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QUASI-ANALYTICITY CRITERIA OF

SALINAS-KORENBLUM

TYPE FOR GENERAL DOMAINS

R.A. GAISIN

Abstract. We prove a criterion of quasi-analyticity in a boundary point of a rather
general domain (not necessarily convex and simply-connected) if in a vicinity of this point
the domain is close in some sense to an angle or is comparable with it.
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1. Introduction

Let {𝑀𝑛}∞𝑛=0 be a sequence of positive numbers. Some of numbers 𝑀𝑛 can be equal to
+∞, but it is assumed that there exists an infinite number of finite 𝑀𝑛. As class 𝐶{𝑀𝑛},
we call the set of all infinitely differentiable functions 𝑓 defined on the segment 𝐼 = [𝑎, 𝑏],
(−∞ 6 𝑎 < 𝑏 6 +∞), for each of those there exists a constant 𝐾𝑓 such that [1]

sup
𝑎<𝑥<𝑏

⃒⃒
𝑓 (𝑛)(𝑥)

⃒⃒
6 𝐾𝑛

𝑓𝑀𝑛 (𝑛 ≥ 0).

In the general situation 𝐼 can be an interval of half-interval.
In 1912 J. Hadamard posed the following question [1]: what are the numbers 𝑀𝑛 so that for

each two functions 𝑓 and 𝜙 in class 𝐶{𝑀𝑛}, once in some point 𝑥0 of the interval 𝐼 = (𝑎, 𝑏) for
all 𝑛 ≥ 0

𝑓 (𝑛)(𝑥0) = 𝜙(𝑛)(𝑥0),

it follows 𝑓(𝑥) ≡ 𝜙(𝑥) (𝑎 < 𝑥 < 𝑏)?
It was observed that it is true if 𝑀𝑛 = 𝑛!. The matter is that in this case, class 𝐶{𝑛!} coincides

with the class of real-analytic functions on the interval (𝑎, 𝑏) [1]. Due to the additivity of classes
𝐶{𝑀𝑛}, the Hadamard problem can be reformulated as follows: what are the numbers 𝑀𝑛 in
order to class 𝐶{𝑀𝑛} to be quasi-analytic, that is, each function 𝑓 ∈ 𝐶{𝑀𝑛} satisfying at some
point 𝑥0 ∈ 𝐼

𝑓 (𝑛)(𝑥0) = 0 (𝑛 ≥ 0),

vanishes.
The Hadamard quasi-analyticity problem problem for the segment (interval, half-interval) 𝐼

is completely solved by so-called Denjoy-Carleman theorem. One of its equivalent formulations
belonging to Ostrovsky is as follows [1], [2]: class 𝐶{𝑀𝑛} is quasi-analytic if and only if

∞∫︁
1

ln𝑇 (𝑟)

𝑟2
𝑑𝑟 = +∞.
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Here 𝑇 (𝑟) = sup
𝑛≥0

𝑟𝑛

𝑀𝑛
is the trace function for the sequence {𝑀𝑛}.

Let 𝐺 be a domain in the complex plane. By 𝐻(𝐺,𝑀𝑛) we denote the class of functions 𝑓
analytic in the domain 𝐺 and satisfying condition

sup
𝑧∈𝐺

⃒⃒
𝑓 (𝑛)(𝑧)

⃒⃒
6 𝐶𝑓𝑀𝑛 (𝑛 ≥ 0).

We assume that domain 𝐺 is so that all the derivatives 𝑓 (𝑛) (𝑛 ≥ 0) of a function 𝑓 ∈
𝐻(𝐺,𝑀𝑛) can be continuously extended up to the boundary of 𝜕𝐺. In this case, class 𝐻(𝐺,𝑀𝑛)
is called quasi-analytic at a point 𝑧0 ∈ 𝜕𝐺, if 𝑓 ∈ 𝐻(𝐺,𝑀𝑛) and 𝑓 (𝑛)(𝑧0) = 0 (𝑛 ≥ 0) imply
𝑓 ≡ 0 [3].

Let us survey briefly the results related with the quasi-analyticity problem for class 𝐻(𝐺,𝑀𝑛)
and let us formulate the problem we shall discuss here.

As it is known, the quasi-analyticity problem for class 𝐻(∆𝛾,𝑀𝑛) and the angle

∆𝛾 = {𝑧 : |𝑎𝑟𝑔𝑧| < 𝜋

2𝛾
, 0 < |𝑧| < ∞} (1 < 𝛾 < ∞)

was first posed and solved by R. Salinas in 1955 [4]: class 𝐻(∆𝛾,𝑀𝑛) is quasi-analytic at the
point 𝑧 = 0 if and only if the condition

∞∫︁
1

ln𝑇 (𝑟)

𝑟1+
𝛾

1+𝛾

𝑑𝑟 = +∞

holds true.
It should be noticed that Ostrovsky theorem is the limiting case for R. Salinas theorem (as

𝛾 → ∞).
The quasi-analyticity problem for class 𝐻(𝐾,𝑀𝑛), where 𝐾 is a circle, was solved by B.I. Ko-

renblyum [5]. He proved the following statement: class 𝐻(𝐾,𝑀𝑛) is quasi-analytic at a bound-
ary point if and only if

∞∫︁
1

ln𝑇 (𝑟)

𝑟
3
2

= +∞.

The criterion of quasi-analyticity of class 𝐻(𝐷,𝑀𝑛) at a boundary point for an arbitrary
convex bounded domain 𝐷 was established by R.S. Yulmukhametov in [3]. Let us describe this
result.

