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NONPARAMETRIC ESTIMATION OF EFFECTIVE
DOSES AT QUANTAL RESPONSE

M.S. TIKHOV

Abstract. For the quantal response model we propose a new direct method for nonpara-
metric estimation of the effective dose level EDjggy (0 < A < 1). This method yields a
simple and reliable monotone estimate of the effective dose level curve A — EDqggy and
is appealing to users of conventional smoothing methods of kernel estimates. Moreover, it
is computationally very efficient, because it does not require a numerical inversion of the
estimate of the quantile dose response curve. We prove asymptotic normality of this new
estimator and compare it with the DNP-estimator.
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1. INTRODUCTION

We consider the model of binary response which has a conventional title dose-response rela-
tionship [1] and which can be described as follows.

Let {(X;,U;),1 < i < n} be a potential repeated sample of an unknown distribution
F(z)Q(y), F(z) =P(X; <), Qy) = P(U; <y), x,y € R, instead of which one observes the
sample U™ = {(U, W;), 1 < i < n}, where W; = x(X; < U;) are the indicator functions of
the event (X; < U;). Here U; are regarded as injected doses, and W; as an effect of the action
of the dose U;. Let F(z) = [*__ f(t)dt and f(x) > 0. We shall call this situation the random
plan of an experiment.

Together with the random plan, we consider fized plans of an experiment. Namely, the
injected dose U is supposed to be non-random and we let U; = u;, 1 = 0,1,...,n + 1, where
O=up<u <...<Up <Upy; = 1.

On the main problem of the dose-response relationship is to estimate the effective doses
EDygor = F71(\) = x5, 0 < A < 1, by the sample (™. For fixed plans of an experiment, we
shall consider several nonparametric estimator and we shall find their asymptotic (as n — 00)
distributions.

The nonparametric approach to the estimating supposes the presence of kernel functions
K, (x), K4(z), being in fact even compactly supported densities of distributions with the support
on [—1,1], and bandwidth h,., hg, which are smoothing non-random parameters depending on
the sampling size n and converging to zero as n — oo, but nh, — oo, nhy — 00 as n — oo.
We also let Hy(u) = [* Kq(z) da.

To estimate the function F'(z), we shall make use of the following statistics,

1 & T — U;
Fun, (2) = — Y K, (h—) Wi
T i=1 T
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For fixed plans of an experiment in the dose-response relationship, in the present work we
prove the asymptotic normality of the estimator

=g | (PG o
_ %in (A—Fzzr(i/n)> 0

for the effective dose =) that we call the DNP-estimator.
We shall also study the asymptotic behavior of the estimator

Z i, (AT 2)

for ) that was suggested in work [2]. We show that the estimator &, ) has the same limiting
distribution as the estimator Z; ).
We also consider the asymptotic behavior of the estimator

Ty ) = \/SQ,A — b(hy, ha),

where

2i nhe (/M) — 1 1 - 2i A — Fup, (i/n)
= - du==3" "H, (2
SQA nhd / ( hd > " n i—1 n d( hd ’

and b(h,, hy) are some constants depending on h,, hy (see Theorem 4.1). We prove that the
estimator 23 is a consistent estimator for x, and its limiting dispersion is less than the limiting
dispersion of the estimator Z; ), Z2 ..

We observe that in work [3], there was considered the regression model

Yi :m(XZ)+0(XZ)5Z, 1= 1,2,...,7’L, (3)

where {X;, Y}, is a two-dimensional sample of independent identically distributed random
variables, at that, a random variable X; has a density of distribution f(z) > 0 and its values are
located in the segment [0, 1], the random variables ¢; are also supposed to be independent and
identically distributed with expectation 0 and to have the fourth moment (and {e;} ; are inde-
pendent of {X;} ), while the regression function m(x) is supposed to be strictly monotonous.
The estimator m; *()\) of the form (1) for the function m~*()\) was suggested. It was also shown
that the estimator m; ' ()\) is asymptotically normal. To prove the asymptotic normality of the
estimator m; ' (\), in [3] the independence of the variables {&;}"; was employed essentially.
In the relationship dose-response, the variables W, are binary quantities and therefore we can
not employ representation (3). To prove the asymptotic normality, one needs to use another
approach.
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2. MAIN ASSUMPTIONS

Let {X;, ¢ = 1,...,n} be a sequence of independent identically distributed as X on the
segment [0, 1] random variables with the distribution function F(x), P = {ug, w1, ..., Un,Up+1}
be an ordered partition of the segment [0,1], ug =0 < uy; < ... < up <1 = Up4;g.

