
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 5. No 2 (2013). P. 131-141.

doi:10.13108/2013-5-2-131 UDC 517.5

COMPLETENESS AND MINIMALITY OF SYSTEMS

OF BESSEL FUNCTIONS

B.V. VYNNYTS’KYI, R.V. KHATS’

Abstract. We find the necessary and sufficient conditions for the completeness and mini-
mality in the space 𝐿2(0; 1) of system (

√
𝑥𝜌𝑘𝐽𝜈(𝑥𝜌𝑘) : 𝑘 ∈ N) generated by Bessel function

of the first kind of index 𝜈 ≥ −1/2. Moreover, we establish a criterion for the completeness
and minimality of system (𝑥−2√𝑥𝜌𝑘𝐽3/2(𝑥𝜌𝑘) : 𝑘 ∈ N) in the space 𝐿2((0; 1);𝑥2𝑑𝑥).
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1. Introduction and preliminaries

Let 𝑝 ∈ [0; +∞), 𝐿2((0; 1);𝑥𝑝𝑑𝑥) be the space of functions 𝑓 : (0; 1) → C such

that 𝑡𝑝/2𝑓(𝑡) ∈ 𝐿2(0; 1) with the inner product ⟨𝑓1; 𝑓2⟩ =
∫︀ 1

0
𝑡𝑝𝑓1(𝑡)𝑓2(𝑡) 𝑑𝑡 and the norm

‖𝑓‖2 :=
∫︀ 1

0
𝑡𝑝|𝑓(𝑡)|2 𝑑𝑡. Let 𝐽𝜈(𝑥) =

∑︀∞
𝑘=0

(−1)𝑘(𝑥/2)𝜈+2𝑘

𝑘!Γ(𝜈+𝑘+1)
be Bessel’s function of the first kind

of index 𝜈. It is known (see [3], [25, p. 345], [32]) that the function 𝐽𝜈 is a solution of the
equation 𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝜈2)𝑦 = 0, i.e. the equation 𝑦′′ + 𝑦′/𝑥 + (1 − 𝜈2/𝑥2)𝑦 = 0, the func-
tion 𝑦(𝑥) = 𝐽𝜈(𝑥𝜌) is a solution of the equation 𝑦′′ + 𝑦′/𝑥 − 𝑦𝜈2/𝑥2 = −𝜌2𝑦, and the function
𝑦(𝑥) =

√
𝑥𝜌𝐽𝜈(𝑥𝜌) satisfies the equation

−𝑦′′ +
𝜈2 − 1/4

𝑥2
𝑦 = 𝜌2𝑦.

The function 𝐽𝜈 for 𝜈 > −1 has (see [3], [25, p. 350], [32]) an infinite set of zeros, among
them positive zeros 𝜌𝑘, 𝑘 ∈ N, and negative zeros 𝜌−𝑘 := −𝜌𝑘, 𝑘 ∈ N. All zeros are simple,
except perhaps, 𝜌0 = 0.

Theorem A. (see [3], [25, p. 357], [32]) Let 𝜈 > −1 and (𝜌𝑘 : 𝑘 ∈ N) be a sequence of positive
zeros of the function 𝐽𝜈. Then the system (

√
𝑥𝐽𝜈(𝑥𝜌𝑘) : 𝑘 ∈ N) is an orthogonal basis in the

space 𝐿2(0; 1).

The system (
√
𝑥𝐽𝜈(𝑥𝜌𝑘) : 𝑘 ∈ N) is also complete in 𝐿2(0; 1) if 𝜌𝑘𝐽

′
𝜈(𝜌𝑘) + 𝛼𝐽𝜈(𝜌𝑘) = 0,

𝛼 + 𝜈 > 0 (see [16, p. 124], [25, pp. 356–357]). From [8] it follows that if 𝜈 > −1/2 and
(𝜌𝑘 : 𝑘 ∈ N) is a sequence of distinct positive numbers such that 𝜌𝑘 ≤ 𝜋(𝑘 + 𝜈/2) for all
sufficiently large 𝑘 ∈ N, then the system (

√
𝑥𝐽𝜈(𝑥𝜌𝑘) : 𝑘 ∈ N) is complete in the space 𝐿2(0; 1).

We say that an entire function 𝐺 is of formal exponential type 𝜎 ∈ (0; +∞) if

|𝐺(𝑧)| ≤ 𝑐(𝜀) exp((𝜎 + 𝜀)|𝑧|), 𝑧 ∈ C,

for each 𝜀 > 0 and some constant 𝑐(𝜀).

c○ Vynnyts’kyi, B.V., Khats’, R.V. 2013.
Submitted January 30, 2012.

131

http://dx.doi.org/10.13108/2013-5-2-131


132 B.V. VYNNYTS’KYI, R.V. KHATS’

Theorem 1. Let 𝜈 ≥ −1/2 and (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of distinct nonzero
complex numbers. For a system (

√
𝑡𝜌𝑘𝐽𝜈(𝑡𝜌𝑘) : 𝑘 ∈ N) to be incomplete in the space 𝐿2(0; 1) it

is necessary and sufficient that a sequence (𝜌𝑘 : 𝑘 ∈ N) is a subsequence of zeros of some even
entire function 𝐺 of formal exponential type 𝜎 ≤ 1 such that the function 𝑓(𝑧) = 𝑧𝜈+1/2𝐺(𝑧)
belongs to the space 𝐿2(R).

The proof by standard methods (see [20, pp. 131–132], [21]) follows immediately from the
following lemmas.