Let 𝐷 be a convex bounded domain in the complex plane lying in the left half-plane and
0 ∈ 𝜕𝐷. In this case, the support function ℎ(𝜙) = max

𝜆∈𝐷
Re(𝜆𝑒𝑖𝜙) of domain 𝐷 is non-negative

and vanishes on some segment [𝜎−, 𝜎+] (−𝜋
2
< 𝜎− 6 0 6 𝜎+ < 𝜋

2
). Let it be the maximal

segment on which ℎ(𝜙) = 0. We let

∆+(𝜙) =
√
𝜙− 𝜎+

⎛⎝ℎ
′
(𝜙) +

𝜙∫︁
0

ℎ(𝛼)𝑑𝛼

⎞⎠ , 𝜎+ 6 𝜙 6
𝜋

2
;

∆−(𝜙) = −
√
𝜎− − 𝜙

⎛⎝ℎ
′
(𝜙) +

𝜙∫︁
0

ℎ(𝛼)𝑑𝛼

⎞⎠ , −𝜋

2
6 𝜙 6 𝜎−.

By 𝑣(𝑟) we denote the inverse to the function

𝑣1(𝑥) = exp

𝑥∫︁
𝑥1

(2𝜋 − ∆−1
+ (𝑦) + ∆−1

− (𝑦))𝑑𝑦

(−𝜋 + ∆−1
+ (𝑦) − ∆−1

− (𝑦))𝑦
, 𝑥 → 0, 𝑥1 > 0.
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Theorem 1 ([3]). If ℎ
′
(𝜎±) = 0, then class 𝐻(𝐷,𝑀𝑛) is quasi-analytic at the point 𝑧 = 0 if

and only if
∞∫︁
1

ln𝑇 (𝑟)

𝑣(𝑟)𝑟2
𝑑𝑟 = +∞.

The problem arises: to find quasi-analyticity criteria for general domains (not necessary
bounded, convex, and simply-connected) that depend only on a given sequence {𝑀𝑛} so that
for regular sequences they can be reformulated as bi-logarithmic Levinson condition. The
present paper is devoted to studying this issue.

2. History of problem. Definitions and preliminaries

Let {𝑀𝑛} be a sequence of positive numbers 𝑀𝑛 satisfying condition 𝑀
1
𝑛
𝑛 → ∞ as 𝑛 →

∞. We can assume that 𝑀0 = 1. Sequence {𝑀𝑛} is called logarithmically convex if 𝑀2
𝑛 6

𝑀𝑛−1𝑀𝑛+1 (𝑛 ≥ 1). It is well know that a logarithmically convex sequence {𝑀𝑛} is completely
determined by the trace function 𝑇 (𝑟) and [1], [2]

𝑀𝑛 = sup
𝑟≥0

𝑟𝑛

𝑇 (𝑟)
(𝑛 ≥ 0).

Let us clarify the geometric meaning of logarithmic convexity of a sequence {𝑀𝑛}. In order
to do it, we find the logarithms for inequalities 𝑀2

𝑛 6 𝑀𝑛−1𝑀𝑛+1, we obtain

ln𝑀𝑛 6
1

2
ln𝑀𝑛−1 +

1

2
ln𝑀𝑛+1 (𝑛 ≥ 1).

Hence, we see that the logarithmical convexity of sequence {𝑀𝑛} means that the point (𝑛, ln𝑀𝑛)
lies not higher than the segment connecting the points (𝑛−1, ln𝑀𝑛−1) and (𝑛+1, ln𝑀𝑛+1) (𝑛 ≥
1).

By {𝑀 𝑐
𝑛} we denote the sequence obtained from {𝑀𝑛} as a convex regularization by loga-

rithms (see, for instance, [1], [2], [6]).
In paper [7] the quasi-analyticity criteria were given for Carleman classes 𝐻(∆𝛾,𝑀𝑛) and

the angle

∆𝛾 = {𝑧 : |arg 𝑧| < 𝜋

2𝛾
, 0 < |𝑧| < ∞} (1 < 𝛾 < ∞)

explicitly in terms of a given sequence {𝑀𝑛} (or {𝑀 𝑐
𝑛}). Namely, there was proven

Theorem 2 ([7]). Class 𝐻(∆𝛾,𝑀𝑛) is quasi-analytic at the point 𝑧 = 0 if and only if one
of following equivalent conditions

1)
∞∫︀
1

ln𝑇 (𝑟)

𝑟
1+

𝛾
1+𝛾

𝑑𝑟 = ∞, where 𝑇 (𝑟) = sup
𝑛≥0

𝑟𝑛

𝑀𝑛
(R. Salinas criterion);

2)
∞∑︀
𝑛=0

(︁
𝑀𝑐

𝑛

𝑀𝑐
𝑛+1

)︁ 𝛾
1+𝛾

= ∞;

3)
∞∑︀
𝑛=0

1

𝛽
𝛾

1+𝛾
𝑛

= ∞, where 𝛽𝑛 = inf
𝑘≥𝑛

𝑀
1
𝑘
𝑘 ,

holds true.

We proceed to considering the question on bi-logarithmic quasi-analyticity condition for the
angle. Following work [8], we introduce the adjoint sequence {𝑚𝑛}, where 𝑚𝑛 = 𝑀𝑛

𝑛!
. Here

{𝑀𝑛} is an arbitrary sequence of numbers. Now we assume additionally that sequence {𝑀𝑛}
obeys the following conditions,

a) 𝑚2
𝑛 6 𝑚𝑛−1𝑚𝑛+1 (𝑛 ≥ 1);

b) sup
𝑛

(︁
𝑚𝑛+1

𝑚𝑛

)︁ 1
𝑛
< ∞;
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c) 𝑚
1
𝑛
𝑛 → ∞, 𝑛 → ∞.

