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GROUP CLASSIFICATION OF A CLASS
OF SEMILINEAR PSEUDOPARABOLIC EQUATIONS

A.V. PANOV

Abstract. Group classification is implemented for a pseudoparabolic partial differential
equation with two parameters. Equivalence transformations groups are found and used for
classification of the equation parameters. Kernels of principal symmetries groups are found
for the equations. Principal symmetries groups are found for specifications of parameters
expanding the kernel of transformations groups. The obtained submodels are summarized
in a table at the end of the paper.
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1. INTRODUCTION

We consider the semilinear equation

AUy — U = f(u0) (1.1)

of pseudoparabolic type (see the terminology in [I], [2]), where o and f = f(z) are constant
and functional parameter, u = u(t, z) is the unknown function. As f(z) = €* or f(z) = ze*,
this equation describes physical phenomena in semiconductors counting Debye screening and
the sources of free charges [2]. In the case f(z) = 2® the equation describes quasi-stationary
processes in semiconductors under a stationary distribution of sources free charges current [2],
and as f(z) = z one deals with the equation of volume charge stratification in a semiconductor
[2]. The applications of this equation is not limited by semiconductors only. For instance, as
f(2) = z — az®, we obtain a famous Hoff equation describing flanged beam buckling [3].

Following “PODMODELI” program [4], we shall equation (1.1) with parameters “big model”.
The first step of “PODMODELI” program is the group classification. The aim of group
classification is calculating of transformations admitted by the equations for each value of
parameters. This group is the kernel of full symmetries groups [5]. The aim is also to find the
parameters specifications whose full groups expand the kernel.

In Section 2 we seek the group of equivalence transformations for equation (1.1) by employing
the approach suggested in [0l [7]. In Section 3 we seek the specifications and the associated full
symmetries groups for the equation expanding the kernel of full transformation groups. At that,
the form of specifications is reduced to the simplest possible by equivalence transformations
found in the second section.

As a result of group classification we find the kernels of full symmetries groups; for o # 0
the kernel consists of shifts w.r.t. independent variables, as o = 0 the shifts are completed by
the dilatation generated by X3 = x0, — 2t0;. We find all the parameters specifications reducing
additional equation symmetries. All nonlinear specifications expanding the kernel are in the
equivalence classes of functions e%, u®, u=3, e* £ 1. As a # 0, the biggest symmetries algebra
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corresponds to the equation with the function f = u=3, its Lie algebra is five-dimensional. The
obtatined submodels are summarized in the table in the end of the work.

2. EQUIVALENCE TRANSFORMATIONS GROUP

While implementing group classification, it is important to know which transformations
change the parameters in the equation keeping at the same time the differential structure
of the equation. These transformations determine equivalence transformations on the set of the
parameters of the equation. The symmetries groups of two differential equations corresponding
to a pair of different but equivalent parameters are isomorphic.

We write the original equation as

QU — Utgy — f = 07 (21)

assuming that «, f are additional variables independent of independent variables t, x, u. We
shall seek the generators of continuous equivalence transformations groups as
0 0 6’ 8 (9
Y =7+~ +n— —
"ot o T an Trar T
where the functions 7, £, n, u, v depend on t, x, u, f, « (cf. [6, 7, 8]) We supplement equation
(2.1) with equations

ft — O, fx - 0, (22)
=0, a,=0, a«a,=0, (2.3)

meaning that in the original formulation of the problem f depends on u only, while « is a
constant.

We consider system (2.1)-(2.3) as a manifold 91 in the expanded space of corresponding
variables. In order to find the admitted groups for the manifold 91, we employ the infinitesimal
criterion [5] applying the expanded operator

Vvl g 00 0@ a+uta+ 0 L2
B R TR TR TR T da, " D,
to equations (2.1)—(2.3). We then restrict the result on manifold 91 and obtain the determining
equations

vy + ol — @ — plyy = 0, (2.4)
/Lt|‘ﬁ =0, qu‘m =0, (25)
I/t’m = O, I/x‘m = O, Vu‘m =0. (26)

The coefficients of operator Y can be calculated by the expansion formulae involving the
differentiation operators

