QUASI-ANALYTICITY CRITERIA OF SALINAS-KORENBLUM TYPE FOR GENERAL DOMAINS

R.A. GAISIN

Abstract. We prove a criterion of quasi-analyticity in a boundary point of a rather general domain (not necessarily convex and simply-connected) if in a vicinity of this point the domain is close in some sense to an angle or is comparable with it.

Keywords: Carleman class, regular sequences, bilogarithmic quasi-analyticity condition.

Mathematics Subject Classification: 30D60.

1. Introduction

Let \(\{M_n\}_{n=0}^{\infty} \) be a sequence of positive numbers. Some of numbers \(M_n \) can be equal to \(+\infty\), but it is assumed that there exists an infinite number of finite \(M_n \). As class \(C\{M_n\} \), we call the set of all infinitely differentiable functions \(f \) defined on the segment \(I = [a, b] \), \((-\infty \leq a < b \leq +\infty)\), for each of those there exists a constant \(K_f \) such that \[\sup_{a< x < b} |f^{(n)}(x)| \leq K_f^n M_n \quad (n \geq 0). \]

In the general situation \(I \) can be an interval of half-interval.

In 1912 J. Hadamard posed the following question [1]: what are the numbers \(M_n \) so that for each two functions \(f \) and \(\varphi \) in class \(C\{M_n\} \), once in some point \(x_0 \) of the interval \(I = (a, b) \) for all \(n \geq 0 \)

\[f^{(n)}(x_0) = \varphi^{(n)}(x_0), \]

it follows \(f(x) \equiv \varphi(x) \ (a < x < b) \)?

It was observed that it is true if \(M_n = n! \). The matter is that in this case, class \(C\{n!\} \) coincides with the class of real-analytic functions on the interval \((a, b) \) [1]. Due to the additivity of classes \(C\{M_n\} \), the Hadamard problem can be reformulated as follows: what are the numbers \(M_n \) in order to class \(C\{M_n\} \) to be quasi-analytic, that is, each function \(f \in C\{M_n\} \) satisfying at some point \(x_0 \in I \)

\[f^{(n)}(x_0) = 0 \quad (n \geq 0), \]

vanishes.

The Hadamard quasi-analyticity problem problem for the segment (interval, half-interval) \(I \) is completely solved by so-called Denjoy-Carleman theorem. One of its equivalent formulations belonging to Ostrovsky is as follows [1], [2]: class \(C\{M_n\} \) is quasi-analytic if and only if

\[\int_{1}^{\infty} \frac{\ln T(r)}{r^2} dr = +\infty. \]
Here $T(r) = \sup_{n \geq 0} \frac{r^n}{M_n}$ is the trace function for the sequence $\{M_n\}$.

Let G be a domain in the complex plane. By $H(G, M_n)$ we denote the class of functions f analytic in the domain G and satisfying condition

$$\sup_{z \in G} |f^{(n)}(z)| \leq C_f M_n \quad (n \geq 0).$$

We assume that domain G is so that all the derivatives $f^{(n)} (n \geq 0)$ of a function $f \in H(G, M_n)$ can be continuously extended up to the boundary of ∂G. In this case, class $H(G, M_n)$ is called quasi-analytic at a point $z_0 \in \partial G$, if $f \in H(G, M_n)$ and $f^{(n)}(z_0) = 0 \ (n \geq 0)$ imply $f \equiv 0$.

Let us survey briefly the results related with the quasi-analyticity problem for class $H(G, M_n)$ and let us formulate the problem we shall discuss here.

As it is known, the quasi-analyticity problem for class $H(\Delta, M_n)$ where Δ is a circle, was solved by B.I. Korenblum [5]. He proved the following statement: class $H(\Delta, M_n)$ is quasi-analytic at a boundary point if and only if

$$\int_{1}^{\infty} \frac{\ln T(r)}{r^{1+\frac{\gamma}{2}}} dr = +\infty.$$

holds true.

It should be noticed that Ostrovsky theorem is the limiting case for R. Salinas theorem (as $\gamma \to \infty$).

The quasi-analyticity problem for class $H(K, M_n)$, where K is a circle, was solved by B.I. Korenblum [5]. He proved the following statement: class $H(K, M_n)$ is quasi-analytic at a boundary point if and only if

$$\int_{1}^{\infty} \frac{\ln T(r)}{r^{\frac{3}{2}}} = +\infty.$$

The criterion of quasi-analyticity of class $H(D, M_n)$ at a boundary point for an arbitrary convex bounded domain D was established by R.S. Yulmukhametov in [3]. Let us describe this result.

