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OPTIMAL SYSTEM OF LIE ALGEBRA SUBALGEBRAS

OF POINT SYMMETRIES GROUP

FOR NONLINEAR HEAT EQUATION WITHOUT SOURCE

A.M. ILYASOV

Abstract. In this paper we construct an optimal system of subalgebras for the nine-
dimension Lie algebra of infinitesimal operators for a point symmetries group of a nonlinear
heat equation with isotropic heat conductivity tensor and with a power dependence of the
temperature. The results are presented as a lemma and a theorem. It is proven that up
to transformations of internal automorphisms and some discrete automorphisms, there are
117 dissimilar subalgebras classes of various dimensions.
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1. Introduction

By an appropriate change of variable, a closed system of equations describing isotropic spatial
filtration of one-phase liquid in highly consolidated porous stratum [1] with the parameters of
fluid and rock skeleton depending on threshold pressure can be reduced to a nonlinear three-
dimensional hear equation with the coefficients having power dependence on the temperature
and the source depending on the temperature gradient. If one neglects gravitation forces in the
filtration equations, then it reduced to the nonlinear heat equation without source
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In work [2], there was made a group classification of a spatial nonlinear heat equation with a
source depending only on the temperature in the case of anisotropic, transversal-isotropic, and
isotropic conductivity.

As it was shown in [2], in our case of isotropic heat conductivity corresponding to the wide-
spread model of isotropic porous media, the kernel of main groups comprises shifts along the
axes of four-dimensional space-time and the rotations around the axes. This kernel is associ-
ated with seven-dimensional Lie algebra of infinitesimal operators. It was shown in the same
work that in the case of absence of the source and power dependence of the coefficients on the
temperature, the Lie algebra L7 enlarges to nine-dimensional algebra L9 with a basis (σ 6= 0)
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Thus, the shift and rotation operators are supplemented by the operator of simultaneous
dilatation in the space-time as well as by the operator of simultaneous dilatation in spatial
variables and dependent variable.

In what follows, we shall construct an optimal system of Lie algebra L9 subalgebbras (OSS)
which chosen basis (2). Linear transformations for constructing the optimal system are consid-
ered over the field of real numbers, since we are interested in real group solutions to equation
(1).

2. Group of internal automorphisms for Lie algebra L9

First let us calculate the commutators of basis operators for algebra L9. By definition, the
commutator of basis operators (2) Xi and Xj , i, j = 1, . . . , 9, is the operator [3]

[Xi, Xj] = XiXj −XjXi, i, j = 1, ..., 9. (3)

The calculations by formula (3) are presented in Table 1 of commutators for operators of algebra
L9. For the sake of brevity, the operators are replaced by numbers in the table. For instance,
−(σ)1 indicates −σ X1. In the first columns and rows in Table 1 we provide basis operators,
while on their intersections we give their commutators.

Table 1
1 2 3 4 5 6 7 8 9

1 0 0 0 0 3 –2 0 1 (σ)1
2 0 0 0 –3 0 1 0 2 (σ)2
3 0 0 0 2 –1 0 0 3 (σ)3
4 0 3 –2 0 6 –5 0 0 0
5 –3 0 1 –6 0 4 0 0 0
6 2 –1 0 5 –4 0 0 0 0
7 0 0 0 0 0 0 0 (2)7 0
8 –1 –2 –3 0 0 0 −(2)70 0
9 −(σ)1 −(σ)2 −(σ)3 0 0 0 0 0 0

We write an arbitrary element of algebra L9 in terms of basis (2) as X = xiXi, (i = 1, ..., 9).
We denote by P1(x) = (x1, x2, x3) and P2(x) = (x4, x5, x6) the projections of the coordinate
vector ~x for the element X . Then, in accordance with introduced notations, the coordinate
vector of an arbitrary one-dimensional operator in algebra L9 can be represented as

~x = (P1(x), P2(x), x
7, x8, x9). (4)

Let X ′ = x′iXi, (i = 1, ..., 9) be an operator in algebra L9 in basis (2) and Y ∈ L9 be another
infinitesimal operator written in terms of the same basis. Let us calculate the group of internal
automorphisms of algebra L9. For any operator Y ∈ L9, the one-parametric group of internal
automorphisms solves problem [3],

∂X ′

∂a
= [X ′, Y ], X ′(0) = X. (5)

As it was shown in [3], in order to calculate all internal automorphisms, it is sufficient to
calculate one-parametric groups of internal automorphisms for basis operators. Hence, the
internal automorphisms are found by the solutions to the equation

∂x′i

∂aj
Xi = x′i[Xi, Xj], x′i(0) = xi, i, j = 1, ..., 9, (6)

where in (5), instead of operator Y , one should take subsequently all the basis operators Xj .
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Let Y = X1, then by (6) and the commutators table we have

∂x′i

∂a1
Xi = x′i[Xi, X1] = −x′5X3 + x′6X2 − x′8X1 − x′9σX1, x′i(0) = xi, i = 1, ..., 9,

or the following Cauchy problem for ODEs system determining coordinates x′i,










∂x′1

∂a1
= −x′8 − σx′9,

∂x′2

∂a1
= x′6,

∂x′3

∂a1
= −x′5,

∂x′i

∂a1
= 0,

x′1(0) = x1, x′2(0) = x2, x′3(0) = x3, x′i(0) = xi, i = 4, ..., 9.