Lemma B. (see [2], [13]) Let 𝜈 ≥ −1/2. A function 𝑓 has the representation

𝑓(𝑧) =

1∫︁
0

√
𝑧𝑡𝐽𝜈(𝑧𝑡)𝛾(𝑡) 𝑑𝑡, 𝛾 ∈ 𝐿2(0; 1),

if and only if 𝑓 ∈ 𝐿2(0; +∞) and 𝑓(𝑧) = 𝑧𝜈+1/2𝐺(𝑧), where 𝐺 is an even entire function of
formal exponential type 𝜎 ≤ 1. Moreover, if 𝑓 ̸≡ 0 then 𝐺 is a transcendental entire function.

Lemma C. (see [11, p. 67], [24]) Let 𝜈 > −1. Then every function 𝑓 ∈ 𝐿2(0; +∞) can be
represented in the form

𝑓(𝑧) =

+∞∫︁
0

√
𝑧𝑡𝐽𝜈(𝑧𝑡)ℎ(𝑡) 𝑑𝑡

with some function ℎ ∈ 𝐿2(0; +∞). Moreover, ‖𝑓‖ = ‖ℎ‖ and

ℎ(𝑡) =

+∞∫︁
0

√
𝑧𝑡𝐽𝜈(𝑧𝑡)𝑓(𝑧) 𝑑𝑧.

A system (𝑒𝑘 : 𝑘 ∈ N0) of the Hilbert space is said to be minimal (see [20, p. 131], [21,
p. 4258], [22]) if for each 𝑛 ∈ N0 the element 𝑒𝑛 does not belong to the closure of the linear
span of the system (𝑒𝑘 : 𝑘 ∈ N0 ∖ {𝑛}). A system is minimal if and only if it has a biorthogonal
system. A complete system has, at most, one biorthogonal system (see [21], [22]).

Similarly to [20, Lecture 18], [21], from Lemmas B, C and Theorem 1, we obtain the following
result.

Theorem 2. Let 𝜈 ≥ −1/2 and (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of distinct nonzero
complex numbers such that 𝜌2𝑘 ̸= 𝜌2𝑚 if 𝑘 ̸= 𝑚. The system (

√
𝑡𝜌𝑘𝐽𝜈(𝑡𝜌𝑘) : 𝑘 ∈ N) is complete

and minimal in the space 𝐿2(0; 1) if and only if the sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘,
is a sequence of zeros of some even entire function 𝐺 of formal exponential type 𝜎 ≤ 1
such that the function 𝑧𝜈+1/2𝐺(𝑧) does not belongs to the space 𝐿2(0; +∞) and the function
(𝑧2 − 𝜌21)

−1𝑧𝜈+1/2𝐺(𝑧) belongs to 𝐿2(0; +∞). Moreover, the biorthogonal system (𝛾𝑘 : 𝑘 ∈ N) is
formed, in particular, by the functions 𝛾𝑘, defined by the equality

𝛾𝑘(𝑡) =
2

𝜌
𝜈−1/2
𝑘 𝐺′(𝜌𝑘)

+∞∫︁
0

√
𝑧𝑡𝐽𝜈(𝑧𝑡)𝑧𝜈+1/2𝐺(𝑧)

𝑧2 − 𝜌2𝑘
𝑑𝑧.

Using methods of [18], [20] and [21], we can obtain a number of other various necessary and
sufficient conditions for the completeness and minimality of system (

√
𝑡𝜌𝑘𝐽𝜈(𝑡𝜌𝑘) : 𝑘 ∈ N) in

the space 𝐿2(0; 1). In particular, following the arguments of [20, Lecture 18], [21, SS1.7, 3.3],
Theorem 1 yields the next statement.
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Theorem 3. Let 𝜈 ≥ −1/2 and (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of distinct nonzero
complex numbers such that |ℑ𝜌𝑘| ≥ 𝛿|𝜌𝑘| for all 𝑘 ∈ N and some 𝛿 > 0. The system
(
√
𝑡𝜌𝑘𝐽𝜈(𝑡𝜌𝑘) : 𝑘 ∈ N) is complete in the space 𝐿2(0; 1) if and only if

∞∑︁
𝑘=1

1

|𝜌𝑘|
= +∞.

At studying of some non-classical boundary-value problems (see [26]–[31]) and generalized
eigenvectors of some linear operators [28], [29] we needed to obtain the analogues of Theorems 1-
3 for weighted spaces and establish an approximation properties of the special finite linear
combinations of Bessel functions. We don’t understand to the end the nature of expected
results for an arbitrary 𝜈 ∈ R. For advance in the given direction it is important to investigate
in details the simplest model cases 𝜈 = −3/2 and 𝜈 = 3/2. The case 𝜈 = −3/2 was considered
in [27], [30] (see also [26], [28], [31]). Here we consider the case 𝜈 = 3/2 more detail. But even
in this case we cannot obtain the all necessary facts. In particular, remains an open one for us
the problem formulated at the end of this paper. In our view, its solution is very important for
the construction of some spectral theory that is based on the notion of a generalized eigenvector
(see [28], [29]).

It is well known (see [3], [25, p. 350], [32]) that
√
𝑧𝐽3/2(𝑧) = −

√︀
2/𝜋𝑧−1(𝑧 cos 𝑧− sin 𝑧). The

function

√
𝑥𝜌𝐽3/2(𝑥𝜌)

𝑥2𝜌2
belongs to the space 𝐿2((0; 1);𝑥2𝑑𝑥) for each 𝜌 ̸= 0. From Theorem A

it follows that if (𝜌𝑘 : 𝑘 ∈ N) is a sequence of positive zeros of the function 𝐽3/2 then the

system (Θ𝑘 : 𝑘 ∈ N), Θ𝑘(𝑥) :=

√
𝑥𝜌𝑘𝐽3/2(𝑥𝜌𝑘)

𝑥2𝜌2𝑘
, is complete in the space 𝐿2((0; 1);𝑥4𝑑𝑥). But

from this statement it does not follows that the system (Θ𝑘 : 𝑘 ∈ N) is complete in the space
𝐿2((0; 1);𝑥2𝑑𝑥). We investigate some approximation properties of the system (Θ𝑘 : 𝑘 ∈ N) in
𝐿2((0; 1);𝑥2𝑑𝑥) with an arbitrary sequence of nonzero complex numbers (𝜌𝑘 : 𝑘 ∈ N). The main
result of the paper is contained in Theorem 9 where is found a criterion for the completeness
and minimality of system (Θ𝑘 : 𝑘 ∈ N) in the space 𝐿2((0; 1);𝑥2𝑑𝑥).