Let D be a convex bounded domain in the complex plane lying in the left half-plane and $0 \in \partial D$. In this case, the support function $h(\varphi) = \max_{\lambda \in D} \text{Re}(\lambda e^{i\varphi})$ of domain D is non-negative and vanishes on some segment $[\sigma_-, \sigma_+]$ ($-\frac{\pi}{2} < \sigma_- \leq 0 \leq \sigma_+ < \frac{\pi}{2}$). Let it be the maximal segment on which $h(\varphi) = 0$. We let

$$\Delta_+(\varphi) = \sqrt{\sigma_+ - \varphi} \left(h'(\varphi) + \int_{0}^{\varphi} h(\alpha) d\alpha \right), \quad \sigma_+ \leq \varphi \leq \frac{\pi}{2};$$

$$\Delta_-(\varphi) = -\sqrt{\sigma_- - \varphi} \left(h'(\varphi) + \int_{0}^{\varphi} h(\alpha) d\alpha \right), \quad -\frac{\pi}{2} \leq \varphi \leq \sigma_-.$$

By $v(r)$ we denote the inverse to the function

$$v_1(x) = \exp \int_{x_1}^{x} \frac{(2\pi - \Delta_-^{-1}(y) + \Delta_+^{-1}(y)) dy}{(-\pi - \Delta_+^{-1}(y) - \Delta_-^{-1}(y))y}, x \to 0, x_1 > 0.$$
Theorem 1 ([3]). If \(h'(\sigma_{\pm}) = 0 \), then class \(H(D, M_n) \) is quasi-analytic at the point \(z = 0 \) if and only if
\[
\int_{1}^{\infty} \frac{\ln T(r)}{v(r)r^2} dr = +\infty.
\]

The problem arises: to find quasi-analyticity criteria for general domains (not necessary bounded, convex, and simply-connected) that depend only on a given sequence \(\{M_n\} \) so that for regular sequences they can be reformulated as bi-logarithmic Levinson condition. The present paper is devoted to studying this issue.

2. History of problem. Definitions and preliminaries

Let \(\{M_n\} \) be a sequence of positive numbers \(M_n \) satisfying condition \(M_n^{\frac{2}{n}} \to \infty \) as \(n \to \infty \). We can assume that \(M_0 = 1 \). Sequence \(\{M_n\} \) is called logarithmically convex if \(M_n^2 \leq M_{n-1}M_{n+1} \) \((n \geq 1)\). It is well know that a logarithmically convex sequence \(\{M_n\} \) is completely determined by the trace function \(T(r) \) and [1, 2]
\[
M_n = \sup_{r \geq 0} \frac{r^n}{T(r)} \quad (n \geq 0).
\]

Let us clarify the geometric meaning of logarithmic convexity of a sequence \(\{M_n\} \). In order to do it, we find the logarithms for inequalities \(M_n^2 \leq M_{n-1}M_{n+1} \), we obtain
\[
\ln M_n \leq \frac{1}{2} \ln M_{n-1} + \frac{1}{2} \ln M_{n+1} \quad (n \geq 1).
\]

Hence, we see that the logarithmical convexity of sequence \(\{M_n\} \) means that the point \((n, \ln M_n) \) lies not higher than the segment connecting the points \((n-1, \ln M_{n-1})\) and \((n+1, \ln M_{n+1})\) \((n \geq 1)\).

By \(\{M_n^c\} \) we denote the sequence obtained from \(\{M_n\} \) as a convex regularization by logarithms (see, for instance, [1, 2, 6]).

In paper [7] the quasi-analyticity criteria were given for Carleman classes \(H(\Delta_\gamma, M_n) \) and the angle
\[
\Delta_\gamma = \{z : |\arg z| < \frac{\pi}{2\gamma}, 0 < |z| < \infty\} \quad (1 < \gamma < \infty)
\]
explicitly in terms of a given sequence \(\{M_n\} \) (or \(\{M_n^c\} \)). Namely, there was proven

Theorem 2 ([7]). Class \(H(\Delta_\gamma, M_n) \) is quasi-analytic at the point \(z = 0 \) if and only if one of following equivalent conditions

1) \[
\int_{1}^{\infty} \frac{\ln T(r)}{r^{\frac{1}{\gamma}} M_n} dr = \infty, \text{ where } T(r) = \sup_{n \geq 0} \frac{r^n}{M_n} \quad (R. \text{ Salinas criterion});
\]

2) \[
\sum_{n=0}^{\infty} \left(\frac{M_n^c}{M_n} \right)^{\frac{1}{\gamma n}} = \infty;
\]

3) \[
\sum_{n=0}^{\infty} \frac{1}{\beta_n^\gamma} = \infty, \text{ where } \beta_n = \inf_{k \geq n} M_k^{\frac{1}{\gamma}};
\]
holds true.