If conditions a)–c) hold true, sequence {𝑀𝑛} is called regular. Condition a) is the condition
of logarithmic convexity for sequence {𝑚𝑛}. We also note that condition b) implies that class
𝐶{𝑀𝑛} is closed w.r.t. differentiation. Condition c) yields that Carleman class 𝐶{𝑀𝑛} contains
analytic function as well. For a regular sequence {𝑀𝑛} we introduce so-called associated weight
[8]

𝜔(𝑟) = sup
𝑛≥0

𝑟𝑛

𝑚𝑛

.

It follows from condition a) that 𝑀2
𝑛 6 𝑀𝑛−1𝑀𝑛+1, i.e., sequence {𝑀𝑛} is logarithmically

convex (it can be checked directly). This is why in accordance with Denjoy-Carleman theorem,
class 𝐶{𝑀𝑛} is quasi-analytic if and only if at least one of the following equivalent conditions
[1], [2]

10.

∞∫︁
1

ln𝑇 (𝑟)

𝑟2
𝑑𝑟 = ∞; 20.

∞∑︁
𝑛=0

𝑀𝑛

𝑀𝑛+1

= ∞

holds true.
For a regular sequence {𝑀𝑛}, as E.M. Dyn’kin showed [8], condition 20 (and therefore,

condition 10) is equivalent to bi-logarithmic Levinson condition

𝑑∫︁
0

ln lnℎ(𝑟)𝑑𝑟 = +∞,

where ℎ(𝑟) = 𝜔(1
𝑟
) and quantity 𝑑 > 0 is chosen so that ℎ(𝑑) ≥ 𝑒. Here

ℎ(𝑟) = sup
𝑛≥0

1

𝑚𝑛𝑟𝑛
, 𝑚𝑛 =

𝑀𝑛

𝑛!
, 𝑟 > 0.

It is clear that ℎ(𝑟) is a decaying function, lim
𝑟→0

ℎ(𝑟) = ∞. Since sequence {𝑚𝑛} is logarithmi-

cally convex, the inverse representation

𝑚𝑛 = sup
𝑟>0

1

𝑟𝑛ℎ(𝑟)
(𝑛 ≥ 0)

holds true.
We have

Theorem 3 ([7]). Suppose a sequence {𝑀𝑛} (𝑛 ≥ 0) of positive numbers 𝑀𝑛 is so that the

changed sequence {𝑀*
𝑛}, 𝑀*

𝑛 = 𝑀
𝛾

1+𝛾
𝑛 (1 < 𝛾 < ∞) is regular. Then class 𝐻(∆𝛾,𝑀𝑛) is

quasi-analytic at the point 𝑧 = 0 if and only if Levinson condition

𝑑∫︁
0

ln lnℎ(𝑟)𝑑𝑟 = +∞ (1)

holds true, where

ℎ*(𝑟) = sup
𝑛≥0

𝑛!

𝑀
𝛾

1+𝛾
𝑛 𝑟𝑛

, 1 < 𝛾 < ∞.

We note that Denjoy-Carleman thereom is the limiting case of conditions 1)–3) in Theorem 2.
An analogue of Theorem 3 for a segment was proven earlier by E.M. Dyn’kin under a bi-
logarithmic condition which can be obtained from Levinson condition (1) if one lets formally
𝛾 = ∞.
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3. Quasi-analyticity criteria

3.1. Case of convex domain. Let 𝐷 be a bounded convex domain, 0 ∈ 𝜕𝐷, ℎ
′
(𝜎±) = 0.

Then class 𝐻(𝐷,𝑀𝑛) is quasi-analytic at the point 𝑧 = 0 if and only if [3]

∞∫︁
1

ln𝑇 (𝑟)

𝑣(𝑟)𝑟2
𝑑𝑟 = +∞.

The quantities ℎ(𝜙), 𝜎+, 𝜎−, 𝑇 (𝑟) were defined in Introduction. This result has another more
obvious formulation. In order to provide it, we introduce certain geometric characteristics of a
convex domain. As it is known, the support function

ℎ(𝜙) = max
𝜆∈𝐷

Re(𝜆𝑒𝑖𝜙)

is the distance from the origin to the tangent for domain 𝐷 perpendicular to the direction
{𝑟𝑒−𝑖𝜙, 𝑟 > 0}. We assume that the coordinate system is chosen so that the maximal segment
on which ℎ(𝜙) = 0 reads as [−𝜎, 𝜎], where 𝜎 > 0. We note that here 𝜎 < 𝜋

2
. If 𝜎 = 𝜋

2
, then the

domain is degenerate to a segment on the negative semi-axis.
On the boundary of domain 𝐷 we choose the counterclockwise direction and introduce the

arc length,

𝑧 = 𝑧(𝑠), 0 6 𝑠 < 𝑠0,

where 𝑠0 is the total length of the boundary of 𝐷. Hence, the length for the arc of the boundary
from the point 𝑧 = 0 to the point 𝑧(𝑠) (in the chosen direction) equals 𝑠.

