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LOCALIZATION OF ARNOLD TONGUES OF DISCRETE

DYNAMICAL SYSTEMS

M.G. YUMAGULOV

Abstract. The work is devoted to the exposition of the method of localizing the Arnold
tongues for finite-dimensional dynamical systems with a discrete time which are the sets
corresponding to rationally synchronized relations between the system’s parameters. Such
sets correspond to regions of parameter values for which the system has cycles of certain
periods. The method allows us to obtain an approximate representation of the Arnold
tongues, to study their properties in the major and minor resonances.
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1. Introduction

One of notions interesting and important from theoretical and practical point of view is
that of the Arnold tongue [1]–[3] which are the sets corresponding to rationally synchronized
relations of a system’s parameters. Such sets correspond to the values of the parameters for
which the system can have cycles of certain periods. Various questions related to the properties
and applications of Arnold tongues in nonlinear dynamics were discussed in a series of works
(see, for instance, [1]–[8] and the references therein).

The system of Arnold tongue can be observed in many works of nonlinear dynamics. For
instance, in the problem on the stability loss for a cycle of period 𝑇 for an autonomous system
under the passage of the multiplier via the unit circle, as the parameters, one can treat the
modulus and argument of the multiplier. In this case, on the parameters plane there form
narrow rhamphoid sets (tongues) having their cusps at the points 𝑒2𝜋𝜃𝑖 of the unit circle, where

𝜃 =
𝑝

𝑞
is rational; such sets correspond to the domains of the existence of 𝑞𝑇 -periodic solutions

to the system emerging in a vicinity of the initial cycle of period 𝑇 .
Another example, where Arnold tongues appear in a natural way, is the problem on syn-

chronization of self-oscillating system with eigenfrequency 𝜈0 by an external signal of frequency

𝜈. As the parameters, here one can employ the fraction of the frequencies κ =
𝜈

𝜈0
and the

amplitude 𝑎 of the external signal. On the parameters plane (κ, 𝑎), there appears a charac-
ter structure of the regime domains which are the domains of synchronization with different
relation between the frequencies 𝜈 and 𝜈0. These domains look like tongues appearing from
each rational point on the axis κ; the domains of periodic (as a rule, long-periodic) regimes of
the system are associated with the corresponding values of the parameters κ and 𝑎. Between
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the tongues, there exist the domain of quasi-periodic regimes with an irrational fraction of the
frequencies.

In the present paper we give basic concepts of a new operator method for localizing the
Arnold tongues of a finite-dimensional system with a discrete time. The method allows one to
obtain an approximate representation for these sets and to study their properties in major and
minor resonances. In the justification of the method, we obtain new asymptotic formulae for
the solutions to the problems on bifurcation of the cycles of dynamical systems allowing one to
study the bifurcations in details.

1.1. Bifurcation of 𝑞-cycles. We consider a finite-dimensional dynamical system with a
discrete time,

𝑥𝑛+1 = 𝐹 (𝑥𝑛, 𝜇), 𝑛 = 0, 1, 2, ..., 𝑥𝑘 ∈ 𝑅𝑁 (1)

depending on a parameter 𝜇 ∈ 𝑅𝑚. The function 𝐹 (𝑥, 𝜇) is supposed to be defined and
continuously differentiable w.r.t. all the variables on the set

Ω = {(𝑥, 𝜇) : ‖𝑥‖ 6 𝛿1 , ‖𝜇− 𝜇0‖ 6 𝛿2} ,

where 𝛿1 and 𝛿2 are some positive numbers; hereinafter the symbol ‖ · ‖ is employed to denote
Euclidean norm in the spaces 𝑅𝑁 and 𝑅𝑚.

As usually, by 𝑚-cycle or 𝑚-periodic solution of system (1) we call a set of different vectors
𝑥*
0, 𝑥

*
1, 𝑥

*
2, . . . , 𝑥

*
𝑚−1, such that

𝑥*
1 = 𝐹 (𝑥*

0, 𝜇), 𝑥*
2 = 𝐹 (𝑥*

1, 𝜇), . . . , 𝑥*
𝑚−1 = 𝐹 (𝑥*

𝑚−2, 𝜇), 𝑥*
0 = 𝐹 (𝑥*

𝑚−1, 𝜇) ;

For 𝑚 = 1, the given definition becomes the notion of the equilibrium point of system (1); a
vector 𝑥*

0 is an equilibrium point if 𝑥*
0 = 𝐹 (𝑥*

0, 𝜇).
Suppose system (1) has the equilibrium point 𝑥* = 0 for all values of 𝜇, i.e., 𝐹 (0, 𝜇) ≡ 0.

Denote by 𝐴(𝜇) = 𝐹 ′
𝑥(0, 𝜇) the Jacobi matrix of the function 𝐹 (𝑥, 𝜇) calculated at the point

𝑥 = 0. Our main assumption is

S1) the matrix 𝐴(𝜇0) has a pair of simple eigenvalues 𝑒±2𝜋𝜃0𝑖, where 0 < 𝜃0 6
1

2
and 𝜃0 is

rational: 𝜃0 =
𝑝

𝑞
is a irreducible fraction.

At that, it is assumed that the moduli of all other eigenvalues of the matrix 𝐴(𝜇0) are equal to
one.

Under the above assumptions, as 𝜇 = 𝜇0, the equilibrium point 𝑥* = 0 of system (1) is
non-hyperbolic (see, for instance, [4]), and the value 𝜇 = 𝜇0 is bifurcational. The codimension
of the associated bifurcation equals two. This is why it is natural to assume that the parameter
𝜇 is two-dimensional, i.e., 𝜇 = (𝛼, 𝛽), where 𝛼 and 𝛽 are scalar parameters. We also let
𝜇0 = (𝛼0, 𝛽0).

Let 𝑃 be the plane of the parameters 𝜇 = (𝛼, 𝛽) of system (1). The bifurcation scenarios
in a vicinity of the equilibrium point 𝑥* = 0 of system (1) are determined by the character
of a passage of the parameter 𝜇 ∈ 𝑃 through the point 𝜇0. This passage can be realized in
infinitely many various directions, along straight lines or curves passing the point 𝜇0. Here
periodic solutions of various periods can emerge or disappear.

One of basic scenarios (but not the unique one) is the bifurcation of 𝑞-cycles of system
(1), when for the parameters 𝜇 close to 𝜇0, cycles of period 𝑞 of system (1) emerge and the
amplitudes of these cycles tends to zero as 𝜇 does to 𝜇0. In other words, the value 𝜇0 is a
bifurcation point of 𝑞-cycles for system (1) if there exists a sequence 𝜇𝑘 → 𝜇0 such that as
𝜇 = 𝜇𝑘 , system (1) has the 𝑞-cycle 𝑥𝑘

0, 𝑥
𝑘
1, 𝑥

𝑘
2, ..., 𝑥

𝑘
𝑞−1 and max

06𝑗6𝑞−1
‖𝑥𝑘

𝑗‖ → 0 as 𝑘 → ∞.
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1.2. Arnold tongues. To describe possible scenarios of bifurcation for system (1) in a vicin-
ity on the equilibrium point 𝑥* = 0, we denote by 𝒦 the set of the points in the plane 𝑃 of the
parameters (𝛼, 𝛽), for which the matrix 𝐴(𝛼, 𝛽) has the eigenvalue 𝜆 , |𝜆| = 1. The set 𝒦 is
usually a smooth curve in the plane 𝑃 .

In the plane 𝑃 , there forms a character structure of the domains of nonlinear system (1);
this structure is the domains of synchronization with different fraction of the parameters 𝛼 and
𝛽. These domains has a rhamphoid form or tongue-like Ψ(𝛼*, 𝛽*) with the cusps in the points
(𝛼*, 𝛽*) of the curve 𝒦 at which the matrix 𝐴(𝛼*, 𝛽*) has eigenvalues 𝑒±2𝜋𝜃*𝑖 with rational 𝜃*:

𝜃* =
𝑙

𝑚
(see fig. 1).

Figure 1. Arnold tongues on parameters plane

Such tongues correspond to the domains of the parameters (𝛼, 𝛽) for which system (1) has
periodic regimes of period 𝑚 with the amplitudes tending to zero as (𝛼, 𝛽) tends to (𝛼*, 𝛽*).
In other words, the set Ψ(𝛼*, 𝛽*) contains the sequences (𝛼𝑘, 𝛽𝑘) → (𝛼*, 𝛽*) for which the
bifurcation scenario of 𝑚-cycles of systems (1) realizes.

For instance, by Condition S1), the inclusion (𝛼0, 𝛽0) ∈ 𝒦 holds true, since the matrix

𝐴(𝛼0, 𝛽0) has the eigenvalues 𝑒±2𝜋𝜃0𝑖, where 𝜃0 =
𝑝

𝑞
. The corresponding tongue Ψ(𝛼0, 𝛽0) is the

set of the values of the parameters (𝛼, 𝛽) for which system (1) has 𝑞-cycles with the amplitudes
tending to zero as (𝛼, 𝛽) tends to (𝛼0, 𝛽0).

Thus, the aforementioned tongues Ψ(𝛼*, 𝛽*) correspond to rationally synchronized (in the
natural sense) fractions of the parameters 𝛼 and 𝛽. Between these tongues, there exist the
domain of quasi-periodic regimes with irrational fraction of the parameters. The main features
of this picture were found out by Russian mathematician V.I. Arnold [1], so the system of
synchronization tongues corresponding to rationally synchronized fractions of the parameters
was named as Arnold tongues [2], [3].

The mentioned structure of the regimes domains has a local character. As the parameters 𝛼
and 𝛽 go far from (𝛼*, 𝛽*), the domains of periodic regimes supplant quasi-periodic ones and
the tongues start overlapping. A chaos becomes possible. The system of Arnold tongues can
be observed in self-oscillating systems excited by a periodic signal, in the problems on mutual
synchronization of two self-oscillating system, and others (see, for instance, [5], [6]).

In literature the notion of Arnold tongues can be introduced by other interpretations as
well. Quite often (see, for instance, [3], [7]) this notion is introduced in terms of spectral
characteristics of the matrix 𝐴(𝛼, 𝛽). This interpretation is employed in the present paper; let
us introduce it.
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Let C be the complex plane and 𝑆 = {𝑧 : |𝑧| = 1} be the unit circle in this plane. Suppose
the value 𝜇 = (𝛼*, 𝛽*) of system (1) is a bifurcation point of 𝑚-cycles. To realize such scenario
for system (1), the matrix 𝐴(𝜇) should have the eigenvalues in a set 𝑈(𝑚) ∈ C being a union

of narrow rhamphoid sets Ψ(𝑙,𝑚), where 0 <
𝑙

𝑚
6

1

2
and the number

𝑙

𝑚
is an irreducible

fraction.
The sets Ψ(𝑙,𝑚) are called the Arnold tongues in the complex plane C. By its cusp, each set

Ψ(𝑙,𝑚) abuts the point 𝑒2𝜋𝜃
*𝑖 in the circle 𝑆, where 𝜃* =

𝑙

𝑚
. A typical Arnold tongue Ψ(𝑙,𝑚)

is located between two smooth curves 𝛾1 and 𝛾2, as it is shown in Fig. 2.