We proceed to considering the question on bi-logarithmic quasi-analyticity condition for the angle. Following work [5], we introduce the adjoint sequence \(\{m_n\} \), where \(m_n = \frac{M_n}{\beta_n} \). Here \(\{M_n\} \) is an arbitrary sequence of numbers. Now we assume additionally that sequence \(\{M_n\} \) obeys the following conditions,

a) \(m_n^2 \leq m_{n-1}m_{n+1} \quad (n \geq 1) \);

b) \(\sup_{n} \left(\frac{m_{n+1}}{m_n} \right)^\gamma < \infty \);
c) \(m_n^{\frac{1}{n}} \to \infty, \quad n \to \infty. \)

If conditions a)–c) hold true, sequence \(\{M_n\} \) is called regular. Condition a) is the condition of logarithmic convexity for sequence \(\{m_n\} \). We also note that condition b) implies that class \(C\{M_n\} \) is closed w.r.t. differentiation. Condition c) yields that Carleman class \(C\{M_n\} \) contains analytic function as well. For a regular sequence \(\{M_n\} \) we introduce so-called associated weight

\[
\omega(r) = \sup_{n \geq 0} \frac{r^n}{m_n}.
\]

It follows from condition a) that \(M_n^2 \leq M_{n-1}M_{n+1} \), i.e., sequence \(\{M_n\} \) is logarithmically convex (it can be checked directly). This is why in accordance with Denjoy-Carleman theorem, class \(C\{M_n\} \) is quasi-analytic if and only if at least one of the following equivalent conditions holds true.

For a regular sequence \(\{M_n\} \), as E.M. Dyn’kin showed \([8]\), condition \(2^0 \) (and therefore, condition \(1^0 \)) is equivalent to bi-logarithmic Levinson condition

\[
\int_0^d \ln \ln h(r) \, dr = +\infty,
\]

where \(h(r) = \omega(\frac{1}{r}) \) and quantity \(d > 0 \) is chosen so that \(h(d) \geq e \). Here

\[
h(r) = \sup_{n \geq 0} \frac{1}{m_n r^n}, \quad m_n = \frac{M_n}{n!}, \quad r > 0.
\]

It is clear that \(h(r) \) is a decaying function, \(\lim_{r \to 0} h(r) = \infty. \) Since sequence \(\{m_n\} \) is logarithmically convex, the inverse representation

\[
m_n = \sup_{r > 0} \frac{1}{r^n h(r)} \quad (n \geq 0)
\]

holds true.

We have

Theorem 3 (\([7]\)). Suppose a sequence \(\{M_n\} (n \geq 0) \) of positive numbers \(M_n \) is so that the changed sequence \(\{M_n^\gamma\} \), \(M_n^\gamma = M_n^\frac{\gamma}{1+\gamma} \) \((1 < \gamma < \infty)\) is regular. Then class \(H(\Delta_\gamma, M_n) \) is quasi-analytic at the point \(z = 0 \) if and only if Levinson condition

\[
\int_0^d \ln \ln h(r) \, dr = +\infty \tag{1}
\]

holds true, where

\[
h_+(r) = \sup_{n \geq 0} \frac{n!}{M_n^\frac{\gamma}{1+\gamma} r^n}, \quad 1 < \gamma < \infty.
\]

We note that Denjoy-Carleman thereom is the limiting case of conditions 1)–3) in Theorem 2. An analogue of Theorem 3 for a segment was proven earlier by E.M. Dyn’kin under a bi-logarithmic condition which can be obtained from Levinson condition (1) if one lets formally \(\gamma = \infty. \)
3. Quasi-analyticity criteria

3.1. Case of convex domain. Let D be a bounded convex domain, $0 \in \partial D$, $h'(\sigma_{\pm}) = 0$. Then class $H(D, M_n)$ is quasi-analytic at the point $z = 0$ if and only if

$$\int_{1}^{\infty} \frac{\ln T(r)}{v(r)r^2} dr = +\infty.$$

The quantities $h(\varphi)$, σ_{+}, σ_{-}, $T(r)$ were defined in Introduction. This result has another more obvious formulation. In order to provide it, we introduce certain geometric characteristics of a convex domain. As it is known, the support function

$$h(\varphi) = \max_{\lambda \in \partial D} \Re(\lambda e^{i\varphi})$$

is the distance from the origin to the tangent for domain D perpendicular to the direction $\{re^{-i\varphi}, r > 0\}$. We assume that the coordinate system is chosen so that the maximal segment on which $h(\varphi) = 0$ reads as $[-\sigma, \sigma]$, where $\sigma > 0$. We note that here $\sigma < \frac{\pi}{2}$. If $\sigma = \frac{\pi}{2}$, then the domain is degenerate to a segment on the negative semi-axis.

On the boundary of domain D we choose the counterclockwise direction and introduce the arc length,

$$z = z(s), \quad 0 \leq s < s_0,$$

where s_0 is the total length of the boundary of D. Hence, the length for the arc of the boundary from the point $z = 0$ to the point $z(s)$ (in the chosen direction) equals s.

