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ON SOME SPECIAL SOLUTIONS OF EISENHART

EQUATION

Z.KH. ZAKIROVA

Abstract. In this note we study a 6-dimensional pseudo-Riemannian space 𝑉 6(𝑔𝑖𝑗) with
the signature [+ + − − −−], which admits projective motions, i.e., continuous transfor-
mation groups preserving geodesics. A general method of determining pseudo-Riemannian
spaces admitting some nonhomothetic projective group𝐺𝑟 was developed by A.V. Aminova.
A.V. Aminova classified all Lorentzian manifolds of dimension greater than three admitting
nonhomothetic projective or affine infinitesimal transformations. The problem of classifi-
cation is not solved for pseudo-Riemannian spaces with arbitrary signature.

In order to find a pseudo-Riemannian space admitting a nonhomothetic infinitesimal
projective transformation, one has to integrate Eisenhart equation

ℎ𝑖𝑗,𝑘 = 2𝑔𝑖𝑗𝜙,𝑘 + 𝑔𝑖𝑘𝜙,𝑗 + 𝑔𝑗𝑘𝜙,𝑖.

Pseudo-Riemannian manifolds for which there exist nontrivial solutions ℎ𝑖𝑗 ̸= 𝑐𝑔𝑖𝑗 to the
Eisenhart equation are called ℎ-spaces. It is known that the problem of describing such
spaces depends on the type of the ℎ-space, i.e., on the type of the bilinear form 𝐿𝑋𝑔𝑖𝑗
determined by the characteristic of the 𝜆-matrix (ℎ𝑖𝑗 −𝜆𝑔𝑖𝑗). The number of possible types
depends on the dimension and the signature of an ℎ-space

In this work we find the metric and determine quadratic first integrals of
the corresponding geodesic lines equations for 6-dimensional ℎ-spaces of the type
[(21 . . . 1)(21 . . . 1) . . . (1 . . . 1)].

Keywords: differential geometry, pseudo-Riemannian manifolds, systems of partial differ-
ential equations.

Mathematics Subject Classification: 53C50, 53B30.

1. Introduction

A curve 𝑥𝑖(𝑡) is called geodesic, if its speed vector 𝑇 𝑖 = 𝑑𝑥𝑖/𝑑𝑡 is parallel along the curve (cf.
[1]): ∇𝑡𝑇 = 0. In local coordinates, the geodesic equation reads as

𝑑2𝑥𝑖

𝑑𝑡2
+ Γ𝑖

𝑗𝑘

𝑑𝑥𝑗

𝑑𝑡

𝑑𝑥𝑘

𝑑𝑡
= 0, (1)

where Γ𝑖
𝑗𝑘 are the components of connection of a pseudo-Riemannian manifold (𝑀, 𝑔). Here-

inafter, the summation is made over repeating indices.
A transformation 𝑓 of a pseudo-Riemannian manifold 𝑀 onto itself is called projective trans-

formation if it maps geodesics into geodesics.
A vector field 𝑋 is called infinitesimal projective transformation or projective motion if the

local one-parametric transformation group generated by this field in a neighborhood of each
point 𝑝 ∈ 𝑀 consists of locally projective transformations.
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A vector field 𝑋 is called infinitesimal projective transformation on a manifold 𝑀 with an
affine connection ∇ if and only if [2] (see also [8])

∇𝑌 (𝐿𝑋𝑍 −∇𝑋𝑍) − (𝐿𝑋 −∇𝑋)∇𝑌𝑍 = 𝑅(𝑋, 𝑌 )𝑍 − 𝜙(𝑌 )𝑍 − 𝑌 𝜙(𝑍) (2)

for the field of 1-form 𝜙 and all vector fields 𝑌 , 𝑍 on 𝑀 , where 𝑅 is the Ricci tensor.
In local coordinates, we have

𝐿𝑋Γ𝑖
𝑗𝑘 = 𝛿𝑖𝑗𝜙𝑘 + 𝛿𝑖𝑘𝜙𝑗 (3)

that is equivalent to

𝐿𝑋Γ𝑖
𝑗𝑘 ≡ 𝜕𝑗𝑘𝜉

𝑖 + 𝜉𝑙𝜕𝑙Γ
𝑖
𝑗𝑘 − Γ𝑙

𝑗𝑘𝜕𝑙𝜉
𝑖 + Γ𝑖

𝑙𝑘𝜕𝑗𝜉
𝑙 + Γ𝑖

𝑗𝑙𝜕𝑘𝜉
𝑙 ≡

≡ 𝜉𝑖,𝑗𝑘 + 𝜉𝑙𝑅𝑖
𝑗𝑙𝑘 = 𝛿𝑖𝑗𝜙𝑘 + 𝛿𝑖𝑘𝜙𝑗.

If 𝑀 a pseudo-Riemmanian manifold with the metric 𝑔 and Riemannian connection ∇, then
condition (2) is equivalent to the equations (cf. [2], [8])

𝐿𝑋𝑔 = ℎ, (4)

∇ℎ(𝑌, 𝑍,𝑊 ) = 2𝑔(𝑌, 𝑍)𝑊𝜙 + 𝑔(𝑌,𝑊 )𝑍𝜙 + 𝑔(𝑍,𝑊 )𝑌 𝜙, (5)

where (𝑌, 𝑍,𝑊 ) ∈ 𝑇 (𝑀), 𝜙 = 1
𝑛+1

div𝑋. Equation (4) is called generalized Killing equation,
the second equation in (5) is called Eisenhart equation.

First the problem on determining 2𝐷 Riemannian manifolds admitting projective motions
or infinitesimal projective transformations, i.e., continuous groups of transformation preserving
geodesics, was considered by S. Lie and G. Koenigs (cf. [3]). Other important results were
obtained by A.Z. Petrov in work [4]. He classified geodesically equivalent pseudo-Riemannian
spaces 𝑉 3. Later A.V. Aminova solved completely this problem in [5]. For a Riemannian
manifold of dimension greater than two, a similar problem was solved by G. Fubini in [6] and
by A.S. Solodovnikov in [7]1. In their works, they provide a complete classification of pseudo-
Riemannian spaces of dimension greater than two over local groups of projective transformations
which are wider than the homotheties groups. We note that their conclusion based on the
assumption of positive definiteness for the considered metric. Once we renounce the positive
definiteness condition, the problem becomes much more complicated and requires a completely
new method of solving.

In work [8], A.V. Aminova classified all Lorentzian manifolds of dimension greater than three
admitting nonhomothetical infinitesimal projective and affine transformations. In each case,
the corresponding maximal and affine Lie algebras were determined. This problem is not solved
for a pseudo-Riemannian space with an arbitrary signature.

In order to find a pseudo-Riemannian space admitting nonhomothetical infinitesimal projec-
tive transformation, we need to integrate Eisenhart equation (5). The problem on determining
such spaces depends on the type of ℎ-space, i.e., on the type of the bilinear form 𝐿𝑋𝑔 deter-
mined by Segre characteristics of the 𝜆-matrix (ℎ − 𝜆𝑔) (see [8]). If the characteristics of a
tensor 𝐿𝑋𝑔 is [𝑎𝑏𝑐 . . .], we call the corresponding space as ℎ-space of type [𝑎𝑏𝑐 . . .]. These ideas
were first suggested by P.A. Shirokov (see [10]). Thus, a pseudo-Riemannian space for which a
nontrivial solution ℎ ̸= 𝑐𝑔 to Eisenhart equation exists is called ℎ-space.

The number of possible types depends on the dimension and signature of the pseudo-
Riemannian space. In particular, for a 6-dimensional pseudo-Riemannian space 𝑉 6(𝑔𝑖𝑗) with
the signature [+ + −−−−], the following types are possible:

1) [(1...1)...(1...1)], i.e., [111111], [(11)1111], [(111)111] and so forth;
2) [11(1...1)...(1...1)], i.e., [111111], [11(11)11], [11(111)1] and so forth;
3) [1111(1...1)...(1...1)], i.e., [(11)1111], [(11)(11)11], [1111(11)] and so forth;
4) [(21...1)...(1...1)], i.e., [21111], [(21)111], [(211)11] and so forth;

1It should be noted that the complete survey on this subject was given in work [8] as well as in the PhD
thesis of the author [9].