Figure 2. Arnold tongues in complex plane

As 𝑚 > 5, these curves touch at the point 𝑒2𝜋𝜃
*𝑖; in this case the Arnold tongue Ψ(𝑙,𝑚)

degenerates to a curve in a small neighborhood of the point 𝑒2𝜋𝜃
*𝑖 (Fig. 2 a)). As 𝑚 6 4, the

Arnold tongue Ψ(𝑙,𝑚) is a substantially wider set (Fig. 2 b)).
Such organization of Arnold tongues is due to the structure of so-called resonance term in

the Taylor expansion at zero for the mapping 𝐹 (𝑥, 𝜇). Main resonance terms are responsible
for the existence of cycles of small periods 𝑚 6 4. Respectively, the cycles of small periods
of system (1) appear quite often, while long-periodic (as 𝑚 > 5) are non-typical and appear
rather seldom.

In the unit circle 𝑆 of the complex plane C, there exists a countable set of the points 𝑒2𝜋𝜃𝑖

with rational 𝜃 densely located on the circle. Each such point is associated with an Arnold
tongue. In particular, it means that in the one-parametric case (i.e., as the parameter 𝜇 is
scalar), as 𝜇 passes 𝜇0, in general, long-periodic cycles of system (1) emerge and disappear in
a vicinity of the point 𝑥 = 0. This phenomenon (subfurcation of periodic oscillations) was first
observed by V.S. Kozyakin [9].

2. Formulation of problem

In the present work we provide a scheme allowing us to localize the Arnold tongues Ψ(𝑝, 𝑞)
of system (1). In order to do it, we make several simplifying assumptions.

First, for the sake of simplicity, we assume that system (1) is two-dimensional, i.e., 𝑁 = 2.
The case 𝑁 > 3 can be reduced to the two-dimensional one by, for instance, theorems on central
manifold (see, for instance, [4]).

Second, it is convenient to assume that the parameters 𝛼 and 𝛽 of the system (1) are related
by a simple expression with the eigenvalues of the matrix 𝐴(𝜇). We employ the fact that by the
perturbation theory of linear operators [10], for each value of the two-dimensional parameter 𝜇
close to 𝜇0, the matrix 𝐴(𝜇) has the unique eigenvalue 𝜆 = 𝜌(𝜇)𝑒2𝜋𝜃(𝜇)𝑖 close to 𝑒2𝜋𝜃0𝑖; at that,
the functions 𝜌(𝜇) and 𝜃(𝜇) are smooth and the identities 𝜌(𝜇0) = 1 and 𝜃(𝜇0) = 𝜃0 hold true.
We define the functions 𝛼 = 𝛼(𝜇) ≡ 𝜌(𝜇) − 1 and 𝛽 = 𝛽(𝜇) ≡ 𝜃(𝜇) − 𝜃0.
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Without loss of generality, we assume that the parameters of system (1) are exactly these 𝛼
and 𝛽. Namely, we suppose that matrix 𝐴(𝛼, 𝛽) reads as follows,

𝐴(𝛼, 𝛽) = (1 + 𝛼)𝑄(𝛽) , (2)

where

𝑄(𝛽) =

[︂
cos 2𝜋(𝜃0 + 𝛽) − sin 2𝜋(𝜃0 + 𝛽)
sin 2𝜋(𝜃0 + 𝛽) cos 2𝜋(𝜃0 + 𝛽)

]︂
. (3)

The matrix 𝐴(𝛼, 𝛽) has a pair of simple eigenvalues

𝜆(𝛼, 𝛽) = (1 + 𝛼)𝑒±2𝜋(𝜃0+𝛽)𝑖 . (4)

At that, the matrix 𝐴(𝛼, 𝛽) satisfies Condition S1) for 𝛼 = 0 and 𝛽 = 0.
Hence, we consider the two-dimensional dynamical system with the discrete time

𝑥𝑛+1 = 𝐴(𝛼, 𝛽)𝑥𝑛 + 𝑎(𝑥𝑛, 𝛼, 𝛽), 𝑛 = 0, 1, 2, ..., 𝑥𝑛 ∈ 𝑅2 , (5)

where 𝐴(𝛼, 𝛽) is matrix (2), the nonlinearity 𝑎(𝑥, 𝛼, 𝛽) obeys the relation ‖𝑎(𝑥, 𝛼, 𝛽)‖ =
𝑂(‖𝑥‖2) as ‖𝑥‖ → 0 uniformly in 𝛼 and 𝛽. We shall assume that the nonlinearity 𝑎(𝑥, 𝛼, 𝛽)
can be represented as

𝑎(𝑥, 𝛼, 𝛽) = 𝑎2(𝑥, 𝛼, 𝛽) + 𝑎3(𝑥, 𝛼, 𝛽) + �̃�4(𝑥, 𝛼, 𝛽) , (6)

where 𝑎2(𝑥, 𝛼, 𝛽) and 𝑎3(𝑥, 𝛼, 𝛽) involve quadratic and cubic in 𝑥 terms, respectively, and
�̃�4(𝑥, 𝛼, 𝛽) is smooth w.r.t. 𝑥, and �̃�4(𝑥, 𝛼, 𝛽) = 𝑂(‖𝑥‖4), 𝑥 → 0, uniformly in 𝛼 and 𝛽.

The main problem considered in the present work is to localize the Arnold tongues Ψ(𝑝, 𝑞)
of system (5).

3. Passage to operator equations

The basis for the subsequent construction is the following theorem.

Theorem 1. The value 𝜇0 = (0, 0) is a bifurcation point of 𝑞-cycles for system (5).

The proof of this and other main statements of the work are adduced in Section 7.
For a more detailed study of the bifurcation of 𝑞-cycles for system (5) we shall make use of

some auxiliary constructions.
Periodic solutions of period 𝑞 for system (1) are determined by the solutions to the operator

equation

𝑥 = 𝐹 (𝑞)(𝑥, 𝜇) , (7)

where

𝐹 (𝑞)(𝑥, 𝜇) = 𝐹 (𝐹 (· · · (𝐹⏟  ⏞  
𝑞

(𝑥, 𝜇), 𝜇) · · · )) .

Namely, the next obvious statement holds true.

Lemma 1. A vector 𝑥* solves equation (7) if and only if 𝑥* is either an equilibrium point
of system (1) or it determines the cycle 𝑥0 = 𝑥*, 𝑥1 = 𝐹 (𝑥0, 𝜇), 𝑥2 = 𝐹 (𝑥1, 𝜇), . . . , 𝑥𝑟−1 =
𝐹 (𝑥𝑟−2, 𝜇) of period 𝑟 for this system, where 𝑟 is a divisor of the number 𝑞.

For instance, if 𝑞 = 6, the solutions to equation (7) can either be the equilibrium points of
system (1) or define cycles of period 2, 3, or 6.

In particular, for system (5), equation (7) becomes

𝑥 = 𝐵(𝜇)𝑥 + 𝑏(𝑥, 𝜇) , (8)

where 𝜇 = (𝛼, 𝛽), the matrix 𝐵(𝜇) is defined by the identity

𝐵(𝜇) = 𝐴𝑞(𝜇) , (9)
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and the nonlinearity 𝑏(𝑥, 𝜇) satisfies the representation

𝑏(𝑥, 𝜇) = 𝑏2(𝑥, 𝜇) + 𝑏3(𝑥, 𝜇) + �̃�4(𝑥, 𝜇) (10)

similar to (6).
At that, the next lemma holds.

Lemma 2. The quadratic nonlinearity 𝑏2(𝑥, 𝜇) in (10) can be represented as

𝑏2(𝑥, 𝜇) = 𝐴𝑞−1𝑎2(𝑥, 𝜇) + 𝐴𝑞−2𝑎2(𝐴𝑥, 𝜇)+ (11)

+ · · · + 𝐴𝑎2(𝐴
𝑞−2𝑥, 𝜇) + 𝑎2(𝐴

𝑞−1𝑥, 𝜇) ,

and the cubic nonlinearity 𝑏3(𝑥, 𝜇) satisfies

𝑏3(𝑥, 𝜇) = 𝐴𝑞−1𝑎3(𝑥, 𝜇) + 𝐴𝑞−2𝑎3(𝐴𝑥, 𝜇)+ (12)

+ · · · + 𝐴𝑎3(𝐴
𝑞−2𝑥, 𝜇) + 𝑎3(𝐴

𝑞−1𝑥, 𝜇) + 𝑔3(𝑥, 𝜇) ,

where

𝑔3(𝑥, 𝜇) = 𝐴𝑞−2𝑎′2𝑥(𝐴𝑥, 𝜇)𝑎2(𝑥, 𝜇) + 𝐴𝑞−3𝑎′2𝑥(𝐴2𝑥, 𝜇)[𝐴𝑎2(𝑥, 𝜇) + 𝑎2(𝐴𝑥, 𝜇)]+

+ · · · + 𝑎′2𝑥(𝐴𝑞−1𝑥, 𝜇)[𝐴𝑞−2𝑎2(𝑥, 𝜇) + 𝐴𝑞−3𝑎2(𝐴𝑥, 𝜇) + · · · + 𝑎2(𝐴
𝑞−2𝑥, 𝜇)] .

Here we have employed the notations: 𝐴 = 𝐴(𝜇), 𝑎′2𝑥(𝑥, 𝜇) is the Jacobi matrix of the
vector-function 𝑎2(𝑥, 𝜇).

It is easy to check formula (9)–(12) by straightforward calculations.

4. Well-defined bifurcations

One of important properties of the bifurcation of 𝑞-cycles for system (5) is the property of
its orientation; let us give an appropriate definition. Let 𝑒 ∈ 𝑅2 be a non-zero vector. We call
the value 𝜇0 = (0, 0) of the parameter 𝜇 = (𝛼, 𝛽) the well-defined bifurcation point of 𝑞-cycles
for system (5) in the direction of the vector 𝑒, if there exist 𝜀0 > 0 and continuous functions
𝛼 = 𝛼(𝜀), 𝛽 = 𝛽(𝜀), and 𝑥 = 𝑥(𝜀) defined for 𝜀 ∈ [0, 𝜀0) such that

1) 𝛼(0) = 0 , 𝛽(0) = 0 , 𝑥(0) = 0;
2) ‖𝑥(𝜀) − 𝜀𝑒‖ = 𝑜(𝜀) as 𝜀 → 0;
3) for each 𝜀 > 0 the vector 𝑥(𝜀) is a point of a 𝑞-cycles for system (5) as 𝛼 = 𝛼(𝜀) and

𝛽 = 𝛽(𝜀).

We call 𝑥(𝜀) and functions 𝛼 = 𝛼(𝜀) and 𝛽 = 𝛽(𝜀) the bifurcating solutions of system (5).
Well-defined bifurcation points correspond to the situation when system (5), as 𝛼 = 𝛼(𝜀)

and 𝛽 = 𝛽(𝜀), has a 𝑞-cycle starting from the point 𝑥(𝜀) and the curve 𝑥 = 𝑥(𝜀) in the space
𝑅2 tends asymptotically to the line 𝑥 = 𝜀𝑒 as 𝜀 → 0.

Theorem 2. The value 𝜇0 = (0, 0) of the parameter 𝜇 = (𝛼, 𝛽) is a well-defined bifurcation
point of 𝑞-cycles of system (5) in the direction of each non-zero vector 𝑒.