As in work [9], by $-\alpha_{-}(s)$ ($0 \leq s < s_0$) we denote the slope of the tangent to the boundary of D at the point $z(s)$ w.r.t. the imaginary axis. Then function $\alpha_{-}(s)$ is well-defined everywhere on $[0, s_0]$ except a countable set of points s for which $z(s)$ is the angle point. We define the function $\alpha_{-}(s)$ by the right continuity condition. By definition, $\lim_{s \to 0^{+}} \alpha_{-}(s) = -\sigma$. In the same way, the slope of the tangent at the point $z(s_0 - s)$ w.r.t. the direction of the imaginary axis is indicated by $\alpha_{+}(s)$. Then $\alpha_{+}(s)$ is positive, does not increase and $\lim_{s \to s_0^{+}} \alpha_{+}(s) = \sigma$. We let

$$\alpha(s) = \frac{\alpha_{+}(s) - \alpha_{-}(s)}{2}, \quad 0 \leq s < s_0.$$

Since $\lim_{s \to 0^{+}} \alpha(s) = \sigma < \frac{\pi}{2}$, there exists a number $\varepsilon > 0$ such that $\alpha(s) < \frac{\pi}{2}$, $0 \leq s < \varepsilon$. We define

$$R(s) = \exp \int_{s}^{\varepsilon} \frac{\pi - \alpha(t)}{\frac{\pi}{2} - \alpha(t)} d\ln t, \quad 0 \leq s < \varepsilon.$$

Let $\beta(s) = \pi - 2\alpha(s)$. Then function $\beta(s)$ is the angle between the tangents at the points $z(s)$ and $z(s_0 - s)$, domain D lies in this angle and function $R(s)$ casts into the form

$$R(s) = \exp \int_{s}^{\varepsilon} \frac{\pi + \beta(t)}{\beta(t)} d\ln t, \quad 0 \leq s < \varepsilon.$$

We have

Theorem 4 ([9]). Let D be a convex but not necessary bounded domain $z_0 \in \partial D$, and

$$T(r) = \sup_{n \geq 0} \frac{r^n}{M_n}$$

is the trace function for sequence $\{M_n\}$. By $\beta(z_0, s)$ we denote the angle between the tangents to the boundary of D taken at the points separated from point z_0 by the distance s of arc of the
boundary. We let

$$ R(z_0, s) = \exp \int_{s}^{\varepsilon} \frac{\pi + \beta(z_0, x)}{\beta(z_0, x)} d\ln x, \quad 0 \leq s < \varepsilon. \tag{2} $$

Then the condition

$$ \int_{1}^{\infty} \frac{\ln T(r)}{r^{2} R^{-1}(z_0, r)} dr = \infty \tag{3} $$

is the criterion for the quasi-analyticity of class $H(D, M_n)$ at point z_0.

In particular, by this theorem one can easily obtain aforementioned quasi-analyticity conditions for classes $H(D, M_n)$ in the case D is a circle or an angle $\pi \alpha$, $0 < \alpha \leq 1$.

Our aim is to show that if a convex domain D satisfies some integral condition (depending on the geometry of the domain) at a boundary point z_0, then condition (3) has a simpler formulation.

Fix a point $z_0 \in \partial D$. Then the defined above angle $\beta(z_0, s)$, non-decaying, tends to $\pi \alpha$ ($0 < \alpha \leq 1$) as parameters s tends to zero. Taking into consideration that $\beta(z_0, s) \equiv \pi \alpha$ for the angle, we extract the term $1 + \frac{\alpha}{\alpha}$ from the integrand in formula (2),

$$ \frac{\pi + \beta(z_0, s)}{\beta(z_0, s)} = \frac{1 + \alpha}{\alpha} + \frac{\pi \alpha - \beta(z_0, s)}{\alpha \beta(z_0, s)}. $$

Then for sufficiently small s the integral $\int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{\alpha \beta(z_0, x)} \cdot \frac{dx}{x}$ differs by a small error from the quantity $\frac{1}{\pi \alpha} \int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{x} dx$. Hence, if the integrals $\int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{x} dx$ are uniformly bounded for all s, $0 < s < \varepsilon$, then the quasi-analyticity criterion for class $H(D, M_n)$ at point $z_0 \in \partial D$ becomes

$$ \int_{1}^{\infty} \frac{\ln T(r)}{r^{\alpha+1}} dr = +\infty. $$

Indeed, it follows from the fact that in this case

$$ R(s) = \exp \left[\int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{x} \frac{dx}{x} \right] \cdot \exp \left[\int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{\alpha \beta(z_0, x)} d\ln x \right], $$

and as $s \to 0$

$$ R(s) = r \sim \left(\frac{\varepsilon}{s} \right)^{\frac{\alpha+1}{\alpha}} \exp \left(\frac{c}{\pi \alpha^2} \right), $$

where

$$ c = \lim_{s \to 0} \int_{s}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{x} dx = \int_{0}^{\varepsilon} \frac{\pi \alpha - \beta(z_0, x)}{x} dx. $$