2. Main results

Denote by 𝑃𝑊 2
𝜎 the set of all entire functions of formal exponential type 𝜎 ∈ (0; +∞)

belonging to the space 𝐿2(R) on the real axis R in C, and by 𝑃𝑊 2
𝜎,− we denote the class of odd

entire functions from 𝑃𝑊 2
𝜎 . According to the Paley-Wiener theorem (see [12], [19]–[21]), the

class 𝑃𝑊 2
𝜎 coincides with the class of functions 𝐺 admitting the representation

𝐺(𝑧) =

𝜎∫︁
−𝜎

𝑒𝑖𝑡𝑧𝑔(𝑡) 𝑑𝑡, 𝑔 ∈ 𝐿2(−𝜎;𝜎),

and the class 𝑃𝑊 2
𝜎,− consists of the functions 𝐺 of the form

𝐺(𝑧) =

𝜎∫︁
0

sin(𝑡𝑧)𝑔(𝑡) 𝑑𝑡, 𝑔 ∈ 𝐿2(0;𝜎).

Moreover, ‖𝑔‖𝐿2(0;𝜎) =
√︀

2/𝜋‖𝐺‖𝐿2(0;+∞) and

𝑔(𝑡) =
2

𝜋

+∞∫︁
0

sin(𝑡𝑧)𝐺(𝑧) 𝑑𝑧.
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Theorem 4. An entire function Ω can be represented in the form

Ω(𝑧) =

1∫︁
0

𝑧
√
𝑡𝑧𝐽3/2(𝑡𝑧)ℎ(𝑡) 𝑑𝑡, ℎ ∈ 𝐿2((0; 1);𝑥2𝑑𝑥), (1)

if and only if Ω is an odd entire function, Ω(0) = Ω′(0) = Ω′′(0) = 0 and the function Ω′(𝑧)/𝑧
belongs to the space 𝑃𝑊 2

1,−. If these conditions hold then

ℎ(𝑡) =

√︂
2

𝜋

+∞∫︁
0

Ω′(𝑧)

𝑡𝑧
sin(𝑡𝑧) 𝑑𝑧.

Proof. Let the function Ω is representable in the form (1). Since

𝑧
√
𝑡𝑧𝐽3/2(𝑡𝑧) = −

√︂
2

𝜋

𝑡𝑧 cos(𝑡𝑧) − sin(𝑡𝑧)

𝑡
,

we have

Ω(𝑧) = −
√︂

2

𝜋

1∫︁
0

𝑡𝑧 cos(𝑡𝑧) − sin(𝑡𝑧)

𝑡
ℎ(𝑡) 𝑑𝑡.

Therefore,

Ω′(𝑧) =

√︂
2

𝜋

1∫︁
0

𝑡𝑧 sin(𝑡𝑧)ℎ(𝑡) 𝑑𝑡,
Ω′(𝑧)

𝑧
=

√︂
2

𝜋

1∫︁
0

sin(𝑡𝑧)𝑞(𝑡) 𝑑𝑡,

where 𝑞(𝑡) = 𝑡ℎ(𝑡). Since ℎ ∈ 𝐿2((0; 1);𝑥2𝑑𝑥), we have 𝑞 ∈ 𝐿2(0; 1) and, hence, according to
Paley-Wiener theorem, the function Ω′(𝑧)/𝑧 belongs to the space 𝑃𝑊 2

1,−. Conversely, if all the

conditions of the theorem hold then the function 𝑞(𝑡) =
√︀

2/𝜋
∫︀ +∞
0

Ω′(𝑧)
𝑧

sin(𝑡𝑧) 𝑑𝑧 belongs to

the space 𝐿2(0; 1) and Ω′(𝑧) =
√︀

2/𝜋
∫︀ 1

0
𝑧 sin(𝑡𝑧)𝑞(𝑡) 𝑑𝑡. Using Fubini’s theorem, we get

Ω(𝑧) = Ω(𝑧) − Ω(0) =

√︂
2

𝜋

1∫︁
0

𝑞(𝑡) 𝑑𝑡

𝑧∫︁
0

𝑤 sin(𝑡𝑤) 𝑑𝑤

=

√︂
2

𝜋

1∫︁
0

sin(𝑡𝑧) − 𝑡𝑧 cos(𝑡𝑧)

𝑡

𝑞(𝑡)

𝑡
𝑑𝑡 =

1∫︁
0

𝑧
√
𝑡𝑧𝐽3/2(𝑡𝑧)ℎ(𝑡) 𝑑𝑡,

where ℎ(𝑡) = 𝑞(𝑡)/𝑡. Since 𝑞 ∈ 𝐿2(0; 1), one has that ℎ ∈ 𝐿2((0; 1);𝑥2𝑑𝑥), and the proof of the
theorem is completed.

Let ̃︀𝐸2,− be the class of the entire functions Ω that can be represented in the form (1), and
let 𝐸2,− be the class of nonzero odd entire functions Ω such that Ω(0) = Ω′(0) = Ω′′(0) = 0 and
the function Ω′(𝑧)/𝑧 belongs to the space 𝑃𝑊 2

1,−.

Corollary 1. ̃︀𝐸2,− = 𝐸2,−.

