝑥𝑥(𝑡, 𝑥) + 𝑏(𝑡, 𝑥) = 0. (3.16)

Consider the case of a nonlinear function 𝑓 . Differentiating (3.15) w.r.t. 𝑢, we obtain
𝑓 ′(𝑢)(4𝑐1 sin 2𝑥− 4𝑐2 cos 2𝑥− 𝜏 ′(𝑡))

− 𝑓 ′′(𝑢)((𝑐4 − 𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥)𝑢+ 𝑏(𝑡, 𝑥)) = 0.
(3.17)

Differentiating (3.17) w.r.t. 𝑡, we obtain

𝑓 ′(𝑢)𝜏 ′′(𝑡) + 𝑓 ′′(𝑢)𝑏𝑡(𝑡, 𝑥) = 0. (3.18)

If 𝑏𝑡 = 0, then 𝜏 = 𝑐5𝑡+ 𝑐6. If we differentiate equation (3.17) w.r.t. 𝑥, we obtain a differential
consequence

(8𝑓 ′(𝑢) + 2𝑢𝑓 ′′(𝑢))(𝑐1 cos 2𝑥+ 𝑐2 sin 2𝑥) − 𝑓 ′′(𝑢)𝑏′(𝑥) = 0. (3.19)

Let 𝑐1 = 𝑐2 = 0, then 𝑏 is a constant and equation (3.15) is written as

𝑓(𝑢)(𝑐4 − 𝑐5) − 𝑓 ′(𝑢)(𝑐4𝑢+ 𝑏) = 0.

3.4. If 𝑐4 = 0, employing the dilatation w.r.t. 𝑢 and 𝑓 , we obtain the solution 𝑓 = 𝑒𝑢. Then
𝑏 = −𝑐5 and the solution to the determining system of equations reads as

𝜏 = 𝑐5𝑡+ 𝑐6, 𝜉 = 𝑐3, 𝜂 = −𝑐5.
3.5. In the case 𝑐4 ̸= 0 we argue as for 𝛼 = 1 to obtain the specification 𝑓 = 𝑢𝛽, where

𝛽 = 𝑐4−𝑐5
𝑐4

, 𝛽 ̸= 0, 𝛽 ̸= 1. The coefficients of the generator of the symmetries group read as

𝜏 = 𝑐4(1 − 𝛽)𝑡+ 𝑐6, 𝜉 = 𝑐3, 𝜂 = 𝑐4𝑢.

Suppose now 𝑐21 + 𝑐22 ̸= 0. Then equation (3.19) can be written as
8𝑓 ′(𝑢) + 2𝑢𝑓 ′′(𝑢)

𝑓 ′′(𝑢)
=

𝑏′(𝑥)

𝑐1 cos 2𝑥+ 𝑐2 sin 2𝑥
= 𝛾 = const.

After a shift in 𝑢, for function 𝑓 we obtain the equation 4𝑓 ′𝑢+ 𝑢𝑓 ′′(𝑢) = 0.
3.6. The latter equation implies 𝑓 = 𝑢−3 + 𝛿. We substitute this function into (3.15) and get

𝑢−3(4𝑐4 − 𝑐5) + 𝛿(3𝑐1 sin 2𝑥− 3𝑐2 cos 2𝑥+ 𝑐4 − 𝑐5) + 3𝑏(𝑥)𝑢−4 = 0.
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The case 𝛿 ̸= 0 produces no additional symmetries. Let 𝛿 = 0. Then 𝑏 = 0, 𝑐5 = 4𝑐4. The
solution to determining equation read as

𝜏 = 4𝑐4𝑡+ 𝑐6, 𝜉 = 𝑐1 cos 2𝑥+ 𝑐2 sin 2𝑥+ 𝑐3, 𝜂 = (−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)𝑢.

Suppose now 𝑏𝑡 ̸= 0, then equation (3.18) can be reduced to the form

𝑓 ′′(𝑢)

𝑓 ′(𝑢)
= − 𝜏 ′′(𝑡)

𝑏𝑡(𝑡, 𝑥)
= 𝛾 = const ̸= 0.