It yields the following solution to this problem,










x′1 = −(x8 + σx9)a1 + x1,
x′2 = x6a1 + x2,
x′3 = −x5a1 + x3,
x′i = xi, i = 4, ..., 9.

(7)

As in (7), by (6) and the commutators table, we obtain one-parametric groups for operators
Y = X2 and Y = X3. It is easy to show that the composition of obtained one-parametric
automorphisms groups determines a three-parametric transformation of the projection P1(x),

Γ : P1(x
′) = P1(x) + P2(x)× ~α− (x8 + σ x9) ~α,

where x′ stands for the transformed coordinates, ~α = (a4, a5, a6) is the parametric vector, and
¡¡×¿¿ denotes the vector product.

By (6) we find one-parametric group of internal automorphisms of Lie algebra L9 for the
operator Y = X4, which is simultaneous rotations around axes Ox1 and Ox4,



















x′2 = sin a4 · x
3 + cos a4 · x

2,
x′3 = cos a4 · x

3 − sin a4 · x
2,

x′5 = sin a4 · x
6 + cos a4 · x

5,
x′6 = cos a4 · x

6 − sin a4 · x
5,

x′i = xi, i = 1, 4, 7, 8, 9.

(8)

In the same way as in (8), as Y = X5, by (6) we get the group of simultaneous rotations
around the axes Ox2 and Ox5, while as Y = X6 we obtain the group of simultaneous rotations
around the axes Ox3 and Ox6. The composition of one-parametric rotation groups determine
three-parametric transformation of rotations O for the projections P1(x) and P2(x) by the
formulae,

P1(x
′) = OP1(x), P2(x

′) = OP2(x), OOT = I, detO = 1.

As Y = X7, by (6) we obtain the transformation which will be indicated by

Π : x′7 = −2a7x
8 + x7.

As Y = X8, we get the one-parametric group of simultaneous dilatation of projection P1(x)
and coordinate x7. This transformation will be indicated by

R1 : P1(x
′) = a8P1(x), x′7 = a2

8
x7.

As Y = X9, by (6) we calculate the one-parametric group of homogeneous dilatations of
projections P1(x) which will be denoted by

R2 : P1(x
′) = a9P1(x).

The composition of obtained transformation group forms a nine-parametric internal auto-
morphisms group.

Let us consider how the internal automorphisms act on various coordinate projection of vector
~x (4). The following automorphisms groups act on the projections of coordinate vector ~x: only
rotations O act on projections P2 O; rotations O, transformation Γ, and dilatations R1 and R2
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act on projection P1; coordinate x7 changes only under the transformation Π and dilatation
R1; and no internal automorphisms act on the projection defined by coordinates x8, x9.

Moreover, by considering Table 1, we observe the following discrete automorphisms,

ε1 : P1(x
′) = −P1(x),

ε2 : x′7 = −x7.

3. Optimal systems of subalgebras

In work [4], there was described an algorithm of calculating an optimal system for an arbitrary
Lie algebra subalgebras and there were given examples of calculating some subalgebras of
finite-dimensional algebras for a linear one-dimensional heat equation, gas dynamics equations
and motion equations for an isotropic non-compressible liquid with the viscosity and heat
conductivity coefficients depending on the temperature. For the models of gas dynamics, the
survey of constructed optimal system of subalgebras was provided in work [5]. Let us apply
this algorithm for calculating the optimal subalgebras system for algebra L9 of spatial nonlinear
heat equations without the source and with an isotropic heat tensor having power dependence
on the temperature.

Consider Table 1 of commutators for basis operators of algebra L9. We see that the four-
dimensional space spanned over the basis vectors {X1, X2, X3, X9}, is ideal J4 of algebra L9,
while the five-dimensional space spanned over vectors {X4, X5, X6, X7, X8}, is subalgebra L5

of algebra L9. In its turn, subalgebra L5 can be expanded into the direct sum of its ideals
J51 = {X4, X5, X6} and J52 = {X7, X8}. Thus, the expansion

L9 = L5

•

⊕ J4 = (J51 ⊕ J52)
•

⊕ J4 (9)

holds true.
We denote the coordinates of one-dimensional subalgebras by xi, the notations xi, yi stand for

two-dimensional subalgebras, xi, yi, zi are used for three-dimensional subalgebras, xi, yi, zi, wi

are employed for four-dimensional subalgebras and so forth.

4. Optimal system of subalgebras for algebra L5

Let us calculate the optimal system of subalgebras for algebra L5. In accordance with ex-
pansion (9), algebra is the direct sum of its ideals J51 and J52,

L5 = {X4, X5, X6} ⊕ {X7, X8} = J51 ⊕ J52 (10)

Employing the algorithm described in work [4], we calculate first OSS for ideal J51, and then,
according to (10), to each operator in OSS of ideal J51 (including zero operator) we shall add
a linear combination of basis operators of ideal J52 completing operators from OSS for ideal
J51 to operators in algebra L5. Then, by means of internal automorphisms, we shall reduce
the operators in subalgebras in L5 to the simplest form (making minimal amount of arbitrary
coordinates for operators). In this way we find OSS for algebra L5, each its representative has
as a projection one of the subalgebras in OSS for ideal J51 or zero projection.