As in work [9], by −𝛼−(𝑠) (0 6 𝑠 < 𝑠0) we denote the slope of the tangent to the boundary of
𝐷 at the point 𝑧(𝑠) w.r.t. the imaginary axis. Then function 𝛼−(𝑠) is well-defined everywhere
on [0, 𝑠0) except a countable set of points 𝑠 for which 𝑧(𝑠) is the angle point. We define the
function 𝛼−(𝑠) by the right continuity condition. By definition, lim

𝑠→0
𝛼−(𝑠) = −𝜎. In the same

way, the slope of the tangent at the point 𝑧(𝑠0 − 𝑠) w.r.t. the direction of the imaginary axis
is indicated by 𝛼+(𝑠). Then 𝛼+(𝑠) is positive, does not increase and lim

𝑠→0
𝛼+(𝑠) = 𝜎. We let

𝛼(𝑠) =
𝛼+(𝑠) − 𝛼−(𝑠)

2
, 0 6 𝑠 < 𝑠0.

Since lim
𝑠→0

𝛼(𝑠) = 𝜎 < 𝜋
2
, there exists a number 𝜀 > 0 such that 𝛼(𝑠) < 𝜋

2
, 0 6 𝑠 < 𝜀. We define

𝑅(𝑠) = exp

𝜀∫︁
𝑠

𝜋 − 𝛼(𝑡)
𝜋
2
− 𝛼(𝑡)

𝑑 ln 𝑡, 0 6 𝑠 < 𝜀.

Let 𝛽(𝑠) = 𝜋 − 2𝛼(𝑠). Then function 𝛽(𝑠) is the angle between the tangents at the points 𝑧(𝑠)
and 𝑧(𝑠0 − 𝑠), domain 𝐷 lies in this angle and function 𝑅(𝑠) casts into the form

𝑅(𝑠) = exp

𝜀∫︁
𝑠

𝜋 + 𝛽(𝑡)

𝛽(𝑡)
𝑑 ln 𝑡, 0 6 𝑠 < 𝜀.

We have

Theorem 4 ([9]). Let 𝐷 be a convex but not necessary bounded domain 𝑧0 ∈ 𝜕𝐷, and

𝑇 (𝑟) = sup
𝑛≥0

𝑟𝑛

𝑀𝑛

is the trace function for sequence {𝑀𝑛}. By 𝛽(𝑧0, 𝑠) we denote the angle between the tangents
to the boundary of 𝐷 taken at the points separated from point 𝑧0 by the distance 𝑠 of arc of the
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boundary. We let

𝑅(𝑧0, 𝑠) = exp

𝜀∫︁
𝑠

𝜋 + 𝛽(𝑧0, 𝑥)

𝛽(𝑧0, 𝑥)
𝑑 ln𝑥, 0 6 𝑠 < 𝜀. (2)

Then the condition
∞∫︁
1

ln𝑇 (𝑟)

𝑟2𝑅−1(𝑧0, 𝑟)
𝑑𝑟 = ∞ (3)

is the criterion for the quasi-analyticity of class 𝐻(𝐷,𝑀𝑛) at point 𝑧0.

In particular, by this theorem one can easily obtain aforementioned quasi-analyticity condi-
tions for classes 𝐻(𝐷,𝑀𝑛) in the case 𝐷 is a circle or an angle 𝜋𝛼, 0 < 𝛼 6 1.

Our aim is to show that if a convex domain 𝐷 satisfies some integral condition (depending
on the geometry of the domain) at a boundary point 𝑧0, then condition (3) has a simpler
formulation.

Fix a point 𝑧0 ∈ 𝜕𝐷. Then the defined above angle 𝛽(𝑧0, 𝑠), non-decaying, tends to 𝜋𝛼 (0 <
𝛼 6 1) as parameters 𝑠 tends to zero. Taking into consideration that 𝛽(𝑧0, 𝑠) ≡ 𝜋𝛼 for the
angle, we extract the term 1+𝛼

𝛼
from the integrand in formula (2),

𝜋 + 𝛽(𝑧0, 𝑠)

𝛽(𝑧0, 𝑠)
=

1 + 𝛼

𝛼
+

𝜋𝛼− 𝛽(𝑧0, 𝑠)

𝛼𝛽(𝑧0, 𝑠)
.

Then for sufficiently small 𝑠 the integral
𝜀∫︀
𝑠

𝜋𝛼−𝛽(𝑧0,𝑥)
𝛼·𝛽(𝑧0,𝑥) · 𝑑𝑥

𝑥
differs by a small error from the

quantity 1
𝜋𝛼2

𝜀∫︀
𝑠

𝜋𝛼−𝛽(𝑧0,𝑥)
𝑥

𝑑𝑥. Hence, if the integrals
𝜀∫︀
𝑠

𝜋𝛼−𝛽(𝑧0,𝑥)
𝑥

𝑑𝑥 are uniformly bounded for all

𝑠, 0 < 𝑠 < 𝜀, then the quasi-analyticity criterion for class 𝐻(𝐷,𝑀𝑛) at point 𝑧0 ∈ 𝜕𝐷 becomes

∞∫︁
1

ln𝑇 (𝑟)

𝑟
𝛼+2
𝛼+1

𝑑𝑟 = +∞.

Indeed, it follows from the fact that in this case

𝑅(𝑠) = exp

⎡⎣ 𝜀∫︁
𝑠

1 + 𝛼

𝛼
𝑑 ln𝑥

⎤⎦ · exp

⎡⎣ 𝜀∫︁
𝑠

𝜋𝛼− 𝛽(𝑧0, 𝑥)

𝛼 · 𝛽(𝑧0, 𝑥)
𝑑 ln𝑥

⎤⎦ ,

and as 𝑠 → 0

𝑅(𝑠) = 𝑟 ∼
(︁𝜀
𝑠

)︁𝛼+1
𝛼 · exp

(︁ 𝑐

𝜋𝛼2

)︁
,

where

𝑐 = lim
𝑠→0

𝜀∫︁
𝑠

𝜋𝛼− 𝛽(𝑧0, 𝑥)

𝑥
𝑑𝑥 =

𝜀∫︁
0

𝜋𝛼− 𝛽(𝑧0, 𝑥)

𝑥
𝑑𝑥.