0 0 0 0 0 0
Dt—&+ut%+(ft+fuut)w+(at+auut)a +Uttau +Ut:caux+~-,
0 0 0 0 0 0
~ 8 0 ~ 8 0 0
D +ft f+04t + . -»Dw +fx f+a$ +a
~ 8 0 0
Du:—+fu st

of
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In view of equations (2.2), (2.3), the operators become

Dy = —+u 8—|—fua—|ru a+u i—irf ui—l—u i—|—u — +
t = It 8 wUt of tt tx O, wu ta 7. ttt Oty tte g
0 8 8 (9 8 8
D, =—
~ 0 = 8 ~ 0 8
Di=— D,=—, D,=— —
=gy De= gy Dum gy gy *
In accordance with the expansion formulae
ot = Dy(n) — uDy(7) — uz Di(§), 9" = Dy(n) — wDy(7) — uz Do (§),

O™ = Do(¢") = ue Do (T) = Uae Do (€), 0™ = Dy(¢™) = Ut Di(T) — g Di(E),
and thus
o' = + wn, + g fully — WeTy — UfTu - U?fqu — Upp — Utz §y — Uptly fulf,
O =N + UgTy + Ug fullf — WTe — UliaTy — Uglig fuTp — Ugly — uiEy — U fuly

We first write out equations (2.5), (2.6) to shorten the calculations of coefficients ¢**, ¢
We obtain

trx

'l = (Diln) = fiDu(7) = £2Di(€) = ﬁﬂx»m:m—nmza
1 = (Da() = fiDa(7) = foDo(€) = fuDa(n)|t = pto — funto = 0,
Vt’m = (Dt(’/) - OétDt(T) - @xﬁt(f) Oéth( Nl = v =0,

V'l = (Da(v) = 1 Dy(7) = @uDu(€) — 0 Da())lm = va = 0,

v m = vy + fuvy = 0.

By the arbitrariness of f, these equations imply that n, =n, =0, gy = p, =0, v, = v, = v, =

vy = 0. This is why 7 = n(u, @, f), 11 = p(u, 0, f), v = v(a).
We split equation (2.4) w.r.t. the differential variables. The coefficient at fuu, is u2umn; —

ufulTr—ulu&s. Equating it to zero, we obtain the identities ny = £y = 74 = 0. Making the same

for the coefficients at f,,, we obtain £,,, = 0. We differentiate equation (2.4) by f and taking into
consideration vy = £ = 7y = ny = 0, we arrive at the equation 7, —2u;7, —2&, —3u &, — 1 —py =
0. Then &, = 7, = 0 m puy = n, — 2§, — 7. Equating to zero the coefficients at various differential
variables, we obtain the identities

Utte * Te = 0,
Uggr + & = 0,
Uy * 280t — UMy = 0.
Thus, 7 = 7(t, ), £ = &(x, @), Nuw = 0, 1 = n(u, a). We rewrite now equation (2.4):
VUt + Utzar + [T + 2008 — 2fE0 — f1i —

We see that &, = 0, v + 2a&, = 0, fn, — 2f& — fr, — p = 0. If we differentiate the latter
identity by ¢ and take into consideration that u; = & = n, = 0, we obtain 7y = 0. Thus,
the solution to the system of the determining equations are the functions 7 = ¢;(a) + co()t,

€ = c3(a) + )z, n = cs(a) + cs(@)u, p = fleg(a) — ca(a) — 2¢4(av)), v = —2acy(r). Here
¢i(a) are arbitrary functions of .. The basis operator can be chosen as follows,

X1 = Cl(Oé)at, X2 = 03(04)896, X3 = c5(a)3u,
Xy = c2(a)tdy — ea(a) fO, X5 = co(a)udy, + cg(a) fOy,
Xo = ca(a@)x0y — 2¢4(a) fOr — 2¢4(v) 0,
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For instance, as ¢4 = 1, by operator Xg we can transform constant « to any other of the same
sign. We get three cases « = 1, « = —1, a« = 0. Then we do not use operator Xg any more in
order to keep . Then other equivalence transformation operators form a five-dimensional Lie
algebra with the basis

Xl - 825, XQ - ax, X3 - 8u, X4 - tat — faf, X5 — u@u + faf

We consider the action of the projections of these operators on space R?(u, f). Operator
X3 gives a shift of variable u. The projection pr(, s (=X4) = f0; gives the dilatation in f.
The dilatation w.r.t. u we obtain as the projectino pr, ;) (X4 + X5) = ud,. Immediately from
equation we see two discrete symmetries f = —t, f = —f and @ = —u, f = — f which produce
the reflections in variables u and f.

