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ON A NUMBER OF SOLUTIONS IN PROBLEMS

WITH SPECTRAL PARAMETER FOR EQUATIONS

WITH DISCONTINUOUS OPERATORS

D.K. POTAPOV

Abstract. In a real reflexive Banach space we consider a problem on existence of solutions
to a problem with a spectral parameter for equations with discontinuous operators. By
the variational approach we obtain theorems on the number of the solutions to the consi-
dered problems. As an application, we consider main boundary value problems for elliptic
equations with a spectral parameter and discontinuous nonlinearities.
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Introduction. Formulation of problem

General formulation of the eigenvalue problems for nonlinear equations was given in work [1].
In works [1], [2], nonlinear problems with a spectral parameter were studied by topological
methods, in works [3], [4], they were treated in semi-ordered spaces, and in works [5], [6], a
variational method was employed. In all cited works the structure of the set of eigenvalues
for operator equation was studied for continuous mappings. In the present work we consider
nonlinear spectral problems in a general operator formulation without assuming continuity for
the operator. In what follows we shall make use of the following definitions.

Let 𝐸 be a real reflexive Banach space, 𝐸* be the adjoint space for 𝐸. By (𝑧, 𝑥) we denote
the action of a functional 𝑧 ∈ 𝐸* on an element 𝑥 ∈ 𝐸.

Definition 1. A linear operator 𝐴 : 𝐸 → 𝐸* is called self-adjoint if (𝐴𝑥, ℎ) = (𝐴ℎ, 𝑥) for
all 𝑥, ℎ ∈ 𝐸.

Definition 2. A mapping 𝑇 : 𝐸 → 𝐸* is called compact on 𝐸 if it maps bounded sets in 𝐸
into precompact ones in 𝐸*.

Definition 3. A mapping 𝑇 : 𝐸 → 𝐸* is called monotone on 𝐸 if (𝑇𝑥− 𝑇𝑦, 𝑥− 𝑦) ≥ 0 for
all 𝑥, 𝑦 ∈ 𝐸. A mapping 𝑇 : 𝐸 → 𝐸* is called anti-monotone if the mapping −𝑇 is monotone.

Definition 4. A mapping 𝑇 : 𝐸 → 𝐸* is called bounded on 𝐸 if there exists a constant
𝑀 > 0 such that ||𝑇𝑥|| 6 𝑀 for all 𝑥 ∈ 𝐸.

In the present work we consider the equation

𝐴𝑢 = 𝜆𝑇𝑢 (1)

with a parameter 𝜆 > 0. Here 𝐴 is a linear self-adjoint operator acting from 𝐸 into 𝐸*,
𝑇 : 𝐸 → 𝐸* is a discontinuous compact or anti-monotone mapping bounded on 𝐸.
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Works [7], [8] were devoted to the existence of a ray of positive eigenvalues for such equations
with discontinuous operators. The theorems on existence of non-zero solutions to equation
(1) were proven for sufficiently large 𝜆. In works [9], [10], the estimates for the value of the
bifurcation parameter and for the norms of the operator in spectral problems for equations
with discontinuous operators of the form (1) were established. The existence of zero solution of
equation (1) for each 𝜆 is ensured by the assumption 𝑇 (0) = 0. In the present work we consider
the question on the number of solutions to equation (1).

1. General results

As earlier [7]–[10], equation (1) is studied by the variational method. To ensure the ap-
plicability of this approach to equation (1), we suppose in addition that the operator 𝑇 is
quasipotentional.

Definition 5. A mapping 𝑇 : 𝐸 → 𝐸* is called quasipotentional if there exists a functional

𝑓 : 𝐸 → R obeying the identity 𝑓(𝑥 + ℎ) − 𝑓(𝑥) =
1∫︀
0

(𝑇 (𝑥 + 𝑡ℎ), ℎ) 𝑑𝑡 for all 𝑥, ℎ ∈ 𝐸 (the

integral as treated as the Lebesgue one). At that, 𝑓 is called a quasipotential of the operator 𝑇 .