Therefore, as 𝑟 → ∞,

𝑅−1(𝑟) ∼ exp

(︂
𝑐

𝜋𝛼2
· 𝛼

𝛼 + 1

)︂
𝜀𝑟−

𝛼
𝛼+1 ,

and condition (3) casts into the form

∞∫︁
1

ln𝑇 (𝑟)

𝑟2𝑟−
𝛼

𝛼+1

𝑑𝑟 =

∞∫︁
1

ln𝑇 (𝑟)

𝑟
𝛼+2
𝛼+1

𝑑𝑟 = +∞.
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Thus, for convex domains, for which quantity 𝛽(𝑧0, 𝑠) obeys the restriction

sup
𝑠

𝜀∫︁
𝑠

𝜋𝛼− 𝛽(𝑧0, 𝑥)

𝑥
𝑑𝑥 < ∞, (4)

the quasi-analyticity criterion for class 𝐻(𝐷,𝑀𝑛) at a point 𝑧0 ∈ 𝜕𝐷 coincides with Salinas
quasi-analyticity criteria for the angle ∆𝛼 = {𝑧 : | arg 𝑧| < 𝜋𝛼

2
} (0 < 𝛼 < 1) and Korenblyum

one for half-plane ∆1.
We have

Theorem 5. Let 𝐷 be a convex but necessary bounded domain, 𝑧0 ∈ 𝜕𝐷, and

𝑇 (𝑟) = sup
𝑛≥0

𝑟𝑛

𝑀𝑛

is the trace function for sequence {𝑀𝑛}. By 𝛽(𝑧0, 𝑠) we denote the angle between tangents to the
boundary of 𝐷 taken at the points separated from point 𝑧0 by the length 𝑠 along the boundary.
Suppose that at point 𝑧0, the condition

sup
𝑠

𝜀∫︁
𝑠

𝜋𝛼− 𝛽(𝑧0, 𝑥)

𝑥
𝑑𝑥 < ∞, 𝜋𝛼 = lim

𝑠→0
𝛽(𝑧0, 𝑠) (0 < 𝛼 6 1)

holds true. Then class 𝐻(𝐷,𝑀𝑛) is quasi-analytic at point 𝑧0 if and only if
∞∫︁
1

ln𝑇 (𝑟)

𝑟
𝛼+2
𝛼+1

𝑑𝑟 = +∞. (5)

Remark 1. Condition (4) holds true if, for instance,

|𝜋𝛼− 𝛽(𝑧0, 𝑠)| = 𝑂 (𝑠𝛾) , 𝛾 > 0

or

|𝜋𝛼− 𝛽(𝑧0, 𝑠)| = 𝑂

(︂
1

| ln 𝑠|𝛾

)︂
, 𝛾 > 1 𝑠 → 0.

Remark 2. For regular sequences {𝑀
𝛾

1+𝛾
𝑛 }, there was obtained the bi-logarithmic quasi-

analyticity condition in the angle which was equivalent to condition (5) as 𝛼 = 1
𝛾
. Therefore,

by Theorem 5, for convex domain with additional condition (4) at point 𝑧0 ∈ 𝜕𝐷, the bi-
logarithmic quasi-analyticity condition at this point reads exactly the same as for an angle,

𝑑∫︁
0

ln lnℎ*(𝑟)𝑑𝑟 = +∞, ℎ*(𝑟) = sup
𝑛≥0

𝑛!

𝑟𝑛 ·𝑀
𝛾

1+𝛾
𝑛

, 1 < 𝛾 < ∞. (6)

Theorem 5 imply several corollaries.

Corollary 1. Let ∆𝛼 =
{︀
𝑧 : |𝜋 − arg 𝑧| < 𝜋𝛼

2

}︀
be the angle 𝜋𝛼 (0 < 𝛼 < 1) with vertex at

the point 𝑧 = 0. Then, obviously, 𝛽(𝑠) ≡ 𝜋𝛼, and Condition (4) holds true.
If we let 𝛼 = 1

𝛾
, then condition (5) coincides with R. Salinas quasi-analyticity criterion for

an angle

∆𝛾 =

{︂
𝑧 : |arg 𝑧| < 𝜋

2𝛾
, 0 < |𝑧| < ∞

}︂
(1 < 𝛾 < ∞).

Corollary 2. Let 𝐾 = {𝑧 : |𝑧 + 𝑅| < 𝑅} be a circle. It can be checked that in this case

𝛽(𝑠) = 𝜋 − 2
𝑠

𝑅
,
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and 𝛽(𝑠) ↑ 𝜋 (𝛼 = 1) 𝑠 → 0. Since 𝜋−𝛽(𝑥)
𝑥

= 2
𝑅
, condition (4) holds true at each point of 𝜕𝐾,

while relation (5) in this case (as 𝛼 = 1) becomes Korenblyum criterion.