Therefore, as $r \to \infty$,

$$ R^{-1}(r) \sim \exp \left(\frac{c}{\pi \alpha^2} \cdot \frac{\alpha}{\alpha + 1} \right) \varepsilon r^{-\frac{\alpha}{\alpha+1}}, $$

and condition (3) casts into the form

$$ \int_{1}^{\infty} \frac{\ln T(r)}{r^{\frac{\alpha+2}{\alpha+1}}} dr = \int_{1}^{\infty} \frac{\ln T(r)}{r^{\frac{\alpha+2}{\alpha+1}}} dr = +\infty. $$
Thus, for convex domains, for which quantity $\beta(z_0, s)$ obeys the restriction
\[
\sup_s \int_s^\varepsilon \frac{\pi \alpha - \beta(z_0, x)}{x} \, dx < \infty, \tag{4}
\]
the quasi-analyticity criterion for class $H(D, M_n)$ at a point $z_0 \in \partial D$ coincides with Salinas quasi-analyticity criteria for the angle $\Delta_\alpha = \{ z : |\arg z| < \frac{\pi \alpha}{2} \}$ ($0 < \alpha < 1$) and Korenblyum one for half-plane Δ_1.

We have

Theorem 5. Let D be a convex but necessary bounded domain, $z_0 \in \partial D$, and
\[
T(r) = \sup_{n \geq 0} \frac{r^n}{M_n}
\]
is the trace function for sequence $\{M_n\}$. By $\beta(z_0, s)$ we denote the angle between tangents to the boundary of D taken at the points separated from point z_0 by the length s along the boundary. Suppose that at point z_0, the condition
\[
\sup_s \int_s^\varepsilon \frac{\pi \alpha - \beta(z_0, x)}{x} \, dx < \infty, \quad \pi \alpha = \lim_{s \to 0} \beta(z_0, s) \quad (0 < \alpha \leq 1)
\]
holds true. Then class $H(D, M_n)$ is quasi-analytic at point z_0 if and only if
\[
\int_1^\infty \frac{\ln T(r)}{r^{\alpha+\frac{1}{2}}} \, dr = +\infty. \tag{5}
\]

Remark 1. Condition (4) holds true if, for instance,
\[
|\pi \alpha - \beta(z_0, s)| = O(s^\gamma), \quad \gamma > 0
\]
or
\[
|\pi \alpha - \beta(z_0, s)| = O\left(\frac{1}{|\ln s|^\gamma}\right), \quad \gamma > 1 \quad s \to 0.
\]

Remark 2. For regular sequences $\{M^{\frac{\gamma}{1+\gamma}}_n\}$, there was obtained the bi-logarithmic quasi-analyticity condition in the angle which was equivalent to condition (5) as $\alpha = \frac{1}{\gamma}$. Therefore, by Theorem 5, for convex domain with additional condition (4) at point $z_0 \in \partial D$, the bi-logarithmic quasi-analyticity condition at this point reads exactly the same as for an angle,
\[
\int_0^d \ln \ln h_\gamma(r) \, dr = +\infty, \quad h_\gamma(r) = \sup_{n \geq 0} \frac{n!}{r^{\gamma(n+\gamma)}M^{\frac{\gamma}{1+\gamma}}_n}, \quad 1 < \gamma < \infty. \tag{6}
\]

Theorem 5 imply several corollaries.

Corollary 1. Let $\Delta_\alpha = \{ z : |\pi - \arg z| < \frac{\pi \alpha}{2} \}$ be the angle $\pi \alpha$ ($0 < \alpha < 1$) with vertex at the point $z = 0$. Then, obviously, $\beta(s) \equiv \pi \alpha$, and Condition (4) holds true.

If we let $\alpha = \frac{1}{\gamma}$, then condition (5) coincides with R. Salinas quasi-analyticity criterion for an angle
\[
\Delta_\gamma = \{ z : |\arg z| < \frac{\pi}{2\gamma}, 0 < |z| < \infty \} \quad (1 < \gamma < \infty).
\]

Corollary 2. Let $K = \{ z : |z+R| < R \}$ be a circle. It can be checked that in this case
\[
\beta(s) = \pi - 2\frac{s}{R},
\]
and \(\beta(s) \uparrow \pi \) \((\alpha = 1) \) \(s \to 0 \). Since \(\frac{\pi - \beta(x)}{x} = \frac{2}{R} \), condition (4) holds true at each point of \(\partial K \), while relation (5) in this case \((\alpha = 1)\) becomes Korenblyum criterion.

3.2. Special domains.

Consider the domains of special form, lunes \(K^\alpha \). As a lune \(K^\alpha \), following work \([10]\), we treat the intersection of exterior or interior for two circles of arbitrary but the same radius so that their circumferences pass the origin \(O \) and intersect by the angle \(\pi \alpha \) \((0 < \alpha < 2) \). As \(K^1 \), we treat the exterior or interior for a circumference passing point \(O \).