First we find OSS for ideal J51. One-dimensional subalgebra is an arbitrary operator in ideal
J51 whose basis operator reads as X = x4X4 + x5X5 + x6X6. This operator can be represented
as a matrix-column for coordinates of basis operator

(

x4 x5 x6
)

. Applying rotation O and

changing the basis, we obtain
(

ε 0 0
)

. If ε = 0, we obtain the zero subalgebra, and if ε = 1,
we get the one-dimensional subalgebra {X4}.

Consider now an arbitrary two-dimensional subalgebra for ideal J51 which can be represented
as the matrix for the coordinates of basis operators

(

x4 x5 x6

y4 y5 y6

)

.
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Applying transformation O and changing the basis, we reduce the matrix to the form
(

1 0 0
0 1 0

)

.

However, for such basis the condition of subalgebra [X4, X5] = X6 6= λX4+µX5 does not hold.
Thus, there exist no two-dimensional subalgebras in OSS for ideal J51.

A basis of three-dimensional subalgebra in J51 can be represented as a real non-degenerate
matrix





x4 x5 x6

y4 y5 y6

z4 z5 z6



 .

Then by changing the basis, we can reduce this matrix to the unit one. We obtain the three-
dimensional subalgebra, {X4, X5, X6}. The subalgebra condition holds true. Hence, OSS for
ideal J51 consists of three subalgebras being one-dimensional, three-dimensional, and zero.

Let us calculate all subalgebra in L5 having zero projection on J51. One-dimensional subal-
gebra has a matrix representation for coordinates of basis operators

(

x7 x8
)

. If x8 6= 0, then
transformation Π makes x7 = 0, and the change of the basis leads us to the subalgebra {X8}.
If x8 = 0, then by the change of the basis we arrive at the subalgebra {X7}. Thus, there exist
two one-dimensional subalgebras in L5 with zero projection on J51.

Two-dimensional subalgebra with zero projection reads as {X7, X8}. There is no subalgebras
of dimension higher than two with zero projection, since all the operators become linearly de-
pendent. Thus, in L5 there are zero, two one-dimensional and one two-dimensional subalgebras
with zero projection on J51.

One-dimensional subalgebra in L5 with the projection {X4} on J51 has the matrix represen-
tation of operators coordinates

(

1 x7 x8
)

. If x8 6= 0, then transformation Π makes x7 = 0,
and the change of the basis leads us to the subalgebra {X4 + αX8}. If x

8 = 0, then the trans-
formations R1 and ε2 give the subalgebra {X4 +X7}. Thus, there are two one-dimensional
subalgebras in L5 with the projection {X4} on J51.

Two-dimensional subalgebra in L5 with the projection {X4} on J51 has the matrix represen-
tation of operators coordinates

(

1 x7 x8

0 y7 y8

)

.

If y8 6= 0, then transformation Π makes y7 = 0, the change of the basis gives y8 = 1, x8 = 0, and
transformations R1 and ε2 lead us to subalgebra {X4 + εX7, X8; ε = 0, 1}. In the case ε = 1,
subalgebra condition does not hold, since [X4 +X7, X8] = 2X7 6= λ(X4 +X7) + µX8. If ε = 0,
we obtain subalgebra {X4, X8}. If y8 = 0, then the change of the basis imply y7 = 1, x7 = 0
that gives subalgebra {X4 + αX8, X7}. Thus, there exist two two-dimensional subalgebras in
L5 with the projection {X4} on J51.

There is just one three-dimensional subalgebra in L5 with the projection {X4} on J51,
{X4, X7, X8}.

Three-dimensional subalgebra in L5 with the projection {X4, X5, X6} in J51 has the matrix
representation of operators coordinates





1 0 0 x7 x8

0 1 0 y7 y8

0 0 1 z7 z8



 .

Calculating all possible commutators of subalgebra, we find that subalgebra condition holds
true if and only if x7 = y7 = z7 = x8 = = y8 = z8 = 0. That is, we obtain the original projection
{X4, X5, X6}.
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Four-dimensional subalgebra in L5 with the projection {X4, X5, X6} on J51 has the matrix
representation of operators coordinates







1 0 0 x7 x8

0 1 0 y7 y8

0 0 1 z7 z8

0 0 0 w7 w8






.

If w8 6= 0, then transformation Π makes w7 = 0, the change of the basis gives w8 = 1, x8 =
y8 = z8 = 0, and subalgebra conditions imply x7 = y7 = z7 = 0 and lead us to the subalgebra
{X4, X5, X6, X8}. If w

8 = 0, by change of the basis we obtain w7 = 1, x7 = y7 = z7 = 0, while
subalgebra condition yield x8 = y8 = z8 = 0. We arrive at the subalgebra {X4, X5, X6, X7}.

A five-dimensional subalgebra in L5 with the projection {X4, X5, X6} on J51 is L5. Thus,
there exist one three-dimensional, two four-dimensional and one five-dimensional subalgebra
with the projection {X4, X5, X6} on J51.

Hence, we have proven the following lemma.

Lemma 1. Optimal system of subalgebras for Lie algebra L5 with commutators in Table
1 comprises 12 classes of dissimilar subalgebras up to internal automorphisms and discrete
automorphisms ε1 and ε2. The classes are presented in Table 2.