42 Z.KH. ZAKIROVA

5) [(21)111], [(211)11], [2(11)11];
6) [(21...1)(21...1)(1...1)(1...1)], i.e., [2211], [(22)11], [2(21)1], [(21)(21)] and so forth;
7) [2211], [22(11)];
8) [(31...1)...(1...1)], i.e., [3111], [(31)11], [(311)1] and so forth;
9) [3111], [(31)11];
10) [321], [3(21)], [(32)1], [(321)];
11) [33], [(33)];
12) [411], (41)1], [4(11)], [(411)];
13) [51], [(51)].
We note that ℎ-spaces in Items 1), 2), 3) were studied by G. Fubini in [6] and by

A.S. Solodovnikov in [7], ℎ-spaces in Items 4), 5), 8), 9) were studied by A.V. Aminova in
[8], ℎ-spaces in Items 6), 7), 10), 11), 12), 13) were studied by the author in PhD thesis [9].
Some results were published in [11]-[15].

The aim of the present work is to study 6-dimensional pseudo-Riemannian spaces 𝑉 6(𝑔𝑖𝑗)
with signature [+ + − − −−]. In particular, we find the metric of 6-dimensional ℎ-spaces of
types [22(11)], [2(21)1],[2(211)], [(22)11], [(221)1], [(2211)], [(22)(11)], [(21)(21)] and determine
the first quadratic integrals for the geodesic equations in these ℎ-spaces. The metric in the
ℎ-space of type [2211] was obtained by the author in [11].

The main method of determining pseudo-Riemannian manifolds admitting nonhomothetical
projective group 𝐺𝑟 was developed by A.V. Aminova (see [8])1. Employing the technique of
integration in a moving skew-normal frame in the present work, we find the metric in the
considered ℎ-spaces.

In a skew-normal frame, Eisenhart equation

ℎ𝑖𝑗,𝑘 = 2𝑔𝑖𝑗𝜙,𝑘 + 𝑔𝑖𝑘𝜙,𝑗 + 𝑔𝑗𝑘𝜙,𝑖 (6)

casts into the form (see [8])2

𝑋𝑟𝑎𝑝𝑞 +
𝑛∑︁

ℎ=1

𝑒ℎ(𝑎ℎ𝑞𝛾ℎ̃𝑝𝑟 + 𝑎𝑝ℎ𝛾ℎ̃𝑞𝑟) = 𝑔𝑝𝑟𝑋𝑞𝜙 + 𝑔𝑞𝑟𝑋𝑝𝜙 (𝑝, 𝑞, 𝑟 = 1, . . . , 𝑛), (7)

where

𝑋𝑟𝜙 ≡ 𝜉
𝑟

𝑖 𝜕𝜙

𝜕𝑥𝑖
, 𝛾𝑝𝑞𝑟 = −𝛾𝑞𝑝𝑟 = 𝜉

𝑝
𝑖,𝑗𝜉

𝑞

𝑖𝜉
𝑟

𝑗, 𝑎𝑖𝑗 = ℎ𝑖𝑗 − 2𝜙𝑔𝑖𝑗,

𝜉
𝑖

𝑗 are the components of the skew-normal frame, 𝑔𝑝𝑟 = 𝑒𝑝𝛿𝑝
𝑟 and 𝑎𝑝𝑞 are canonical forms of

tensors 𝑔𝑝𝑟, 𝑎𝑝𝑞, respectively, 𝛾𝑝
𝑙𝑘 = 𝑒𝑝𝛾𝑙𝑝𝑘 are the components of connection in skew-normal

frame 𝑋. The commutators of vector field 𝑋𝑘 and 𝑋ℎ are determined by the formula (cf. [8])

[𝑋𝑘, 𝑋ℎ] =
𝑛∑︁

𝑙=1

𝑒𝑙(𝛾𝑙𝑘ℎ − 𝛾𝑙ℎ𝑘)𝑋𝑙̃, (8)

1The technique of integration in skew-normal frame was employed first in works [16], [17].
2The mapping ∼ which maps indices into the others was first introduced by A.V. Aminova

in works [16], [17] (cf. also [8]) in the definition of a moving skew-normal frame. It
should be noted that these papers by A.V. Aminova can be found in the Internet by the link
http://www.mathnet.ru/php/person.phtml?option lang=rus&personid=8394. Omitting a cumbersome defini-
tion of a moving skew-normal frame, it is sufficient to provide several examples in order to understand the
action of mapping ∼. For instance, for ℎ-space of type [2211], 1̃ = 2, 2̃ = 1, 3̃ = 4, 4̃ = 3, 5̃ = 5, 6̃ = 6; for
ℎ-space of type [321], 1̃ = 3, 2̃ = 2, 3̃ = 1, 4̃ = 5, 5̃ = 4, 6̃ = 6; for ℎ-space of type [411], 1̃ = 4, 2̃ = 3, 3̃ = 2,
4̃ = 1, 5̃ = 5, 6̃ = 6. The same relations remain true also in the case of multiple primitive divisors, i.e., under
the existence of brackets in the types of ℎ-spaces, for instance, in the case [22(11)], [2(211)] and so forth.
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that is equivalent to

[𝑋𝑘, 𝑋ℎ] =
𝑛∑︁

𝑙=1

𝑛∑︁
𝑚=1

(𝛾𝑚𝑘ℎ − 𝛾𝑚ℎ𝑘)𝑔𝑚𝑙𝑋𝑙.

We note that for 6-dimensional ℎ-spaces of type [(21 . . . 1)(21 . . . 1) . . . (1 . . . 1)], 1̃ = 2, 2̃ = 1,
3̃ = 4, 4̃ = 3, 5̃ = 5, 6̃ = 6 (see [8]).

For 6-dimensional ℎ-spaces of type [(21 . . . 1)(21 . . . 1) . . . (1 . . . 1)], canonical forms 𝑔𝑝𝑟 and
𝑎𝑝𝑞 read as (cf. [4])

𝑔𝑝𝑟 =

⎛⎜⎜⎜⎜⎜⎝
0 𝑒2 0 0 0 0
𝑒2 0 0 0 0 0
0 0 0 𝑒4 0 0
0 0 𝑒4 0 0 0
0 0 0 0 𝑒5 0
0 0 0 0 0 𝑒6

⎞⎟⎟⎟⎟⎟⎠ , (9)

𝑎𝑝𝑞 =

⎛⎜⎜⎜⎜⎜⎝
0 𝑒2𝜆2 0 0 0 0

𝑒2𝜆2 0 0 0 0 0
0 0 0 𝑒4𝜆4 0 0
0 0 𝑒4𝜆4 0 0 0
0 0 0 0 𝑒5𝜆5 0
0 0 0 0 0 𝑒6𝜆6

⎞⎟⎟⎟⎟⎟⎠ ,

where 𝑒1 = 𝑒2, 𝑒3 = 𝑒4, 𝑒𝑖 = ±1, (𝑖 = 1, 2, ..., 6), 𝜆1 = 𝜆2, 𝜆3 = 𝜆4, 𝜆5, 𝜆6 are real functions which
can coincide. These functions are the roots of the characteristic equation det(ℎ𝑖𝑗 − 𝜆𝑔𝑖𝑗) = 0.