3. PARAMETERS SPECIFICATIONS

Let us find the specifications of parameters «, f under which additional symmetries of the
equation

AUy — Uppe = f(u) (3.1)
appear.
We seek the generators of continuous transformations group as
0 (9
Y =7+
ot " 5 "9

where functions 7, &, n depend on ¢, z, u.
We act by the expanded operator

9]
Y=Y
+S08t+90 autx:p

to the function F(¢,z, u, us, Uer) = 0y — User — f(u) describing system (3.1) as F' = 0. By the
invariance criterion we obtain

(" = " — f'(u)n)|p=o = 0. (3.2)
By the operators of total differentiation
D, = @—i—uta—i—utta —|—umi+... D:2+u£+u 0 +uti+
ot ou Ouy ou, ’ T Ox T ou " Ouy  Ouy
and in accordance with the expansion formulae
@' = Di(n) — weDy(7) — u Dy (§), ©" = Dy(n) — wDy(7) — up Dy (§),
" = Dp(¢") — w1 Dy (T) — Uz D (€), Sotm = Dy(¢™) = Utaa Di(T) — Ugea Di(€)

we write out equation (3.2). We equate the coefficients at the third derivatives to zero
Uty & Ty + UgTy = 0,
Ugar * & + &y = 0.
In the same way we obtain equations for the coefficients at the second derivatives
Utz * — 2Nz + Eax — 2UpNyy = 0,
Uz * — N — Uy = 0.
Then 7y = 0, Ny = 0, E4z = 214,. We split the remaining equation by variable u,; to arrive to
the identities
~Nazu + 20, = 0,
ane = Mhae + f(u)n — 2f (W) () = f(u)7'(t) = f'(u)n = 0. (3.3)

It implies easily the following statements.
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Theorem 1. (i) The basis of the kernel of full Lie algebras for the equation —uy, = f(u)
consists of the operators X, = 0y, Xo = 0,, X3 = 2t0; — x0,.

(ii) The basis of the kernel of full Lie algebras for equation (3.1) in the case a # 0 consists
of the operators X1 = 0y, Xo = 0,.

The further calculation of the specifications splits into three cases: a« =0, a > 0, a < 0. The
classification results are written in Table 1. In what follows, the number of the specification is
the number of the column and the row in the table.

The first case is o = 0. Since Myy = 0,74 = 0, 7ggu = 0, we have n = (12 + c2)u + b(t, ). It
follows from &,, = 21,, that & = c¢;2? + c3x + ¢4. We substitute these expressions into equation
(3.3) to obtain

—bizz(t, ) + f(u) (12 + ca — deyx — 2¢3 — 7'(t)) — f/(uw)((c1x + co)u + b(t, ) = 0.  (3.4)

The case f'(u) = 0 splits into other two.
1.1. If f =0, we obtain the equation b;,, = 0 giving the solution to the determining system
of equations

T=7(t), £ =ar’+ar+e, n=(ar+c)u+c(t)r+d(t) + e(z).

An infinite-dimensional Lie algebra is associated with this case.
1.2. if f = const # 0, by the dilatation in variable f we can obtain f = 1. Then the solution
is
T=1(t), £ = c2® + 37 + ¢y,

2

n=(c1z+ c)u+ <C2—2 - 03) ot — %x% — T(t)% +c(t)x +d(t) + e(z).

As f'(u) # 0, we consider two different cases.

1.3. Let f”(u) = 0, then f = ou+ 4§, o # 0. Applying the shift and dilatation in u, we can
transform the specification to f = u. After the splitting of equation (3.4) w.r.t. variables z, u
we obtain the identities

c1 =0, 7= —2c3t + cs5,
bizz(t, ) + b(t, x) = 0. (3.5)
Thus, in this case the coefficients of the generators of symmetries groups read as
T=—=2c3t+c5, E=c3xr+cy, n=cou+b(t ),

where b(t, z) is a solution to equation (3.5).
Suppose f”(u) # 0. Then, differentiating equation (3.4) by u, we obtain

f(w)(deyz + 2¢3 + 7'(1)) + [ (w)((crz + co)u + b(t, z)) = 0. (3.6)