Table 2.
r i Basis r i Basis

1 1 4 + α8 3 1 4, 5, 6
2 4+7 2 4, 7, 8

3 7 4 1 4, 5, 6, 7
4 8 2 4, 5, 6, 8

2 1 4, 8 5 1 4, 5, 6, 7,
8

2 4 + α8; 7
3 7, 8

In the table r is the dimension of a subalgebra, i is the sequence number of a subalgebra in
a given dimension, α is an arbitrary constant.

5. Optimal system of subalgebras for algebra L9

According to (9), algebra L9 is the semi-direct sum of subalgebra L5 and ideal J4,

L9 = L5

•

⊕ J4 = {X4, X5, X6, X7, X8}
•

⊕{X1, X2, X3, X9}. (11)

Proceeding as above, by the proven lemma one can construct OSS for algebra L9 taking subal-
gebras in Table 2 as the projections on L5 and adding to their operators the parts of operators
in ideal J4.

We first determine OSS for ideal J4 which coincides with subalgebras in the optimal system
of algebra L9 having zero projection on L5. One-dimensional subalgebras in L9 with zero pro-
jection on L5 possesses the matrix representation

(

x1 x2 x3 x9
)

. If x9 6= 0, transformation
Γ makes P1(x) = 0, and change of the basis gives subalgebra {X9}. If x

9 = 0, then the rotation
O and change of the basis lead us to subalgebra {X1}. Thus, there are two one-dimensional
subalgebras in L9 with zero projection on L5: {X1} is subalgebra 1.1 in Table 3 and {X9} is
subalgebra 1.2 in Table 3.

Two-dimensional subalgebras in L9 with zero projection on L5 have matrix representation
(

x1 x2 x3 x9

y1 y2 y3 y9

)

.
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If y9 6= 0, then transformation Γ makes P1(y) = 0, and change of the basis gives y9 = 1, x9 = 0.
Rotation O makes P1(x) =

(

x1 0 0
)

. After change of the basis we obtain subalgebra

{X1, X9}. If y9 = 0, then rotation O makes P1(y) =
(

y1 0 0
)

, change of the basis gives
y1 = 1, x1 = 0. Rotation O around axis Ox1 implies x3 = 0. If x9 6= 0, transformation Γ makes
P1(x) = 0, while change of the basis gives x9 = 1, and we arrive at the subalgebra obtained
above. If x9 = 0, then change of the basis makes x2 = 1 and we obtain subalgebra {X1, X2}.
Hence, there are two two-dimensional subalgebras in L9 with zero projection on L5: {X1, X9}
is subalgebra 2.2 in Table 3 and {X1, X2} is subalgebra 2.1 in Table 3.

Three-dimensional subalgebras in L9 with zero projection on L5 have matrix representation




x1 x2 x3 x9

y1 y2 y3 y9

z1 z2 z3 z9



 .

If z9 6= 0, transformation Γ makes P1(z) = 0, and change of the basis gives z9 = 1, x9 = y9 = 0.
Rotation O makes P1(y) =

(

y1 0 0
)

. Rotation O around axis Ox1 gives x3 = 0, while
change of the basis makes y1 = 1. We obtain subalgebra {X1, X2, X9}. If z

9 = 0, then rotation
O yields P1(z) =

(

z1 0 0
)

, and change of the basis implies z1 = 1, x1 = y1 = 0. Rotation
O around the axis Ox1 makes x3 = 0, and subalgebra matrix casts into the form





0 x2 0 x9

0 y2 y3 y9

1 0 0 0



 .

If x9 6= 0, transformation Γ makes x2 = 0, and change of the basis gives x9 = 1, y9 = 0.
Rotation O around axis Ox1 implies y3 = 0, and change of the basis yields y2 = 1. We arrive
at the subalgebra obtained above. If x9 = 0, then change of the basis makes x2 = 1, y2 = 0. If
y9 6= 0, then transformation Γ gives y3 = 0 and we again obtain the same subalgebra. If y9 = 0,
change of the basis makes y3 = 1 and we obtain subalgebra {X1, X2, X3}. Hence, there exist
two three-dimensional subalgebras in L9 with zero projection on L5: {X1, X2, X9} is subalgebra
3.2 in Table 3 and {X1, X2, X3} is subalgebra 3.1 in Table 3.

Four-dimensional subalgebra in L9 with zero projection on L5 coincides with ideal J4, it is
subalgebra 4.1 in Table 3.

In order to calculate other subalgebras in OSS of algebra L9, in accordance with (11), to each
subalgebra in Lemma we should add the parts of the operators in ideal J4. At that, the one-
dimensional projection on the space L5 have subalgebras H of dimension dim H = 1÷5. There
exist no subalgebras of higher dimensions with one-dimensional projections on subspace L5,
since the operators become linearly dependent. In the same way, two-dimensional projections
on space L5 belong to subalgebras H of dimension dim H = 2÷6; three-dimensional projections
belong to subalgebras of dimension dim H = 3 ÷ 7; four-dimensional projections belong to
subalgebras of dimension dim H = 4÷ 8; five-dimensional projections belong to subalgebras of
dimension dim H = 5÷9. In the work we shall provide the examples of calculating subalgebras
of all dimensions in factful cases. The results of all calculations are provided in Table 3.