2. Metric of ℎ-space of type [22(11)]

We substitute canonical forms 𝑔𝑝𝑟 and 𝑎𝑝𝑞 from (9) into (7) and take into consideration that

for ℎ-space of type [22(11)] we have 𝜆5 = 𝜆6, 1̃ = 2, 2̃ = 1, 3̃ = 4, 4̃ = 3, 5̃ = 5, 6̃ = 6. Then
we obtain the system of equations

𝑋𝑟𝜆2 = 0 (𝑟 ̸= 2), 𝑋𝑟𝜆4 = 0 (𝑟 ̸= 4), 𝑋𝑟𝜆6 = 0,

𝑋2(𝜆2 − 𝜙) = 𝑋4(𝜆4 − 𝜙) = 0, 𝛾121 = 𝑒2𝑋2𝜙, 𝛾343 = 𝑒4𝑋4𝜙,

𝛾142 = 𝛾241 =
𝑒2𝑋4𝜙

𝜆2 − 𝜆4

, 𝛾242 = − 𝑒2𝑋4𝜙

(𝜆2 − 𝜆4)2
, 𝛾324 = 𝛾423 =

𝑒4𝑋2𝜙

𝜆4 − 𝜆2

, (10)

𝛾424 = − 𝑒4𝑋2𝜙

(𝜆4 − 𝜆2)2
, 𝛾244 =

𝑒4𝑋2𝜙

(𝜆2 − 𝜆4)2
, 𝛾𝑠𝜎𝜎 =

𝑒𝜎𝑋𝑠𝜙

(𝜆𝑠 − 𝜆𝜎)
,

where 𝑟 = 1, 2, ..., 6, 𝜎 = 5, 6, 𝑠 = 2, 4, 𝛾56𝑟 are arbitrary. Other 𝛾𝑝𝑞𝑟 are zero.
It is known that a system of partial differential equations

𝑋𝑞𝜃 = 𝜉
𝑞

𝑖𝜕𝑖𝜃 = 0, (𝑞 = 1, . . . ,𝑚, 𝑖 = 1, . . . , 6,𝑚 < 6), (11)

where 𝜉
𝑞

𝑖 are the components of a skew-normal frame, is completely integrable, i.e., it admits

6−𝑚 independent solutions, if and only if all the commutators of the operators of system ([2],
see also [8])

[𝑋𝑞, 𝑋𝑟] = 𝑋𝑞𝑋𝑟 −𝑋𝑟𝑋𝑞 =
6∑︁

𝑝=1

𝑒𝑝(𝛾𝑝𝑞𝑟 − 𝛾𝑝𝑟𝑞)𝑋𝑝 (12)

are linearly expressed in terms of operators 𝑋𝑞.
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Employing formulae (10) and (12), we write down the commutators of operators 𝑋𝑖 (𝑖 =
1, . . . , 6) in the considered ℎ-space,

[𝑋1, 𝑋2] = −𝑒1𝛾121𝑋2, [𝑋1, 𝑋3] = 0, [𝑋2, 𝑋3] = 𝑒4𝛾423𝑋3,

[𝑋1, 𝑋4] = −𝑒2𝛾241𝑋1, [𝑋3, 𝑋4] = −𝑒3𝛾343𝑋4,

[𝑋2, 𝑋4] = −𝑒2𝛾242𝑋1 − 𝑒1𝛾142𝑋2 + 𝑒4𝛾424𝑋3 + 𝑒3𝛾324𝑋4, (13)

[𝑋𝑝, 𝑋𝜎] = −𝑒𝜏𝛾𝜏𝜎𝑝𝑋𝜏 , [𝑋𝑞, 𝑋𝜎] = 𝑒𝜎𝛾𝜎𝑞𝜎𝑋𝜎 − 𝑒𝜏𝛾𝜏𝜎𝑞𝑋𝜏 ,

[𝑋5, 𝑋6] = −𝑒5𝛾565𝑋5 + 𝑒6𝛾656𝑋6,

where 𝑝 = 1, 3, 𝑞 = 2, 4, 𝜎, 𝜏 = 5, 6 (𝜎 ̸= 𝜏).
Then, forming completely integrable system (11) by (13), we define independent solutions

admitted by these systems and indicate these solutions by 𝜃𝑖. After that, by the coordinate
transformation 𝑥𝑖′ = 𝜃𝑖(𝑥), we can vanish some of the components 𝜉

𝑞

𝑖 of the skew-normal frame

introduced above. In particular, completely integrable systems from (13) are 𝑋1𝜃 = 𝑋3𝜃 =
𝑋4𝜃 = 𝑋5𝜃 = 𝑋6𝜃 = 0, 𝑋1𝜃 = 𝑋2𝜃 = 𝑋3𝜃 = 𝑋5𝜃 = 𝑋6𝜃 = 0, 𝑋1𝜃 = 𝑋2𝜃 = 𝑋3𝜃 = 𝑋4𝜃,
𝑋3𝜃 = 𝑋4𝜃 = 𝑋5𝜃 = 𝑋6𝜃 = 0, 𝑋1𝜃 = 𝑋2𝜃 = 𝑋5𝜃 = 𝑋6𝜃 = 0. We denote the solution to the
first system by 𝜃2, the solution to the second system is 𝜃4, and the solutions to the third system
are 𝜃5 and 𝜃6. The forth system has two independent solutions. One of them is indicated by 𝜃1,
while the other is chosen to coincide with 𝜃2. The latter system has two independent solutions
as well. One of them is denoted by 𝜃3, while the other coincides with 𝜃4. Making the coordinate
transformation 𝑥𝑖′ = 𝜃𝑖(𝑥) in the new coordinate system, omitting the primes, we determine

𝜉
𝑝

𝑖 = 𝑃𝑝(𝑥)𝛿𝑝
𝑖, 𝜉

2

3 = 𝜉
2

4 = 𝜉
2

𝜎 = 𝜉
4

1 = 𝜉
4

2 = 𝜉
4

𝜎 = 𝜉
𝜎

𝛼 = 0, (14)

where 𝑝 = 1, 3, 𝜎 = 5, 6, 𝛼 = 1, 2, 3, 4, 𝑃𝑝(𝑥) are arbitrary functions.
By means of identities (14), employing the part of equations (10) not involving 𝛾𝑝𝑞𝑟, we find

2𝜙 =
6∑︁

𝑖=1

𝑓𝑖 + 𝑐, 𝜆𝑖 = 𝑓𝑖, (15)

where 𝑓1 = 𝑓2(𝑥
2), 𝑓3 = 𝑓4(𝑥

4) are arbitrary functions, 𝑓5 = 𝑓6 = 𝜆, 𝑐 are constants.
Equating the coefficients at like derivatives 𝜕/𝜕𝑥𝑖 in the left hand side and the right hand side

of identities (13), by formulae (10) and (14) we obtain the system of equations for components
𝜉
𝑖