Let us give the formulae allowing us to study in greater details the property of well-
definiteness for 𝑞-cycles of system (5). In order to do it, we define the vectors

𝑒 =

[︂
𝑐1
𝑐2

]︂
, 𝑔 =

[︂
−𝑐2
𝑐1

]︂
, (13)

whose components 𝑐1 and 𝑐2 are so that 𝑐21+𝑐22 = 1. In other words, 𝑒 is an arbitrary unit vector:
‖𝑒‖ = 1, and the unit vector 𝑔 is orthogonal to the vector 𝑒. Letting 𝑥 = 𝑒 and 𝜇 = 𝜇0 = (0, 0)
in (11) and (12), we define the vectors

𝑏2 = 𝑏2(𝑒, 𝜇0) , 𝑏3 = 𝑏3(𝑒, 𝜇0) ; (14)

in particular, by (11) and (2) we get

𝑏2 = 𝑄𝑞−1𝑎2(𝑒, 𝜇0) + 𝑄𝑞−2𝑎2(𝑄𝑒, 𝜇0)+ (15)
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+ · · · + 𝑄𝑎2(𝑄
𝑞−2𝑒, 𝜇0) + 𝑎2(𝑄

𝑞−1𝑒, 𝜇0) ,

where 𝑄 = 𝑄(0), and 𝑄(𝛽) is matrix (3). By (2) and (12) one can get a similar formula for the
vector 𝑏3.

We define the numbers

𝛼1 = −1

𝑞
(𝑏2, 𝑒) , 𝛽1 = − 1

2𝜋𝑞
(𝑏2, 𝑔) (16)

and the vectors

𝑒1 = 𝛼1𝑒 + 𝛽1𝑔 , (17)

𝜒 = 𝑞

[︂
1

2
𝛼2
1(1 + 𝑞) − 2𝜋𝛽2

1(1 + 𝜋𝑞)

]︂
𝑒+ (18)

+𝛼1𝛽1𝑞(1 + 2𝜋 + 2𝜋𝑞)𝑔 + 𝑏′2𝑥 · (𝛼1𝑒 + 𝛽1𝑔) + 𝛼1𝑏
′
2𝛼 + 𝛽1𝑏

′
2𝛽 .

Here 𝑏′2𝑥 = 𝑏′2𝑥(𝑒, 𝜇0) is the Jacobi matrix of nonlinearity (11) taken at the point 𝑥 = 𝑒 as
𝜇 = 𝜇0 = (0, 0), 𝑏′2𝛼 and 𝑏′2𝛽 are the derivatives of nonlinearity (11) w.r.t. the parameters 𝛼
and 𝛽, respectively, taken at the point 𝑥 = 𝑒 as 𝜇 = 𝜇0 = (0, 0).

Finally, let

𝛼2 = −1

𝑞
(𝜒 + 𝑏3, 𝑒) , 𝛽2 = − 1

2𝜋𝑞
(𝜒 + 𝑏3, 𝑔) , (19)

𝑒2 = 𝛼2𝑒 + 𝛽2𝑔 . (20)

4.1. Bifurcations for odd 𝑞. The bifurcation properties of 𝑞-cycles of system (5) depends
essentially on the parity of 𝑞. We consider first the case of odd 𝑞.

Theorem 3. Suppose the number 𝑞 is odd. Let 𝑒 and 𝑔 be unit vectors (13). Then the
bifurcating solutions 𝑥(𝜀), 𝛼(𝜀), and 𝛽(𝜀) of system (5) existing in accordance with Theorem 2
can be represented as

𝛼(𝜀) = 𝜀𝛼1 + 𝜀2𝛼2 + 𝛼3(𝜀) , 𝛽(𝜀) = 𝜀𝛽1 + 𝜀2𝛽2 + 𝛼3(𝜀) , (21)

𝑥(𝜀) = 𝜀𝑒 + 𝜀2𝑒1 + 𝜀3𝑒2 + 𝑒3(𝜀) ; (22)

in these formulae, 𝛼3(𝜀), 𝛽3(𝜀), and 𝑒3(𝜀) are continuous functions satisfying the relations

𝛼3(𝜀) = 𝑜(𝜀2) , 𝛽3(𝜀) = 𝑜(𝜀2) , ‖𝑒3(𝜀)‖ = 𝑜(𝜀3) as 𝜀 → 0 . (23)

In the plane 𝑃 of the parameters (𝛼, 𝛽) of system (5), functions (21) define a continuous
curve 𝜔(𝜀) beginning (as 𝜀 = 0) at the origin (Fig. 3 a)).

These functions depend on the numbers 𝑝 and 𝑞, and also on the vector 𝑒; this is why the
curve 𝜔(𝜀) differs for different 𝑝, 𝑞, and 𝑒. Similarly, function (22) in the phase space 𝑅2 of
system (5) defines a continuous curve 𝑥(𝜀) touching the vector 𝑒 at the origin as 𝜀 = 0 (Fig. 3
b)).

Theorems 1 and 3 imply that in the case of odd 𝑞, for each unit vector 𝑒 ∈ 𝑅2, the family
of emerging 𝑞-cycles of system (5) contains continuous branches of the cycles starting from the
points of the curve 𝑥(𝜀) determined by identity (22) for the values of the parameters belonging
to the curve 𝜔(𝜀). In other words, the value 𝜇 = 𝜇0 = (0, 0) is a well-defined bifurcation point
of 𝑞-cycles of system (5) in the direction of the vector 𝑒. We shall call formulae (21) and (22)
the asymptotic formulae for emerging bifurcating solutions of system (5).
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Figure 3. Curves of bifurcating solutions

4.2. Bifurcations for even 𝑞. Consider now the case of even 𝑞.

Lemma 3. Suppose 𝑞 is even. Then the vector 𝑏2 determined by identity (15) vanishes,
𝑏2 = 0.

Corollary 1. Suppose 𝑞 is even. Then numbers (16) and vectors (17) and (18) vanish,

𝛼1 = 0 , 𝛽1 = 0 , 𝑒1 = 0 , 𝜒 = 0 , (24)

and numbers (19) and vectors (20) are

𝛼2 = −1

𝑞
(𝑏3, 𝑒) , 𝛽2 = − 1

2𝜋𝑞
(𝑏3, 𝑔) , (25)

𝑒2 = 𝛼2𝑒 + 𝛽2𝑔 . (26)

Theorem 4. Suppose the number 𝑞 is even. Let 𝑒 and 𝑔 be unit vectors (13). Then the
bifurcating solutions 𝑥(𝜀), 𝛼(𝜀), and 𝛽(𝜀) of system (5) existing in accordance with Theorem 2
are represented as

𝛼(𝜀) = 𝜀2𝛼2 + 𝛼3(𝜀) , 𝛽(𝜀) = 𝜀2𝛽2 + 𝛽3(𝜀) , (27)

𝑥(𝜀) = 𝜀𝑒 + 𝜀3𝑒2 + 𝑒3(𝜀) ; (28)

in these formulae, the numbers 𝛼2 and 𝛽2 and the vector 𝑒2 are determined by identities (25)
and (26), and 𝛼3(𝜀), 𝛽3(𝜀), and 𝑒3(𝜀) are some continuous functions satisfying relations (23).

Thus, the main distinction in the bifurcation scenario of 𝑞-cycles of system (5) in the direction
of the vector 𝑒 for even and odd 𝑞 is the form of the asymptotic formulae for the bifurcating
solutions. In particular, for even 𝑞, the leading terms in formulae (27) and (28) are independent
of quadratic terms. The following corollaries hold true as well.

Corollary 2. Suppose that under the assumption of Theorem 3, numbers (16) are non-zero.
For the definiteness let 𝛼1 > 0 and 𝛽1 > 0. Then the value 𝜇 = 𝜇0 = (0, 0) is a well-
defined bifurcation point of 𝑞-cycles of system (5) in the direction of the vectors 𝑒 and −𝑒. Two
appearing continuous branches of 𝑞-cycles are so that one of them exists for 𝛼 > 0 and 𝛽 > 0,
while the other does for 𝛼 < 0 and 𝛽 < 0.

Corollary 3. Suppose that under the assumption of Theorem 4 numbers (25)are non-zero.
For the definiteness let 𝛼2 > 0 and 𝛽2 > 0. Then the value 𝜇 = 𝜇0 = (0, 0) is a well-
defined bifurcation point of 𝑞-cycles of system (5) in the direction of the vectors 𝑒 and −𝑒. Two
appearing continuous branches of 𝑞-cycles are so that both exist for 𝛼 > 0 and 𝛽 > 0.
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In other words, in a natural sense, for odd 𝑞, the bifurcation of 𝑞-cycles of system (5) is
transcritical, while for even 𝑞 it is a pitchfork bifurcation (see, for instance, [4]).

Theorems 3 and 4 show asymptotic formulae allowing us to obtain an approximate repre-
sentation in a vicinity of the equilibrium zero state of 𝑞-cycles of system (5) as well as in a
vicinity of the associated values of the parameters 𝛼 and 𝛽. In what follows, these formulae are
employed to localize the Arnold tongues Ψ(𝑝, 𝑞) of system (5).

5. Localization of Arnold tongues

5.1. Auxiliary constructions. Let 𝑒 and 𝑔 be unit vectors (13). In the complex plane C,
we define the curve Υ(𝑝, 𝑞, 𝑒) described by the equation

𝑧 = 𝜌(𝜀)𝑒𝜙(𝜀)𝑖 , 0 6 𝜀 6 1 , (29)

where
𝜌(𝜀) = 1 + 𝛼(𝜀) , 𝜙(𝜀) = 2𝜋(𝜃0 + 𝛽(𝜀)) .

Here 𝛼(𝜀) and 𝛽(𝜀) are functions (21) or (27) (subject to the parity of the number 𝑞). As 𝜀 = 0,
the point of the curve Υ(𝑝, 𝑞, 𝑒) coincides with the point 𝑒2𝜋𝜃0𝑖 (Fig. 4).

Figure 4. Synchronization curve

The eigenvalues of the matrix 𝐴(𝛼, 𝛽) defined by identity (2) are numbers (4). On the other
hand, by Theorems 3 and 4, the bifurcation scenario of 𝑞-cycles in the direction of the vector 𝑒
realizes for system (5) if the eigenvalues of the matrix 𝐴(𝛼, 𝛽) are points of the curve Υ(𝑝, 𝑞, 𝑒)
(for small 𝜀 > 0). This is why the curve Υ(𝑝, 𝑞, 𝑒) can be treated as one of continuous branches
of the eigenvalues of the matrix 𝐴(𝛼, 𝛽) along which the bifurcation scenario of 𝑞-cycles of
system (5) realizes. We shall call this curve the synchronization curve associated with the
bifurcation of 𝑞-cycles in the direction of the vector 𝑒. For small 𝜀 > 0, the synchronization
curve is located in the Arnold tongue Ψ(𝑝, 𝑞) of system (5).

For fixed 𝑝 and 𝑞, the curve Υ(𝑝, 𝑞, 𝑒) depends on the vector 𝑒: for different 𝑒 we get different
curves Υ(𝑝, 𝑞, 𝑒), at that, the curve Υ(𝑝, 𝑞, 𝑒) depends continuously on the vector 𝑒 in a natural
sense (for instance, in the Hausdorff metrics). It allows us to define the Arnold tongue Ψ(𝑝, 𝑞)
of system (5) as the set of all synchronization curves (for different vectors 𝑒 ∈ 𝑅2).