Consider one-dimensional subalgebra 1.1 in Table 2. One-dimensional subalgebras in
L9 with the projection {X4 + αX8} on space L5 have the following matrix representation
(

1 α x1 x2 x3 x9
)

. If α + σx9 6= 0, transformation Γ makes P1(x) = 0 and we obtain
the following subalgebra {X4 + αX8 + β X9, β 6= −α/σ}. If α + σ x9 = 0, after the change of
the parameter α/σ → α transformation Γ gives P1(x) =

(

x1 0 0
)

and we get subalgebra
{X4 + σ αX8 + εX1 − αX9}. If ε = 0, this subalgebra can be joined with the previous one.
We obtain subalgebra with no restriction for the values of the parameter {X4 + αX8 + β X9}.
If ε = 1, we obtain the following subalgebra {X4 + X1 + α(σ X8 − X9)}. Thus, there exist two
one-dimensional subalgebras in L9 with the projection {X4 + αX8} on L5: {X4 + αX8 + β X9}
is subalgebra 1.3 in Table 3 and {X4 + X1 + α(σ X8 − X9)} is subalgebra 1.4 in Table 3.
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Two-dimensional subalgebras in L9 with the projection {X4 + αX8} on subspace L5 have
matrix representation

(

1 α x1 x2 x3 x9

0 0 y1 y2 y3 y9

)

.

If y9 6= 0, transformation Γ makes P1(y) = 0, change of the basis gives y9 = 1, x9 = 0.
Rotation O around axis Ox1 implies x3 = 0, and by subalgebra conditions [X4+αX8+x1X1+
x2X2, X9] = σ x1X1 + σ x2X2 = 0 it follows that it is possible as x1 = x2 = 0. We obtain
subalgebra {X4 + αX8, X9}. If y9 = 0, transformation Γ makes P1(x) =

(

x1 0 0
)

, and
rotation O around axis Ox1 gives y3 = 0. Subalgebra condition imply y2 = 0, change of the
basis gives y1 = 1, x1 = 0. We get subalgebra {X4 + αX8 + β X9, X1}. Thus, there exist two
two-dimensional subalgebras in L9 with the projection {X4 + αX8} on L5: {X4 + αX8, X9} is
subalgebra 2.3 in Table 3 and {X4 + αX8 + β X9, X1} is subalgebra 2.4 in Table 3.

Three-dimensional subalgebras in L9 with the projection {X4 + αX8} on subspace L5 have
matrix representation





1 α x1 x2 x3 x9

0 0 y1 y2 y3 y9

0 0 z1 z2 z3 z9



 .

If z9 6= 0, transformation Γ makes P1(z) = 0, change of the basis gives z9 = 1, x9 = y9 = 0.
Rotation O around axis Ox1 makes x3 = 0. Subalgebra condition for commutator of operators
1 and 2 imply the homogeneous system of equations

{

y2(λ+ α) + y3 = 0
y2 − (λ+ α)y3 = 0

with the determinant ∆ = −(λ + α)2 − 1 6= 0 that implies y2 = y3 = 0. Change of the basis
makes y1 = 1, x1 = 0. We obtain subalgebra {X4 + αX8, X1, X9}. If y9 6= 0, replacing two
last columns, we arrive to the considered above case. If y9 = z9 = 0, transformation Γ makes
P1(x) =

(

x1 0 0
)

, and rotation O around axis Ox1 gives y3 = 0. We obtain the following
representation for subalgebra





1 α x1 0 0 x9

0 0 y1 y2 0 0
0 0 z1 z2 z3 0



 .

Subalgebra condition for the commutator of operators 1 and 2 yields the system of equations






µ z1 = −(λ + α + σ x9)y1

µ z2 = −(λ + α + σ x9)y2

µ z3 = y2

There exist two options.
1) y2 6= 0. The latter equation in the system implies µ 6= 0, z3 6= 0. Then change

of the basis makes y2 = 1, z2 = 0, z3 = 1 and the first equation yields z1 = 0. Sub-
algebra conditions for the commutators of the first and third operators follows y1 = 0.
We obtain subalgebra {X4 + αX8 + εX1 + β X9, X2, X3}. If ε = 0, we have subalgebra
{X4 + αX8 + β X9, X2, X3}. If ε = 1 and α + σ β 6= 0, then transformation Γ makes x1 = 0.
We obtain subalgebra {X4 + αX8 + β X9, X2, X3; β 6= −α/σ} which is embedded into the pre-
vious one. If ε = 1 and α+σ β = 0, we have subalgebra {X4 + X1 + α(σ X8 − X9), X2, X3}.

2) y2 = 0. Change of the basis makes y1 = 1, x1 = z1 = 0, and subalge-
bra conditions for the first and third operators implie z2 = z3 = 0. That is, in
this case the operators are linearly dependent. Thus, there exist three three-dimensional
subalgebras in L9 with the projection {X4 + αX8} on L5: {X4 + αX8, X1, X9} is sub-
algebra 3.3 in Table 3, {X4 + αX8 + β X9, X2, X3} is subalgebra 3.4 in Table 3 and
{X4 + X1 + α(σ X8 − X9), X2, X3} is subalgebra 3.5 in Table 3.
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Four-dimensional subalgebras in L9 with the projection {X4 + αX8} on subspace L5 have
matrix representation







1 α x1 x2 x3 x9

0 0 y1 y2 y3 y9

0 0 z1 z2 z3 z9

0 0 w1 w2 w3 w9






.