We formulate the assumptions for the parameters h, and hy.

Assumptions (H).
(Hy)  h.=h.(n), hg = hg(n), and h, — 0, hy — 0,
n— oo

n— oo

but nh, — oo, nhy — 00 as n — oo.
(Hg) hd/hr — 0.

n—oo

(H3) nhd=0(1) asn — oo.

( Hy) nh,ﬂhf/3 — 0.

n—oo
As an example, we consider h, = n~Y?, hy = n~*. It is obvious that these sequences satisfy
Assumptions (H).
We let || K ||> = [*, K2(2) da.
Assumptions for the kernel functions K, (z) and Ky(z).
Assumptions (K).

(Ki) Kya(z) >0, and K4 (r) =0,2 ¢ [—1,1].
( Ks) fll K. (z)dx =1, fll Ky(z)dr = 1.

( Ks) Kr(d)($) = Kr(d)(—a‘:),x € R.

( K4)  On the segment [—1, 1], there exist continuous bounded derivatives of the functions
K, (x), K4(z).

(Ks5) [ Kl zsu§|Kj(x)|:k‘j < oo for j =r,d.
TE

Remark 2.1. Under Assumptions (K), there exist the fourth moments for the distributions
with the densities K, (x), Kq(z) and

v = /xQKr(a:) dx, vi= /xZKd(:c) dx,

= /x4KT(a:) dx, = /:L’4Kd(:c) dx.

Let us define the variation of the function K (cf. [4, p. 234]).
Let K : [a,b] — R. The wvariation of the function KX = K(u) on the segment [a,b] is the
following quantity, \/(K) = V/2(K) = sup 3 | K (up41) — K (ug) |, i.e., the supremum over all
P k=0

ordered partitions P of the segment [a, b]. fhroughout the work we consider the variations of
the functions on the segment [0, 1].

Remark 2.2. The boundedness of the derivatives of the functions K,(x), Kq(x) on the seg-
ment [—1,1] (Assumption K,) imply that their derivatives are bounded (cf. [4, p. 235]), i.e.,
\/(Kd(r)> < 0.
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Assumption (F).

(F;) There exists the third continuous bounded derivative of the density of the distribution
f(z) = F'(z) and f(z) > Cy > 0 for 0 < z < 1, i.e., on the segment [0, 1], the density f(x) is
separated from zero.

Assumption (P).

(Py) Asn— oo,

k
max max ,
k=0,1,...,n

U — —
n

k 1
n n

k 1 k
Assumption (P) yields u, = — + O (—), at that, the sequence n (uk — —> is bounded by
n

n n
a constant C' uniformly in 0 < k < n.
Throughout the work (Main) Assumptions (H), (K), (F), (P) are supposed to hold true.

3. AUXILIARY RESULTS

In this section we provide auxiliary results needed to study the asymptotics for the afore-
mentioned estimators 'y x, T2, 3.

We give first the Koksma-Hlawka inequality (see [B, p. 18]) that allows one to estimate the
rate of the convergence of integral sums to the corresponding integral.

Let B be the Lebesgue o-algebra on I = [0,1] and p is the Lebesgue measure on B. For

P ={ug,u1, ..., Up,upi1} with ug =0<u; <...<wu, <1=uwu,.; and B € B we define
_ A(B:; P
ABP) =Y xaw), Datl: P) = sup | 2 i)
i=1 €

where x () is the indicator function for the set B. We let D (P) = D, (J*, P), where J is a
subset of I of the form [0, u;].
For each bounded function ¢ : R — R we let || ¢ ||; = sup,¢; | ¥(x) |.

Theorem 3.1 ([5], Koksma-Hlawka inequality). If a function f(u) (0 < u < 1) has a
bounded variation \/(f) on [0, 1], then for each 0 < w3 < us < ... < u, <1 we have

%Z Flug) — /0 F(u) du

We give also two lemmata from [5].