Namely, in what follows, the Arnold tongue Ψ(𝑝, 𝑞) of system (5) will be determined by the
following scheme. We define the continual family of the vectors (0 6 𝑡 6 2𝜋)

𝑒(𝑡) =

[︂
cos 𝑡
sin 𝑡

]︂
, 𝑔(𝑡) =

[︂
− sin 𝑡
cos 𝑡

]︂
. (30)
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For each 𝑡, the vectors 𝑒(𝑡) and 𝑔(𝑡) are the unit vectors of the form (13). For each 𝑡 ∈ [0, 2𝜋]
we determine the curve Υ(𝑝, 𝑞, 𝑒(𝑡)) (as 𝜀 = 0, the point of each of these synchronization curves
coincides with 𝑒2𝜋𝜃0𝑖).

We shall call the set

Ψ(𝑝, 𝑞) =
⋃︁

𝑡∈[0,2𝜋]

Υ(𝑝, 𝑞, 𝑒(𝑡)) (31)

the Arnold tongue Ψ(𝑝, 𝑞) of system (5).
In following subsection we solve the main problem on the localization of sets (31).

5.2. Families of well-defined bifurcations. For each fixed pair of the vectors 𝑒(𝑡) and
𝑔(𝑡), analogues of Theorems 3 and 4 hold true. To obtain such statements, one should let
𝑥 = 𝑒(𝑡) and 𝜇 = 𝜇0 = (0, 0) in (11) and (12) and define vectors

𝑏2(𝑡) = 𝑏2(𝑒(𝑡), 𝜇0) , 𝑏3(𝑡) = 𝑏3(𝑒(𝑡), 𝜇0) (32)

depending on the 𝑡 ∈ [0, 2𝜋]. In particular, by (2) and (11) we get

𝑏2(𝑡) = 𝑄𝑞−1𝑎2(𝑒(𝑡), 𝜇0) + 𝑄𝑞−2𝑎2(𝑄𝑒(𝑡), 𝜇0) + · · ·+ (33)

+𝑄𝑎2(𝑄
𝑞−2𝑒(𝑡), 𝜇0) + 𝑎2(𝑄

𝑞−1𝑒(𝑡), 𝜇0) ,

where 𝑄 = 𝑄(0). Similarly, by (2) and (12) one can obtain a representation for the vector 𝑏3(𝑡).
Next, we define the functions

𝛼1(𝑡) = −1

𝑞
(𝑏2(𝑡), 𝑒(𝑡)) , 𝛽1(𝑡) = − 1

2𝜋𝑞
(𝑏2(𝑡), 𝑔(𝑡)) (34)

and

𝜒(𝑡) = 𝑞

[︂
1

2
𝛼2
1(𝑡)(1 + 𝑞) − 2𝜋𝛽2

1(𝑡)(1 + 𝜋𝑞)

]︂
𝑒(𝑡)+ (35)

+𝛼1(𝑡)𝛽1(𝑡)𝑞(1 + 2𝜋 + 2𝜋𝑞)𝑔(𝑡)+

+𝑏′2𝑥(𝑡) · (𝛼1(𝑡)𝑒(𝑡) + 𝛽1(𝑡)𝑔(𝑡)) + 𝛼1(𝑡)𝑏
′
2𝛼(𝑡) + 𝛽1(𝑡)𝑏

′
2𝛽(𝑡) .

Here 𝑏′2𝑥(𝑡) = 𝑏′2𝑥(𝑒(𝑡), 𝜇0) is the Jacobi matrix of nonlinearity (11) taken at the point 𝑥 = 𝑒(𝑡)
as 𝜇0 = (0, 0), 𝑏′2𝛼(𝑡) and 𝑏′2𝛽(𝑡) are the derivatives of nonlinearity (11) w.r.t. the parameters 𝛼
and 𝛽, respectively, taken at the point 𝑥 = 𝑒(𝑡) as 𝜇 = 𝜇0 = (0, 0).

Finally, we let

𝛼2(𝑡) = −1

𝑞
(𝜒(𝑡) + 𝑏3(𝑡), 𝑒(𝑡)) , 𝛽2(𝑡) = − 1

2𝜋𝑞
(𝜒(𝑡) + 𝑏3(𝑡), 𝑔(𝑡)) . (36)

For each fixed 𝑡, the given formulae lead us to analogues of Theorems 3 and 4. Namely, the
following statements hold true.

Theorem 5. Suppose the number𝑞 is odd. Let 𝑒 = 𝑒(𝑡) and 𝑔 = 𝑔(𝑡) be vectors (30) for a
fixed 𝑡 ∈ [0, 2𝜋]. Then the bifurcating solutions 𝑥(𝜀, 𝑡), 𝛼(𝜀, 𝑡), and 𝛽(𝜀, 𝑡) of system (5) existing
in accordance with Theorem 2 can be represented as

𝑥(𝜀, 𝑡) = 𝜀𝑒(𝑡) + 𝑒1(𝜀, 𝑡) , (37)

𝛼(𝜀, 𝑡) = 𝜀𝛼1(𝑡) + 𝜀2𝛼2(𝑡) + 𝛼3(𝜀, 𝑡), 𝛽(𝜀, 𝑡) = 𝜀𝛽1(𝑡) + 𝜀2𝛽2(𝑡) + 𝛽3(𝜀, 𝑡) , (38)

where 𝑒1(𝜀, 𝑡), 𝛼3(𝜀, 𝑡) and 𝛽3(𝜀, 𝑡) are continuous w.r.t. all the variables and 2𝜋-periodic w.r.t.
𝑡 functions satisfying the relations

𝑒1(𝜀, 𝑡) = 𝑜(𝜀) , 𝛼3(𝜀, 𝑡) = 𝑜(𝜀2) , 𝛽3(𝜀, 𝑡) = 𝑜(𝜀2) as 𝜀 → 0 (39)

uniformly in 𝑡 ∈ [0, 2𝜋].
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Theorem 6. Suppose the number 𝑞 is even. Let 𝑒 = 𝑒(𝑡) and 𝑔 = 𝑔(𝑡) be vectors (30) for a
fixed 𝑡 ∈ [0, 2𝜋]. Then the bifurcating solutions 𝑥(𝜀, 𝑡), 𝛼(𝜀, 𝑡), and 𝛽(𝜀, 𝑡) of system (5) existing
in accordance with Theorem 2 can be represented as

𝑥(𝜀, 𝑡) = 𝜀𝑒(𝑡) + 𝑒1(𝜀, 𝑡) , (40)

𝛼(𝜀, 𝑡) = 𝜀2𝛼2(𝑡) + 𝛼3(𝜀, 𝑡) , 𝛽(𝜀, 𝑡) = 𝜀2𝛽2(𝑡) + 𝛽3(𝜀, 𝑡) , (41)

where

𝛼2(𝑡) = −1

𝑞
(𝑏3(𝑡), 𝑒(𝑡)) , 𝛽2(𝑡) = − 1

2𝜋𝑞
(𝑏3(𝑡), 𝑔(𝑡)) , (42)

𝑒1(𝜀, 𝑡), 𝛼3(𝜀, 𝑡) and 𝛽3(𝜀, 𝑡) are continuous w.r.t. all the variables and 2𝜋-periodic w.r.t. 𝑡
functions satisfying relations (39).

Formulas (37) and (40) can be specified by analogues of asymptotic formulae (22) and (28)
provided in Theorems 3 and 4. However, in what follows, we shall be interested only in asymp-
totics formulae (38) and (41).

5.3. Main statements: weakly-resonance case. We provide now the main statements of
the work allowing us to localize the Arnold tongues Ψ(𝑝, 𝑞) of system (5) defined by identity
(31). Here the cases 𝑞 > 5 and 𝑞 6 4 are essentially different. The former is called the
weakly-resonance case, while the latter is the strongly-resonance case. We begin with the
weakly-resonance case.

Lemma 4. Let 𝑞 > 5. Then the functions defined by identity (34) vanish for each 𝑡: 𝛼1(𝑡) ≡
0, 𝛽1(𝑡) ≡ 0.

Corollary 4. Let 𝑞 > 5. Then the function 𝜒(𝑡) defined by identity (35) vanishes, 𝜒(𝑡) ≡ 0,
and functions (36) coincide with functions (42).

Lemma 5. Let 𝑞 > 5. Then functions (36) and (42) are constants equal to corresponding
numbers (25).

Theorem 7. Let 𝑞 > 5. Then the Arnold tongue Ψ(𝑝, 𝑞) of system (5) is determined by the
identity (31), where, for a fixed 𝑡, Υ(𝑝, 𝑞, 𝑒(𝑡)) is the curve described by the equation

𝑧 = (1 + 𝛼(𝜀, 𝑡))𝑒2𝜋(𝜃0+𝛽(𝜀,𝑡))𝑖 , 0 6 𝜀 6 1 . (43)

Here

𝛼(𝜀, 𝑡) = 𝛼2𝜀
2 + 𝜀3𝛼3(𝜀, 𝑡) , (44)

𝛽(𝜀, 𝑡) = 𝛽2𝜀
2 + 𝜀3𝛽3(𝜀, 𝑡) ; (45)

𝛼2 and 𝛽2 are numbers (25), and the functions 𝛼3(𝜀, 𝑡) and 𝛽3(𝜀, 𝑡) are continuous and 2𝜋-
periodic w.r.t. 𝑡.

It follows from identities (44) and (45) that for 𝑞 > 5 and small 𝜀 > 0, the Arnold tongues
Ψ(𝑝, 𝑞) of system (5) are very narrow. Namely, if numbers (25) are non-zero, the set Ψ(𝑝, 𝑞)
can be locally identified with the curve Ψ̃(𝑝, 𝑞) described by the equation

𝑧 = (1 + 𝛼2𝜉)𝑒2𝜋(𝜃0+𝛽2𝜉)𝑖 , 0 6 𝜉 6 1 , (46)

and beginning (as 𝜉 = 0) at the point 𝑒𝜙0𝑖 on the unit circle 𝑆 ∈ C; here 𝜙0 = 2𝜋𝑝/𝑞.
Identities (44) and (45) imply also the following fact. Let number (25) are non-zero, and for

definiteness, 𝛼2 > 0 and 𝛽2 > 0. Then the Arnold tongue Ψ(𝑝, 𝑞) of system (5) corresponds to
the value of the parameters 𝛼 and 𝛽 obeying the inequalities 𝛼 > 0 and 𝛽 > 0.



120 M.G. YUMAGULOV

5.4. Main statements: strongly-resonance case. Consider now the strongly-resonance
case, i.e., let 2 6 𝑞 6 4. In this case the Arnold tongues Ψ(𝑝, 𝑞) of system (5) are in a natural
sense essentially wider than as 𝑞 > 5. Suppose first that 𝑞 is even.

Theorem 8. Let 𝑞 = 2 or 𝑞 = 4. Then the Arnold tongue Ψ(1, 𝑞) of system (5) is determined
by identity (31) (where 𝑝 = 1 and 𝑞 = 2 or 𝑞 = 4), where, for a fixed 𝑡, Υ(𝑝, 𝑞, 𝑒(𝑡)) is the curve
described by equation (43) as

𝛼(𝜀, 𝑡) = 𝛼2(𝑡)𝜀
2 + 𝜀3𝛼3(𝜀, 𝑡) , (47)

𝛽(𝜀, 𝑡) = 𝛽2(𝑡)𝜀
2 + 𝜀3𝛽3(𝜀, 𝑡) . (48)

Here 𝛼2(𝑡) and 𝛽2(𝑡) are functions (42) (as 𝑞 = 2 or 𝑞 = 4), and the functions 𝛼3(𝜀, 𝑡) and
𝛽3(𝜀, 𝑡) are continuous and 2𝜋-periodic w.r.t. 𝑡.