3.2. Special domains. Consider the domains of special form, lunes 𝐾𝛼. As a lune 𝐾𝛼,
following work [10], we treat the intersection of exterior or interior for two circles of arbitrary
but the same radius so that their circumferences pass the origin 𝑂 and intersect by the angle
𝜋𝛼 (0 < 𝛼 < 2). As 𝐾1, we treat the exterior or interior for a circumference passing point 𝑂.

Let us show that for the lune 𝐾𝛼 obtained as the intersection of two interiors for two circles,
condition (4) holds true. In order to do it, we shall make use of the following

Lemma 1. Let us draw the tangent at the point 𝐴 to a circumference of an arbitrary radius
𝑅 passing through point 𝑂 with the center located below axis 𝑂𝑥. Let also 𝛽1 (0 < 𝛽1 < 𝜋

2
) be

the angle between the tangent and the negative direction of axis 𝑂𝑥 and 𝛽1 → 𝛾 as 𝐴 → 𝑂.
Then

𝛾 − 𝛽1 =
𝐴𝑂

𝑅
,

where 𝐴𝑂 is the length of arc of the circumference between the points 𝐴 and 𝑂.

Indeed, we observe that (𝜋−𝛾)+𝛽1 = 𝜋−𝛼. It yields 𝛾−𝛽1 = 𝛼. Taking into consideration

that 𝛼 = 𝐴𝑂
𝑅

, we obtain the desired identity 𝛾 − 𝛽1 = 𝐴𝑂
𝑅

.
Let 𝐾𝛼 be the lune formed by the intersection of the interior of two circles. Obviously, it is

a convex set. We shall assume that 𝐾𝛼 is located in the left half-plane and is symmetric w.r.t.
axis 𝑂𝑥. Then by Lemma 1 we obtain that

𝜋𝛼− 𝛽(𝑠) = 2
𝑠

𝑅
.

Hence,
𝜀∫︁

𝑠

𝜋𝛼− 𝛽(𝑥)

𝑥
𝑑𝑥 =

2

𝑅
(𝜀− 𝑠) (0 < 𝑠 < 𝜀),

and condition (4) holds true for 𝐾𝛼.
Finally, we formulate the last corollary.

Corollary 3. For a convex lune 𝐾𝛼 (0 < 𝛼 < 2), condition (4) holds true everywhere. For
lunes 𝐾𝛼 (0 < 𝛼 < 2), the quasi-analyticity criterion for at point 𝑂 coincides with R. Salinas
criterion for the angle

∆𝛼 =
{︁
𝑧 : |𝜋 − arg 𝑧| < 𝜋𝛼

2

}︁
.

By Theorem 5 one can also get quasi-analyticity criteria for classes 𝐻(𝐺,𝑀𝑛) for non-convex
domains 𝐺 satisfying certain additional restrictions.

Let 𝐺 be a domain in the complex plain not containing infinity. We shall say that domain 𝐺
satisfies condition (A), if its boundary 𝐶 consists of a finite number of piecewise-smooth closed
simple curves 𝑐1, 𝑐2, . . . , 𝑐𝑛, each of which has a piecewise-continuous curvature and contains
at most finite number of angle points and all interior angles (w.r.t. domain 𝐺) are not equal to
0 or 2𝜋. We denote the interior angle between one-sided tangents to 𝐶 at a point 𝑧 by 𝜋𝛼(𝑧).
Let 𝛼 = min

𝑧∈𝐶
𝛼(𝑧) > 0. Then a domain 𝐺 satisfying condition 𝐴 possesses the feature [10]: for

each point 𝑧 ∈ 𝜕𝐺, there exist lunes 𝐾
𝛼(𝑧)
1 and 𝐾

𝛼(𝑧)
2 such that

𝐾
𝛼(𝑧)
1 ⊂ 𝐺 ⊂ 𝐾

𝛼(𝑧)
2 .

Here 𝐾
𝛼(𝑧)
1 is a convex lune formed by the intersection of interiors, while 𝐾

𝛼(𝑧)
2 is a lune formed

by intersection of exterior for two circles of the same but sufficiently small radius such that
their circumferences pass point 𝑧.
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Classes 𝐻(𝐾
𝛼(𝑧)
1 ,𝑀𝑛) and 𝐻(𝐾

𝛼(𝑧)
2 ,𝑀𝑛) are quasi-analytic or not at a point 𝑧 ∈ 𝐶 simul-

taneously [10]. Therefore, taking into account Corollary 3 and applying Theorem 5, we obtain:

all three classes 𝐻(𝐺,𝑀𝑛), 𝐻(𝐾
𝛼(𝑧)
1 ,𝑀𝑛), and 𝐻(𝐾

𝛼(𝑧)
2 ,𝑀𝑛) are quasi-analytic at a point 𝑧 ∈ 𝐶

if and only if
∞∫︁
1

ln𝑇 (𝑟)

𝑟
𝛼(𝑧)+2
𝛼(𝑧)+1

𝑑𝑟 = +∞. (7)

We note that if a point 𝑧 ∈ 𝐶 is a point of smoothness for the boundary of domain 𝐺 (i.e.,
𝛼(𝑧) ≡ 1), the quasi-analyticity criterion for class 𝐻(𝐺,𝑀𝑛) at this point reads as follows,

∞∫︁
1

ln𝑇 (𝑟)

𝑟
3
2

𝑑𝑟 = +∞.

If we take into consideration Remark 2, for regular sequences {𝑀
1

𝛼+1
𝑛 }, condition (7) is

equivalent to bi-logarithmic condition (6) as 𝛾 = 1
𝛼

.
We note that the quasi-analyticity criterion for class 𝐻(𝐺,𝑀𝑛), where 𝐺 is a domain satis-

fying condition 𝐴, was proven in a different way in work [10].