To equation (1) we associate the functional 𝑓𝜆(𝑢) = 1
2
(𝐴𝑢, 𝑢)−𝜆𝑓(𝑢), where 𝑓 is the quasipo-

tential of the operator 𝑇 . In work [11], there were given the sufficient conditions (restrictions
for the points of discontinuity of the operator 𝐹𝜆𝑢 = 𝐴𝑢 − 𝜆𝑇𝑢) such that the minima of the
functional 𝑓𝜆 are solutions to equation (1). Namely, one should assume that the points of
discontinuity of the operator 𝐹𝜆 are regular.

Definition 6. An element 𝑥 ∈ 𝐸 is called a point of discontinuity of an operator 𝑇 : 𝐸 → 𝐸*

if there exists ℎ ∈ 𝐸 such that either lim
𝑡→0

(𝑇 (𝑥 + 𝑡ℎ), ℎ) does not exist or lim
𝑡→0

(𝑇 (𝑥 + 𝑡ℎ), ℎ) ̸=
(𝑇𝑥, ℎ).

Definition 7. An element 𝑥 ∈ 𝐸 is called a regular point of an operator 𝑇 : 𝐸 → 𝐸* if
lim
𝑡→+0

(𝑇 (𝑥 + 𝑡ℎ), ℎ) < 0 for some ℎ ∈ 𝐸.

According to the results of works [7], [8], the following theorems hold true.

Theorem 1. Suppose
1) 𝐴 is a linear self-adjoint operator acting from a real reflexive Banach space 𝐸 into the
adjoint space 𝐸*; the space 𝐸 is represented as the direct sum of closed subspaces 𝐸1 and 𝐸2,
𝐸1 = ker𝐴, and there exists a constant 𝛼 > 0 such that (𝐴𝑢, 𝑢) ≥ 𝛼||𝑢||2 for all 𝑢 ∈ 𝐸2;
2) a mapping 𝑇 is compact or anti-monotone, quasipotentional (with a quasipotential 𝑓), and
bounded on 𝐸, 𝑓(0) = 0 and for some 𝑢0 ∈ 𝐸 the inequality 𝑓(𝑢0) > 0 holds; if 𝐸1 ̸= {0}, it is
assumed in addition that lim

𝑢∈𝐸1,||𝑢||→+∞
𝑓(𝑢) = −∞;

3) if the mapping 𝑇 is compact, it is assumed in addition that lim
𝑡→+0

(𝑇 (𝑢 + 𝑡ℎ) − 𝑇𝑢, ℎ) ≥ 0 for

all 𝑢, ℎ ∈ 𝐸;
4) if the mapping 𝑇 is anti-monotone, it is assumed in addition that each point of discontinuity
for the operator 𝑇 is regular for 𝐹𝜆𝑢 = 𝐴𝑢 − 𝜆𝑇𝑢 when 𝜆 > 𝜆0 > 0 (𝜆0 is a quantity starting
from which the eigenvalue problem is solvable).
Then for each 𝜆 > 𝜆0 equation (1) has at least one non-zero solution.

Note that if we additionally suppose that 𝑇 (0) = 0 under the conditions of Theorem 1, then
for the compact mapping 𝑇 equation (1) has at least two solutions (zero and non-zero) for each
𝜆 > 𝜆0, while if the mapping 𝑇 is anti-monotone, equation (1) has only trivial solution, since
in this case non-zero solutions are impossible.
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A central notion of modern variational theory is the Palais-Smale condition ((PS)-condition)
and its basis is the deformation lemma. Basing on the notion of the Clarke generalized gradient
for locally Lipshitz functions, (PS)-condition and the deformation lemma were modified by
K.C. Chang [12].

Definition 8. A function 𝑓 : 𝐸 → R is called locally Lipshitz if for each 𝑥 ∈ 𝐸 there exists
a neighborhood 𝑈 of the point 𝑥 and a constant 𝐿 > 0 such that |𝑓(𝑢) − 𝑓(𝑣)| 6 𝐿||𝑢− 𝑣|| for
all 𝑢, 𝑣 ∈ 𝑈 .

Definition 9. A generalized derivative in the direction 𝑙 of a locally Lipshitz function 𝑓 at

a point 𝑥 is 𝑓 ∘(𝑥, 𝑙) = lim
𝑧→𝑥,𝑡→+0

𝑓(𝑧+𝑡𝑙)−𝑓(𝑧)
𝑡

, and generalized derivative of 𝑓 at the point 𝑥 is the

set 𝜕𝑓(𝑥) = {𝑦 ∈ 𝐸* : 𝑓 ∘(𝑥, 𝑙) ≥ (𝑦, 𝑙) ∀𝑙 ∈ 𝐸}.