Corollary 2. The class 𝐸2,− coincides with the set of the entire functions Ω that can be
represented in the form

Ω(𝑧) =

√︂
2

𝜋

1∫︁
0

sin(𝑡𝑧) − 𝑡𝑧 cos(𝑡𝑧)

𝑡2
𝑞(𝑡) 𝑑𝑡, 𝑞 ∈ 𝐿2(0; 1). (2)
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Theorem 5. Let (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of distinct nonzero complex numbers
such that 𝜌2𝑘 ̸= 𝜌2𝑛 if 𝑘 ̸= 𝑛. For a system (Θ𝑘 : 𝑘 ∈ N) to be incomplete in the space
𝐿2((0; 1);𝑥2𝑑𝑥) it is necessary and sufficient that a sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘, is
a subsequence of zeros of some nonzero even entire function 𝐺 such that the function Ω(𝑧) =
𝑧3𝐺(𝑧) belongs to the space 𝐸2,−.

Proof. Incompleteness of a system (Θ𝑘 : 𝑘 ∈ N) is equivalent to the incompleteness of the
system (𝜌3𝑘Θ𝑘 : 𝑘 ∈ N). According to the well-known completeness criterion, the last sys-
tem is incomplete in the space 𝐿2((0; 1);𝑥2𝑑𝑥) if and only if there exists a nonzero function
ℎ ∈ 𝐿2((0; 1);𝑥2𝑑𝑥) such that

1∫︁
0

𝜌𝑘
√
𝑥𝜌𝑘𝐽3/2(𝑥𝜌𝑘)ℎ(𝑥) 𝑑𝑥 = 0 (3)

for all 𝑘 ∈ N. If the system (Θ𝑘 : 𝑘 ∈ N) is incomplete, then the function (1) has zeros at
points 𝜌𝑘, belongs to the space 𝐸2,− and Ω(𝑧) ̸≡ 0. Hence, the function 𝐺(𝑧) = 𝑧−3Ω(𝑧) is
required. Conversely, if the sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘, is a subsequence of zeros
of some even nonzero entire function 𝐺 such that the function Ω(𝑧) = 𝑧3𝐺(𝑧) belongs to 𝐸2,−
then, using (1), we obtain (3). The theorem is proved.

Lemma 1. Let an entire function Ω ∈ 𝐸2,− be defined by the formula (2). Then (here and
so on by 𝐶1, 𝐶2, . . . we denote arbitrary positive constants) for all 𝑧 ∈ C, we have

|Ω(𝑧)| ≤ 𝐶1(1 + |𝑧|) 𝑒|ℑ𝑧|√︀
1 + |ℑ𝑧|

+ 𝐶2|𝑧|
(︂
|ℜ𝑧| +

𝑒|ℑ𝑧|

1 + |ℑ𝑧|

)︂1/2

.

Proof. Indeed, let

𝐼1(𝑧) =

√︂
2

𝜋

1/2∫︁
0

sin(𝑡𝑧) − 𝑡𝑧 cos(𝑡𝑧)

𝑡2
𝑞(𝑡) 𝑑𝑡,

𝐼2(𝑧) = −
√︂

2

𝜋

1∫︁
1/2

𝑞(𝑡)

𝑡
cos(𝑡𝑧) 𝑑𝑡, 𝐼3(𝑧) =

√︂
2

𝜋

1∫︁
1/2

𝑞(𝑡)

𝑡2
sin(𝑡𝑧) 𝑑𝑡.

Then Ω(𝑧) = 𝐼1(𝑧) + 𝑧𝐼2(𝑧) + 𝐼3(𝑧). According to the Paley-Wiener theorem, the functions
𝐼2(𝑧) and 𝐼3(𝑧) belong to the space 𝑃𝑊 2

1 ,

𝐼2(𝑧) = −
√︂

2

𝜋

1∫︁
1/2

𝑒𝑖𝑡𝑧
𝑞(𝑡)

2𝑡
𝑑𝑡 +

√︂
2

𝜋

−1/2∫︁
−1

𝑒𝑖𝑡𝑧
𝑞(−𝑡)

2𝑡
𝑑𝑡,

and applying Schwartz’s inequality, we get

|𝐼2(𝑧)| ≤ 𝐶3
𝑒|ℑ𝑧|√︀

1 + |ℑ𝑧|
, 𝑧 ∈ C.

Similarly,

|𝐼3(𝑧)| ≤ 𝐶4
𝑒|ℑ𝑧|√︀

1 + |ℑ𝑧|
, 𝑧 ∈ C.

Finally, since | sin(𝑡𝑧) − 𝑡𝑧 cos(𝑡𝑧)|2 = (sin(𝑡𝑥) − 𝑡𝑥 cos(𝑡𝑥))2 + (sinh(𝑡𝑦) − 𝑡𝑦 cosh(𝑡𝑦))2+
+𝑡2(𝑥2 sinh2(𝑡𝑦) − 𝑦2 sin2(𝑡𝑥)) for any 𝑡 ∈ R and 𝑧 = 𝑥 + 𝑖𝑦 ∈ C, we obtain

1/2∫︁
0

| sin(𝑡𝑧) − 𝑡𝑧 cos(𝑡𝑧)|2

𝑡4
𝑑𝑡 =

1/2∫︁
0

(sin(𝑡𝑥) − 𝑡𝑥 cos(𝑡𝑥))2

𝑡4
𝑑𝑡
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+

1/2∫︁
0

(sinh(𝑡𝑦) − 𝑡𝑦 cosh(𝑡𝑦))2

𝑡4
𝑑𝑡 +

1/2∫︁
0

𝑥2 sinh2(𝑡𝑦) − 𝑦2 sin2(𝑡𝑥)

𝑡2
𝑑𝑡

= 𝑥3

𝑥/2∫︁
0

(sin 𝑡− 𝑡 cos 𝑡)2

𝑡4
𝑑𝑡 + 𝑦3

𝑦/2∫︁
0

(sinh 𝑡− 𝑡 cosh 𝑡)2

𝑡4
𝑑𝑡

+𝑥2𝑦

𝑦/2∫︁
0

sinh2 𝑡

𝑡2
𝑑𝑡− 𝑦2𝑥

𝑥/2∫︁
0

sin2 𝑡

𝑡2
𝑑𝑡.