There possible two cases.
1) If w9 6= 0, transformation Γ makes P1(w) = 0, change of the basis gives w9 = 1, x9 =

y9 = z9 = 0. Rotation O around axis Ox1 yields z3 = 0. Then we can assume that z2 = 1,
since it can be attained by either replacing operators 2 and 3 or by a change of coordinates in
operator 3. Change of the basis makes x2 = y2 = 0. Subalgebra condition for the commutator
of operators 1 and 3 gives the system of equations











−αz1 = γ y1 + κ z1

−α = κ

1 = γ y3

that implies y1 = 0, y3 6= 0. Change of the basis makes y3 = 1, x3 = 0. Subalgebra conditions
for the commutator of operators 1 and 4 imply x1 = 0. And, finally, subalgebra condition for
the commutator of operators 1 and 2 leads us to the system of equations











µ z1 = 0

−α = λ

−1 = µ

that implies z1 = 0. Hence, we obtain subalgebra {X4 + αX8, X3, X2, X9}.
2) If y9 = z9 = w9 = 0, the operators of subalgebras are linearly independent if the in-

equality y1 6= 0, z2 6= 0, w3 6= 0 hold true. Then change of the basis leads us to subalgebra
{X4 + αX8 + β X9, X1, X2, X3}. Thus, there exist two four-dimensional subalgebras in L9

with the projection{X4 + αX8} on L5: {X4 + αX8, X3, X2, X9} is subalgebra 4.2 in Table 3
and subalgebra 4.3 in Table 3: {X4 + αX8 + β X9, X1, X2, X3}.

Fifth-dimensional subalgebras in L9 with the projection {X4 + αX8} on subspace L5 have a
non-degenerate matrix representation











1 α x1 x2 x3 x9

0 0 y1 y2 y3 y9

0 0 z1 z2 z3 z9

0 0 w1 w2 w3 w9

0 0 s1 s2 s3 s9











.

The operators of subalgebra are linearly independent if the inequalities y1 6= 0, z2 6= 0,
w3 6= 0, s9 6= 0. Then change of the basis leads us to the subalgebra {X1, X2, X3, X9}.
Hence, there exists one five-dimensional subalgebra in L9 with the projection X4 + αX8 on
L5: X4 + αX8, X1, X2, X3, X9 is subalgebra 5.1 in Table 3.

Now we consider five-dimensional subalgebra 5.1 in Table 2. Six-dimensional subalgebras in
L9 with the projection {X4, X5, X6, X7, X8} on subspace L5 have matrix representation















1 0 0 0 0 x1 x2 x3 x9

0 1 0 0 0 y1 y2 y3 y9

0 0 1 0 0 z1 z2 z3 z9

0 0 0 1 0 w1 w2 w3 w9

0 0 0 0 1 s1 s2 s3 s9

0 0 0 0 0 t1 t2 t3 t9















.
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Subalgebra conditions for the commutators of the first three operators give x9 = y9 = z9 = 0.
There are two possibilites.

1) If t9 6= 0, transformation Γ makes P1(t) = 0, change of the basis gives t9 = 1, w9 = s9 = 0.
Subalgebra condition for the commutator of operators 1 and 6 yields P1(x) = 0; for operators
2 and 6 it yields P1(y) = 0; for operators 3 and 6 it does P1(z) = 0; for operators 4 and
6 it does P1(w) = 0, for operators 5 and 6 it does P1(s) = 0. We obtain the subalgebra
{X4, X5, X6, X7, X8, X9}.

2) If t9 = 0, subalgebra condition for the commutators of operators 1 and 6 leads us to the
homogeneous system with non-zero determinant

{

λ t2 + t3 = 0
t2 − λ t3 = 0

that implies t2 = t3 = 0. Change of the basis makes t1 = 1. Subalgebra condition for
commutators of operators 2 and 6 gives [X5 + y1X1 + y2X2 + y3X3, X1] = −X3 = 0, which
is impossible. Hence, there are no subalgebras in the second case. Thus, there exists one six-
dimensional subalgebra {X4, X5, X6, X7, X8, X9} with the projection {X4, X5, X6, X7, X8} on
subspace L5 is subalgebra 6.7 in Table 3.

There exists no seven-dimensional subalgebra in L9 with the projection {X4, X5, X6, X7, X8}
on subspace L5, since subalgebra conditions does not hold. As an example of calculating
seven-dimensional subalgebra, we take subalgebra with the projection {X4, X5, X6, X8} which
is subalgebra 4.2 in Table 2. Its matrix representation is



















1 0 0 0 x1 x2 x3 x9

0 1 0 0 y1 y2 y3 y9

0 0 1 0 z1 z2 z3 z9

0 0 0 1 w1 w2 w3 w9

0 0 0 0 s1 s2 s3 s9

0 0 0 0 t1 t2 t3 t9

0 0 0 0 u1 u2 u3 u9



















.

Subalgebra conditions for the commutators of the first three operators yield x9 = y9 = z9 = 0.
There exist two options.