Differentiating the latter equation w.r.t. ¢t and z gives the identiy by, (¢, ) = 0 and thus b(t, ) =
b1(t) + ba(x). We differentiate (3.6) w.r.t. t and x separately:

F )t (&) + f"(w)bh (t) =0, (3.7)
der f'(u) + cruf"(u) + by(x) [ (u) = 0. (3.8)

In view of equation (3.7) two cases are possible: 7 = c5t + ¢g, by is a constant; or b|(t) # 0,
7"(t) # 0. In the second case, employing the dilatation and, if needed, the reflection by u, we
obtain the equation

)
Flo) ~ B0
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Hence, by(t) = —7'(t) + ¢7, f = 0e* +w or f = e" + w after the dilatation in f. Now equation
(3.8) yields that ¢; = 0 and by(z) = cg is a constant. We re-denote ¢; + ¢g by ¢; and substitute
the obtained formulae into (3.4):
(" +w) (ca — 2¢3 — T'(t)) — €" (cou — 7'(t) + ¢7) = 0.
The case w # 0 does not lead us to the expansion of the kernel of the algebras. If w = 0, then
r=7(t), T'(1t)#0, E=c3x+cy, n=—(7'(t)+ 2c3).

We return back to the case 7 = c5t + ¢, b = by + bo(z). Consider equation (3.8). Let ¢; =0,
then b, (z) = 0 and equation (3.4) casts into the form

f(u)(ca — 2¢3 — ¢5) — f'(u)(cou + b) = 0, (3.9)
where b is a constant. Here two cases are possible.

1.4. Let ¢y = 0, then condition b # 0 is necessary for expansion of kernel of Lie algebra. By
the dilatation and reflection w.r.t. u equation (3.9) can be reduced to f'(u) = f(u). In this
case the solution of the equation is f = ce" and after the dilatation in f we obtain f = e".
Substituting this expression for f into (3.4), we find the solution

T =cst+cg, £ = cgx +cq, N = —(2¢3 + c5).
Combining it with the above found solution for the function f = e*, we obtain
T=1(t), £ =c3x+cq, n=—(7'(t) + 2c3).
1.5. If ¢o # 0, by a shift in u we can vanish b and get the equation uf’'(u) = Bf(u), where

B = 62*26% A nonlinear solution as 2cs + c5 # 0, 2¢5 + 5 # ¢ is f = ou® or f = u? after

the dilatation w.r.t. f. At that, the linear cases § =0, § = 1 are excluded from consideration.
Substituting into (3.4), we obtain b = 0 and the solution to this specification
T=((1—=08)cy —2c3)t +cs, E=c3x+cy, M= Cou.
It remains to study the case ¢; # 0. Equation (3.8) can be represented as
AF/ () +uf"(w) _ ~H()
f"(u) a

The left hand side is a function of u, the right hand side is a function of . Thus, these functions
/

are constant. Let = ¢y, then b = —cycrr+cg. After the shift in u by ¢; we get the equation

C1
4f"(u) + f"(w)u = 0.

Its solution f = ou=3 + § or after the dilatation f = u =3 + J. We substitute these functions f,
b into (3.4) and multiply by u*. We obtain the equation

u(cy — 2c3 — 7'(t)) + 3(cou — crerx + ¢g) + Su'(cy — 31 — 2e5 — 7'(t)) = 0.
The case § # 0 does not give the expansion for the kernel of the algebras. Consider the case
0 = 0. Splitting the latter equation in x, u, we obtain
deg — 203 —7'(t) =0, c;=cg = 0.

It shows that 7 = (4cy — 2¢3)t + ¢6, b = 0 and thus n = (c12 + c2)u.
1.6. Thus, for the function f = u~2 we obtain the solution

7= (dey — 2c3)t +cg, E=c12’ +esv+cyy, = (17 + co)u.

This case expands the algebra obtained for an arbitrary power function. Thus, the case a = 0
is completely studied.