Therefore, for 𝑧 ∈ C

|𝐼1(𝑧)| ≤ 𝐶5

(︂
|𝑥|3 + |𝑧|2 𝑒|𝑦|

1 + |𝑦|
+ 𝑦2|𝑥|

)︂1/2

= 𝐶5|𝑧|
(︂
|ℜ𝑧| +

𝑒|ℑ𝑧|

1 + |ℑ𝑧|

)︂1/2

.

This completes the proof of the lemma.

Theorem 6. Let (𝜌𝑘 : 𝑘 ∈ N) be a sequence of distinct nonzero complex numbers such that
𝜌2𝑘 ̸= 𝜌2𝑚 if 𝑘 ̸= 𝑚, and let a sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘, be a sequence of zeros
of the some even entire function 𝐺 of finite formal exponential type, for which on the rays
{𝑧 : arg 𝑧 = 𝜙𝑗}, 𝑗 ∈ {1; 2; 3; 4}, 𝜙1 ∈ [0; 𝜋/2), 𝜙2 ∈ [𝜋/2;𝜋), 𝜙3 ∈ (𝜋; 3𝜋/2], 𝜙4 ∈ (3𝜋/2; 2𝜋),
we have

|𝐺(𝑧)| ≥ 𝐶6(1 + |𝑧|)−2 exp(|ℑ𝑧|).
Then the system (Θ𝑘 : 𝑘 ∈ N) is complete in the space 𝐿2((0; 1);𝑥2𝑑𝑥).

Proof. Assume the converse. Then, according to Theorem 5, there exists an entire func-
tion Ω ∈ 𝐸2,− for which the sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}) is a subsequence of zeros. Let
𝑉 (𝑧) = Ω(𝑧)/(𝑧3𝐺(𝑧)). Then 𝑉 is an even entire function of finite exponential type, for which
(see Lemma 1)

|𝑉 (𝑧)| ≤ 𝐶7
1√︀

1 + |ℑ𝑧|
, arg 𝑧 = 𝜙𝑗, 𝑗 ∈ {1; 2; 3; 4}.

Hence, according to the Phragmén-Lindelöf theorem (see [20], [21]), 𝑉 (𝑧) ≡ 0. Therefore,
Ω(𝑧) ≡ 0. This contradiction proves the theorem.

Corollary 3. Let (𝜌𝑘 : 𝑘 ∈ Z), 𝜌−𝑘 := −𝜌𝑘, be a sequence of zeros of the function 𝐽3/2. Then
the system (Θ𝑘 : 𝑘 ∈ N) is complete in the space 𝐿2((0; 1);𝑥2𝑑𝑥).

Proof. Indeed, the sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}) is a sequence of zeros of the entire function
𝐺(𝑧) = 𝑧−3(𝑧 cos 𝑧 − sin 𝑧), and this function satisfies the conditions of Theorem 6. Therefore,
the system (Θ𝑘 : 𝑘 ∈ N) is complete in the space 𝐿2((0; 1);𝑥2𝑑𝑥).

Theorem 7. Let (𝜌𝑘 : 𝑘 ∈ N) be a sequence of distinct nonzero complex numbers such that
𝜌2𝑘 ̸= 𝜌2𝑚 if 𝑘 ̸= 𝑚, and let a sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘, be a sequence of zeros of
the some even entire function 𝐺 of finite formal exponential type such that the function 𝑧3𝐺(𝑧)
does not belongs to the space 𝐸2,− and for which on the rays {𝑧 : arg 𝑧 = 𝜙𝑗}, 𝑗 ∈ {1; 2; 3; 4},
𝜙1 ∈ [0; 𝜋/2), 𝜙2 ∈ [𝜋/2;𝜋), 𝜙3 ∈ (𝜋; 3𝜋/2], 𝜙4 ∈ (3𝜋/2; 2𝜋), the inequality

|𝐺(𝑧)| ≥ 𝐶8(1 + |𝑧|)−2−𝛼 exp(|ℑ𝑧|)

holds, where 𝛼 < 5/2 is a some constant. Then the system (Θ𝑘 : 𝑘 ∈ N) is complete in the
space 𝐿2((0; 1);𝑥2𝑑𝑥).
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Proof. Assume the converse. Then, according to Theorem 5, there exists an entire func-
tion Ω ∈ 𝐸2,− for which the sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}) is a subsequence of zeros. Let
𝑉 (𝑧) = Ω(𝑧)/(𝑧3𝐺(𝑧)). Then 𝑉 is an even entire function of finite formal exponential type, for
which (see Lemma 1)

|𝑉 (𝑧)| ≤ 𝐶9(1 + |𝑧|)𝛼−1/2, arg 𝑧 = 𝜙𝑗, 𝑗 ∈ {1; 2; 3; 4}.

Since 𝛼− 1/2 < 2 and 𝑉 is an even entire function, then, according to the Phragmén-Lindelöf
theorem, the function 𝑉 is a constant. Hence, Ω(𝑧) = 𝐶10𝑧

3𝐺(𝑧). Therefore, Ω /∈ 𝐸2,−. Thus,
we have a contradiction and the proof of the theorem is completed.

Lemma 2. If an odd entire function 𝐿 belongs to the space 𝐸2,− and has a root at a point

𝜌 ̸= 0, then the function ̃︀𝐿(𝑧) = 𝐿(𝑧)/(𝑧2 − 𝜌2) also belongs to 𝐸2,−.