𝑗 of the skew-normal frame,

1∘ 𝜉
1

1𝜕1𝜉
2

1 − 𝜉
2

1𝜕1𝜉
1

1 − 𝜉
2

2𝜕2𝜉
1

1 = −𝑓 ′
2𝜉
2

2𝜉
2

1,

2∘ 𝜉
1

1𝜕1𝜉
2

2 = −𝑓 ′
2(𝜉

2

2)2,

3∘ 𝜉
3

3𝜕3𝜉
1

1 = 𝜉
3

3𝜕3𝜉
2

1 = 𝜉
3

3𝜕3𝜉
2

2 = 0,

4∘ 𝜕4𝜉
1

1 =
𝑓 ′
4

𝑓2−𝑓4
𝜉
1

1,

5∘ 𝜕4𝜉
2

1 =
𝑓 ′
4

𝑓2−𝑓4
𝜉
2

1 − 𝑓 ′
4

(𝑓2−𝑓4)2
𝜉
1

1,

6∘ 𝜕4𝜉
2

2 =
𝑓 ′
4

𝑓2−𝑓4
𝜉
2

2,

7∘ 𝜉
3

3𝜕3𝜉
4

3 − 𝜉
4

3𝜕3𝜉
3

3 − 𝜉
4

4𝜕4𝜉
3

3 = −𝑓 ′
4𝜉
4

4𝜉
4

3,

8∘ 𝜉
3

3𝜕3𝜉
4

4 = −𝑓 ′
4(𝜉

4

4)2,

9∘ 𝜉
1

1𝜕1𝜉
3

3 = 𝜉
1

1𝜕1𝜉
4

3 = 𝜉
1

1𝜕1𝜉
4

4 = 0,

10∘ 𝜕2𝜉
3

3 =
𝑓 ′
2

𝑓4−𝑓2
𝜉
3

3,



ON SOME SPECIAL SOLUTIONS OF EISENHART EQUATION 45

11∘ 𝜕2𝜉
4

3 =
𝑓 ′
2

𝑓4−𝑓2
𝜉
4

3 − 𝑓 ′
2

(𝑓4−𝑓2)2
𝜉
3

3,

12∘ 𝜕2𝜉
4

4 =
𝑓 ′
2

𝑓4−𝑓2
𝜉
4

4,

13∘ 𝜉
1

1𝜕1𝜉
𝜎

𝜎 = −𝛾𝜏𝜎1𝜉
𝜏

𝜎, (𝜏 ̸= 𝜎),

14∘ 𝜉
1

1𝜕1𝜉
𝜎

𝜏 = −𝛾𝜏𝜎1𝜉
𝜏

𝜏 , (𝜏 ̸= 𝜎),

15∘ 𝜉
3

3𝜕3𝜉
𝜎

𝜎 = −𝛾𝜏𝜎3𝜉
𝜏

𝜎, (𝜏 ̸= 𝜎),

16∘ 𝜉
3

3𝜕3𝜉
𝜎

𝜏 = −𝛾𝜏𝜎3𝜉
𝜏

𝜏 , (𝜏 ̸= 𝜎),

17∘ 𝜉
2

1𝜕1𝜉
𝜎

𝜎 + 𝜉
2

2𝜕2𝜉
𝜎

𝜎 = − 𝑓 ′
2

𝑓2−𝜆
𝜉
2

2𝜉
𝜎

𝜎 − 𝛾𝜏𝜎2𝜉
𝜏

𝜎, (𝜏 ̸= 𝜎),

18∘ 𝜉
2

1𝜕1𝜉
𝜎

𝜏 + 𝜉
2

2𝜕2𝜉
𝜎

𝜏 = − 𝑓 ′
2

𝑓2−𝜆
𝜉
2

2𝜉
𝜎

𝜏 − 𝛾𝜏𝜎2𝜉
𝜏

𝜏 , (𝜏 ̸= 𝜎),

19∘ 𝜉
4

3𝜕3𝜉
𝜎

𝜎 + 𝜉
4

4𝜕4𝜉
𝜎

𝜎 = − 𝑓 ′
4

𝑓4−𝜆
𝜉
4

4𝜉
𝜎

𝜎 − 𝛾𝜏𝜎4𝜉
𝜏

𝜎, (𝜏 ̸= 𝜎),

20∘ 𝜉
4

3𝜕3𝜉
𝜎

𝜏 + 𝜉
4

4𝜕4𝜉
𝜎

𝜏 = − 𝑓 ′
4

𝑓4−𝜆
𝜉
4

4𝜉
𝜎

𝜏 − 𝛾𝜏𝜎4𝜉
𝜏

𝜏 , (𝜏 ̸= 𝜎),

21∘ 𝜉
5

5𝜕5𝜉
6

5 + 𝜉
5

6𝜕6𝜉
6

5 − 𝜉
6

5𝜕5𝜉
5

5 − 𝜉
6

6𝜕6𝜉
5

5 = −𝛾565𝜉
5

5 + 𝛾656𝜉
6

5,

22∘ 𝜉
5

5𝜕5𝜉
6

6 + 𝜉
5

6𝜕6𝜉
6

6 − 𝜉
6

5𝜕5𝜉
5

6 − 𝜉
6

6𝜕6𝜉
5

6 = −𝛾565𝜉
5

6 + 𝛾656𝜉
6

6,

23∘ (𝜉
𝜎

𝜎𝜕𝜎 + 𝜉
𝜎

𝜏𝜕𝜏 )𝜉
𝛼

𝛽 = 0, (𝜏 ̸= 𝜎),

where 𝛼, 𝛽 = 1, 2, 3, 4, 𝜎, 𝜏 = 5, 6, 𝑓 ′
2 = 𝑑𝑓2

𝑑𝑥2 , 𝑓 ′
4 = 𝑑𝑓4

𝑑𝑥4 .

It follows from equation 23∘ that 𝜉
𝛼

𝛽 do not depend on variables 𝑥5, 𝑥6. Integrating equations

3∘, 4∘, 9∘, 10∘, we find

𝜉
1

1 = (𝑓4 − 𝑓2)
−1𝐹1(𝑥

1, 𝑥2),

𝜉
3

3 = (𝑓2 − 𝑓4)
−1𝐹3(𝑥

3, 𝑥4),

where 𝐹1, 𝐹3 are functions of the mentioned variables and these functions are not zero due to
the linear dependence of the vectors in the frame and due to formulae (14). Equation 3∘ also
implies that 𝜉

2

1 is independent of variable 𝑥3.

The expressions for the found components of the frame can be simplified by the coordinate
transformation

𝑥1 =

∫︁
𝑑𝑥1

𝐹1

, 𝑥2 = 𝑥2, 𝑥3 =

∫︁
𝑑𝑥3

𝐹3

, 𝑥4 = 𝑥4, 𝑥𝜎 = 𝑥𝜎,

which does not change the identities (14). In the new coordinate system we obtain

𝜉
1

1 = (𝑓4 − 𝑓2)
−1, 𝜉

3

3 = (𝑓2 − 𝑓4)
−1. (16)

After that, integrating equation 2∘ and 6∘ and taking into consideration 3∘, we get

𝜉
2

2 = (𝑓4 − 𝑓2)
−1(𝑓 ′

2𝑥
1 + 𝜃(𝑥2))−1,

where 𝜃(𝑥2) is an arbitrary function of variable 𝑥2.
There are two possible cases: 1) 𝑓 ′

2 = 0, 2) 𝑓 ′
2 ̸= 0. In the second case we make the coordinate

transformation 𝑥2 = 𝑓2(𝑥
2), 𝑥𝑝 = 𝑥𝑝 (𝑝 ̸= 2) and we let 𝜃 = (𝑓 ′

2)
−1𝜃. Omitting the overline, we

can unify both the case by one formula

𝜉
2

2 = (𝑓4 − 𝑓2)
−1𝐴−1, (17)
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where
𝐴 = 𝜖𝑥1 + 𝜃, 𝑓1 = 𝑓2 = 𝜖𝑥2,

𝜖 is 0 or 1, 𝜃 is a function of variable 𝑥2 being non-zero as 𝜖 = 0.
Following similar lines and integrating equations 8∘, 12∘ with 9∘ taken into consideration, we

obtain
𝜉
4

4 = (𝑓2 − 𝑓4)
−1𝐴−1. (18)

Here
𝐴 = 𝜖𝑥3 + 𝜔, 𝑓3 = 𝑓4 = 𝜖𝑥4 + 𝑎,

𝜖 is 0 or 1, 𝑎 is a constant being non-zero as 𝜖 = 0, 𝜔 is a function of variable 𝑥4 being non-zero
as 𝜖 = 0.

Integrating equations 1∘, 5∘, 7∘ and 11∘, due to 3∘, 9∘ we find

𝜉
2

1 = (𝑓4 − 𝑓2)
−1((𝑓4 − 𝑓2)

−1 + 𝑄(𝑥2)),

𝜉
4

3 = (𝑓2 − 𝑓4)
−1((𝑓2 − 𝑓4)

−1 + 𝑅(𝑥4)),

where 𝑄(𝑥2), 𝑅(𝑥4) are the functions of the indicated variables.
By the coordinate transformation

𝑥1 = 𝑥1 −
∫︁

𝑄𝑑𝑥2, 𝑥3 = 𝑥3 −
∫︁

𝑅𝑑𝑥2, 𝑥𝑝 = 𝑥𝑝 (𝑝 ̸= 1, 3),

we can vanish functions 𝑄 and 𝑅 keeping the formulae obtained before. Then components 𝜉
2

1

and 𝜉
4

3 of the skew-normal frame cast into the form

𝜉
2

1 = (𝑓4 − 𝑓2)
−2, 𝜉

4

3 = (𝑓2 − 𝑓4)
−2. (19)

Employing the obtained results and the formula (see [8])

𝑔𝑖𝑗 =
6∑︁

ℎ=1

𝑒ℎ𝜉
ℎ

𝑖𝜉
ℎ̃

𝑗, (20)

one can calculate the following contravariant components of the metric tensor for the considered
ℎ-space,

𝑔11 = 2𝑒2(𝑓4 − 𝑓2)
−3, 𝑔12 = 𝑒2(𝑓4 − 𝑓2)

−2𝐴−1,

𝑔33 = 2𝑒4(𝑓2 − 𝑓4)
−3, 𝑔34 = 𝑒4(𝑓2 − 𝑓4)

−2𝐴−1.