4. Existence criterion for regular minorant of non-quasi-analyticity

Let {𝑀𝑛} be a regular sequence, 𝜔(𝑟) = max
𝑛≥0

𝑟𝑛

𝑚𝑛

(︀
𝑚𝑛 = 𝑀𝑛

𝑛!

)︀
is the associated weight [8].

Then sequence {𝑀𝑛} is completely determined by function 𝜔(𝑟),

𝑀𝑛 = 𝑛! sup
𝑟>0

𝑟𝑛

𝜔(𝑟)
.

As it was said in Section 2, in this case, the condition
∞∑︁
𝑛=0

𝑀𝑛

𝑀𝑛+1

< ∞ (8)

can be reformulated in terms of bi-logarithmic Levinson condition
𝑑∫︁

0

ln ln𝐻(𝑟)𝑑𝑟 < ∞,

where 𝐻(𝑟) = 𝜔(1
𝑟
) and 𝑑 > 0 is so that 𝐻(𝑑) > 𝑒.

We shall sequence {𝑀𝑛} weakly regular if it obeys conditions a), b) in the definition of regular
sequence {𝑀𝑛} (see Section 2). It happens that for weakly regular sequences, condition (8) has
another interpretation.

Lemma 2. Suppose the sequence {𝑀𝑛} is weakly regular. Condition (8) holds true if and
only if there exists a positive continuous on R+ function 𝑅 = 𝑅(𝑡) such that 𝑅(𝑡) ↓ 0, 𝑡𝑅(𝑡) ↓ 0
as 𝑡 → ∞ and

1)
1

𝑀
1
𝑛
𝑛

6 𝑅(𝑛); 2)

∞∫︁
1

𝑅(𝑡)𝑑𝑡 < ∞.

Proof. Sufficiency is almost obvious. Indeed, since 𝑀
1
𝑛
𝑛 ↑ ∞ as 𝑛 → ∞ (it follows from

the logarithmic convexity of sequence {𝑀𝑛} and property c)), according to Denjoy-Carleman
theorem, condition can be written as [2]

∞∑︁
𝑛=1

1

𝑀
1
𝑛
𝑛

< ∞. (9)
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This is why the sufficiency of lemma follows from conditions 1), 2) and properties of function
𝑅 = 𝑅(𝑡) .

Necessity. Letting 𝑟(𝑛) = 𝑀
− 1

𝑛
𝑛 , we have

𝑟(𝑛)𝑛 =
𝑛

𝑀
1
𝑛
𝑛

=
1

𝑚
1
𝑛
𝑛

𝑛

(𝑛!)
1
𝑛

.

By Stirling formula [11],

𝑛! =
√

2𝜋𝑛 𝑛𝑛 𝑒−𝑛 𝑒𝜃(𝑛), |𝜃(𝑛)| 6 1

12𝑛
,

it implies

𝑟(𝑛)𝑛 =
1

𝑚
1
𝑛
𝑛

𝑒1−
𝜃(𝑛)
𝑛

(2𝜋𝑛)
1
2𝑛

6 𝑒
13
12

1

𝑚
1
𝑛
𝑛

. (10)

If we denote by 𝑅(𝑛)𝑛 the right hand side of (10), we see that 𝑅(𝑛)𝑛 ↓ 0 as 𝑛 → ∞. Then as
𝑛 → ∞,

𝑅(𝑛) = 𝑒
13
12

1

𝑛

(︂
𝑛!

𝑀𝑛

)︂ 1
𝑛

6 𝑒
1
6 (2𝜋𝑛)

1
2𝑛

1

𝑀
1
𝑛
𝑛

= 𝑂

(︃
1

𝑀
1
𝑛
𝑛

)︃
.

Therefore, it follows from condition (9) that
∞∑︀
𝑛=1

𝑅(𝑛) < ∞. Hence,

1

𝑀
1
𝑛
𝑛

6 𝑅(𝑛),
∞∑︀
𝑛=1

𝑅(𝑛) < ∞, 𝑅(𝑛) ↓ 0, 𝑅(𝑛)𝑛 ↓ 0 𝑛 → ∞.

The desired function is obviously 𝑅 = 𝑅(𝑡) which is linear for 𝑡 ∈ (𝑛, 𝑛+ 1) and it takes values
𝑅(𝑛) and 𝑅(𝑛 + 1) at the endpoints of the interval (𝑛, 𝑛 + 1).

Lemma 2 is supplemented by

Lemma 3. Let {𝑀𝑛} (𝑀𝑛 > 0) be an arbitrary sequence such that there exists a continuous
function 𝑟 = 𝑟(𝑡) on R+, 𝑟(𝑡) ↓ 0, 𝑟(𝑡)𝑡 ↓ 0 as 𝑡 → ∞ and

1

𝑀
1
𝑛
𝑛

6 𝑟(𝑛),

∞∫︁
1

𝑟(𝑡)𝑑𝑡 < ∞.

Then there exists a weakly regular sequence {𝑀*
𝑛} such that

𝑀*
𝑛 6 𝑀𝑛,

∞∑︁
𝑛=1

(𝑀*
𝑛)−

1
𝑛 < ∞.

Proof. We have

𝐷𝑛 =

(︂
1

𝑟(𝑛)

)︂𝑛

6 𝑀𝑛 (𝑛 ≥ 1).

The sequence
{︀

𝐷𝑛

𝑛!