Let us show that for the lune \(K^\alpha \) obtained as the intersection of two interiors for two circles, condition (4) holds true. In order to do it, we shall make use of the following

Lemma 1. Let us draw the tangent at the point \(A \) to a circumference of an arbitrary radius \(R \) passing through point \(O \) with the center located below axis \(Ox \). Let also \(\beta_1 \) \((0 < \beta_1 < \frac{\pi}{2})\) be the angle between the tangent and the negative direction of axis \(Ox \) and \(\beta_1 \to \gamma \) as \(A \to O \). Then

\[
\gamma - \beta_1 = \frac{AO}{R},
\]

where \(AO \) is the length of arc of the circumference between the points \(A \) and \(O \).

Indeed, we observe that \((\pi - \gamma) + \beta_1 = \pi - \alpha \). It yields \(\gamma - \beta_1 = \alpha \). Taking into consideration that \(\alpha = \frac{AO}{R} \), we obtain the desired identity \(\gamma - \beta_1 = \frac{AO}{R} \).

Let \(K^\alpha \) be the lune formed by the intersection of the interior of two circles. Obviously, it is a convex set. We shall assume that \(K^\alpha \) is located in the left half-plane and is symmetric w.r.t. axis \(Ox \). Then by Lemma 1 we obtain that

\[
\pi \alpha - \beta(s) = \frac{2}{R} s.
\]

Hence,

\[
\int_s^\varepsilon \frac{\pi \alpha - \beta(x)}{x} dx = \frac{2}{R} (\varepsilon - s) \quad (0 < s < \varepsilon),
\]

and condition (4) holds true for \(K^\alpha \).

Finally, we formulate the last corollary.

Corollary 3. For a convex lune \(K^\alpha \) \((0 < \alpha < 2)\), condition (4) holds true everywhere. For lunes \(K^\alpha \) \((0 < \alpha < 2)\), the quasi-analyticity criterion for at point \(O \) coincides with R. Salinas criterion for the angle

\[
\Delta_\alpha = \left\{ z : |\pi - \arg z| < \frac{\pi \alpha}{2} \right\}.
\]

By Theorem 5 one can also get quasi-analyticity criteria for classes \(H(G, M_n) \) for non-convex domains \(G \) satisfying certain additional restrictions.

Let \(G \) be a domain in the complex plain not containing infinity. We shall say that domain \(G \) satisfies condition (A), if its boundary \(C \) consists of a finite number of piecewise-smooth closed simple curves \(c_1, c_2, \ldots, c_n \), each of which has a piecewise-continuous curvature and contains at most finite number of angle points and all interior angles (w.r.t. domain \(G \)) are not equal to 0 or \(2\pi \). We denote the interior angle between one-sided tangents to \(C \) at a point \(z \) by \(\pi \alpha(z) \).

Let \(\alpha = \min_{z \in C} \alpha(z) > 0 \). Then a domain \(G \) satisfying condition (A) possesses the feature \([10]\): for each point \(z \in \partial G \), there exist lunes \(K_1^\alpha(z) \) and \(K_2^\alpha(z) \) such that

\[
K_1^\alpha(z) \subset G \subset K_2^\alpha(z).
\]

Here \(K_1^\alpha(z) \) is a convex lune formed by the intersection of interiors, while \(K_2^\alpha(z) \) is a lune formed by intersection of exterior for two circles of the same but sufficiently small radius such that their circumferences pass point \(z \).
Classes \(H(K_1^{\alpha(z)}, M_n) \) and \(H(K_2^{\alpha(z)}, M_n) \) are quasi-analytic or not at a point \(z \in C \) simultaneously \([10]\). Therefore, taking into account Corollary 3 and applying Theorem 5, we obtain: all three classes \(H(G, M_n), H(K_1^{\alpha(z)}, M_n), \) and \(H(K_2^{\alpha(z)}, M_n) \) are quasi-analytic at a point \(z \in C \) if and only if
\[
\int_1^\infty \frac{\ln T(r)}{r^{\alpha(z)/2}} dr = +\infty. \tag{7}
\]

We note that if a point \(z \in C \) is a point of smoothness for the boundary of domain \(G \) (i.e., \(\alpha(z) \equiv 1 \)), the quasi-analyticity criterion for class \(H(G, M_n) \) at this point reads as follows,
\[
\int_1^\infty \frac{\ln T(r)}{r^2} dr = +\infty.
\]

If we take into consideration Remark 2, for regular sequences \(\{M_n^{1/\gamma}\} \), condition (7) is equivalent to bi-logarithmic condition (6) as \(\gamma = \frac{1}{\alpha} \).

We note that the quasi-analyticity criterion for class \(H(G, M_n) \), where \(G \) is a domain satisfying condition \(A \), was proven in a different way in work \([10]\).