It follows from identities (47) and (48) that for 𝑞 = 2 or 𝑞 = 4, the Arnold tongues Ψ(𝑝, 𝑞) of
system (5) can be locally identifies with the set (w.r.t. 𝑡 ∈ [0, 2𝜋]) of the curves described by
the equations

𝑧 = (1 + 𝛼2(𝑡)𝜉)𝑒2𝜋(𝜃0+𝛽2(𝑡)𝜉)𝑖 , 0 6 𝜉 6 1 . (49)

Suppose now 𝑞 is odd, namely, let 𝑞 = 3.

Theorem 9. The Arnold tongue Ψ(1, 3) of system (5) is determined by identity (31) (for
𝑝 = 1 and 𝑞 = 3), where, for a fixed 𝑡, Υ(𝑝, 𝑞, 𝑒(𝑡)) is the curve described by equation (43) as

𝛼(𝜀, 𝑡) = 𝛼1(𝑡)𝜀 + 𝛼2(𝑡)𝜀
2 + 𝜀3𝛼3(𝜀, 𝑡) , (50)

𝛽(𝜀, 𝑡) = 𝛽1(𝑡)𝜀 + 𝛽2(𝑡)𝜀
2 + 𝜀3𝛽3(𝜀, 𝑡) . (51)

Here 𝛼1(𝑡) and 𝛽1(𝑡) are functions (34) (as 𝑞 = 3), 𝛼2(𝑡) and 𝛽2(𝑡) are functions (36)(as 𝑞 = 3),
and the functions 𝛼3(𝜀, 𝑡) and 𝛽3(𝜀, 𝑡) are continuous and 2𝜋-periodic w.r.t. 𝑡.

It follows from identities (50) and (51) that the Arnold tongue Ψ(1, 3) of system (5) can be
locally identifies with the set (w.r.t. 𝑡 ∈ [0, 2𝜋]) of the curves described by the equations

𝑧 = (1 + 𝛼1(𝑡)𝜉)𝑒2𝜋(𝜃0+𝛽1(𝑡)𝜉)𝑖 , 0 6 𝜉 6 1 . (52)

The curves 𝛾1 and 𝛾2 being in the natural sense the end ones in the set of curves (49) or (52)
can be treated as the curves limiting locally , the Arnold tongue Ψ(𝑝, 𝑞) of system (5).

6. Examples

6.1. Example 1. Consider the discrete system

𝑥𝑛+1 = 𝐴(𝛼, 𝛽)𝑥𝑛 + 𝑎3(𝑥𝑛), 𝑛 = 0, 1, 2, ..., 𝑥𝑛 ∈ 𝑅2 (53)

with 𝐴(𝛼, 𝛽) = (1 + 𝛼)𝑄(𝛽), where

𝑄(𝛽) =

[︂
cos 2𝜋(0, 25 + 𝛽) − sin 2𝜋(0, 25 + 𝛽)
sin 2𝜋(0, 25 + 𝛽) cos 2𝜋(0, 25 + 𝛽)

]︂
,

and the nonlinearity 𝑎3(𝑥) reads as

𝑎3(𝑥) =

[︂
𝑥3
1 + 2𝑥3

2

2𝑥1𝑥
2
2

]︂
.

Since

𝑄(0) =

[︂
0 −1
1 0

]︂
,

in this example Condition S1) holds true as 𝜃0 = 1/4 To localize the Arnold tongue Ψ(1, 4) of
system (53), we employ Theorem 8. This theorem implies that the set Ψ(1, 4) can be locally
identified with a set of curves (49), where 𝛼2(𝑡) and 𝛽2(𝑡) are functions (42) (as 𝑞 = 4).
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Let us calculate the functions 𝛼2(𝑡) and 𝛽2(𝑡). Since considered system (53) involves only the
cubic nonlinearity 𝑎3(𝑥), formulae (30), (32), (11), and (12) lead us to the identities 𝑏2(𝑡) ≡ 0
and

𝑏3(𝑡) = 𝑄3𝑎3(𝑒(𝑡)) + 𝑄2𝑎3(𝑄𝑒(𝑡)) + 𝑄𝑎3(𝑄
2𝑒(𝑡)) + 𝑎3(𝑄

3𝑒(𝑡)) ,

where 𝑄 = 𝑄(0). Simple calculations give rise to the identity

𝑏3(𝑡) = 2

[︂
2 sin2 𝑡 cos 𝑡 + sin3 𝑡− 2 cos3 𝑡
2 sin 𝑡 cos2 𝑡− 2 sin3 𝑡− cos3 𝑡

]︂
.

Then by (42) we get

𝛼2(𝑡) = −1

4
(𝑏3(𝑡), 𝑒(𝑡)) =

1

4
cos 2𝑡(4 cos 2𝑡 + sin 2𝑡) ,

𝛽2(𝑡) = − 1

8𝜋
(𝑏3(𝑡), 𝑔(𝑡)) =

1

8𝜋
(1 + cos2 2𝑡− 2 sin 4𝑡) .

Substituting these formulae into (49) and analyzing the obtained identity, we get that locally
the Arnold tongue Ψ(1, 4) of system (53) is located between the curves 𝛾1 and 𝛾2 described
respectively by the equations

𝑧 = (1 + 𝛼1𝜉)𝑒2𝜋(0,25+𝛽1𝜉)𝑖 , 𝑧 = (1 + 𝛼2𝜉)𝑒2𝜋(0,25+𝛽2𝜉)𝑖 (0 6 𝜉 6 1) .

Here

𝛼1 =
1

2
, 𝛽1 =

3 −
√

17

16𝜋
, 𝛼2 =

4 −
√

17

8
, 𝛽2 =

3

16𝜋
.

The obtained result is confirmed also by direct numerical calculation of the synchronization
curves localizing the Arnold tongue Ψ(1, 4) of system (53) in accordance with the formulae in
Theorem 8 (Fig. 5).

Figure 5. Arnold tongues of system (53)

In Figure 5, we give the synchronization curves localizing the Arnold tongues Ψ(1, 5) and
Ψ(1, 6) of system (53) calculated in accordance with the formulae of Theorem 7. The calcula-
tions confirm that the set of these curves (both for the tongues Ψ(1, 5) and the tongues Ψ(1, 6))
forms in fact one curve. In other words, the tongues Ψ(1, 5) and Ψ(1, 6) are locally very narrow
sets coinciding with the synchronization curves starting from the corresponding rational point
on the unit circle.
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6.2. Example 2. Consider now a non-autonomous dynamical system depending on real
variables 𝛼 and 𝛽 and described by the differential equation

𝑥′ = 𝐴(𝛼, 𝛽)𝑥 + 𝑎(𝑥, 𝑡, 𝛼, 𝛽) , 𝑥 ∈ 𝑅2 , (54)

where

𝐴(𝛼, 𝛽) =

[︂
𝛼 −𝛽
𝛽 𝛼

]︂
,

and the nonlinearity 𝑎(𝑥, 𝑡, 𝛼, 𝛽) is smooth w.r.t. all the variables, 2𝜋-periodic w.r.t. 𝑡 and can
be represented as

𝑎(𝑥, 𝑡, 𝛼, 𝛽) = 𝑎2(𝑥, 𝑡, 𝛼, 𝛽) + 𝑎3(𝑥, 𝑡, 𝛼, 𝛽) + �̃�4(𝑥, 𝑡, 𝛼, 𝛽) ,

where 𝑎2(𝑥, 𝑡, 𝛼, 𝛽) and 𝑎3(𝑥, 𝑡, 𝛼, 𝛽) involves the terms quadratic and cubic w.r.t. 𝑥, while
�̃�4(𝑥, 𝑡, 𝛼, 𝛽) satisfies the relation �̃�4(𝑥, 𝑡, 𝛼, 𝛽) = 𝑂(‖𝑥‖4), 𝑥 → 0, uniformly in 𝑡, 𝛼, and 𝛽. For
all values of the parameters 𝛼 and 𝛽, system (54) has the equilibrium 𝑥 = 0.

We let 𝜇 = (𝛼, 𝛽) and 𝜇0 = (0, 𝛽0), where 𝛽0 is a positive number. As 𝜇 = 𝜇0, the equilib-
rium 𝑥 = 0 of system (54) is non-hyperbolic; as the parameter 𝜇 passes through 𝜇0, various
bifurcation scenarios are possible. In a particular case, when the nonlinearity 𝑎(𝑥, 𝑡, 𝛼, 𝛽) is
independent of 𝑡, the main scenario is the Andronov-Hopf bifurcation: as 𝜇 passes through
𝜇0, in a vicinity of the equilibrium 𝑥 = 0 of system (54), there appear nonstationary periodic

solutions of small amplitude and with period close to 𝑇0 =
2𝜋

𝛽0

.

The presence of a nonstationary periodic nonlinearity 𝑎(𝑥, 𝑡, 𝛼, 𝛽) follows a change in the
mentioned bifurcation scenario. Namely, various scenarios of emergence of subharmonic solu-
tions (i.e., periodic solutions with the period being multiple of 𝑇 ) and quasi-periodic solutions
become possible in a vicinity of the equilibrium 𝑥 = 0.

To study such scenarios and, in particular, the localization of the Arnold tongues of system
(54), it is possible to employ the scheme suggested in the present work. On the first step of
such studying system (54) we pass to the discrete dynamical system described by the equation

𝑥𝑛+1 = 𝑉 (𝜇)𝑥𝑛 + 𝑣(𝑥𝑛, 𝜇), 𝑛 = 0, 1, 2, ..., (55)

where 𝑥𝑛 ∈ 𝑅2, 𝑉 (𝜇) = 𝑒2𝜋𝐴(𝜇), and the nonlinear operator 𝑣(·, 𝜇) : 𝑅2 → 𝑅2 can be represented
as

𝑣(𝑥, 𝜇) =

2𝜋∫︁
0

𝑒(2𝜋−𝜏)𝐴(𝜇)𝑎(𝑥(𝜏), 𝜏, 𝜇) 𝑑𝜏 ,

where 𝑥(𝑡) is the solution to system (54) satisfying the initial condition 𝑥(0) = 𝑥. The fixed
points of system (55) determines the initial values of 2𝜋-periodic solutions of system (54), and
the cycles of period 𝑞 determine the initial values 2𝜋𝑞-periodic solutions of this system.

It is easy to show that the matrix 𝑉 (𝜇) is as follows,

𝑉 (𝜇) = 𝑒2𝜋𝛼
[︂

cos 2𝜋𝛽 − sin 2𝜋𝛽
sin 2𝜋𝛽 cos 2𝜋𝛽

]︂
.