One can obtain 𝛾 = 1 employing the dilatation w.r.t. 𝑢. Then 𝑏(𝑡, 𝑥) = −𝜏 ′(𝑡)+𝜓(𝑥), 𝑓 = 𝑒𝑢+𝛿,
𝛿 = 0 or 𝛿 = ±1. We substitute this function into (3.15):

𝜏 ′′(𝑡) + (𝑒𝑢 + 𝛿)(3𝑐1 sin 2𝑥− 3𝑐2 cos 2𝑥+ 𝑐4 − 𝜏 ′(𝑡))

− 𝑒𝑢((−𝑐1 sin 2𝑥+ 𝑐2 cos 2𝑥+ 𝑐4)𝑢− 𝜏 ′(𝑡) + 𝜓(𝑥)) = 0.

It follows that 𝑐1 = 𝑐2 = 𝑐4 = 0, 𝜓(𝑥) = 0, 𝜏 ′′(𝑡) − 𝛿𝜏 ′(𝑡) = 0. The case 𝛿 = 0 is considered
above.

3.7. Let 𝛿 ̸= 0, then the latter equation has the solution 𝜏 = 𝑐5𝑒
𝛿𝑡+𝑐6 that yields 𝑏 = −𝑐5𝛿𝑒𝛿𝑡.

The coefficients of the operator become

𝜏 = 𝑐5𝑒
𝛿𝑡 + 𝑐6, 𝜉 = 𝑐3, 𝜂 = −𝑐5𝛿𝑒𝛿𝑡,

where 𝑓 = 𝑒𝑢 + 𝛿, 𝛿 = ±1.

Table 1

𝛼 = 0 𝛼 = 1 𝛼 = −1
𝑓 = 0 𝜏(𝑡)𝜕𝑡, 𝜕𝑥, 𝑥𝜕𝑥, 𝑢𝜕𝑢,

𝑥2𝜕𝑥 + 𝑥𝑢𝜕𝑢, 𝑑(𝑡)𝜕𝑢,
𝑒(𝑥)𝜕𝑢, 𝑐(𝑡)𝑥𝜕𝑢

𝜏(𝑡)𝜕𝑡, 𝜕𝑥, 𝑢𝜕𝑢,
𝑒2𝑥 (𝜕𝑥 + 𝑢𝜕𝑢),
𝑒−2𝑥 (𝜕𝑥 − 𝑢𝜕𝑢),

𝜏(𝑡)𝜕𝑡, 𝜕𝑥, 𝑢𝜕𝑢,
cos 2𝑥𝜕𝑥−𝑢 sin 2𝑥𝜕𝑢,
sin 2𝑥𝜕𝑥+𝑢 cos 2𝑥𝜕𝑢,

𝛾(𝑥)𝜕𝑢, 𝜎(𝑡)𝑒𝑥𝜕𝑢,
𝛿(𝑡)𝑒−𝑥𝜕𝑢

𝑐5(𝑡) sin𝑥𝜕𝑢,
𝑐6(𝑡) cos𝑥𝜕𝑢, 𝑐7(𝑥)𝜕𝑢

𝑓 = 1 2𝜏(𝑡)𝜕𝑡 − 𝜏(𝑡)𝑥2𝜕𝑢,
𝜕𝑥, 𝑥𝜕𝑥 − 𝑡𝑥2𝜕𝑢,
2𝑥2𝜕𝑥 + (2𝑥𝑢 − 𝑡𝑥3)𝜕𝑢,
(2𝑢 + 𝑡𝑥2)𝜕𝑢, 𝑑(𝑡)𝜕𝑢,
𝑒(𝑥)𝜕𝑢, 𝑐(𝑡)𝑥𝜕𝑢