Proof. Indeed, the function ̃︀𝐿 is an odd entire function of formal exponential type 𝜎 ≤ 1,

̃︀𝐿′(𝑧) =
𝐿′(𝑧)(𝑧2 − 𝜌2) − 2𝑧𝐿(𝑧)

(𝑧2 − 𝜌2)2
,

and ̃︀𝐿(0) = ̃︀𝐿′(0) = ̃︀𝐿′′(0) = 0. Besides,̃︀𝐿′(𝑧)

𝑧
=

𝐿′(𝑧)

𝑧(𝑧2 − 𝜌2)
− 2𝐿(𝑧)

(𝑧2 − 𝜌2)2
,

+∞∫︁
1+ℜ𝜌

⃒⃒⃒⃒
𝐿′(𝑥)

𝑥(𝑥2 − 𝜌2)

⃒⃒⃒⃒2
𝑑𝑥 ≤ 𝐶11

+∞∫︁
1+ℜ𝜌

⃒⃒⃒⃒
𝐿′(𝑥)

𝑥

⃒⃒⃒⃒2
𝑑𝑥 < +∞,

and according to Lemma 1

+∞∫︁
1+ℜ𝜌

⃒⃒⃒⃒
𝐿(𝑥)

(𝑥2 − 𝜌2)2

⃒⃒⃒⃒2
𝑑𝑥 ≤ 𝐶12

+∞∫︁
1+ℜ𝜌

⃒⃒⃒⃒
(1 + |𝑥|)3

(𝑥2 − 𝜌2)4

⃒⃒⃒⃒
𝑑𝑥 < +∞.

Hence, the function ̃︀𝐿′(𝑧)/𝑧 belongs to 𝐿2(R). This concludes the proof of the lemma.

Lemma 3. If an odd entire function 𝐿 has zeros at points 𝜌𝑘 ̸= 0, 𝑘 ∈ N, and the function
𝐿(𝑧)/(𝑧2 − 𝜌21) belongs to the space 𝐸2,−, then the functions 𝐿𝑘(𝑧) = 𝐿(𝑧)/(𝑧2 − 𝜌2𝑘) also belong
to 𝐸2,− for every 𝑘 ∈ N ∖ {1}.

Proof. In fact, let 𝑄𝑘(𝑧) = (𝜌2𝑘 − 𝜌21)
𝐿(𝑧)

(𝑧2 − 𝜌2𝑘)(𝑧2 − 𝜌21)
. Then 𝑄𝑘(𝑧) = (𝜌2𝑘 − 𝜌21)

𝐿1(𝑧)

𝑧2 − 𝜌2𝑘
and

𝐿𝑘 = 𝑄𝑘 + 𝐿1. Therefore, taking into account the previous lemma, we obtain the required
proposition.

Theorem 8. Let (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of distinct complex numbers such
that 𝜌2𝑘 ̸= 𝜌2𝑚 if 𝑘 ̸= 𝑚. If the sequence (𝜌𝑘 : 𝑘 ∈ N) is a subsequence of zeros of some even
entire function 𝐺 which has simple roots at all points 𝜌𝑘 and the function 𝑧3(𝑧2 − 𝜌21)

−1𝐺(𝑧)
belongs to 𝐸2,−, then the system (Θ𝑘 : 𝑘 ∈ N) has a biorthogonal system (𝛾𝑘 : 𝑘 ∈ N) in the
space 𝐿2((0; 1);𝑥2𝑑𝑥). The biorthogonal system (𝛾𝑘 : 𝑘 ∈ N) is formed, in particular, by the
functions 𝛾𝑘, defined by the equality

𝛾𝑘(𝑡) =

√︂
2

𝜋

+∞∫︁
0

𝑉 ′
𝑘(𝑧)

𝑡𝑧
sin(𝑡𝑧) 𝑑𝑧, 𝑉𝑘(𝑧) :=

2𝜌𝑘𝑧
3𝐺(𝑧)

𝐺′(𝜌𝑘)(𝑧2 − 𝜌2𝑘)
. (4)



138 B.V. VYNNYTS’KYI, R.V. KHATS’

Proof. In fact, according to Lemma 3, the functions 𝑉𝑘 belong to the space 𝐸2,−. Therefore,
there exist nonzero elements 𝛾𝑘 of the space 𝐿2((0; 1);𝑥2𝑑𝑥) such that

𝑉𝑘(𝑧) =

1∫︁
0

𝑧
√
𝑡𝑧𝐽3/2(𝑡𝑧)𝛾𝑘(𝑡) 𝑑𝑡,

and by Theorem 4 the functions 𝛾𝑘 can be found by (4). Moreover,

𝑉𝑘(𝜌𝑛)

𝜌3𝑛
=

{︂
1, 𝑛 = 𝑘,
0, 𝑛 ̸= 𝑘,

and we obtain the required proposition.

Theorem 9. Let (𝜌𝑘 : 𝑘 ∈ N) be an arbitrary sequence of nonzero complex numbers such
that 𝜌2𝑘 ̸= 𝜌2𝑚 as 𝑘 ̸= 𝑚. The system (Θ𝑘 : 𝑘 ∈ N) is complete and minimal in the space
𝐿2((0; 1);𝑥2𝑑𝑥) if and only if the sequence (𝜌𝑘 : 𝑘 ∈ Z∖{0}), 𝜌−𝑘 := −𝜌𝑘, is a sequence of zeros
of some even entire function 𝐺 such that the function 𝑧3(𝑧2 − 𝜌21)

−1𝐺(𝑧) belongs to the space
𝐸2,− and the function 𝑧3𝐺(𝑧) does not belongs to this space.