We replace 𝛼 and 𝛽 by new parameters

𝛼* = 𝑒2𝜋𝛼 − 1 , 𝛽* = 𝛽 − 𝛽0 ,

and represent system (55) as

𝑥𝑛+1 = 𝐴(𝛼*, 𝛽*)𝑥𝑛 + 𝑏(𝑥𝑛, 𝛼
*, 𝛽*), 𝑛 = 0, 1, 2, ..., , (56)

where
𝑏(𝑥, 𝛼*, 𝛽*) = 𝑣(𝑥, ln(1 + 𝛼*)/(2𝜋), 𝛽* + 𝛽0) ,

𝐴(𝛼*, 𝛽*) = (1 + 𝛼*)𝑄(𝛽*) .
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Here

𝑄(𝛽*) =

[︂
cos 2𝜋(𝛽0 + 𝛽*) − sin 2𝜋(𝛽0 + 𝛽*)
sin 2𝜋(𝛽0 + 𝛽*) cos 2𝜋(𝛽0 + 𝛽*)

]︂
.

The problem on the local bifurcations of system (54) is equivalent in a natural sense to a similar
problem for system (56). Since this system is similar to system (5), on the next step we can
employ the scheme suggested in the previous sections. In particular, in accordance with with

this scheme we get that if the number 𝛽0 is rational, 𝛽0 =
𝑝

𝑞
, as the two-dimensional parameter

𝜇 = (𝛼, 𝛽) passes through the point 𝜇0 = (0, 𝛽0), for system (54), the scenario of emergence of
subharmonic solutions of period 2𝜋𝑞 becomes possible in a vicinity of the equilibrium 𝑥 = 0.

At that, on the plane of the parameters (𝛼, 𝛽), there forms a system of the Arnold tongues
with cusps at the points (0, 𝛽0) with rational 𝛽0. Such tongues correspond to the domains of
the parameters values for which system (54) has periodic regimes of period multiple of 2𝜋 with
amplitudes tending to zero as the point (𝛼, 𝛽) tends to (0, 𝛽0). The mentioned tongues can be
localized in accordance with the scheme stated in the previous sections.

7. Proof of main statements

7.1. Operator method. The proofs of main statements of the present work are based on
the operator method for studying problems on multi-parametric local bifurcations developed in
[11] and [12]. We give briefly the main concepts of this method. Here it is sufficient to restrict
ourselves by considering two-parametric problems for operator equations on the plane.

Consider the operator equation

𝑥 = 𝐵(𝜇)𝑥 + 𝑏(𝑥, 𝜇), 𝑥 ∈ 𝑅2 (57)

depending on the two-dimensional parameter 𝜇 = (𝛼, 𝛽) ∈ 𝑅2, where the second order
square matrix 𝐵(𝜇) is continuously differentiable w.r.t. 𝜇 and the nonlinearity 𝑏(𝑥, 𝜇) depends
smoothly on 𝜇 as well and is represented as

𝑏(𝑥, 𝜇) = 𝑏2(𝑥, 𝜇) + 𝑏3(𝑥, 𝜇) + �̃�4(𝑥, 𝜇) ,

where 𝑏2(𝑥, 𝜇) and 𝑏3(𝑥, 𝜇) involve the quadratic and cubic w.r.t. 𝑥 terms, respectively, and

�̃�4(𝑥, 𝜇) is smooth w.r.t. 𝑥 and �̃�4(𝑥, 𝜇) = 𝑂(‖𝑥‖4), 𝑥 → 0 uniformly in 𝜇.
For all values of 𝜇, equation (57) has the zero solution 𝑥 = 0. We shall say that a value 𝜇0

is the bifurcation point of nonzero solutions to equation (57) if there exists a sequence 𝜇𝑘 → 𝜇0

such that as 𝜇 = 𝜇𝑘, equation (57) has a nonzero solution 𝑥 = 𝑥𝑘 and ‖𝑥𝑘‖ → 0 as 𝑘 → ∞.
As a rule, the bifurcations of nonzero solutions to equation (57) has a oriented character;

let us provide the corresponding direction. Let 𝑒 ∈ 𝑅2 be a nonzero vector. We shall call a
value 𝜇0 of the parameter 𝜇 the well-defined bifurcation point of equation (57) in the direction
of the vector 𝑒 if there exists 𝜀0 > 0 and continuous functions 𝜇 = 𝜇(𝜀) and 𝑥 = 𝑥(𝜀) defined
for 𝜀 ∈ [0, 𝜀0) such that

1) 𝜇(0) = 𝜇0 , 𝑥(0) = 0;
2) ‖𝑥(𝜀) − 𝜀𝑒‖ = 𝑜(𝜀) as 𝜀 → 0;
3) for each 𝜀 > 0, the vector 𝑥(𝜀) solves equation (57) as 𝜇 = 𝜇(𝜀).

We shall call 𝑥(𝜀) and values 𝜇(𝜀) the bifurcating solutions of equation (57).

Lemma 6. Suppose the value 𝜇0 of the parameter 𝜇 is a well-defined bifurcation point of
equation (57) in the direction of the vector 𝑒. Then the vector 𝑒 is an eigenvector for the matrix
𝐵(𝜇0) associated with the eigenvalue.

In what follows we assume that the matrix 𝐵(𝜇0) has a semi-simple eigenvalue 1 of multi-
plicity 2; in other words, let 𝐵(𝜇0) = 𝐼, where 𝐼 is the unit matrix of second order. We denote
𝜇0 = (𝛼0, 𝛽0) and 𝐵0 = 𝐵(𝜇0).
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Let 𝑒, 𝑔 and 𝑒*, 𝑔* be two pair of linearly independent vectors chosen by the relations

(𝑒, 𝑒*) = (𝑔, 𝑔*) = 1, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0. (58)

We let

𝑆 =

[︂
(𝐵′

𝛼(𝛼0, 𝛽0)𝑒, 𝑒
*) (𝐵′

𝛽(𝛼0, 𝛽0)𝑒, 𝑒
*)

(𝐵′
𝛼(𝛼0, 𝛽0)𝑒, 𝑔

*) (𝐵′
𝛽(𝛼0, 𝛽0)𝑒, 𝑔

*)

]︂
. (59)

Here 𝐵′
𝛼 and 𝐵′

𝛽 are the matrices obtained by the differentiation of the matrix 𝐵(𝛼, 𝛽) w.r.t.
𝛼 and 𝛽, respectively.

Theorem 10. Suppose
det𝑆 ̸= 0. (60)

Then 𝜇0 is a well-defined bifurcation point of equation (57) in the direction of the vector 𝑒.

In what follows we shall make use of the following notations,

𝑏2 = 𝑏2(𝑒, 𝛼0, 𝛽0), 𝑏3 = 𝑏3(𝑒, 𝛼0, 𝛽0), (61)

𝑏′2𝑥 = 𝑏′2𝑥(𝑒, 𝛼0, 𝛽0), 𝑏′2𝛼 = 𝑏′2𝛼(𝑒, 𝛼0, 𝛽0), 𝑏′2𝛽 = 𝑏′2𝛽(𝑒, 𝛼0, 𝛽0). (62)

We let
𝐹ℎ = −

[︀
(ℎ, 𝑒*)𝐵′

𝛼𝑒 + (ℎ, 𝑔*)𝐵′
𝛽𝑒
]︀
, ℎ ∈ 𝑅2 , (63)

where it is denoted 𝐵′
𝛼 = 𝐵′

𝛼(𝛼0, 𝛽0) and 𝐵′
𝛽 = 𝐵′

𝛽(𝛼0, 𝛽0). By condition (60), the linear

operator 𝐹 : 𝑅2 → 𝑅2 is invertible. We let

Γ0 = 𝐹−1 : 𝑅2 → 𝑅2. (64)

Lemma 7. The operator Γ0 = 𝐹−1 is determined by the formula

Γ0𝑦 = 𝐽𝛼(𝑦)𝑒 + 𝐽𝛽(𝑦)𝑔 .

Here the functionals 𝐽𝛼(𝑦) and 𝐽𝛽(𝑦) are the components of the vector

𝐽(𝑦) =

[︂
𝐽𝛼(𝑦)
𝐽𝛽(𝑦)

]︂
given by the formula 𝐽(𝑦) = −𝑆−1𝛾(𝑦), where 𝑆 is matrix (59) and

𝛾(𝑦) =

[︂
(𝑦, 𝑒*)
(𝑦, 𝑔*)

]︂
.

We then let
𝑒1 = Γ0𝑏2, 𝛼1 = 𝐽𝛼(𝑏2), 𝛽1 = 𝐽𝛽(𝑏2) , (65)

𝑒2 = Γ0(𝜙 + 𝑏3) , 𝛼2 = 𝐽𝛼(𝜙 + 𝑏3) , 𝛽2 = 𝐽𝛽(𝜙 + 𝑏3). (66)

Here

𝜙 = 𝛼1𝐵
′
𝛼Γ0𝑏2 + 𝛽1𝐵

′
𝛽Γ0𝑏2 +

𝛼2
1

2
𝐵′′

𝛼𝛼𝑒 + 𝛼1𝛽1𝐵
′′
𝛼𝛽𝑒+ (67)

+
𝛽2
1

2
𝐵′′

𝛽𝛽𝑒 + 𝑏
′

2𝑥Γ0𝑏2 + 𝛼1𝑏
′
2𝛼 + 𝛽1𝑏

′
2𝛽,

Γ0 is operator (64), 𝐵′
𝛼, 𝐵′

𝛽, 𝐵′′
𝛼𝛼, 𝐵′′

𝛼𝛽, 𝐵′′
𝛽𝛽 are the matrices obtained by the differentiation of

the matrix 𝐵(𝛼, 𝛽) w.r.t. 𝛼 and (or) 𝛽 at the point (𝛼0, 𝛽0); we also employ notations (61) and
(62).

Theorem 11. The bifurcating solutions 𝑥(𝜀), 𝛼(𝜀), and 𝛽(𝜀) of equation (57) existing under
the assumption of Theorem 10 can be represented as

𝑥(𝜀) = 𝜀𝑒 + 𝜀2𝑒1 + 𝜀3𝑒2 + 𝑜(𝜀3) , (68)

𝛼(𝜀) = 𝛼0 + 𝜀𝛼1 + 𝜀2𝛼2 + 𝑜(𝜀2) , 𝛽(𝜀) = 𝛽0 + 𝜀𝛽1 + 𝜀2𝛽2 + 𝑜(𝜀2) . (69)
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7.2. Auxiliary statements. In order to prove the main statements of the work, we shall
make use of auxiliary statements.

Lemma 8. A point 𝜇0 is a bifurcation point for 𝑞-cycles of system (5) if and only if 𝜇0 a
bifurcation point of nonzero solutions to equation (8).

Proof. The necessity. Suppose 𝜇 = 𝜇0 is a bifurcation point for 𝑞-cycles of system (5), i.e., there
exists a sequence 𝜇𝑘 → 𝜇0 such that as 𝜇 = 𝜇𝑘, system (5) has a 𝑞-cycle 𝑥𝑘

0, 𝑥
𝑘
1, 𝑥

𝑘
2, . . . , 𝑥

𝑘
𝑞−1,

and max
06𝑗6𝑞−1

‖𝑥𝑘
𝑗‖ → 0 as 𝑘 → ∞. At that, 𝑥𝑘

𝑗 ̸= 0 that follows from the definition of the 𝑞-cycle.