<\ (D, .. uy).

Lemma 3.1. If xy,...,2n,Y1,...,Yn € [0,1] satisfy the inequalities |x; — y; | < € for 1 <
1 < n, then
| D (z1, ... xn) — D (Y1, yn) | < e
Remark 3.1. Lemma 3.2 yields that D} (z1, ..., x,) is a continuous function of the variables
(X1, ..., Tp).
Lemma 3.2. I[fO<u; <us <...<wu, <1, then
1

Di(uq,.... u,) = — + max
n(th1, - ) 2n  i<i<n

U; —
2n

2@'—1'

) . 21—1 1 1
Remark 3.2. If u; = l, then — — 2 = — and D} (uq,...,u,) = —.
n n 2n 2n n
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Theorem 3.2 ([0, p. 337], [7, p. 299]). If p(n) — oo as n — oo and
p(n)(T, — ) —2— N(0,72)
n— oo
then ;
() (9(T,) ~ 9(0)) —— N(O0.7(g'(0))"
provided g'(0) exists and is not zero.
In what follows we shall make use of the following auxiliary result.
We consider the function
M 1 F(u) — A
— = —K _—
f=fu) ha d < > )

and let us estimate it variation on [0, 1].

Lemma 3.3. If Main Assumptions hold true, then

V) =0 X0 ) = 01 =0 (1)

where the supremum s taken over all ordered partitions 0 < uy < ug < ... < u; < 1 of the
segment [0, 1].

Proof. Let 0 < uy < ug < ... <y < 1 be an arbitrary ordered partition of the segment [0, 1].

Then
X, (m;)d— A) k, (F(uj};l) - /\)‘ _

j=1  j=la+2  j=l1+2

Ko=) - ()|

1 F(u12+1) —A F<u12+2> —A
K, [ DRty T A e [ 2\ Rr2) T A
T [ ( ha ! ha

where [; and [y are so that

F(Ull) <A— hd, F(ullH) >\ — hd,
F(uiyq1) < A+ ha, F(uiy42) > A+ hg.
Since K4(z) =0 for |z | > 1, the sum Z?:l + Z;ZZQH vanishes and

K, (M) — Ka(—1) + K(©) (M + 1> 0,

F _
where —1 < € < (un41) = A
hq
F - A
In the same way one can show that K, (%) — 0
d n—oo
. F(Uj) — A ..

All the points — i the remaining sum belongs to the segment [—1, 1] and hence

d

1 &
2
J=l+2

X, (F(u;L)Cl— A) k (F(ujhz) - A)‘ _
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=7 Z |Kd Sj Flu ) F(Uj_l) < M(F(ub) — F(u42)) <

J =142 d h?l
oMhy  2M
ST T hy

where &; € [—1,1], |K}(&;)] < M and M is independent of n. The proof is complete.

4. MAIN RESULTS

4.1. Asymptotics for estimator Z; . We represent the statistics 21 as

hy z/n)—u B
$1A—nhdZ/Kd( )du_l‘)\,n—'—Av

where

Tan = nhdeKd< 0 _u) o
o () ()
() (252

The asymptotic behavior of x, , is described in the following lemma.

Lemma 4.1. Asn — oo,
Tan = Ty + agghi + o(h3),
where
vif'(xy)

1
zy=F 7'\, agq= i(F_l)”(A)Vc% == 2F3(zy)

Proof. Employing the Koksma-Hlawka inequality, Lemma 3.4, and Remark 3.2, we obtain

Am = //Kd< ) dudx + O (nzd) =

[ wiwro(L).