1) If u9 6= 0, transformation Γ gives P1(u) = 0, change of the basis makes u9 = 1, w9 =
s9 = t9 = 0. Then we can assume that t2 = 1, since it can be achieved either by replacing
operators 5 and 6 or by the change of coordinates in operator 6. Then change of the basis
makes s2 = 0, while subalgebra condition for the commutators of operators 2 and 5 leads us to
the homogeneous system with non-zero determinant

{

γ s1 − s3 = 0
s1 + γ s3 = 0

which implies s1 = s3 = 0. That is, the operators are linearly dependent.
2) If s9 = t9 = u9 = 0, operators 5÷7 of subalgebra are linearly independent if s1 6= 0, t2 6= 0,

u3 6= 0. By change of the basis we obtain the subalgebra {X4, X5, X6, X8, X1, X2, X3}. Thus,
there exists one seven-dimensional subalgebra {X4, X5, X6, X8, X1, X2, X3} with the projection
{X4, X5, X6, X8} on subspace L5, which is subalgebra 7.4 in Table 3.

Let us consider an example of calculating eight-dimensional subalgebra in L9 with the pro-
jection {X4, X5, X6, X7, X8} on subspace L5. The matrix representation of subalgebras reads
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as






















1 0 0 0 0 x1 x2 x3 x9

0 1 0 0 0 y1 y2 y3 y9

0 0 1 0 0 z1 z2 z3 z9

0 0 0 1 0 w1 w2 w3 w9

0 0 0 0 1 s1 s2 s3 s9

0 0 0 0 0 t1 t2 t3 t9

0 0 0 0 0 u1 u2 u3 u9

0 0 0 0 0 v1 v2 v3 v9























.

Subalgebra conditions for the commutators of the first three operators imply x9 = y9 =
= z9 = 0. There are two options.

1) If v9 6= 0, transformation Γ makes P1(v) = 0, change of the basis gives v9 = 1, w9 = s9 =
t9 = u9 = 0. As above, we can assume u2 = 1. Then change of the basis implies t2 = 0, and
subalgebra condition for the commutator of operators 2 and 6 imply the homogeneous system
with non-zero determinant

{

χ t1 − t3 = 0
t1 + χ t3 = 0

which yields t1 = t3 = 0. That is, the operators are linearly dependent.
2) If t9 = u9 = v9 = 0, then the last three operators of subalgebra are linearly dependent, if

t1 6= 0, u2 6= 0, v3 6= 0. Change of the basis makes P1(t) =
(

1 0 0
)

; P1(u) =
(

0 1 0
)

;

P1(v) =
(

0 0 1
)

, and also P1(x) = P1(y) = P1(z) = P1(w) = P1(s) = 0. Subalgebra condi-
tion for the commutator of operators 4 and 5 give [X7+w9X9, X8+s9X9] = 2X7 = ω(X7+w9X9)
that implies w9 = 0. Hence, we obtain 8.3 in Table 3: {X4, X5, X6, X7, X8 + αX9, X1, X2, X3}.

It is obvious that a nine-dimensional subalgebra with the projection {X4, X5, X6, X7, X8} on
subspace L5 in L9 is algebra L9 that can be achieved by change of the basis in the appropriate
matrix representation. This is subalgebra 9.1 in Table 3.

By analogy, in accordance with (11) one can calculate subalgebras of all possible dimensions
in L9 with the projections on subspace L5 in Table 2. For fixed parameters, some of subalgebras
are embedded in already found subalgebras in the optimal system, while other subalgebras are
independent representatives of OSS. In this way we calculate the optimal system of subalgebras
for algebra L9. The result is summarized in the following theorem.

Theorem 1. The optimal system of subalgebras for Lie algebra L9 with the commutators in
Table 1 comprises 117 dissimilar classes, up to internal automorphisms and discrete automor-
phisms ε1 and ε2, presented in Table 3 where α, β are arbitrary constants, σ 6= 0 is the exponent
in the coefficients of equation (1).

Table 3.

r i Basis Projection on L5

9 1 1, 2, 3, 4, 5, 6, 7, 8, 9 5.1

8 1 4, 5, 6, 7, 1, 2, 3, 9 4.1
2 4, 5, 6, 8, 1, 2, 3, 9 4.2
3 4, 5, 6, 7, 8 + α9, 1, 2, 3 5.1

7 1 4, 5, 6, 1, 2, 3, 9 3.1
2 4, 7, 8, 1, 2, 3, 9 3.2
3 4, 5, 6, 7, 1, 2, 3 4.1
4 4, 5, 6, 8 + α9, 1, 2, 3 4.2

6 1 4, 8, 1, 2, 3, 9 2.1
2 4 + α8, 7, 1, 2, 3, 9 2.2
3 7, 8, 1, 2, 3, 9 2.3
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r i Basis Projection on L5

4 4, 5, 6, 1, 2, 3 3.1
5 4 + α9, 7, 8 + β9, 1, 2, 3 3.2
6 4, 7, 8, 2, 3, 9 3.2
7 4, 5, 6, 7, 8, 9 5.1