4. Existence criterion for regular minorant of non-quasi-analyticity

Let \(\{M_n\} \) be a regular sequence, \(\omega(r) = \max_{n \geq 0} r^n m_n \left(m_n = \frac{M_n}{n!} \right) \) is the associated weight \([8]\). Then sequence \(\{M_n\} \) is completely determined by function \(\omega(r) \),
\[
M_n = n! \sup_{r > 0} \frac{r^n}{\omega(r)}. \tag{9}
\]

As it was said in Section 2, in this case, the condition
\[
\sum_{n=0}^\infty \frac{M_n}{M_{n+1}} < \infty \tag{8}
\]
can be reformulated in terms of bi-logarithmic Levinson condition
\[
\int_0^d \ln \ln H(r) dr < \infty,
\]
where \(H(r) = \omega(\frac{1}{r}) \) and \(d > 0 \) is so that \(H(d) > e \).

We shall sequence \(\{M_n\} \) weakly regular if it obeys conditions a), b) in the definition of regular sequence \(\{M_n\} \) (see Section 2). It happens that for weakly regular sequences, condition (8) has another interpretation.

Lemma 2. Suppose the sequence \(\{M_n\} \) is weakly regular. Condition (8) holds true if and only if there exists a positive continuous on \(\mathbb{R}_+ \) function \(R = R(t) \) such that \(R(t) \downarrow 0, tR(t) \downarrow 0 \) as \(t \to \infty \) and
\[
1) \frac{1}{M_n^{1/\gamma}} \leq R(n); \quad 2) \int_1^\infty R(t) dt < \infty.
\]

Proof. Sufficiency is almost obvious. Indeed, since \(M_n^{1/\gamma} \uparrow \infty \) as \(n \to \infty \) (it follows from the logarithmic convexity of sequence \(\{M_n\} \) and property c)), according to Denjoy-Carleman theorem, condition can be written as \([2]\)
\[
\sum_{n=1}^\infty \frac{1}{M_n^{\gamma}} < \infty. \tag{9}
\]
This is why the sufficiency of lemma follows from conditions 1), 2) and properties of function $R = R(t)$.

Necessity. Letting $r(n) = M_n^{-\frac{1}{n}}$, we have

$$r(n)n = \frac{n}{M_n^{\frac{1}{n}}} = \frac{1}{m_n^{\frac{1}{n}}} n \left(\frac{1}{n!}\right)^{\frac{1}{n}}.$$

By Stirling formula \[11\],

$$n! = \sqrt{2\pi n} \ n^n e^{-n} e^{\theta(n)} \quad |\theta(n)| \leq \frac{1}{12n},$$

it implies

$$r(n)n = \frac{1}{m_n^{\frac{1}{n}}} \frac{e^{1-\theta(n)}}{(2\pi n)^{\frac{1}{2}}} \leq e^{\frac{13}{12}} \frac{1}{m_n^{\frac{1}{n}}}.$$

If we denote by $R(n)n$ the right hand side of (10), we see that $R(n)n \downarrow 0$ as $n \to \infty$. Then as $n \to \infty$,

$$R(n) = e^{\frac{13}{12}} \frac{1}{n} \left(\frac{n!}{M_n}\right)^{\frac{1}{n}} \leq e^{\frac{13}{8}} (2\pi n)^{\frac{1}{2n}} \frac{1}{M_n^{\frac{1}{n}}} = O \left(\frac{1}{M_n^{\frac{1}{n}}}\right).$$

Therefore, it follows from condition (9) that $\sum_{n=1}^{\infty} R(n) < \infty$. Hence,

$$\frac{1}{M_n^{\frac{1}{n}}} \leq R(n), \quad \sum_{n=1}^{\infty} R(n) < \infty, \quad R(n) \downarrow 0, \ R(n)n \downarrow 0 \ n \to \infty.$$

The desired function is obviously $R = R(t)$ which is linear for $t \in (n, n+1)$ and it takes values $R(n)$ and $R(n+1)$ at the endpoints of the interval $(n, n+1)$.

Lemma 2 is supplemented by

Lemma 3. Let $\{M_n\}$ $(M_n > 0)$ be an arbitrary sequence such that there exists a continuous function $r = r(t)$ on \mathbb{R}_+, $r(t) \downarrow 0$, $r(t)t \downarrow 0$ as $t \to \infty$ and

$$\frac{1}{M_n^{\frac{1}{n}}} \leq r(n), \quad \int_1^{\infty} r(t)dt < \infty.$$

Then there exists a weakly regular sequence $\{M_n^*\}$ such that

$$M_n^* \leq M_n, \quad \sum_{n=1}^{\infty} (M_n^*)^{-\frac{1}{n}} < \infty.$$

Proof. We have

$$D_n = \left(\frac{1}{r(n)}\right)^n \leq M_n \quad (n \geq 1).$$

The sequence $\{\frac{D_n}{n!}\}$ is not necessary logarithmically convex. This is why we replace it by a minorant possessing the required properties.