0 F(x)—X
hq

%l_’\ —lasz < F7Y(\—hy) <1, then

Since

F~1(A—hq 1 1

Trn = /)dm/le(z)dz+ / dx/K()dHO(nzd)

0 —1 F—l()\—hd) F(z)—X\
ha

99
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The first integral is equal to F' ~1(\ — hy), while in the second we make the change y = %l_)‘

and, bearing in mind that A < F(1) =1, F € C? f(x) > Cy > 0, we obtain

F(l) A

1
Txan = F~ ()\ hd +hd / dy/Kd )\—i-hdy) dZ+O (nh ) =
d

Sr sk h“/ d‘”/ Ka(){(F 7Y () + (F ) (Wyha + O(3)} dz + O (nzd)

Since
/dy/Kd(z) dz =1, /ydy/Kd(z) dz = %1/5 — %,
s ((F7D(t) = (F ) (2) = (¢ = 2)(F)"(@)] < % s ((FH)" (@),
and
- _ 3TN @)?  f(E ()

(F=1)"(x) = - :
(f(F (=) (f(F M)
by the separation of the density from the zero and the boundedness of the derivatives for the
density of distribution we obtain that

sup |(F71)'(t) = (F ) () = (¢ — 2)(F1)"(2)| < C.

t,z€(0,1]
Thus,
Tran = F71(>\ — hd)+

+hy ((Fl)’(k) +(F7 )”(A)hd/lydy/Kd dz+0(h2)) +0 (nzd) -

-1

1
_ —1 ~ 12 —1\n 2 3
=F '\ + 2hd(F )" (A2 + 0 (h +—nhd>

that completes the proof.

Consider the variable A and represent it as

1 1
A - Al +§A2+6A3

Here
A= gy K (B ) (i) = PG
Ay = nihfl ;Ké (%y/n)) (Fon, (i/n) — F(Z/n))Q’

where [ — F(i/n) [ <|F(i/n) = Fun, (i/n)|.
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Lemma 4.2. Asn — oo,

V nhr<A1 - a2,rh?l) i> N<O7g%>7

where
. Vr2 " -1 —1y\/ o fo/(mk)
0, = FEO)E ) = 5L,
G =M= P [ O] = 25

A=K, (%) (Fun (i/) — E(Fo, (i/n))).

__ b —( i/n) i/n)) — F(i/n
Bua= = 30 (FULOZ2Y (s, /)~ PG

Then Ay = Ay + Ay o, and Ay 5 is non-random.
It follows from [8, p. 68] that

SUPIE( Fon, (2) = F(z)) | <

Employing this fact, we obtain

- _”23}:;3 jKd (%) F'(x) da(1+ o(1) + O (nh]fd) -

= / Ka(2)(F™)/ (A + zhg) F"(F (A + zhg)) dz (1 + o(1)) + O (:ﬁ) B

-1

2
= = RAF Y (VF(E T (V) + o(h?).
Let us calculate the variance of A;. We have

D(Al) — D(Al’l) -

_ #W ]Xn; Flu;)(1 - F(uy)) {i K, (%j”) K, (i/”h: “J) }2 -

stgrenren 1 (152)s (52) o)

F(x) —

We make the change z = and apply Koksma-Hlavka inequality. Then

1
D(A h?h /F (1))
0
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1 2
F(z)— A r—y 1 1
/Kd (—hd ) K, ( W ) de + O (ﬁ) dy + O (—nzh%) :
0

Moreover, as n — oo

() e () e
F~

FN) -y
h,

Taking into consideration the latter and making the change t = , we finally get

AWK (1
DA ="mtah, 1 (W) |

Now, to prove the asymptotic normality of A, it is sufficient to prove the asymptotic nor-
mality of Ay ;. In order to do it, we represent A;; as the sum A;; = Z?Zl &, where

gjz—nzfjdh (x(X; < uj) — F(u;) ZKd< ) <Z/"hr )

Let G(u) = F(u) — 4F?(u) + 6F3(u) — 3F*(u). Then

ZlE( ZE@ n8h4h4ZE (X < uy) — F(uy))'x
x{iff%%z”)m(“%—:“f)}?
—W;G(w) jKd(%)Kr(xhruj) d:c+0(%) -

- #/G@ ~ah) /Kd(y)KT(z)(F‘l)’(/\ +hay)dy S dz 4O (n%hg) ~0 (n?%g) |

Since
YU EE EE) Y B - Eg))! 1
2 - 2 = O h ? 07
the sequence Z;;l &, satisfies the assumptions of Lyapunov central limit theorem. This com-
pletes the proof. n