It also follows from formula (20) that in the considered ℎ-space we have 𝑔𝜎𝜏 = 𝑒𝜎𝜉
𝜎

𝜎𝜉
𝜎

𝜏 + 𝑒𝜏𝜉
𝜏

𝜎𝜉
𝜏

𝜏 ,

𝜎, 𝜏 = 5, 6. By means of equations 13∘, 14∘, 15∘, 16∘, one can prove easily that 𝜉
1

1𝜕1𝑔
𝜎𝜏 =

𝜉
3

3𝜕3𝑔
𝜎𝜏 = 0. It implies 𝜕1𝑔

𝜎𝜏 = 𝜕3𝑔
𝜎𝜏 = 0. Then it follows from equations 17∘, 18∘, 19∘, 20∘

that

𝜕2𝑔
𝜎𝜏 = −2

𝑓 ′
2

𝑓2 − 𝜆
𝑔𝜎𝜏 , 𝜕4𝑔

𝜎𝜏 = −2
𝑓 ′
4

𝑓4 − 𝜆
𝑔𝜎𝜏 .

Integrating these equations and bearing in mind equations 21∘, 22∘, we find

𝑔𝜎𝜏 = (𝑓2 − 𝜆)−2(𝑓4 − 𝜆)−2𝐹 𝜎𝜏 (𝑥5, 𝑥6), (21)

where 𝐹 𝜎𝜏 are arbitrary functions of variables 𝑥5, 𝑥6.
Then, calculating covariant components 𝑔𝑖𝑗 of the metric tensor, by formulae (see [8])

𝜉
ℎ
𝑖 = 𝑔𝑖𝑗𝜉

ℎ

𝑗, 𝑎𝑖𝑗 =
𝑛∑︁

ℎ,𝑙=1

𝑒ℎ𝑒𝑙𝑎ℎ𝑙𝜉
ℎ̃

𝑖𝜉
𝑙̃

𝑗, (22)
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we find the components of tensor 𝑎𝑖𝑗.
We write the final results as the following theorem.

Theorem 1. If a symmetric tensor ℎ𝑖𝑗 of type [22(11)] and a scalar 𝜙 satisfy equations
(1) in 𝑉 6(𝑔𝑖𝑗), then there exists a holonomic coordinate system, in which 𝜙, 𝑔𝑖𝑗, and ℎ𝑖𝑗 are
determined by the formulae

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑒2𝐴(𝑓4 − 𝑓2){(𝑓4 − 𝑓2)𝑑𝑥

1𝑑𝑥2 − 𝐴(𝑑𝑥2)2)}+

+𝑒4𝐴(𝑓2 − 𝑓4){(𝑓2 − 𝑓4)𝑑𝑥
3𝑑𝑥4 − 𝐴(𝑑𝑥4)2}+ (23)

+𝐹𝜎𝜏 (𝑓2 − 𝜆)2(𝑓4 − 𝜆)2𝑑𝑥𝜎𝑑𝑥𝜏 ,

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑓2𝑔𝑖1𝑗1𝑑𝑥

𝑖1𝑑𝑥𝑗1+

+𝐴𝑔12(𝑑𝑥
2)2+𝑓4𝑔𝑖2𝑗2𝑑𝑥

𝑖2𝑑𝑥𝑗2 + 𝐴𝑔34(𝑑𝑥
4)2 + 𝜆𝑔𝜎𝜏𝑑𝑥

𝜎𝑑𝑥𝜏 ,
(24)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + 2𝜙𝑔𝑖𝑗, 2𝜙 = 2𝑓2 + 2𝑓4 + 𝑐, (25)

𝐴 = 𝜖𝑥1 + 𝜃(𝑥2), 𝐴 = 𝜖𝑥3 + 𝜔(𝑥4), (26)

where 𝜖, 𝜖 = 0, 1, 𝑓2 = 𝜖𝑥2, 𝑓4 = 𝜖𝑥4 + 𝑎, 𝜆, 𝑐 and 𝑎 are constants, 𝑎 ̸= 0 as 𝜖 = 0, 𝐹𝜎𝜏 (𝑥5, 𝑥6),
𝜃(𝑥2), 𝜔(𝑥4) are arbitrary functions, 𝜃 ̸= 0 as 𝜖 = 0, 𝜔 ̸= 0 as 𝜖 = 0, 𝑖1, 𝑗1 = 1, 2, 𝑖2, 𝑗2 = 3, 4,
𝜎, 𝜏 = 5, 6, 𝑒2, 𝑒4 = ±1.

3. Metric of ℎ-spaces of types [2(21)1], [2(211)]

In this case and in the cases considered below we make calculations similar with ones made
for ℎ-space of type [22(11)]. And this is why we omit some arguments.

We substitute canonical forms 𝑔𝑝𝑟 and 𝑎𝑝𝑞 from (9) into (7). Since 𝜆4 = 𝜆5 for ℎ-space of
type [2(21)1], we obtain

𝑋𝑟𝜆2 = 0 (𝑟 ̸= 2), 𝑋𝑟𝜆5 = 0, 𝑋𝑟𝜆6 = 0 (𝑟 ̸= 6),

𝑋2(𝜆2 − 𝜙) = 𝑋6(𝜆6 − 𝜙) = 0, 𝛾121 = 𝑒2𝑋2𝜙,

𝛾162 = 𝛾261 =
𝑒2𝑋6𝜙

𝜆2 − 𝜆6

, 𝛾262 = − 𝑒2𝑋6𝜙

(𝜆2 − 𝜆6)2
, 𝛾3𝑠4 = 𝛾4𝑠3 =

𝑒4𝑋𝑠𝜙

𝜆5 − 𝜆𝑠

, (27)

𝛾4𝑠4 = − 𝑒4𝑋𝑠𝜙

(𝜆5 − 𝜆𝑠)2
, 𝛾2𝜎𝜎 =

𝑒𝜎𝑋2𝜙

(𝜆2 − 𝜆𝜎)
, 𝛾565 =

𝑒5𝑋6𝜙

𝜆5 − 𝜆6

,

where 𝑟 = 1, 2, ..., 6, 𝜎 = 5, 6, 𝑠 = 2, 6, 𝛾45𝑟 are arbitrary, while other 𝛾𝑝𝑞𝑟 are zero.
The commutators of the operators of ℎ-space of type [2(21)1] read as

[𝑋1, 𝑋2] = −𝑒1𝛾121𝑋2, [𝑋1, 𝑋3] = 0,

[𝑋2, 𝑋3] = 𝑒4𝛾423𝑋3, [𝑋1, 𝑋4] = −𝑒5𝛾541𝑋5,

[𝑋1, 𝑋5] = −𝑒4𝛾451𝑋3, [𝑋1, 𝑋6] = −𝑒2𝛾261𝑋1,

[𝑋2, 𝑋4] = 𝑒3𝛾324𝑋4 + 𝑒4𝛾424𝑋3 − 𝑒5𝛾542𝑋5,

[𝑋2, 𝑋5] = 𝑒5𝛾525𝑋5 − 𝑒4𝛾425𝑋3, (28)

[𝑋2, 𝑋6] = −𝑒2𝛾262𝑋1 − 𝑒1𝛾162𝑋2 + 𝑒6𝛾626𝑋6,

[𝑋3, 𝑋4] = −𝑒5𝛾543𝑋5, [𝑋3, 𝑋5] = −𝑒4𝛾453𝑋3,

[𝑋3, 𝑋6] = −𝑒4𝛾463𝑋3, [𝑋4, 𝑋5] = −𝑒4𝛾454𝑋3 + 𝑒5𝛾545𝑋5,

[𝑋4, 𝑋6] = −𝑒3𝛾364𝑋4 − 𝑒4𝛾464𝑋3 + 𝑒5𝛾546𝑋5,

[𝑋5, 𝑋6] = 𝑒4𝛾456𝑋3 − 𝑒5𝛾565𝑋5.