Bearing in mind Stirling formula, we have

$$\frac{D_n}{n!} = \frac{1}{n^n \Delta_n} \left(\frac{1}{r(n)}\right)^n,$$

where $\Delta_n = e^{-n} \sqrt{2\pi n} \ e^{\theta(n)} \ (|\theta(n)| \leq \frac{1}{12n})$. Since it is obvious that

$$\Delta_n \leq \sqrt{2\pi} \ \exp \left(\frac{1}{12n} - n + \frac{1}{2} \ln n\right) \leq \sqrt{2\pi} < e,$$
then
\[
\frac{D_n}{n!} \geq \frac{1}{e} \left(\frac{1}{nr(n)} \right)^n > \left(\frac{1}{enr(n)} \right)^n \quad (n \geq 1).
\]

If we let
\[
m^*_n = \frac{M^*_n}{n!} = \left(\frac{1}{enr(n)} \right)^n,
\]
then \(M^*_n \leq D_n \leq M_n\). Since \(nr(n) \downarrow 0\) as \(n \to \infty\), then \((m^*_n)^{\frac{1}{n}} \uparrow \infty\) as \(n \to \infty\). We see that sequence \(\{M^*_n\}\) is weakly regular.

Let us make sure that \(\sum_{n=1}^{\infty} \frac{1}{(M^*_n)^{\frac{1}{n}}} < \infty\).

Indeed,
\[
M^*_n = n! \left(\frac{1}{enr(n)} \right)^n = \sqrt{2\pi n} e^{-2n+\theta(n)} \left(\frac{1}{r(n)} \right)^n.
\]

It yields
\[
\left(\frac{1}{M^*_n} \right)^{\frac{1}{n}} \leq e^{\frac{2n}{n^2}} r(n) \quad (n \geq 1),
\]
and condition (11) is implied by the convergence of the series \(\sum_{n=1}^{\infty} r(n)\).

Remark 3. Under the hypothesis of Lemma 3, without loss of generality, one can assume that \(t^2r(t) \uparrow \infty\) as \(t \to \infty\). It implied by the following statement [12].

Let \(r = r(t)\) be a positive continuous on \(\mathbb{R}_+\) function, \(tr(t) \downarrow 0\) as \(t \to \infty\), and
\[
\int_1^{\infty} r(t)dt < \infty.
\]

Then for each \(\varepsilon > 0\) there exists a function \(r_1 = r_1(t)\) satisfying conditions

1. \(r(t) \leq r_1(t)\);
2. \(t r_1(t) \downarrow 0, t^{1+\varepsilon} r_1(t) \uparrow \) as \(t \to \infty\);
3. \(\int_1^{\infty} r_1(t)dt < \infty\).

By Remark 3, sequence \(\{M^*_n\}\) constructed in Lemma 3 satisfies also regularity condition b). Thus, under the hypothesis of Lemma 3 there exists a regular sequence \(\{M^*_n\}\) such that
\[
M^*_n \leq M_n, \quad \sum_{n=1}^{\infty} \left(\frac{1}{M^*_n} \right)^{\frac{1}{n}} < \infty.
\]

Let us make sure that sequence \(\{M^*_n\}\) satisfies condition b). Indeed, we have
\[
a_n = \left(\frac{m^*_{n+1}}{m^*_n} \right)^{\frac{1}{n}} \leq \sqrt{n} \frac{1}{(n+1) r(n+1)} \frac{n r(n)}{(n+1)(n+1) r(n+1)}.
\]

But
\[
\frac{n r(n)}{(n+1) r(n+1)} \leq (n+1)^2 \frac{r(n+1)}{n+1} \frac{1}{n} = \frac{n+1}{n} \leq 2.
\]

It yields
\[
a_n \leq 2^n \sqrt{n+1} \leq 2 \left(\frac{n+1}{4r(2)} \right)^{\frac{1}{n}} \leq C < \infty,
\]
and

$$\sup_n \left(\frac{m_{n+1}^*}{m_n^*} \right)^{\frac{1}{n}} < \infty.$$

Hence, we have proven

Theorem 6. Let $M_n > 0$. There exists a regular sequence $\{M_n^*\}$ such that

$$M_n^* \leq M_n, \quad \sum_{n=1}^{\infty} \frac{M_n^*}{M_{n+1}^*} < \infty$$

if and only if there exists a positive continuous on \mathbb{R}_+ function $r = r(t)$, $tr(t) \downarrow 0$, $t^2r(t) \uparrow$ as $t \to \infty$ such that

1) $\frac{1}{M_n^*} \leq r(n) \quad (n \geq 1);$

2) $\int_1^{\infty} r(t)dt < \infty.$

In conclusion the author expresses gratitude to his supervisor Professor R.S. Yulmukhametov for the formulation of the problem and attention to the work.

BIBLIOGRAPHY

Rashit Akhtyarovich Gaisin,
Bashkir State University,
Zaki Validi, 32,
450074, Ufa, Russia
E-mail: rashit.gaisin@mail.ru