Lemma 4.3. Asn — oo,

1
Ny + Az =
2 3 0(,—nh)
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Proof. First we consider Ay. We have

n

B8 < - > okt (AT B, i) - Pl <
<yl (5| -

=1

Ch4 h}

) /|Kd |dt+0( h2):
(i) = ()

— e = 0 .
hd nhT

Then

Let A(x) = E((Fu, (z) — F(x))3), then
A(z) = E((Fun, (2) — E(Fap, (2)) + E(Fu, (2)) — F(2))*) =
= E((Fun, () = E(Fun, (2)))*) + (B(Fu, (2)) = F(2)))* + 3D (Fun,) - (B(Fu, (7)) — F(2))) =

~ B(Fun (5) ~ B(Fo, ()) 40 (2 22

and these estimates are uniform in z and thus

BN | < 2 /A

E((Fun, () = E(Fu, (2)))*) = B((n ™" Z ni(2))?),

Consider now

where

n(e) = - (X, < 1) — Fla) K, ( - “) |

Then (cf. [9, p. 379])

(™ 3o (0)) = n 2B = T E 2 g (22,

=1

Employing the boundedness of K} (t) and the fact that
- / K3 (

In the same one can show that E(A2), E(A2) converge to zero as n — oo. Hence, by
Chebyshev inequality, we complete the proof. m

)da: M; < o0,

we obtain

Lemmata 4.1-4.3 imply the following theorem.
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Theorem 4.1. Asn — oo,

Vb (314 — 2y — ba(hey ha)) % N(0, g2),

uhere 21 (ay) AT ()
bo(ho, ha) = asgh? + as, b2, ag, = 2L N g = Ydl AT
2o ha) = Gaaha - tarhe,ar = =S5y 24 )
s A=V K, |
92 - 2 :
f2(y)

4.2. Asymptotics for estimators 7,y and 23 ). To study the asymptotics for the estima-
tors T, we represent it as

>
@
>

=
J—l -
>

Tox =

where

n)—u
S2A—$2,\+2A x2/\_nhdz / </—) du,

oot [ (B e ()

Lemma 4.4. Asn — oo,
f'(xy) 1 )
[RENRNECS

Proof. Applying the Koksma-Hlawka inequality, we obtain

m_—//de( ) dudx+0(n2d> _

:2/a;dx / Kaly )dy—|—0<n2d> _

Toy = T35 + hiviTy (— + o(h3).

0 (F(z)=X)/ha
F~=Y(A~hq) 1 1 1
1
=2 / xdx/Kd(y)dy—i—Q / xdz / K()dy—i—O( h)'
nhgq
0 -1 F=1(A~ha) (F(2)=A)/ha
The first integral can be immediately calculated, while in the other we make the change
F(z) — A :

t = ————. It yields

hq

Ton = (F 7'\ = ha))*+
(F(1)=X)/ha

d

-1
2

:{F%M—w YA + (F 1) (1)

5 +o(h§)}2+

1

2 (FY (N F () / dt / Kaly) dy+

-1
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1

st [ ede [ Katw)ay {70000+ [P 0] + o).

t

Since
1

1 1
/dt/Kd(y) dy =1, 2/dt/Kd(y)tdy= vg— 1,
—1 -1

t t
then
won = {(F TN+ (F7Y)'(N)?hg = 2F 1 ()(F =) (M hat
FE TN (E T (R} +2(F 7 (N F T (Mhat
+hi(vg = DF I O){F )" ) + (F7H)' (V) + o(h))-
It completes the proof.
We represent the variable A as the sum A = Ay + %Ag + %Ag, where

M= = 3 (AR L ) - £/,
)

& = F(i/n)| <[F(i/n) = Fan, (i/n)].