5 1 4 + α8, 1, 2, 3, 9 1.1
2 4 + 7, 1, 2, 3, 9 1.2
3 7, 1, 2, 3, 9 1.3
4 8, 1, 2, 3, 9 1.4
5 4, 8, 2, 3, 9 2.1
6 4 + α9, 8 + β9, 1, 2, 3 2.1
7 4 + α8, 7, 2, 3, 9 2.2
8 4 + α8 + β9, 7, 1, 2, 3 2.2
9 7, 8, 2, 3, 9 2.3
10 7, 8 + α9, 1, 2, 3 2.3
11 4 + α1 + β9, 7, σ8− 9, 2, 3; β 6= 0 3.2
12 4 + α9, 7, 8 + β9, 2, 3; β 6= −1/σ 3.2
13 4 + α1, 7, σ8 + β1− 9, 2, 3; α2 + β2 = 1 3.2
14 4, 7, 8, 1, 9 3.2
15 4, 7 + 1, σ8 + α1 + 9, 2, 3 3.2
16 4, 5, 6, 7, 9 4.1
17 4, 5, 6, 8, 9 4.2
18 4, 5, 6, 7, 8 + α 9 5.1

4 1 1, 2, 3, 9 0
2 4 + α8, 2, 3, 9 1.1
3 4 + α8 + β9, 1, 2, 3 1.1
4 4 + 7, 2, 3, 9 1.2
5 4 + 7 + α9, 1, 2, 3 1.2
6 7, 1, 2, 9 1.3
7 7 + α9, 1, 2, 3 1.3
8 8, 1, 2, 9 1.4
9 8 + α9, 1, 2, 3 1.4
10 4, 8, 1, 9 2.1
11 4 + α9, 8 + β9, 2, 3 2.1
12 4 + α1, σ8 + β1− 9, 2, 3; α2 + β2 = 1 2.1
13 4 + α8, 7, 1, 9 2.2
14 4 + α9, 7 + β9, 2, 3; β 6= 0 2.2
15 4 + α1, 7 + 1, 2, 3 2.2
16 4 + α8 + β9, 7, 2, 3 2.2
17 4 + α(σ8− 9) + 1, 7, 2, 3 2.2
18 7, 8, 1, 9 2.3
19 7, 8 + α9, 2, 3 2.3
20 7, 1 + σ8− 9, 2, 3 2.3
21 7 + 1, σ8 + 9, 2, 3 2.3
22 4, 5, 6, 9 3.1
23 4, 7, 8, 9 3.2
24 4 + α9, 7, 8 + β9, 1 3.2
25 4, 5, 6, 7 + α9 4.1
26 4, 5, 6, 8 + α9 4.2
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r i Basis Projection on L5

3 1 1, 2, 3 0
2 1, 2, 9 0
3 4 + α8, 1, 9 1.1
4 4 + α8 + β9, 2, 3 1.1
5 4 + 1 + α(σ8− 9), 2, 3 1.1
6 4 + 7, 1, 9 1.2
7 4 + 7 + β9, 2, 3 1.2
8 4 + 7 + 1, 2, 3 1.2
9 7, 1, 9 1.3
10 7 + α9, 3, 2 1.3
11 7 + 1, 3, 2 1.3
12 8, 1, 9 1.4
13 8 + α9, 3, 2 1.4
14 8 + 1, 3, 2 1.4
15 4, 8, 9 2.1
16 4 + α9, 8 + β9, 1 2.1
17 4 + α8, 7, 9 2.2
18 4 + α8 + β9, 7, 1 2.2
19 4 + α9, 7 + β9, 1 2.2
20 7, 8, 9 2.3
21 7, 8 + α9, 1 2.3
22 7 + 2, σ8 + 9, 1 2.3
23 7, σ8 + 2− 9, 1 2.3
24 4, 5, 6 3.1
25 4, 7 + α1, σ8 + 9; α 6= 0 3.2
26 4 + α9, 7, 8 + β9 3.2

2 1 1, 2 0
2 1, 9 0
3 4 + α8, 9 1.1
4 4 + α8 + β9, 1 1.1
5 4 + 7, 9 1.2
6 4 + 7 + α 9, 1 1.2
7 7, 9 1.3
8 7 + α 9, 1 1.3
9 7 + 2, 1 1.3
10 8, 9 1.4
11 8 + α9, 1 1.4
12 8 + 2, 1 1.4
13 4 + α9, 8 + β9 2.1
14 4 + α1, σ8 + β1− 9; α2 + β2 = 1 2.1
15 4 + α8 + β9, 7 2.2
16 4 + α9, 7 + β9; β 6= 0 2.2
17 4 + 1 + α(σ8− 9), 7 2.2
18 4 + α(σ8 + 9), 7 + 1; α 6= 0 2.2
19 4 + α1, 7 + 1 2.2
20 7, 8 + α9 2.3
21 7 + 1, σ8 + 9 2.3
22 7, σ8 + 1− 9 2.3
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r i Basis Projection on L5

1 1 1 0
2 9 0
3 4 + α8 + β9 1.1
4 4 + 1 + α(σ8− 9) 1.1
5 4 + 7 + 1 1.2
6 4 + 7 + α9 1.2
7 7 + 1 1.3
8 7 + α9 1.3
9 8 + α9 1.4
10 σ8 + 1− 9 1.4

On figure 1 we show the the distribution histogram for the number N of subalgebras in the
optimal system w.r.t. their dimension r. One can see that at subalgebras of dimension 3 and
4 we attain the maximum of the number of subalgebras.

r

N
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Figure 1.

The author expresses his sincere gratitude to Professor Salavat Valeevich Khabirov for the
formulation of the problem and permanent attention to this work.
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