As a > 0, each equation can be reduced to an equivalent equation with o = 1, and as a < 0,
to the equation a = —1.
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We return back to equation (3.3) of the determining system assuming aw = 1. Then employing
identity &., = 21,,, we obtain

The general solution to the latter equation reads as
&= 162 + e 4 ¢y,
then
n = (c1e® — coe”* + cy)u + b(t, z).
Substituting it to equation (3.3), we get
bi(t, 2) — brae(t, ) + f(u)(cs — 31 + 3coe™ 2 — 7'(t))
— f'(u)((c1® — coe™* + cg)u + b(t, z)) = 0.

2.1. The case f = 0 gives the equation b,(t, ) — by (t,z) = 0 that implies b = o(t)e* +
d(t)e " 4+ v(z). Thus,

T=7(t), &=ce®+ceF +es,
n = (c1e* — cye™® +cq)u+ o(t)e® +6(t)e ™ + y(x).
2.2. As f =1, we obtain the equation
bi(t, ) — buae(t, ) = 3c16* — 3coe™ 2 — ¢y + 7/(1).

(3.10)

—2x

This equation is integrated first for function b; and then we integrate it w.r.t. t. The general
solution reads as

b=di(t)e” +da(t)e ™ + (—c1€* + ce™ ™ — ca)t + 7(t) + d3(2),
T=1(t), &=ce* + e + e,
n=(c1e® — e 4 cy)(u—t) + dy(t)e” + do(t)e ™™ + 7(t) + d3().
2.3. Let f = u, then after the substitution into (3.10) we get
bi(t, ) — buaw(t, ) + u(—4c1e® + dege™ — 7/(t)) — b(t, ) = 0,

this is why 4cie* — depe™ +7/(t) = 0, ¢; = 0, ¢; = 0, 7 = ¢5. We obtain the coefficients of
the generators

T=c5, E=c3, n=cu+bt ),
where b is the solution to equation

bi(t,x) — byga(t,x) — b(t, z) = 0. (3.11)
Suppose now that f is a nonlinear function. We differentiate equation (3.10) w.r.t. u
f'(u)(4ere® — dege ™ +7'(1) + £/ (u)((c1e® — cae™ + cy)u + b(t, 7)) = 0. (3.12)
Differentiating equation (3.12) w.r.t. ¢, we obtain
f)r"(@t) + f"(u)bi(t, ) = 0. (3.13)

If b, = 0, then 7 = c5t + c6. We consider one more differential consequence of equation (3.12)
by differentiating it w.r.t. x:

(8F'(u) + 2uf”(u))(c1e* + cae™ ) + f"(u)b (z) = 0. (3.14)
If ¢y = ¢ = 0, then b is a constant. Substituting the obtained expression into (3.10), we get
f(u)(es — c5) — f'(u)(cqu +b) = 0.

As ¢y = ¢5 = 0 we have b = 0 and there are no symmetries additional to the kernel.
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2.4. If ¢4 = 0, applying the dilatation in u, we obtain equation f’(u) = f(u) with solution

f = e€" (after the dilatation in f). The coefficients of the generator read as
T=csl+cg, §=c3, N=—0Cs

2.5. If ¢4 # 0, by a shift in u we can vanish b. The solution of the remaining equation after
a dilatation in f is the function f = u”, where f = “=s, B # 0, B # 1. The coefficients of the
symmetries operator cast into the form

T=(1-Bt+cs, {=c3, n=cyu.
The second case is ¢; # 0 or ¢y # 0. Then equation (3.14) becomes
8f (u) +2uf"(u)  V(x)
f//(u) o 0162:1: + 026—2z

After the shift in u, we arrive at the equation 4f"(u) + uf”(u) = 0 for the function f.
2.6. One can see that f =« + d. We substitute this function into (3.10)

(w2 + 8)(—3c1e* + 3coe™ 2 + ¢y — c5) + 3uH((cre® — cre ™ 4 cy)u +b) =0

=7, & +c3#0, v = const.

or
u 3 (4ey — c5) + 0(—3c1€® 4+ 3cpe™* + ey — c5) + 3bu"t = 0.

The case § # 0 gives no additional symmetries. Suppose 6 = 0. Then b = 0, ¢5 = 4c4. The

solution to the determining equations is

T =det + 5, € =165 + e + ¢y, n= (0162”” — e 4 04) u.