Definition 10. A locally Lipshitz function 𝑓 : 𝐸 → R satisfies (PS)-condition if each se-
quence (𝑥𝑛) ⊂ 𝐸 such that the set (𝑓(𝑥𝑛)) is bounded and 𝑚(𝑥𝑛) = inf

𝑥*∈𝜕𝑓(𝑥𝑛)
||𝑥*|| → 0 as

𝑛 → ∞ contains a convergent sequence, where 𝜕𝑓(𝑥) is the Clarke generalized gradient for 𝑓
at the point 𝑥.

The main result of the present work is the following theorem.

Theorem 2. Let 𝐸 be a real Hilbert space densely and compactly embedded into a real reflex-
ive Banach space 𝐸3, 𝐴 : 𝐸 → 𝐸 be a linear self-adjoint bounded operator, zero be an isolated
point in its spectrum the kernel and negative subspace of the operator 𝐴 be finite-dimensional,
and Conditions 2)–3) of Theorem 1 hold for a mapping 𝑇 : 𝐸3 → 𝐸*

3 , 𝑇 (0) = 0. Then there
exists 𝜆* > 0 such that for each 𝜆 > 𝜆* equation (1) has at least three solutions.

Proof. It is known [13] that if 𝐸 is a Hilbert space, Condition 1) of Theorem 1 holds true once
zero is an isolated point in the spectrum of a non-negative operator 𝐴. In this case there exists
a constant 𝛼 > 0 such that (𝐴𝑢, 𝑢) ≥ 𝛼||𝑢||2 ∀ 𝑢 ∈ 𝐸2 (𝐸1 = ker𝐴, 𝐸2 = 𝐸⊥

1 ). This fact,
the conditions of the theorem, and Theorem 1 imply the existence of 𝜆0 > 0 such that for
each 𝜆 > 𝜆0 equation (1) has at least one non-zero solution, i.e., for some 𝜆* > 0 for each
𝜆 > 𝜆* there exists an element 𝑢𝜆 ∈ 𝐸, 𝑢𝜆 ̸= 0 such that 𝑓𝜆(𝑢𝜆) = inf

𝑣∈𝐸
𝑓𝜆(𝑣) < 0, as it follows

from Theorem 2 in work [7]. Let us show that for 𝜆 > 𝜆* equation (1) has at least one more
non-trivial solution 𝑣𝜆 that can be found by mountain pass theorem [12] if 𝑓𝜆(𝑣𝜆) > 0. To
satisfy the conditions of mountain pass theorem [12], it is sufficient to show that the function
𝑓𝜆 satisfies (PS)-condition for each 𝜆 > 0. In order to do this, it is enough to prove that the
function 𝑓𝜆 is locally Lipshitz on 𝐸 (all other assumptions of Theorem 4.5 in [12] are identical
to ones of this theorem). Indeed, this is true, since 𝐴 is a linear bounded operator and the
function 𝑓 satisfies Lipshitz condition on 𝐸3, since for arbitrary 𝑢, 𝑣 ∈ 𝐸3 we have

|𝑓(𝑢) − 𝑓(𝑣)| = |
1∫︁

0

(𝑇 (𝑣 + 𝑡(𝑢− 𝑣)), 𝑢− 𝑣)𝑑𝑡| 6

1∫︁
0

|(𝑇 (𝑣 + 𝑡(𝑢− 𝑣)), 𝑢− 𝑣)|𝑑𝑡 6 𝑀 ||𝑢− 𝑣||𝐸3 ,

because the mapping 𝑇 is bounded on 𝐸3, 𝑀 > 0 is a constant in the inequality ||𝑇𝑥|| 6 𝑀 ∀𝑥 ∈
𝐸3. Hence, by Theorem 4.5 in [12], the functional 𝑓𝜆 satisfies (PS)-condition for each 𝜆 > 0.
Therefore, the functional 𝑓𝜆 satisfies the conditions of mountain pass theorem [12] and has a
critical point 𝑣𝜆 ∈ 𝐸 (being a solution to equation (1)) such that 𝑓𝜆(𝑣𝜆) = inf