}︀
is not necessary logarithmically convex. This is why we replace it by a

minorant possessing the required properties.
Bearing in mind Stirling formula, we have

𝐷𝑛

𝑛!
=

1

𝑛𝑛∆𝑛

(︂
1

𝑟(𝑛)

)︂𝑛

,

where ∆𝑛 = 𝑒−𝑛
√

2𝜋𝑛 𝑒𝜃(𝑛)
(︀
|𝜃(𝑛)| 6 1

12𝑛

)︀
. Since it is obvious that

∆𝑛 6
√

2𝜋 exp

(︂
1

12𝑛
− 𝑛 +

1

2
ln𝑛

)︂
6

√
2𝜋 < 𝑒,



38 R.A. GAISIN

then
𝐷𝑛

𝑛!
≥ 1

𝑒

(︂
1

𝑛𝑟(𝑛)

)︂𝑛

>

(︂
1

𝑒𝑛𝑟(𝑛)

)︂𝑛

(𝑛 ≥ 1).

If we let

𝑚*
𝑛 =

𝑀*
𝑛

𝑛!
=

(︂
1

𝑒𝑛𝑟(𝑛)

)︂𝑛

,

then 𝑀*
𝑛 6 𝐷𝑛 6 𝑀𝑛. Since 𝑛𝑟(𝑛) ↓ 0 as 𝑛 → ∞, then (𝑚*

𝑛)
1
𝑛 ↑ ∞ as 𝑛 → ∞. We see that

sequence {𝑀*
𝑛} is weakly regular.

Let us make sure that
∞∑︁
𝑛=1

1

(𝑀*
𝑛)

1
𝑛

< ∞. (11)

Indeed,

𝑀*
𝑛 = 𝑛!

(︂
1

𝑒𝑛𝑟(𝑛)

)︂𝑛

=
√

2𝜋𝑛 𝑒−2𝑛+𝜃(𝑛)

(︂
1

𝑟(𝑛)

)︂𝑛

.

It yields (︂
1

𝑀*
𝑛

)︂ 1
𝑛

6 𝑒
25
12 𝑟(𝑛) (𝑛 ≥ 1),

and condition (11) is implied by the convergence of the series
∞∑︀
𝑛=1

𝑟(𝑛).

Remark 3. Under the hypothesis of Lemma 3, without loss of generality, one can assume
that 𝑡2𝑟(𝑡) ↑ ∞ as 𝑡 → ∞. It implied by the following statement [12].
Let 𝑟 = 𝑟(𝑡) be a positive continuous on R+ function, 𝑡𝑟(𝑡) ↓ 0 as 𝑡 → ∞, and

∞∫︁
1

𝑟(𝑡)𝑑𝑡 < ∞.

Then for each 𝜀 > 0 there exists a function 𝑟1 = 𝑟1(𝑡) satisfying conditions
1. 𝑟(𝑡) 6 𝑟1(𝑡);
2. 𝑡𝑟1(𝑡) ↓ 0, 𝑡1+𝜀𝑟1(𝑡) ↑ as 𝑡 → ∞;

3.
∞∫︀
1

𝑟1(𝑡)𝑑𝑡 < ∞.

By Remark 3, sequence {𝑀*
𝑛} constructed in Lemma 3 satisfies also regularity condition b).

Thus, under the hypothesis of Lemma 3 there exists a regular sequence {𝑀*
𝑛} such that

𝑀*
𝑛 6 𝑀𝑛,

∞∑︁
𝑛=1

(︂
1

𝑀*
𝑛

)︂ 1
𝑛

< ∞.

Let us make sure that sequence {𝑀*
𝑛} satisfies condition b). Indeed, we have

𝑎𝑛 =

(︂
𝑚*

𝑛+1

𝑚*
𝑛

)︂ 1
𝑛

6 𝑛

√︃
1

(𝑛 + 1) 𝑟(𝑛 + 1)

𝑛 𝑟(𝑛)

(𝑛 + 1) 𝑟(𝑛 + 1)
.

But
𝑛 𝑟(𝑛)

(𝑛 + 1) 𝑟(𝑛 + 1)
6

(𝑛 + 1)2 𝑟(𝑛 + 1)

(𝑛 + 1) 𝑟(𝑛 + 1)

1

𝑛
=

𝑛 + 1

𝑛
6 2.

It yields

𝑎𝑛 6 2 𝑛

√︃
𝑛 + 1

(𝑛 + 1)2 𝑟(𝑛 + 1)
6 2

(︂
𝑛 + 1

4𝑟(2)

)︂ 1
𝑛

6 𝐶 < ∞,
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and

sup
𝑛

(︂
𝑚*

𝑛+1

𝑚*
𝑛

)︂ 1
𝑛

< ∞.

Hence, we have proven

Theorem 6. Let 𝑀𝑛 > 0. There exists a regular sequence {𝑀*
𝑛} such that

𝑀*
𝑛 6 𝑀𝑛,

∞∑︁
𝑛=1

𝑀*
𝑛

𝑀*
𝑛+1

< ∞

if and only if there exists a positive continuous on R+ function 𝑟 = 𝑟(𝑡), 𝑡𝑟(𝑡) ↓ 0, 𝑡2𝑟(𝑡) ↑ as
𝑡 → ∞ such that

1)
1

𝑀
1
𝑛
𝑛

6 𝑟(𝑛) (𝑛 ≥ 1); 2)

∞∫︁
1

𝑟(𝑡)𝑑𝑡 < ∞.

In conclusion the author expresses gratitude to his supervisor Professor R.S. Yulmukhametov
for the formulation of the problem and attention to the work.
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