Suppose now b; # 0, then equation (3.13) can be transformed to

f" () T'(t)
= — = v = const # 0.
R s R
We can achieve v = 1 by the dilatation in w. Then b(t,x) = —7'(t) + ¥(z), f = oe" + 4.
Employing a shift in u and a dilatation in f, we can obtain f = e+ ¢, where 6 =0 or § = +1.

We substitute these functions into (3.10) to obtain equation
—7"(t) + (e" + 6)(—=3c1e®® + e > + ¢y — 7'(t))
— e"((c1€® — cpe™ + cy)u — 7'(t) +(x)) = 0.
It yields ¢y = o = ¢4 = 0, ¢¥(z) = 0, 77(t) + d7'(t) = 0. The case § = 0 leads us to the same
solution as in Item 2.4.

2.7. Let 6 # 0, then 7 = c5e ™% + ¢4, b = c50e 7. The coefficients of the operator for the case
f=e"+46,0#0, become

—5t —5t
T=cse g, E=c3, 1n=cs0e .

It remains to study the case a = —1. Arguing as for a = 1, we obtain the equation for £
Its solution is & = ¢y cos2x + cosin2x + c3, then n,, = %gm = —2c¢1co82x — 2¢cysin2x. It
yields 7, = —c¢; sin 2z + ¢ cos 2x + ¢4, since 1y, = N, = 0. Thus, n = (—cy sin 2z + 5 cos 2z +

cq)u + b(t,x). Proceeding as in the case v = 1, one can obtain similar specifications with the
symmetries groups given in the table.
Substituting the obtained results into equation (3.3), we get

—by(t, ) — be(t, ) + f(u)(3cy sin 22 — 3cg cos 2 + ¢4 — 7' (1))

— f'(u)((—cy 8in 22 + 5 cos 2 + c4)u + b(t, ) = 0. (3.15)
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3.1. As f
ce(t) cosz + 7

0, equation (3.15) becomes bi(t,x) + by, (t,x) = 0, then b = c¢5(¢)sinz +
x). The solution to the determining equations is

—~

=17(t), &= c1co82x+ cysin2x + c3,

= (—c18In 2z + 5 €08 2 + ¢4)u + e5(t) sinx + ¢g(t) cosx + ().
3.2. Let f =1, we then obtain the equation

bi(t, ) + beas (t, ) = 31 8in 22 — 3eg cos 22 + ¢4 — 7'(t)).

= A

The general solution to this equation is
b(t,x) = d(t)sinz + e(t) cosx + (—c1 8in 22 + ¢ cos 2z + ¢4 )t — 7(t) + h(x).
The coefficients of the generators then become
T=1(t), & =082+ cosin2x + c3,
n = (—c18in2x 4 ¢y cos 2z + ¢4)(u + t) + d(t) sinz + e(t) cosz — 7(t) + h(x).
3.3. Let f = u. We substitute this function into (3.15), we obtain
—by(t, 1) — biae(t, ®) + u(4ey sin 2z — 4eg cos 2z — 7'(t)) — b(t, x) = 0.
Therefore, ¢; = co = 0, 7 = ¢5. The coefficients of the generators read as
T=c5, E=c3, n=cu+bt ),
where b solves the equation
be(t, x) + brya(t, ) + b(t, z) = 0. (3.16)
Consider the case of a nonlinear function f. Differentiating (3.15) w.r.t. u, we obtain
I/ (w)(4ey sin 2 — 4ey cos 2o — 7'(t))
— f"(u)((cs — c18in 22 + ¢9 cos 22)u + b(t, z)) = 0.
Differentiating (3.17) w.r.t. ¢, we obtain
f ()" (@) + f"(u)bi(t, ) = 0. (3.18)

If b, = 0, then 7 = ¢5t + ¢g. If we differentiate equation (3.17) w.r.t. z, we obtain a differential
consequence

(3.17)

(8f'(u) 4+ 2uf"(u))(c1 cos 2z + cosin 2z) — f"(u)t'(z) = 0. (3.19)
Let ¢; = ¢y = 0, then b is a constant and equation (3.15) is written as
f(u)(eq —e5) — f(u)(cau + b) = 0.