By Lemma 1 we get that as 𝜇 = 𝜇𝑘, each of nonzero vectors 𝑥𝑘
𝑗 solves equation (8). Hence, the

value 𝜇0 is a bifurcation point for nonzero solutions of equation (8).
The sufficiency. Suppose 𝜇 = 𝜇0 is a bifurcation point for nonzero solutions of equation (8),

i.e., there exists a sequence 𝜇𝑘 → 𝜇0 such that as 𝜇 = 𝜇𝑘, equation (8) has the nonzero solution
𝑥 = 𝑥𝑘 and ‖𝑥𝑘‖ → 0 as 𝑘 → ∞. Let us show that in this case, as 𝜇 = 𝜇𝑘, system (5) has a
𝑞-cycle and one of its points is the vector 𝑥𝑘; it would mean that 𝜇 = 𝜇0 is a bifurcation point
for 𝑞-cycles of system (5).

Indeed, Lemma 1 implies that either 𝑥 = 𝑥𝑘 is a fixed point of system (5) as 𝜇 = 𝜇𝑘 or it is
one of the points of a cycle with period 𝑟 for this system as 𝜇 = 𝜇𝑘, where 𝑟 is a divisor of the
number 𝑞. The vector 𝑥𝑘 can be neither a fixed point of system (5) no a point of a 𝑟-cycle of
this system once 𝑟 ̸= 𝑞. We restrict ourselves by proving the first fact. Assuming the opposite,
we obtain the identities

𝑥𝑘 = 𝐴(𝜇𝑘)𝑥𝑘 + 𝑎(𝑥𝑘, 𝜇𝑘) .

Dividing both sides of this identity by a nonzero number ‖𝑥𝑘‖ and letting 𝑦𝑘 = 𝑥𝑘/‖𝑥𝑘‖, we
obtain

𝑦𝑘 = 𝐴(𝜇𝑘)𝑦𝑘 +
𝑎(𝑥𝑘, 𝜇𝑘)

‖𝑥𝑘‖
. (70)

Since ‖𝑦𝑘‖ = 1, we can assume that the sequence 𝑦𝑘 converges: 𝑦𝑘 → 𝑦*, where ‖𝑦*‖ = 1.
Passing in (70) to the limit as 𝑘 → ∞, we obtain the identity 𝑦* = 𝐴(𝜇0)𝑦

*, i.e., the matrix
𝐴(𝜇0) has an eigenvalue 1. This fact contradicts to formulae (2) and (3) determining the matrix
𝐴(𝜇0) = 𝐴(0, 0). The proof is complete.

In the same way one can prove

Lemma 9. A point 𝜇0 is a bifurcation point for 𝑞-cycles of system (5) in the direction of a
vector 𝑒 if and only if 𝜇0 a bifurcation point of nonzero solutions to equation (8) in the direction
of a vector 𝑒.

7.3. Proof of Theorem 1. Equation (8) is that of the form (57). This is why if we prove
that for equation (8) relation (60) holds true for some choice of the vectors 𝑒, 𝑒*, 𝑔, and 𝑔*

(satisfying conditions (58)), by Theorem 10 it will mean that 𝜇0 is a bifurcation point for
nonzero solutions of equation (8). Then Lemma 10 will imply that 𝜇0 is a bifurcation point for
𝑞-cycles of system (5), i.e., then Theorem 1 holds true.

The matrix 𝐵(𝛼, 𝛽) in equation (8) is determined by identity (9),

𝐵(𝛼, 𝛽) = (1 + 𝛼)𝑞𝑄𝑞(𝛽) . (71)

Here 𝑄(𝛽) is matrix (3). We have

𝑄𝑞(𝛽) =

[︂
cos 2𝜋𝑞(𝜃0 + 𝛽) − sin 2𝜋𝑞(𝜃0 + 𝛽)
sin 2𝜋𝑞(𝜃0 + 𝛽) cos 2𝜋𝑞(𝜃0 + 𝛽)

]︂
. (72)

Since 𝜃0 =
𝑝

𝑞
, then 𝐵(0, 0) = 𝐼; the matrix 𝐵(0, 0) thus has the semi-simple eigenvalue 1 of

multiplicity 2.
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Let

𝑒(𝑡) = 𝑒*(𝑡) =

[︂
cos 𝑡
sin 𝑡

]︂
, 𝑔(𝑡) = 𝑔*(𝑡) =

[︂
− sin 𝑡

cos 𝑡

]︂
. (73)

For each 𝑡 ∈ [0, 2𝜋], these vectors satisfy conditions (58). We fix 𝑡 ∈ [0, 2𝜋] and calculate the
matrix 𝑆 defined by identity (59) 𝑆. By (71) and (72) we obtain

𝐵′
𝛼(0, 0) = 𝑞𝐼 , 𝐵′

𝛽(0, 0) = 2𝜋𝑞

[︂
0 −1
1 0

]︂
. (74)

By (59), (73) and simple calculations we get the identity

𝑆 =

[︂
𝑞 0
0 2𝜋𝑞

]︂
. (75)

Therefore, det𝑆 = 2𝜋𝑞2 ̸= 0, i.e., relation (60) holds true. The proof is complete.

Remark 1. In the proof of Theorem 1 it was shown that the matrix 𝑆 defined by identity
(75) is independent of 𝑡, i.e., it is the case for each set of vectors (73).

7.4. Proof of Theorem 2. Due to Lemma 9, Theorem 2 will be proven if we show that the
value 𝜇0 = (0, 0) of the parameter 𝜇 = (𝛼, 𝛽) is a well-defined bifurcation point for equation (8)
in the direction of each nonzero vector 𝑒. In fact, it was established in the proof of Theorem 1.
Indeed, as an arbitrary nonzero vector 𝑒, one can choose the vector 𝑒(𝑡) defined by the first
identity in (73). For each such vector condition (60) of Theorem 10 holds true, since the
corresponding matrix (75) is non-degenerate.

7.5. Proof of Theorem 3. Lemma 9 and Theorem 2 yield that statement of Theorem 11
holds true for equation (8) (with appropriate modifications). This is why Theorems 3 and 4
will be proven if we show that formulae (68) and (69) applied to equation (8) lead us to the
formulae given in these theorems. In order to do it, we need to show that the numbers and
vectors defined by identities (65)-(66) lead us to the corresponding numbers and vectors in
(16)-(20).

We consider first the numbers 𝛼1 and 𝛽1 defined by identities (65). We have[︂
𝛼1

𝛽1

]︂
=

[︂
𝐽𝛼(𝑏2)
𝐽𝛽(𝑏2)

]︂
= 𝐽(𝑏2) = −𝑆−1𝛾(𝑏2) = −𝑆−1

[︂
(𝑏2, 𝑒

*)
(𝑏2, 𝑔

*)

]︂
.

We convert these identities with equation (8) taken into account. In order to do it, as 𝑒, 𝑒*,
𝑔, and 𝑔*, we treat vectors (73) for a fixed 𝑡 ∈ [0, 2𝜋] (for each 𝑡, they are vectors of the form
(13)), as 𝑏2, we take vector (15), and as 𝑆 we take matrix (75). Since

𝑆−1 =
1

2𝜋𝑞

[︂
2𝜋 0
0 1

]︂
,

then [︂
𝛼1

𝛽1

]︂
= − 1

2𝜋𝑞

[︂
2𝜋(𝑏2, 𝑒)
(𝑏2, 𝑔)

]︂
.

Here we have taken into account that in our case the identities 𝑒 = 𝑒* and 𝑔 = 𝑔* hold true.
Thus, the numbers 𝛼1 and 𝛽1 defined by identities (65) and calculated for equation (8) lead us
to the numbers (16).

Consider now the vector 𝑒1 defined by the first identity in (65). By Lemma 7 we have

𝑒1 = Γ0𝑏2 = 𝐽𝛼(𝑏2)𝑒 + 𝐽𝛽(𝑏2)𝑔 = 𝛼1𝑒 + 𝛽1𝑔 ,

i.e., we obtain formula (17).
To complete the proof of Theorem 3, it remains to argue in the same way and show that the

numbers 𝛼2 and 𝛽2 and the vector 𝑒2 defined by identities (66) and calculated for equation (8)
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lead us to corresponding numbers (19) and vector (20). These arguments follow the same lines
as the proof of formulae (16) and (17).

At that, in addition it should be shown that vector (67) calculated for equation (8) leads us
to vector (18). In other words, it should be also shown that the identity 𝜙 = 𝜒 holds true for
equation (8), where 𝜙 and 𝜒 are respectively vectors (67) and (18). To prove this fact, together
with formulas (74) we employ the identities

𝐵′′
𝛼𝛼(0, 0) = 𝑞(𝑞 − 1)𝐼 , 𝐵′′

𝛽𝛽(0, 0) = −(2𝜋𝑞)2𝐼 , 𝐵′′
𝛼𝛽(0, 0) = 2𝜋𝑞2

[︂
0 −1
1 0

]︂
,

Γ0𝑏2 = 𝛼1𝑒 + 𝛽1𝑔 .

Substituting these formulae into (67) leads us to the desired identity 𝜙 = 𝜒.

Remark 2. We have not employed the parity of 𝑞 in the proof of Theorem 3. In other words,
this theorem is valid for each 𝑞. However, for even 𝑞, formulae (21) in Theorem 3 possess specific
properties that leads us to a qualitative difference between the bifurcation properties of 𝑞-cycles
of system (5) for even and odd 𝑞.

7.6. Proof of Lemma 3. By (3) we have

𝑄 = 𝑄(0) =

[︂
cos 2𝜋𝜃0 − sin 2𝜋𝜃0
sin 2𝜋𝜃0 cos 2𝜋𝜃0

]︂
, (76)

where 𝜃0 = 𝑝/𝑞 is an irreducible fraction. Suppose 𝑞 is even. Then 𝑝 is odd and hence 𝑄𝑞/2 = −𝐼;
this is why, the identities

𝑄𝑗 = −𝑄𝑗+𝑞/2 , 𝑗 = 0, 1, 2, . . . (77)

hold true.
In the case of even 𝑞, the vector 𝑏2 defined by identity (15) involves an even number of terms

satisfying by (77) the identities

𝑄𝑗𝑎2(𝑄
𝑞−1−𝑗𝑒, 𝜇0) = −𝑄𝑗+𝑞/2𝑎2(𝑄

𝑞/2−1−𝑗𝑒, 𝜇0) .

Here we have taken into consideration that the nonlinearity 𝑎2(𝑥, 𝜇) contains only quadratic
w.r.t. 𝑥 terms. This is why 𝑏2 = 0. The proof is complete.

7.7. Proof of Theorem 4. The proof of Theorem 4 is reduced to the substitution of iden-
tities (24) into formulas (21) and (22).

7.8. Proof of Lemma 4. We note that for each even 𝑞, this lemma can be proven in the
same way as Lemma 3. For arbitrary 𝑞 > 5, in the proof of the lemma we shall need auxiliary
constructions.