𝛾∈Γ
sup
𝑡∈[0,1]

𝑓𝜆(𝛾(𝑡)) ≥

max{𝑓𝜆(0), 𝑓𝜆(𝑢𝜆)} = 0 (since 𝑓𝜆(0) = 0, 𝑓𝜆(𝑢𝜆) < 0), where Γ = {𝛾 ∈ C([0, 1], 𝐸) : 𝛾(0) =
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0, 𝛾(1) = 𝑢𝜆}. Moreover, by analogy with [7], [14] we can show that 𝑓𝜆(𝑢) > 𝜀 > 0 for
||𝑢|| = 𝑟 > 0 and ||𝑢𝜆|| > 𝑟. Therefore, there exists 𝑣𝜆 ∈ 𝐸 such that 𝑓𝜆(𝑣𝜆) > 0. Hence, for
each 𝜆 > 𝜆* there exists the second non-trivial solution 𝑣𝜆, and for each 𝜆 > 𝜆* equation (1)
has at least three solutions (zero, 𝑢𝜆 ̸= 0, 𝑣𝜆 ̸= 0). We observe that solutions 𝑢𝜆 and 𝑣𝜆 do not
coincide, since 𝑓𝜆(𝑢𝜆) < 0 and 𝑓𝜆(𝑣𝜆) > 0. The proof is complete.

2. Applications

As an application of the obtained results, we consider the question on the existence of solu-
tions to the problem

𝐿𝑢(𝑥) ≡ −
𝑛∑︁

𝑖,𝑗=1

(𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
)𝑥𝑗

+ 𝑐(𝑥)𝑢(𝑥) = 𝜆𝑔(𝑥, 𝑢(𝑥)), 𝑥 ∈ Ω, (2)

𝐵𝑢|Γ = 0, (3)

where 𝜆 is a positive parameter. Here 𝐿 is a uniformly elliptic formally self-adjoint differential
operator in a bounded domain Ω ⊂ R𝑛 with the boundary Γ of class C2,𝛼 (0 < 𝛼 6 1) and
with coefficients 𝑎𝑖𝑗 ∈ C1,𝛼(Ω), 𝑐 ∈ C0,𝛼(Ω). The function 𝑔 : Ω ×R → R is superpositionally
measurable [15] and for almost each 𝑥 ∈ Ω the section 𝑔(𝑥, ·) has only jump discontinuities on R,
𝑔(𝑥, 𝑢) ∈ [𝑔−(𝑥, 𝑢), 𝑔+(𝑥, 𝑢)] ∀ 𝑢 ∈ R, 𝑔−(𝑥, 𝑢) = lim

𝜂→𝑢
𝑔(𝑥, 𝜂), 𝑔+(𝑥, 𝑢) = lim

𝜂→𝑢
𝑔(𝑥, 𝜂). Boundary

condition (3) is either the Dirichlet one 𝑢(𝑥)|Γ = 0, or the Neumann one 𝜕𝑢
𝜕n𝐿

(𝑥)|Γ = 0 with the

conormal derivative 𝜕𝑢
𝜕n𝐿

(𝑥) ≡
𝑛∑︀

𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
cos(n, 𝑥𝑗), where n is the outward normal to Γ and

cos(n, 𝑥𝑗) are direction cosines of the normal n, or the Robin condition 𝜕𝑢
𝜕n𝐿

(𝑥)+𝜎(𝑥)𝑢(𝑥)|Γ = 0,

where the function 𝜎 ∈ C1,𝛼(Γ) is non-negative and does not identically vanish on Γ.
Subject to the type of boundary condition (3), we introduce a space 𝑋. Let 𝑋 = H1

∘(Ω)
if (3) is the Dirichlet condition, and 𝑋 = H1(Ω) if (3) is the Neumann or Robin condition.
To boundary value problem (2)–(3) we associate a functional 𝐽𝜆 defined on 𝑋 as follows:
𝐽𝜆(𝑢) = 𝐽1(𝑢) − 𝜆𝐽2(𝑢), where