3.4. If ¢4 = 0, employing the dilatation w.r.t. « and f, we obtain the solution f = e". Then
b = —c5 and the solution to the determining system of equations reads as

T=cst+cg, E=c3 nN=—cs.
3.5. In the case ¢; # 0 we argue as for & = 1 to obtain the specification f = u”, where
B = %, B # 0, B # 1. The coefficients of the generator of the symmetries group read as
T=c(1=P)t+cs, £=c3 n=cqu.
Suppose now ¢? + ¢3 # 0. Then equation (3.19) can be written as

S+ Ve
17 (u) T Clcos2r + cpsin2e | '

After a shift in u, for function f we obtain the equation 4 f'u + uf”(u) = 0.
3.6. The latter equation implies f = u™3 + d. We substitute this function into (3.15) and get

u 3 (4ey — c5) + 6(3c1 8in 22 — 3ey €08 27 + ¢4 — ¢5) + 3b(z)ut = 0.
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The case § # 0 produces no additional symmetries. Let § = 0. Then b = 0, ¢5 = 4c¢4. The
solution to determining equation read as

T =degt + 5, £ =c1€082T + cosin2x + ¢z, N = (—cpsin 2z + ¢ cos 2x + ¢4) u.

Suppose now b; # 0, then equation (3.18) can be reduced to the form

[ (u) _ T'(t) = v = const # 0.

fllw) — bi(to)

One can obtain v = 1 employing the dilatation w.r.t. u. Then b(t, z) = —7'(t)+¢(x), f = "+,
d =0 or 6 = 1. We substitute this function into (3.15):

7"(t) + (e" + 0)(3cy sin 2x — 3cg cos 2x + ¢4 — 7'(1))
—e"((—cy sin2x + ¢ cos 2w + ¢q)u — 7' () + ¥ (x)) = 0.

It follows that ¢; = co = ¢4 = 0, ¥(x) = 0, 77(t) — 67'(t) = 0. The case § = 0 is considered
above.

3.7. Let § # 0, then the latter equation has the solution 7 = cse® +cg that yields b = —c50e.
The coefficients of the operator become

T=cse 45, E=c3, n=—c50€,
where f=e"+6, 6 = £1.
Table 1
a=0 a=1 a=-—1
f=0 T(t)0y, O, 0z, Uy, T(t)0y, O, U0y, T(t)0;, Or, U0y,
220, + 2ud,, d(t)0,, e** (0, + ud,), cos 220, — u sin 220,
e(x)0y, c(t)xd, e 2% (0, — ud,), sin 220, +u cos 2x0,,
Y(x)0y, o(t)e" 0y, c5(t) sin 20,
d(t)e "0, c6(t) cos 0y, c7(x)0,
f=1 27(4)0, — 7(t)x20,, 7(t) (0 + Ou)y Ou, 7(t)(0p — Oy), O,
0y, 20y — t2%0,, e** (0 + (u —)dy), |cos2zd, — (u +
2220, + (2zu — ta3)dy, | €72 (0p — (u — )9,),| +t) sin 220,
(2u + ta*)0,, d(t)0y, | e®di(t)0,, sin 20, + (u +
e(x)0y, c(t)xd, e "dy ()0, +t) cos 2x0,,
ds(x)0, d(t) sin z0,,,

e(t) cos x0,, h(x)0,
f =u at7 81‘7 uaua 2tat - xaﬂ?; 815, a$7 Uau7 at; ama ualu

bis.5) (t, )0, bez.11)(t, )0y bes.16)(t, )0y
F=a (700 =70 Fni | s, O, 101 — D D, Oy, 10, — O,
10, — 20,
f=u’ Oy, Oy, 210y — x0,, Oy, Oy, O, Oy,
(1= B)t0, + ud, (1= B)t0, +udy | (1= )0, + ud,
f=u>? |0, 0, 2t0, — x0,, Oy, Oy, 410; + U0y, | 0y, 0., 4t0; + u0,,
410, +udy, 120, +1ud, | ¥ (0, + ud,), cos 220, — u sin 220,
e 2 (0, — ud,) sin 220, + u cos 220,
f=e"+9, O, O, €U0, + 00,,) | 01, Op, (0, — 60,,)
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4. (CONCLUSION

The results of the group classification are summarized in Table 1 above. The function

biij(t,z) solves equation with the number (i.7). All the other functions are assumed to be
arbitrary.

The results of the work can be used for the search of invariant and partially invariant solutions

to the equation.

—_
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