Lemma 4.5. Asn — oo,

Vnhe (A — a,.h2) 5 N(0, g3),

h
e a _I/fx,\f’(m\) 2 _ 4)‘(1 — )\)13%\ H K H2
1,r f4<33',\) ) 91 f2(37)\) T '
Proof. Let
1 & F(i/n)— A\ i
M= i 3 K (G ) o )~ B(Fun i)
Mo = g 3 (G2 ) /) Pl
Then A1 = A1’1 + ALQ. -
vih

Taking into consideration that E(F,;, (z) — F(x)) = == f'(z) + o(h?), we obtain

2

E(A) = E(Ay,) = _;;_’]Z ZKd (%j”) %F”@./n)(l T o(1)) =

) _Q:d / K, (%) F () de(1 + (1)) + O (n}fd) =

il /Kd YO 2h)(F~Y O+ 2hag) F"(F~Y(O\ + zhg)) d2(1 + o(1)) + O (

h2

nhd

105
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2h2
= TQ —LETH ) FE T (WF(FHN) + o(hg).
Let us calculate the variance of the variable A;. We have

D(A;) =D(Ay,) =
e oo (S () ()

1 - T — U 1
= o 3o F0)1 = Flu) / K, ( ) K, ( - ) vz +0 (5>

F
Making the change z = (z) and applying again Koksma-Hlawka inequality, we obtain
d
1
1
DA = s [ P~ Fw)dux
0

2

1
F7Y O\ + 2hg) —u\ . 1 1
0
Employing that, as n — oo,

. (E Y (FI)

F=1(\) —
and making the change (}f\) u’ we finally get
1 _ _ 1 A1 = N)z3| K, |? 1
D(Ay) = L=N(FTN)ED O K, = al :
(40) = ML= NETQE YO P40 - ) = S Seh o (o
Taking into the fact 2 in the definition of the statistics 5'2, A, we complete the proof. n

Lemma 4.6. Asn — oo,

1
A A: = .
2 O(Fnhr)

Proof. Bearing in mind that 0 < ¢/n < 1 and reproducing the proof of Lemma 4.3, we obtain
the statement of the lemma. O]

Lemma 4.7. Asn — oo,
Vb (S = 23 = ay (b, ha)h3) % N(0,g3),
where

2 _ Al — /\)% 2

. [E)\f’(l’/\) 1
a1,d = V§ (— f3(x,\) + fQ(x,\)> .
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The proof of this lemma follows the same lines as that of Lemma 4.4 and we omit it.

We represent the estimator 2 5 as the fraction é, where
@

B=xar+N, a= nhdZ/Kd( o /n)—u) du.

We let
M1 = x?\ M2 = Tx.

The representation

5 m B—pm
= — (= p2)+
M2 M2 Ha

+0,((6 — p)(a = p2)) + Op((a — p2))
(see[I0], p. 327]) and the fact that, as n — oo,

A=A
§2_91+92U1 QCOV(E %>N92: (2 )||Kr||2
143 143 po” 13 f2(x)

imply the following theorem.

Theorem 4.2. Asn — oo,

Vnhy (Z25 — 25 — b(he, ha)) > N(0, g°),
where
bi(hy, ha) = aygh? + ay h2,

vy f'(x o f'(z 1
A (x) f3(x) f (:C)\)
In Lemma 4.7 and Theorem 4.2 there appear the quantities a; , and a; 4 involving the deriva-

tives of the inverse function F ~*(\), namely, (F ~1)’()\), (F~!)”()\), which are known. As their
estimators, we suggest the following statistics,

ZK <—”"’" }ZL) A) and ¢ = nh?ZKd <—”’“ f{:‘) A).

Arguing as above, one can show that as n — oo, they converge in probability to (¥ ~17(\) and
(F~1)"()), respectively. Then a consistent estimator for by (h,, hy) is v2h2¢1¢5 + V2h3 (¢, 4 62).

Theorem 4.2 implies that the dispersion of the limiting distribution of the estimator Zs y is
the same as for the estimator Z; 5 and this is why we consider the estimator

Fon = \/Sor — b1 (s ha).
Employing Theorem 3.1, it is easy to obtain the following result.

Theorem 4.3. Asn — oo,

Vnh (i35 — 23) —— N(0,43),

n — 00

where

2 )\(1 — )\)l’,\

_ 2
93 = F2(x) | K |7
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Since 0 < x) < 1, by Theorem 4.3 we conclude that the limiting dispersion of the estimator

I3 is less than that of the estimators ; y and %3 .

The constructed estimator 23 » was employed to find effective doses for the examples borrowed

from book [I] as well as for the Finney’s example, see [L1], p. 98].

N

10

11
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