It follows that systems 𝑋𝑖𝜃 = 0 (𝑖 ̸= 2), 𝑋𝑗𝜃 = 0 (𝑗 ̸= 4), 𝑋𝑘𝜃 = 0 (𝑘 ̸= 6) are completely
integrable and have, respectively, the solutions: 𝜃2, 𝜃4, 𝜃6. Systems 𝑋3𝜃 = 𝑋4𝜃 = 𝑋5𝜃 = 𝑋6𝜃 =
0, 𝑋1𝜃 = 𝑋2𝜃 = 𝑋3𝜃 = 𝑋6𝜃 = 0 and 𝑋1𝜃 = 𝑋2𝜃 = 𝑋6𝜃 = 0 are also completely integrable.
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The first system has solutions 𝜃1 and 𝜃2, the second one has solutions 𝜃4 and 𝜃5, the third
system has solutions 𝜃3, 𝜃4, and 𝜃5. Making coordinate transformation 𝑥𝑖′ = 𝜃𝑖(𝑥) and omitting
the primes, we obtain

𝜉
𝑝

𝑖 = 𝑃𝑝(𝑥)𝛿𝑝
𝑖, 𝜉

2

𝑠 = 𝜉
4

𝑞 = 𝜉
5

𝑞 = 𝜉
5

4 = 0, (29)

where 𝑝 = 1, 2, 3, 𝑠 = 3, 4, 5, 6, 𝑞 = 1, 2, 6, 𝑃𝑝(𝑥) are arbitrary functions.
Integrating system of equations (28) as in the previous case, taking into account (27) and

(29), and calculating the components of tensors 𝑔𝑖𝑗 and 𝑎𝑖𝑗, we arrive at the following result,

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑒2{2(𝑓6 − 𝑓2)𝐴𝑑𝑥

1𝑑𝑥2 − 𝐴2(𝑑𝑥2)2}+

+(𝑓6 − 𝜆)(𝑓2 − 𝜆)2{2𝑒4𝑑𝑥
3𝑑𝑥4 − 𝑒4(Σ + 𝜔)(𝑑𝑥4)2 + 𝑒5(𝑑𝑥

5)2}+ (30)

+𝑒6(𝑓2 − 𝑓6)
2(𝑑𝑥6)2,

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑓2𝑔𝑖1𝑗1𝑑𝑥

𝑖1𝑑𝑥𝑗1+

+𝑔12(𝑑𝑥
2)2+𝜆𝑔𝑖2𝑗2𝑑𝑥

𝑖2𝑑𝑥𝑗2 + 𝑔34(𝑑𝑥
4)2 + 𝑓6𝑔66(𝑑𝑥

6)2,
(31)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + (2𝑓2 + 𝑓6 + 𝑐)𝑔𝑖𝑗, 𝜙 = 𝑓2 +
1

2
𝑓6 + 𝑐, (32)

𝐴 = 𝜖𝑥1 + 𝜃(𝑥2), Σ = 2(𝑓2 − 𝜆)−1 + (𝑓6 − 𝜆)−1, (33)

where 𝜖 = 0, 1, 𝑓2 = 𝜖𝑥2, 𝜆 and 𝑐 are constants, 𝜃(𝑥2), 𝜔(𝑥4, 𝑥5), 𝑓6(𝑥
6) are arbitrary functions,

𝜃 ̸= 0 as 𝜖 = 0, 𝑖1, 𝑗1 = 1, 2, 𝑖2, 𝑗2 = 3, 4, 5, 𝑒2, 𝑒4, 𝑒5, 𝑒6 = ±1.
Similar arguments for for ℎ-space of type [2(211)] yield

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 2𝑒2𝐴𝑑𝑥

1𝑑𝑥2+

+(𝑓2 − 𝜆)2{2𝑒4𝑑𝑥
3𝑑𝑥4 − 𝑒4(Σ + 𝜔)(𝑑𝑥4)2 + 𝑔𝜎𝜏𝑑𝑥

𝜎𝑑𝑥𝜏},
(34)

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 2𝑓2𝑔12𝑑𝑥

1𝑑𝑥2 + 𝑔12(𝑑𝑥
2)2 + 𝜆𝑔𝑝𝑞𝑑𝑥

𝑝𝑑𝑥𝑞 + 𝑔34(𝑑𝑥
4)2, (35)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + (2𝑓2 + 𝑐)𝑔𝑖𝑗, 𝜙 = 𝑓2 + 𝑐, (36)

𝐴 = 𝜖𝑥1 + 𝜃(𝑥2), Σ = 2(𝑓2 − 𝜆)−1, (37)

where 𝜖 = 0, 1, 𝑓2 = 𝜖𝑥2, 𝜆, 𝑐 are constants, 𝜃(𝑥2), 𝜔(𝑥4, 𝑥5, 𝑥6), 𝑔𝜎𝜏 (𝑥4, 𝑥5, 𝑥6) are arbitrary
functions, 𝜃 ̸= 0 as 𝜖 = 0, 𝑝, 𝑞 = 3, 4, 5, 6, 𝜎, 𝜏 = 5, 6, 𝑒2, 𝑒4 = ±1.

We summarize the obtained results in

Theorem 2. If a symmetric tensor ℎ𝑖𝑗 of types [2(21)1], [2(211)] and a function 𝜙 satisfy
Eisenhart equations in 𝑉 6(𝑔𝑖𝑗), then there exists a holonomic coordinate system in which func-
tion 𝜙 and tensors 𝑔𝑖𝑗, ℎ𝑖𝑗 are determined by formulae (30)–(37).

4. Metric of ℎ-spaces of types [(22)11], [(221)1]

For ℎ-space of type [(22)11], from (7) it follows the system of equations

𝑋𝑟𝜆4 = 0, 𝑋𝑟𝜆𝜎 = 0 (𝑟 ̸= 𝜎), 𝑋𝜎(𝜆𝜎 − 𝜙) = 0,

𝛾14𝑟 =𝛾23𝑟, 𝛾1𝜎2 = 𝛾2𝜎1 =
𝑒2𝑋𝜎𝜙

𝜆4 − 𝜆𝜎

, 𝛾3𝜎4 = 𝛾4𝜎3 =
𝑒4𝑋𝜎𝜙

𝜆4 − 𝜆𝜎

,

𝛾𝑠𝜎𝑠 = − 𝑒𝑠𝑋𝜎𝜙

(𝜆4 − 𝜆𝜎)2
, 𝛾𝜎𝜏𝜎 =

𝑒𝜎𝑋𝜏𝜙

𝜆𝜎 − 𝜆𝜏

(𝜎 ̸= 𝜏),

(38)

where 𝑟 = 1, 2, ..., 6, 𝜎, 𝜏 = 5, 6, 𝑠 = 2, 4, 𝛾24𝑟 are arbitrary, and other 𝛾𝑝𝑞𝑟 are zero.
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We write the commutators of operators,

[𝑋1, 𝑋2] = 𝑒4𝛾412𝑋3 − 𝑒4𝛾421𝑋3 − 𝑒3𝛾411𝑋4,

[𝑋1, 𝑋3] = 𝑒4𝛾413𝑋3 − 𝑒2𝛾141𝑋1,

[𝑋2, 𝑋3] = −𝑒2𝛾142𝑋1 + 𝑒3𝛾413𝑋4 + 𝑒4𝛾423𝑋3,

[𝑋1, 𝑋4] = −𝑒1𝛾141𝑋2 + 𝑒4𝛾414𝑋3 − 𝑒2𝛾241𝑋1,

[𝑋1, 𝑋𝜎] = 𝑒4𝛾41𝜎𝑋3 − 𝑒2𝛾2𝜎1𝑋1, (39)

[𝑋2, 𝑋4] = −𝑒1𝛾142𝑋2 + 𝑒4𝛾424𝑋3 + 𝑒3𝛾414𝑋4 − 𝑒2𝛾242𝑋1,

[𝑋2, 𝑋𝜎] = 𝑒3𝛾41𝜎𝑋4 + 𝑒4𝛾42𝜎𝑋3 − 𝑒2𝛾2𝜎2𝑋1 − 𝑒1𝛾1𝜎2𝑋2,

[𝑋3, 𝑋4] = −𝑒1𝛾143𝑋2 − 𝑒2𝛾243𝑋1 + 𝑒2𝛾144𝑋1,

[𝑋3, 𝑋𝜎] = 𝑒2𝛾23𝜎𝑋1 − 𝑒1𝛾4𝜎3𝑋3,

[𝑋4, 𝑋𝜎] = 𝑒1𝛾14𝜎𝑋2 − 𝑒3𝛾3𝜎4𝑋4 + 𝑒2𝛾24𝜎𝑋1 − 𝑒4𝛾4𝜎4𝑋3,

[𝑋5, 𝑋6] = −𝑒5𝛾565𝑋5 + 𝑒6𝛾656𝑋6.