𝜏(𝑡)(𝜕𝑡 + 𝜕𝑢), 𝜕𝑥,
𝑒2𝑥 (𝜕𝑥 + (𝑢− 𝑡)𝜕𝑢),
𝑒−2𝑥 (𝜕𝑥 − (𝑢− 𝑡)𝜕𝑢),
𝑒𝑥𝑑1(𝑡)𝜕𝑢,
𝑒−𝑥𝑑2(𝑡)𝜕𝑢,
𝑑3(𝑥)𝜕𝑢

𝜏(𝑡)(𝜕𝑡 − 𝜕𝑢), 𝜕𝑥,
cos 2𝑥𝜕𝑥 − (𝑢+
+𝑡) sin 2𝑥𝜕𝑢,
sin 2𝑥𝜕𝑥 + (𝑢+
+𝑡) cos 2𝑥𝜕𝑢,
𝑑(𝑡) sin𝑥𝜕𝑢,
𝑒(𝑡) cos𝑥𝜕𝑢, ℎ(𝑥)𝜕𝑢

𝑓 = 𝑢 𝜕𝑡, 𝜕𝑥, 𝑢𝜕𝑢, 2𝑡𝜕𝑡 − 𝑥𝜕𝑥,
𝑏(3.5)(𝑡, 𝑥)𝜕𝑢

𝜕𝑡, 𝜕𝑥, 𝑢𝜕𝑢,
𝑏(3.11)(𝑡, 𝑥)𝜕𝑢

𝜕𝑡, 𝜕𝑥, 𝑢𝜕𝑢,
𝑏(3.16)(𝑡, 𝑥)𝜕𝑢

𝑓 = 𝑒𝑢 𝜏(𝑡)𝜕𝑡 − 𝜏 ′(𝑡)𝜕𝑢, 𝜕𝑥,
𝑥𝜕𝑥 − 2𝜕𝑢

𝜕𝑡, 𝜕𝑥, 𝑡𝜕𝑡 − 𝜕𝑢 𝜕𝑡, 𝜕𝑥, 𝑡𝜕𝑡 − 𝜕𝑢

𝑓 = 𝑢𝛽 𝜕𝑡, 𝜕𝑥, 2𝑡𝜕𝑡 − 𝑥𝜕𝑥,
(1 − 𝛽)𝑡𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑡, 𝜕𝑥,
(1 − 𝛽)𝑡𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑡, 𝜕𝑥,
(1 − 𝛽)𝑡𝜕𝑡 + 𝑢𝜕𝑢

𝑓 = 𝑢−3 𝜕𝑡, 𝜕𝑥, 2𝑡𝜕𝑡 − 𝑥𝜕𝑥,
4𝑡𝜕𝑡 +𝑢𝜕𝑢, 𝑥2𝜕𝑥 +𝑥𝑢𝜕𝑢

𝜕𝑡, 𝜕𝑥, 4𝑡𝜕𝑡 + 𝑢𝜕𝑢,
𝑒2𝑥(𝜕𝑥 + 𝑢𝜕𝑢),
𝑒−2𝑥(𝜕𝑥 − 𝑢𝜕𝑢)

𝜕𝑡, 𝜕𝑥, 4𝑡𝜕𝑡 + 𝑢𝜕𝑢,
cos 2𝑥𝜕𝑥−𝑢 sin 2𝑥𝜕𝑢,
sin 2𝑥𝜕𝑥 + 𝑢 cos 2𝑥𝜕𝑢

𝑓 =𝑒𝑢+𝛿,
𝛿 = ±1

𝜕𝑡, 𝜕𝑥, 𝑒−𝛿𝑡(𝜕𝑡 + 𝛿𝜕𝑢) 𝜕𝑡, 𝜕𝑥, 𝑒𝛿𝑡(𝜕𝑡 − 𝛿𝜕𝑢)
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4. Conclusion

The results of the group classification are summarized in Table 1 above. The function
𝑏(𝑖.𝑗)(𝑡, 𝑥) solves equation with the number (𝑖.𝑗). All the other functions are assumed to be
arbitrary.

The results of the work can be used for the search of invariant and partially invariant solutions
to the equation.
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