7.8.1. Auxiliary constructions. Let 𝑓(𝑡) be a continuous 2𝜋-periodic function. For a natural

number 𝑛 we let ℎ =
2𝜋

𝑛
and define a function,

𝐺
(𝑛)
𝑓 (𝑡) = [𝑓(𝑡) + 𝑓(𝑡 + ℎ) + 𝑓(𝑡 + 2ℎ) + · · · + 𝑓(𝑡 + (𝑛− 1)ℎ)]ℎ . (78)

This function is 2𝜋-periodic and for a fixed 𝑡, it is a rectangular approximation for calculating
an integral of the function 𝑓(𝑠), namely, for each fixed 𝑡 the approximate identity

2𝜋∫︁
0

𝑓(𝑠) 𝑑𝑠 ≈ 𝐺
(𝑛)
𝑓 (𝑡) (79)

holds true. In this approximate formula the value 𝑡 determines the choice of 𝑛 points 𝑡 , 𝑡 +
ℎ , 𝑡 + 2ℎ , . . . , 𝑡 + (𝑛− 1)ℎ in the segment of length 2𝜋 at which the values of the function
𝑓(𝑠) are calculated.
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We denote by 𝑃𝑛 the set of continuous 2𝜋-periodic functions 𝑓(𝑠) such that the identity

2𝜋∫︁
0

𝑓(𝑠) 𝑑𝑠 ≡ 𝐺
(𝑛)
𝑓 (𝑡) (80)

holds true. In other words, the set 𝑃𝑛 consists of the functions for which approximate formula
(79) is exact for each 𝑡.

Lemma 10. Let natural numbers 𝑛 and 𝑚 be such that

2𝑚

𝑛
̸= 𝑘 , 𝑘 = 1, 2, 3, . . . . (81)

Then sin𝑚𝑡 ∈ 𝑃𝑛 and cos𝑚𝑡 ∈ 𝑃𝑛.

In other words, under condition (81), the functions 𝑓(𝑡) = sin𝑚𝑡 and 𝑓(𝑡) = cos𝑚𝑡 satisfy

the identity 𝐺
(𝑛)
𝑓 (𝑡) ≡ 0.

Proof. We restrict ourselves by considering the function 𝑓(𝑡) = cos𝑚𝑡. By (78) we define the
auxiliary function

𝐹 (𝑡) = 𝑓(𝑡) + 𝑓(𝑡 + ℎ) + 𝑓(𝑡 + 2ℎ) + · · · + 𝑓(𝑡 + (𝑛− 1)ℎ) = (82)

= cos𝑚𝑡 + cos𝑚(𝑡 + ℎ) + cos𝑚(𝑡 + 2ℎ) + · · · + cos𝑚(𝑡 + (𝑛− 1)ℎ) =

= cos 𝜏 + cos (𝜏 + 𝜈) + cos (𝜏 + 2𝜈) + · · · + cos (𝜏 + (𝑛− 1)𝜈) ,

where it is denoted 𝜏 = 𝑚𝑡 and 𝜈 = 𝑚ℎ. The lemma will be proven if we prove the identity
𝐹 (𝑡) ≡ 0.

By (81) we have

𝜈 = 𝑚ℎ = 𝑚
2𝜋

𝑛
̸= 𝜋𝑘 , 𝑘 = 0, 1, 2, . . . .

Therefore, sin 𝜈 ̸= 0. This is why function (82) can be represented as

𝐹 (𝑡) = cos 𝜏 +
cos (𝜏 + 𝜈) + cos (𝜏 + 2𝜈) + · · · + cos (𝜏 + (𝑛− 1)𝜈)

sin 𝜈
· sin 𝜈 .

Employing now the formula cos𝛼 sin 𝛽 =
1

2
[sin (𝛼 + 𝛽)−sin (𝛼− 𝛽)], by simple transformations

we arrive to the identity 𝐹 (𝑡) ≡ 0. The proof is complete.

In what follows, we shall be interested in Lemma 10 only for 𝑚 = 1, 2, 3, 4. For these numbers,
Lemma 10 can be deepened.

Let, for instance, 𝑚 = 1; it follows from Lemma 10 that if 𝑛 ̸= 1 and 𝑛 ̸= 2, the sin𝑚𝑡 ∈ 𝑃𝑛

and cos𝑚𝑡 ∈ 𝑃𝑛. A straightforward checking shows that these belongings hold true as 𝑛 = 2,
while for 𝑛 = 1 they are not true. Similar arguments for the numbers 𝑚 = 2, 𝑚 = 3, and
𝑚 = 4 lead us to the following auxiliary statement.

Lemma 11. Let 𝑓(𝑡) = sin𝑚𝑡 or 𝑓(𝑡) = cos𝑚𝑡. Then

∙ if 𝑚 = 1, then 𝑓(𝑡) ∈ 𝑃𝑛 ⇐⇒ 𝑛 ̸= 1;
∙ if 𝑚 = 2, then 𝑓(𝑡) ∈ 𝑃𝑛 ⇐⇒ 𝑛 ̸= 1 and 𝑛 ̸= 2;
∙ if 𝑚 = 3, then 𝑓(𝑡) ∈ 𝑃𝑛 ⇐⇒ 𝑛 ̸= 1 and 𝑛 ̸= 3;
∙ if 𝑚 = 4, then 𝑓(𝑡) ∈ 𝑃𝑛 ⇐⇒ 𝑛 ̸= 1, 𝑛 ̸= 2, and 𝑛 ̸= 4.

We define the functions

𝑓2(𝑡) = (𝑎2(𝑒(𝑡), 𝜇0), 𝑄𝑒(𝑡)) , 𝑔2(𝑡) = (𝑎2(𝑒(𝑡), 𝜇0), 𝑄𝑔(𝑡)) , (83)

and let us show that the following lemma holds true.
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Lemma 12. Functions (34) and (83) are related by the identities

𝐺
(𝑞)
𝑓2

(𝑡) = −2𝜋𝛼1(𝑡) , 𝐺(𝑞)
𝑔2

(𝑡) = −𝛽1(𝑡) . (84)

Proof. For the sake of simplicity, in the proof of this lemma we shall denote the nonlinearity
𝑎2(𝑥, 𝜇0) by 𝑎2(𝑥), i.e., we shall omit the notation 𝜇0. By (78) we have

𝐺
(𝑞)
𝑓2

(𝑡) = [𝑓2(𝑡) + 𝑓2(𝑡 + ℎ) + · · · + 𝑓2(𝑡 + (𝑞 − 1)ℎ)]ℎ = (85)

= [(𝑎2(𝑒(𝑡)), 𝑄𝑒(𝑡)) + (𝑎2(𝑒(𝑡 + ℎ)), 𝑄𝑒(𝑡 + ℎ))+

+ · · · + (𝑎2(𝑒(𝑡 + (𝑞 − 1)ℎ)), 𝑄𝑒(𝑡 + (𝑞 − 1)ℎ))]ℎ ;

here ℎ = 2𝜋/𝑞. On the other hand, by (33) and (34) we get

𝛼1(𝑡) = −1

𝑞
(𝑏2(𝑡), 𝑒(𝑡)) = −1

𝑞

(︀
𝑄𝑞−1𝑎2(𝑒(𝑡)) + 𝑄𝑞−2𝑎2(𝑄𝑒(𝑡)) + · · ·+

+𝑎2(𝑄
𝑞−1𝑒(𝑡)), 𝑒(𝑡)

)︀
= −1

𝑞

[︀
(𝑎2(𝑒(𝑡)), (𝑄

*)𝑞−1𝑒(𝑡))+

+(𝑎2(𝑄𝑒(𝑡)), (𝑄*)𝑞−2𝑒(𝑡)) + · · · + (𝑎2(𝑄
𝑞−1𝑒(𝑡)), 𝑒(𝑡))

]︀
,

where 𝑄* is the transposed matrix. Matrix (76) satisfies the identities

(𝑄*)𝑘 = 𝑄𝑞−𝑘 , 𝑘 = 0, 1, 2, . . .

Hence,

𝛼1(𝑡) = −1

𝑞

[︀
(𝑎2(𝑒(𝑡)), 𝑄𝑒(𝑡)) + (𝑎2(𝑄𝑒(𝑡)), 𝑄2𝑒(𝑡))+ (86)

+ · · · + (𝑎2(𝑄
𝑞−1𝑒(𝑡)), 𝑒(𝑡))

]︀
,

Let us compare identities (85) and (86). Suppose first 𝑝 = 1, i.e., 𝜃0 = 1/𝑞. In this case the
identities

𝑒(𝑡 + ℎ) = 𝑄𝑒(𝑡) , 𝑒(𝑡 + 2ℎ) = 𝑄2𝑒(𝑡) , . . .

hold true and it implies that the corresponding terms in the brackets in the right hand sides of
formulae (85) and (86) coincide. In the case 𝑝 > 1, the terms in the right hand side of formulae
(85) and (86) coincide as well but after appropriate permutations. It means the validity of
the first identity (84). The second identity can be proven in the same way. The proof is
complete.

7.8.2. End of proof for Lemma 4. We observe first that since the nonlinearity 𝑎2(𝑥, 𝜇) is
quadratic, the Fourier series of 2𝜋-periodic functions 𝑓2(𝑡) and 𝑔2(𝑡) defined by identities (83)
contain only the functions sin𝑚𝑡 and cos𝑚𝑡 as 𝑚 = 1 and 𝑚 = 3. Since 𝑞 > 5, by Lemma 11
we get that 𝑓2(𝑡) ∈ 𝑃𝑞 and 𝑔2(𝑡) ∈ 𝑃𝑞. In other words, the functions 𝑓2(𝑡) and 𝑔2(𝑡) satisfy the
identities

2𝜋∫︁
0

𝑓2(𝑠) 𝑑𝑠 ≡ 𝐺
(𝑞)
𝑓2

(𝑡) ,

2𝜋∫︁
0

𝑔2(𝑠) 𝑑𝑠 ≡ 𝐺(𝑞)
𝑔2

(𝑡) .

By the aforementioned property of the Fourier series for the functions 𝑓2(𝑡) and 𝑔2(𝑡), the
integrals in the obtained identities vanish. Together with Lemma 12 it imply the identities
𝛼1(𝑡) ≡ 0 and 𝛽1(𝑡) ≡ 0. The proof is complete.
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7.9. Proof of Lemma 5. By Corollary 4 given in Subsection 5.3, functions (36) and (42)
coincide, namely, they read as follows,

𝛼2(𝑡) = −1

𝑞
(𝑏3(𝑡), 𝑒(𝑡)) , 𝛽2(𝑡) = − 1

2𝜋𝑞
(𝑏3(𝑡), 𝑔(𝑡)) .

The rest of the proof of Lemma 5 follows the same lines as that of Lemma 4. At the first step
we define the analogues of functions (83),

𝑓3(𝑡) = (𝑎3(𝑒(𝑡), 𝜇0), 𝑄𝑒(𝑡)) , 𝑔3(𝑡) = (𝑎3(𝑒(𝑡), 𝜇0), 𝑄𝑔(𝑡)) . (87)

and we show that the analogues of identities (84)

𝐺
(𝑞)
𝑓3

(𝑡) = −2𝜋𝛼2(𝑡) , 𝐺(𝑞)
𝑔3

(𝑡) = −𝛽2(𝑡)

hold true. At the second step we note that since the nonlinearity 𝑎3(𝑥, 𝜇) is cubic, the Fourier
series of 2𝜋-periodic functions 𝑓3(𝑡) and 𝑔3(𝑡) defined by identities (87) involve only the functions
sin𝑚𝑡 and cos𝑚𝑡 as 𝑚 = 0, 𝑚 = 2, and 𝑚 = 4. Together with Lemma 12 it implies Lemma 5.

7.10. Proof of Theorems 7-9. The validity of Theorem 7 follows from Theorems 5 and 6
and Lemma 5. Theorem 8 follows from Theorem 6, and Theorem 9 is implied by Theorem 5.
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