Forming completely integrable systems in (39), by coordinate transformations we find

𝜉
𝜎

𝑖 = 𝑃𝜎(𝑥)𝛿𝜎
𝑖, 𝜉

𝑝

𝑞 = 𝜉
𝛼

𝜎 = 0, (40)

where 𝛼 = 1, 2, 3, 4, 𝑝 = 1, 3, 𝑞 = 2, 4, 𝜎, 𝜏 = 5, 6, , 𝑃𝜎(𝑥) are arbitrary functions.
By (38), (39), (40) we obtain the system of equations for components 𝜉

𝑖

𝑗 of the skew-normal

frame,
1∘ 𝜉

1

𝛼𝜕𝛼𝜉
2

𝛽 − 𝜉
2

𝛼𝜕𝛼𝜉
1

𝛽 = 𝛾412𝜉
3

𝛽 − 𝛾421𝜉
3

𝛽 − 𝛾411𝜉
4

𝛽,

2∘ 𝜉
1

𝛼𝜕𝛼𝜉
3

𝛽 − 𝜉
3

𝛼𝜕𝛼𝜉
1

𝛽 = 𝛾413𝜉
3

𝛽 − 𝛾141𝜉
1

𝛽,

3∘ 𝜉
1

𝛼𝜕𝛼𝜉
4

𝛽 − 𝜉
4

𝛼𝜕𝛼𝜉
1

𝛽 = −𝛾141𝜉
2

𝛽 − 𝛾414𝜉
3

𝛽 − 𝛾241𝜉
1

𝛽,

4∘ 𝜉
𝜎

𝜎𝜕𝜎𝜉
1

𝛽 = 1
2

𝑓 ′
𝜎

𝜆−𝑓𝜎
𝜉
𝜎

𝜎𝜉
1

𝛽 − 𝛾41𝜎𝜉
3

𝛽,

5∘ 𝜉
2

𝛼𝜕𝛼𝜉
3

𝑝 − 𝜉
3

𝛼𝜕𝛼𝜉
2

𝑝 = −𝛾142𝜉
1

𝛽 + 𝛾413𝜉
4

𝑝 + 𝛾423𝜉
3

𝑝,

6∘ 𝜉
3

𝛼𝜕𝛼𝜉
2

𝑞 = −𝛾413𝜉
4

𝑞,

7∘ 𝜉
2

𝛼𝜕𝛼𝜉
4

𝛽 − 𝜉
4

𝛼𝜕𝛼𝜉
2

𝛽 = −𝛾142𝜉
2

𝛽 + 𝛾414𝜉
4

𝛽 − 𝛾242𝜉
1

𝛽 + 𝛾424𝜉
3

𝛽,

8∘ 𝜉
𝜎

𝜎𝜕𝜎𝜉
2

𝛽 = 1
2

𝑓 ′
𝜎

𝜆−𝑓𝜎
𝜉
𝜎

𝜎𝜉
2

𝛽 − 1
2

𝑓 ′
𝜎

(𝜆−𝑓𝜎)2
𝜉
𝜎

𝜎𝜉
1

𝛽 − 𝛾41𝜎𝜉
4

𝛽 − 𝛾42𝜎𝜉
3

𝛽,

9∘ 𝜉
3

𝛼𝜕𝛼𝜉
4

𝛽 − 𝜉
4

𝛼𝜕𝛼𝜉
3

𝛽 = −𝛾143𝜉
2

𝛽 + 𝛾144𝜉
1

𝛽 − 𝛾243𝜉
1

𝛽,

10∘ 𝜉
𝜎

𝜎𝜕𝜎𝜉
3

𝛽 = 1
2

𝑓 ′
𝜎

𝜆−𝑓𝜎
𝜉
𝜎

𝜎𝜉
3

𝛽 − 𝛾14𝜎𝜉
1

𝛽,

11∘ 𝜉
𝜎

𝜎𝜕𝜎𝜉
4

𝛽 = 1
2

𝑓 ′
𝜎

𝜆−𝑓𝜎
𝜉
𝜎

𝜎𝜉
4

𝛽 − 1
2

𝑓 ′
𝜎

(𝜆−𝑓𝜎)2
𝜉
𝜎

𝜎𝜉
3

𝛽 − 𝛾14𝜎𝜉
2

𝛽 − 𝛾24𝜎𝜉
1

𝛽,

12∘ 𝜉
𝛽

𝛼𝜕𝛼𝜉
𝜎

𝜎 = 0,

13∘ 𝜉
𝜎

𝜎𝜕𝜎𝜉
𝜏

𝜏 = 1
2

𝑓 ′
𝜎

𝑓𝜏−𝑓𝜎
𝜉
𝜎

𝜎𝜉
𝜏

𝜏 , (𝜏 ̸= 𝜎),

where 𝛼, 𝛽 = 1, 2, 3, 4, 𝑝 = 1, 3, 𝑞 = 2, 4, 𝜎, 𝜏 = 5, 6, 𝑓𝜏 = 𝑓𝜏 (𝑥𝜏 ), 𝑓𝜎 = 𝑓𝜎(𝑥𝜎) are arbitrary
functions of the mentioned variables.

Integrating 12∘ and 13∘, by a coordinate transformation of 𝑥5, 𝑥6 we find

𝜉
5

5 = (𝑓6 − 𝑓5)
−1/2, 𝜉

6

6 = (𝑓5 − 𝑓6)
−1/2.



50 Z.KH. ZAKIROVA

Differentiating 𝑔𝛼𝛽 =
6∑︀

ℎ=1

𝑒ℎ𝜉
ℎ

𝛼𝜉
ℎ̃

𝛽 w.r.t. 𝑥𝑝 (𝑝 = 1, 3), in view of equations 1∘ − 3∘ and 5∘ − 7∘

we get 𝜕𝑝𝑔
𝛼𝛽 = 0.

Differentiating 𝑔𝛼𝛽 w.r.t. 𝑥𝜎 (𝜎 = 5, 6), by equations 4∘, 8∘, 10∘, 11∘ we obtain

𝜕𝜎𝑔
𝑝𝑟 = − 𝑓 ′

𝜎

𝑓𝜎 − 𝜆
𝑔𝑝𝑟 − 𝑓 ′

𝜎

(𝑓𝜎 − 𝜆)2
Π𝜎(𝑓𝜎 − 𝜆)−1, 𝜕𝜎𝑔

𝑝𝑞 = − 𝑓 ′
𝜎

𝑓𝜎 − 𝜆
𝑔𝑝𝑞,

where 𝑝, 𝑟 = 1, 3, 𝑞 = 2, 4. Integrating these equations, we find

𝑔𝑝𝑟 = Π𝜎(𝑓𝜎 − 𝜆)−1(Σ + 𝐹 𝑝𝑟), 𝑔𝑝𝑞 = Π𝜎(𝑓𝜎 − 𝜆)−1𝐹 𝑝𝑞,

where 𝐹 𝑝𝑟, 𝐹 𝑝𝑞 are arbitrary functions of variables 𝑥2, 𝑥4, Σ =
∑︀

𝜎(𝑓𝜎 − 𝜆)−1,
∑︀

𝜎 denotes the
summation over 𝜎, Π𝜎 denotes the product over 𝜎.