Proof. If the considered system is minimal then there exists a nonzero function
𝛾1 ∈ 𝐿2((0; 1);𝑥2𝑑𝑥) such that

1∫︁
0

𝜌𝑘
√
𝑡𝜌𝑘𝐽3/2(𝑡𝜌𝑘)𝛾1(𝑡) 𝑑𝑡 =

{︂
1, 𝑘 = 1,
0, 𝑘 ̸= 1.

Let 𝑇 (𝑧) =
∫︀ 1

0
𝑧
√
𝑡𝑧𝐽3/2(𝑡𝑧)𝛾1(𝑡) 𝑑𝑡. The function 𝐺(𝑧) = 𝑧−3(𝑧2 − 𝜌21)𝑇 (𝑧) is the required,

because the function 𝑇 (𝑧) = 𝑧3(𝑧2 − 𝜌21)
−1𝐺(𝑧) belongs to the space 𝐸2,− and has zeros at all

points 𝜌𝑘, all its zeros are simple and it has no other zeros. Indeed, if 𝜌 is another root of the
function 𝐺, then the function 𝑉 (𝑧) = 𝐺(𝑧)/(𝑧2 − 𝜌2) which has roots at all points 𝜌𝑘, would
belongs to the space 𝐸2,− that, according to Theorem 5, contradicts the completeness of the
considered system. Besides, the function 𝑧3𝐺(𝑧) does not belongs to 𝐸2,−, because otherwise the
system would be incomplete. Conversely, if all the conditions of the theorem hold then, basing
on Theorem 8, we obtain the required proposition. The proof of theorem is thus completed.

Corollary 4. Let (𝜌𝑘 : 𝑘 ∈ Z), 𝜌−𝑘 := −𝜌𝑘, be a sequence of zeros of the function 𝐽3/2. Then
the system (Θ𝑘 : 𝑘 ∈ N) has in the space 𝐿2((0; 1);𝑥2𝑑𝑥) a biorthogonal system (𝛾𝑘 : 𝑘 ∈ N)
which formed by the functions 𝛾𝑘, defined by the formula

𝛾𝑘(𝑡) = 𝜋(1 + 𝜌2𝑘)
√
𝑡𝜌𝑘𝐽3/2(𝑡𝜌𝑘).

This corollary can be proved by standard methods of the theory of Bessel functions
(see [3], [25, p. 347], [32]). However, it can be proved by Theorem 8. In fact, the
sequence (𝜌𝑘 : 𝑘 ∈ Z ∖ {0}), 𝜌−𝑘 := −𝜌𝑘, is a sequence of zeros of even entire function
𝐺(𝑧) = 𝑧−3(𝑧 cos 𝑧 − sin 𝑧). Further, the function 𝑧3𝐺(𝑧) dose not belongs to the space 𝐸2,−
and the function 𝑧3(𝑧2−𝜌21)

−1𝐺(𝑧) belongs to this space. Furthermore, according to Theorem 8,
the system (Θ𝑘 : 𝑘 ∈ N) has in the space 𝐿2((0; 1);𝑥2𝑑𝑥) a biorthogonal system (𝛾𝑘 : 𝑘 ∈ N)
which formed by the functions 𝛾𝑘, defined by the equality (4), where

𝑉𝑘(𝑧) :=
2𝜌𝑘(𝑧 cos 𝑧 − sin 𝑧)

𝐺′(𝜌𝑘)(𝑧2 − 𝜌2𝑘)
, 𝐺′(𝜌𝑘) = −sin 𝜌𝑘

𝜌2𝑘
.

Therefore,

𝛾𝑘(𝑡) = −
√︂

2

𝜋

+∞∫︁
0

𝑉𝑘(𝑧)
𝑡𝑧 cos(𝑡𝑧) − sin(𝑡𝑧)

𝑡𝑧2
𝑑𝑧



COMPLETENESS AND MINIMALITY OF SYSTEMS OF BESSEL FUNCTIONS 139

= −
√︂

2

𝜋

2𝜌𝑘
𝑡𝐺′(𝜌𝑘)

+∞∫︁
0

(𝑧 cos 𝑧 − sin 𝑧)(𝑡𝑧 cos(𝑡𝑧) − sin(𝑡𝑧))

𝑧2(𝑧2 − 𝜌2𝑘)
𝑑𝑧.

Let 𝜂(𝑧; 𝑡) = 𝑡𝑧2𝑒𝑖(1+𝑡)𝑧+𝑡𝑧2𝑒𝑖(1−𝑡)𝑧+𝑖𝑧𝑒𝑖(1+𝑡)𝑧−𝑖𝑧𝑒𝑖(1−𝑡)𝑧+𝑖𝑡𝑧𝑒𝑖(1+𝑡)𝑧+𝑖𝑡𝑧𝑒𝑖(1−𝑡)𝑧−𝑒𝑖(1+𝑡)𝑧+𝑒𝑖(1−𝑡)𝑧.
Then (𝑧 cos 𝑧 − sin 𝑧)(𝑡𝑧 cos(𝑡𝑧) − sin(𝑡𝑧)) = 1

4
(𝜂(𝑧; 𝑡) + 𝜂(−𝑧; 𝑡)). Hence,

𝛾𝑘(𝑡) = − 1√
2𝜋

𝜌𝑘
𝑡𝐺′(𝜌𝑘)

+∞∫︁
−∞

𝜂(𝑧; 𝑡)

𝑧2(𝑧2 − 𝜌2𝑘)
𝑑𝑧

= −
√

2𝜋

𝑡 sin 𝜌𝑘
(𝑡𝜌𝑘 cos(𝑡𝜌𝑘) − sin(𝑡𝜌𝑘))(𝜌𝑘 sin 𝜌𝑘 + cos 𝜌𝑘) = 𝜋(1 + 𝜌2𝑘)

√
𝑡𝜌𝑘𝐽3/2(𝑡𝜌𝑘).