𝐽1(𝑢) =
1

2

𝑛∑︁
𝑖,𝑗=1

∫︁
Ω

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
𝑢𝑥𝑗

𝑑𝑥 +
1

2

∫︁
Ω

𝑐(𝑥)𝑢2(𝑥)𝑑𝑥

in the case of the Dirichlet or Neumann condition, and

𝐽1(𝑢) =
1

2

𝑛∑︁
𝑖,𝑗=1

∫︁
Ω

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
𝑢𝑥𝑗

𝑑𝑥 +
1

2

∫︁
Ω

𝑐(𝑥)𝑢2(𝑥)𝑑𝑥 +
1

2

∫︁
Γ

𝜎(𝑠)𝑢2(𝑠)𝑑𝑠

in the case of the Robin condition;

𝐽2(𝑢) =

∫︁
Ω

𝑑𝑥

𝑢(𝑥)∫︁
0

𝑔(𝑥, 𝑠)𝑑𝑠.

Definition 11. Let 𝑓 : R → R. We call 𝑢 ∈ R a jumping discontinuity of the function 𝑓 if
𝑓(𝑢−) < 𝑓(𝑢+), where 𝑓(𝑢±) = lim

𝑠→𝑢±
𝑓(𝑠).

Definition 12. A strong solution to problem (2)–(3) is a function 𝑢 ∈ W2
𝑟(Ω), 𝑟 > 1,

satisfying equation (2) for almost each 𝑥 ∈ Ω and such that the trace 𝐵𝑢(𝑥) on Γ vanishes.

Definition 13. A semi-regular solution to problem (2)–(3) is its strong solution 𝑢 whose
values 𝑢(𝑥) for almost each 𝑥 ∈ Ω are points of continuity of the function 𝑔(𝑥, ·).
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In work [12], Clarke’s variational calculus was applied for locally Lipshitz functions in proving
the existence of strong solutions of the Dirichlet problem for second order elliptic equations with
discontinuous nonlinearity and a variational approach for elliptic boundary value problems with
discontinuous nonlinearities was developed. Semi-regular solutions were not considered in [12].
In works [7], [8], there were obtained sufficient conditions for the existence of a nontrivial
semi-regular solution to problem (2)–(3).

The following theorems hold true.

Theorem 3. Assume
1) 𝐽1(𝑢) ≥ 0 ∀𝑢 ∈ 𝑋;
2) for almost each 𝑥 ∈ Ω the function 𝑔(𝑥, ·) has only jumping discontinuities, 𝑔(𝑥, 0) = 0, and
|𝑔(𝑥, 𝑢)| 6 𝑎(𝑥) ∀𝑢 ∈ R, where 𝑎 ∈ L𝑞(Ω), 𝑞 > 2𝑛

𝑛+2
, is fixed;

3) there exists 𝑢0 ∈ 𝑋 such that 𝐽2(𝑢0) > 0;
4) if the space 𝑁(𝐿) of solutions to the problem{︂

𝐿𝑢 = 0,
𝐵𝑢|Γ = 0

is non-zero (the resonance case), we assume in addition that lim
𝑢∈𝑁(𝐿), ||𝑢||→+∞

𝐽2(𝑢) = −∞.

Then there exists 𝜆* > 0 such that for each 𝜆 > 𝜆* problem (2)–(3) has at least three strong
solutions, and at least one of non-zero solutions is semi-regular.

Theorem 4. Suppose assumptions 1), 3), 4) of Theorem 3 and
1′) for almost each 𝑥 ∈ Ω the function 𝑔(𝑥, ·) is non-increasing on R and for some 𝑎 ∈ L 2𝑛

𝑛+2
(Ω)

the inequality |𝑔(𝑥, 𝑢)| 6 𝑎(𝑥) ∀𝑢 ∈ R holds true;
2′) for almost each 𝑥 ∈ Ω the points of discontinuity of the function 𝑔(𝑥, ·) are located on
the planes 𝑢 = 𝑢𝑖, 𝑖 ∈ 𝐼 (𝐼 is at most countable), and if 𝑔(𝑥, 𝑢𝑖−) > 𝑔(𝑥, 𝑢𝑖+), then
𝑔(𝑥, 𝑢𝑖−)𝑔(𝑥, 𝑢𝑖+) > 0 for each 𝑖 ∈ 𝐼.
Then there exists 𝜆* > 0 such that for each 𝜆 > 𝜆* problem (2)–(3) has at least one non-zero
semi-regular solution.