Making similar calculations for ℎ-space of type [(221)1], after appropriate coordinate trans-
formations we finally get

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = Π𝜎(𝑓𝜎 − 𝜆){2𝑔12𝑑𝑥

1𝑑𝑥2 − 𝑒2(Σ + 𝜃1)(𝑑𝑥
2)2+

+2𝑔34𝑑𝑥
3𝑑𝑥4 − 𝑒4(Σ + 𝜃2)(𝑑𝑥

4)2 + 𝐺} +
∑︁
𝜎

𝑒𝜎(𝑓𝜏 − 𝑓𝜎)(𝑑𝑥𝜎)2, (41)

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆(𝑔𝑠𝑡𝑑𝑥

𝑠𝑑𝑥𝑡 + 𝐺)+

𝑔12(𝑑𝑥
2)2 + 𝑔34(𝑑𝑥

4)2 +
∑︁
𝜎

𝑓𝜎𝑔𝜎𝜎(𝑑𝑥𝜎)2 + 𝐺, (42)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + (
∑︁
𝜎

𝑓𝜎 + 𝑐)𝑔𝑖𝑗, 𝜙 =
1

2

∑︁
𝜎

𝑓𝜎 + 𝑐. (43)

Σ =
∑︁
𝜎

(𝑓𝜎 − 𝜆)−1, (44)

𝐺 = 2𝑒5{1 + 𝜃3(𝑓6 − 𝜆)}𝑑𝑥4𝑑𝑥5 + (𝑓6 − 𝜆)𝑔55(𝑑𝑥
5)2 + 𝑒6(𝑑𝑥

6)2, (45)

where 𝜆, 𝑐 are constants. Here for ℎ-space of type [(22)11], we have 𝜏, 𝜎 = 5, 6 (𝜏 ̸= 𝜎),
𝑠, 𝑡 = 1, 2, 3, 4, 𝐺 = 0, 𝑔𝑠𝑡, 𝜃1, 𝜃2 are arbitrary functions of variables 𝑥2, 𝑥4, 𝑓𝜎 is an arbitrary
functions of variable 𝑥𝜎. For ℎ-space of type [(221)1], we have 𝜎 = 6, 𝑠, 𝑡 = 1, 2, 3, 4, 5,
𝑔𝑠𝑡, 𝜃1, 𝜃2, 𝜃3 are arbitrary functions of variables 𝑥2, 𝑥4, 𝑥5, 𝑓𝜏 = 𝜆, 𝑓6 is an arbitrary function
of variable 𝑥6.

We have

Theorem 3. If a symmetric tensor ℎ𝑖𝑗 of types [(22)11], [(221)1] and a function 𝜙 satisfy
Eisenhart equation in 𝑉 6(𝑔𝑖𝑗), then there exists a holonomic coordinate system in which function
𝜙 and tensors 𝑔𝑖𝑗, ℎ𝑖𝑗 are determined by formulae (41)–(45).

5. Metric of ℎ-spaces of types [(2211)], [(22)(11)], [(21)(21)]

In all these cases we have 𝜙 = 𝑐𝑜𝑛𝑠𝑡, therefore, due to identity (6), tensor ℎ𝑖𝑗 is covariantly
constant. Omitting further calculations being integrating of equations w.r.t. 𝜉

𝑖

𝑗 together with

appropriate coordinate transformations, we obtain:
for ℎ-space of type [(2211)],

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 2𝑔12𝑑𝑥

1𝑑𝑥2 − 𝑒2𝜃(𝑑𝑥2)2 + 2𝑔34𝑑𝑥
3𝑑𝑥4 + 𝑔𝑟𝑞𝑑𝑥

𝑟𝑑𝑥𝑞, (46)

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 + 𝑔12(𝑑𝑥
2)2, (47)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + 𝑐𝑔𝑖𝑗, (48)

where 𝑟, 𝑞 = 5, 6, 𝜆, 𝑐 are constant, 𝜃, 𝑔12, 𝑔34, 𝑔𝑟𝑞 are arbitrary functions of variables 𝑥2, 𝑥4,
𝑥5, 𝑥6;
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for ℎ-space of type [(22)(11)],

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑒2{2𝑑𝑥1𝑑𝑥2 − 𝜃(𝑑𝑥2)2} + 𝑒4{2𝑑𝑥3𝑑𝑥4 − 𝜔(𝑑𝑥4)2} + 𝑔𝜎𝜏𝑑𝑥

𝜎𝑑𝑥𝜏 , (49)

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆1{𝑔𝑖1𝑗1𝑑𝑥𝑖1𝑑𝑥𝑗1+

+𝑒2(𝑑𝑥
2)2+𝑔𝑖2𝑗2𝑑𝑥

𝑖2𝑑𝑥𝑗2 + 𝑒4(𝑑𝑥
4)2} + 𝜆2𝑔𝜎𝜏𝑑𝑥

𝜎𝑑𝑥𝜏 ,
(50)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + 𝑐𝑔𝑖𝑗, (51)

where 𝜃, 𝜔 are arbitrary functions of variables 𝑥2, 𝑥4, 𝑔𝜎𝜏 are arbitrary functions of variables
𝑥5, 𝑥6, 𝜆1, 𝜆2, 𝑐 are constants, and 𝜆1 ̸= 𝜆2, 𝑖1, 𝑗1 = 1, 2, 𝑖2, 𝑗2 = 3, 4, 𝜎, 𝜏 = 5, 6;
for ℎ-space of type [(21)(21)],

𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝑒2{2𝑑𝑥1𝑑𝑥2 − 𝜃(𝑑𝑥2)2}+

+𝑒3(𝑑𝑥
3)2 + 𝑒5{2𝑑𝑥4𝑑𝑥5 − 𝜔(𝑑𝑥5)2} + 𝑒6(𝑑𝑥

6)2,
(52)

𝑎𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆1𝑔𝑖1𝑗1𝑑𝑥

𝑖1𝑑𝑥𝑗1 + 𝑒2(𝑑𝑥
2)2 + 𝜆2𝑔𝑖2𝑗2𝑑𝑥

𝑖2𝑑𝑥𝑗2 + 𝑒5(𝑑𝑥
5)2, (53)

ℎ𝑖𝑗 = 𝑎𝑖𝑗 + 𝑐𝑔𝑖𝑗, (54)

where 𝜃 is an arbitrary function of variables 𝑥2, 𝑥3, 𝜔 is an arbitrary function of variables 𝑥5,
𝑥6, 𝜆1, 𝜆2, 𝑐 are constants, 𝜆1 ̸= 𝜆2, 𝑖1, 𝑗1 = 1, 2, 3, 𝑖2, 𝑗2 = 4, 5, 6.

We summarize the results of this section in the following theorem.

Theorem 4. If a tensor ℎ𝑖𝑗 of types [(2211)], [(22)(11)], [(21)(21)] and function 𝜙 satisfy
Eisenhart equation in 𝑉 6(𝑔𝑖𝑗), then there exists a holonomic coordinate system in which function
𝜙 and tensors 𝑔𝑖𝑗, ℎ𝑖𝑗 are determined by formulae (46)–(54).

6. First quadratic integrals of geodesic equations in ℎ-spaces of types
[(21 . . . 1)(21 . . . 1) . . . (1 . . . 1)]

To each solution ℎ𝑖𝑗 of equation (6), there corresponds the first quadratic integral of geodesic
equations (see [8])

(ℎ𝑖𝑗 − 4𝜙𝑔𝑖𝑗)𝑥̇
𝑖𝑥̇𝑗 = const, (55)

where 𝑥̇𝑖 is the tangential vector to the geodesic.
Therefore, the first quadratic integrals of geodesic equations in ℎ-space of types

[(21 . . . 1)(21 . . . 1) . . . (1 . . . 1)] are determined by formula (55), where tensors ℎ𝑖𝑗, 𝑔𝑖𝑗 and func-
tion 𝜙 are given in Theorems 1-4.

7. Conclusion

In the present work we have found a small class of 6-dimensional pseudo-Riemannian spaces
with signature [++−−−−] admitting nonhomothetical infinitesimal projective transformations.
In particular, we have found the metric of ℎ-spaces of types [22(11)], [2(21)1],[2(211)], [(22)11],
[(221)1], [(2211)], [(22)(11)], [(21)(21)] and have determined the first quadratic integrals of
geodesic equations in these ℎ-spaces. We note that the obtained results are easily generalized
for the case of 𝑛-dimensional pseudo-Riemannian space with signature [+ + −−−− ...−−].

The determination of the metric of all ℎ-spaces counted in Introduction solves completely
the problem on finding 6-dimensional pseudo-Riemannian spaces with signature [+ + − −
−−] admitting non-homothetical infinitesimal projective transformations or projective motions.
This problem was completely solved by the author in PhD thesis [9].

The next problem is to study the projective-group properties of the considered spaces. Here
we still have the open problem on recovering of the vector field determining infinitesimal pro-
jective transformation and the problem on the structure of projective Lie algebra. The solution
of this problem is reduced to integrating Killing equation.
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