Proof of Theorems 3, 4. A main condition ensuring the existence of a nontrivial solution to
problem (2)–(3) is Condition 3) of Theorem 3. In works [7], [8], it was shown that under the
conditions of Theorems 3, 4 there exists 𝜆0 > 0 such that for each 𝜆 > 𝜆0 inf

𝑣∈𝑋
𝐽𝜆(𝑣) < 0 and

there exists 𝑢𝜆 ∈ 𝑋 obeying 𝐽𝜆(𝑢𝜆) = inf
𝑣∈𝑋

𝐽𝜆(𝑣) and each such 𝑢𝜆 is a non-zero semi-regular

solution to problem (2)–(3). Thus, there exists 𝜆* > 0 such that for each 𝜆 > 𝜆* there exists
at least one non-zero semi-regular solution 𝑢𝜆 to problem (2)–(3). Theorem 4 is proven.

The existence of the second (trivial) solution to problem (2)–(3) in Theorem 3 is guaranteed
by Condition 2) (𝑔(𝑥, 0) = 0 for almost each 𝑥 ∈ Ω). We note that the operator 𝐴 : 𝑋 → 𝑋
defined by the identity

(𝐴𝑢, 𝑣) =
𝑛∑︁

𝑖,𝑗=1

∫︁
Ω

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
𝑣𝑥𝑗

𝑑𝑥 +

∫︁
Ω

𝑐(𝑥)𝑢(𝑥)𝑣(𝑥)𝑑𝑥 ∀𝑢, 𝑣 ∈ 𝑋

in the case of the Dirichlet or Neumann condition, and by the identity

(𝐴𝑢, 𝑣) =
𝑛∑︁

𝑖,𝑗=1

∫︁
Ω

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
𝑣𝑥𝑗

𝑑𝑥+

∫︁
Ω

𝑐(𝑥)𝑢(𝑥)𝑣(𝑥)𝑑𝑥 +

∫︁
Γ

𝜎(𝑠)𝑢(𝑠)𝑣(𝑠)𝑑𝑠 ∀𝑢, 𝑣 ∈ 𝑋
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in the case of the Robin condition, is self-adjoint, linear, and bounded. The kernel of the
operator 𝐴 coincides with the space 𝑁(𝐿). In accordance with Fredholm theory, the negative
subspace of the operator 𝐴 is finite-dimensional and, moreover, if 𝑁(𝐿) ̸= {0}, then zero is an
isolated point of finite multiplicity in the spectrum of the operator 𝐴 [16]. The Hilbert space 𝑋 is
densely and compactly (by Condition 2) of Theorem 3) embedded into a reflexive Banach space
L𝑝(Ω), 𝑝 = 𝑞

𝑞−1
, 𝑞 > 2𝑛

𝑛+2
[17]. By analogy with [7] we can show that for the compact mapping

𝑇 : L𝑝 → L𝑞 Conditions 2)-3) of Theorem 1 are fulfilled. Hence, the conditions of Theorem 2
hold true. This is why there exists 𝜆* > 0 such that for each 𝜆 > 𝜆* problem (2)–(3) has at
least three solutions. Indeed, applying mountain pass theorem [12], we obtain that for each
𝜆 > 𝜆* there exists also an element 𝑣𝜆 ∈ 𝑋 being a critical point of the functional 𝐽𝜆 such that
𝐽𝜆(𝑣𝜆) > 0 (𝐽𝜆(𝑣𝜆) = inf

𝛾∈Γ
sup
𝑡∈[0,1]

𝐽𝜆(𝛾(𝑡)), where Γ = {𝛾 ∈ C([0, 1], 𝑋) : 𝛾(0) = 0, 𝛾(1) = 𝑢𝜆}).

Thus, under the conditions of Theorem 3, the functional 𝐽𝜆 has at least three different critical
points. Therefore, for each 𝜆 > 𝜆* there exist at least two non-trivial solutions to problem (2)–
(3). The solution 𝑢𝜆 is semi-regular under the aforementioned assumptions for discontinuities
of the nonlinearity [7]. Theorem 3 is proven.

We observe that in work [18] similar theorems on the number of solutions to a one-parametric
family of Dirichlet problems for higher order elliptic equations with discontinuous nonlinearities
were obtained. The proof of these theorems can be also reduced to the checking the conditions
of Theorems 1, 2 of the present work.
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