Problem. Let (𝜌𝑘 : 𝑘 ∈ Z), 𝜌−𝑘 := −𝜌𝑘, be a sequence of zeros of the function 𝐽3/2. Since (see
[32], [25, p. 352]) 𝜌𝑘 ∼ 𝜋𝑘 as 𝑘 → ∞ and

‖Θ𝑘‖2‖𝛾𝑘‖2 =
𝜋2(1 + 𝜌2𝑘)2

𝜌6𝑘

𝜌𝑘∫︁
0

|𝑡
√
𝑡𝐽3/2(𝑡)|2 𝑑𝑡

𝜌𝑘∫︁
0

|
√
𝑡𝐽3/2(𝑡)|2

𝑡2
𝑑𝑡

=
𝜋(1 + 𝜌2𝑘)2

3𝜌3𝑘
(1 + 𝑜(1))

⎛⎝ +∞∫︁
0

|
√
𝑡𝐽3/2(𝑡)|2

𝑡2
𝑑𝑡 + 𝑜(1)

⎞⎠ −→ +∞, 𝑘 → ∞,

then the system (Θ𝑘 : 𝑘 ∈ N) is not uniformly minimal (see [21, p. 4258], [22, p. 62]) in the space
𝐿2((0; 1);𝑥2𝑑𝑥) and therefore is not a basis in this space (see [21, p. 4258], [22, p. 62]). However,
it is easy to show that the biorthogonal system (𝛾𝑘 : 𝑘 ∈ N) is complete in 𝐿2((0; 1);𝑥2𝑑𝑥).

Therefore, the numbers 𝑑𝑘 =
∫︀ 1

0
𝑡2𝑓(𝑡)𝛾𝑘(𝑡) 𝑑𝑡 determine the function 𝑓 ∈ 𝐿2((0; 1);𝑥2𝑑𝑥)

uniquely. But the series
∑︀∞

𝑘=1 𝑑𝑘Θ𝑘(𝑥) not for each function 𝑓 ∈ 𝐿2((0; 1);𝑥2𝑑𝑥) converges
in 𝐿2((0; 1);𝑥2𝑑𝑥) to the function 𝑓 . We do not know the methods of restoration of the func-
tion 𝑓 ∈ 𝐿2((0; 1);𝑥2𝑑𝑥) by numbers 𝑑𝑘 and, in particular, whether the given series converges
in 𝐿2((0; 1);𝑥2𝑑𝑥) to 𝑓 in the sense of Cesàro.

Similar problems are studied in [1], [4]–[7], [9], [10], [14], [15], [23], [32, Ch. XVIII], [33] and
for exponential systems in [17], [18], [21], but we cannot use these results.
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3. H. Bateman, A. Erdélyi. Higher transcendental functions. Vol. 2. McGraw-Hill, New York-Toronto-
London. 1953.

4. A. Benedek, R. Panzone. Mean convergence of series of Bessel functions // Rev. Un. Mat. Ar-
gentina. 1972. V. 26, No. 1. P. 42-61.

5. A. Benedek, R. Panzone. On mean convergence of Fourier-Bessel series of negative order // Stud.
Appl. Math. 1971. V. 4, No. 3. P. 281-292.

6. A. Benedek, R. Panzone. Pointwise convergence of series of Bessel functions // Rev. Un. Mat.
Argentina. 1972. V. 26, No. 3. P. 167-186.

7. J.J. Betancor, K. Stempak. Relating multipliers and transplantation for Fourier-Bessel expansions
and Hankel transform // Tohoku Math. J. 2001. V. 53, No. 1. P. 109-129.

8. R.P. Boas, H. Pollard. Complete sets of Bessel and Legendre functions // Ann. of Math. 1947. V.
48, No. 2. P. 366-384.



140 B.V. VYNNYTS’KYI, R.V. KHATS’
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15. J.J. Guadalupe, M. Pérez, F.J. Ruiz, J.L. Varona. Two notes on convergence and divergence a.e.

of Fourier series with respect to some orthogonal systems // Proc. Amer. Math. Soc. 1992. V. 116,
No. 2. P. 457-464.

16. J.R. Higgins. Completeness and basis properties of sets of special functions. Cambridge University
Press, Cambridge. 1977.

17. K.P. Isaev, R.S. Yulmukhametov. Unconditional exponential bases in Hilbert spaces // Ufa Math.
J. 2011. V. 3, No. 1. P. 3-15.

18. B.N. Khabibullin. Completeness of exponential systems and uniqueness sets, Bashkir State Uni-
versity Press, Ufa, 2008. (in Russian)

19. P. Koosis. Introduction to 𝐻𝑝 spaces. Cambridge University Press, Cambridge. 1998.
20. B.Ya. Levin. Lectures on entire functions. Transl. Math. Monogr. V. 150. Amer. Math. Soc.,

Providence, RI. 1996.
21. A.M. Sedletskii. Analytic Fourier transforms and exponential approximations. I, II // J. Math.

Sci. 2005. V. 129, No. 6. P. 4251-4408; 2005. V. 130, No. 6. P. 5083-5255.
22. I. Singer. Bases in Banach Spaces. V. 1. Springer-Verlag, Berlin. 1970.
23. K. Stempak. On convergence and divergence of Fourier-Bessel series. Electron. Trans. Numer.

Anal. 2002. V. 14. P. 223-235.
24. E.C. Titchmarsh. Introduction to the theory of Fourier integrals, Second edition. Clarendon Press,

Oxford. 1948.
25. V.S. Vladimirov. Equations of mathematical physics. Nauka, Moscow. 1981. [Marcel Dekker, Inc.,

New York. 1971.]
26. B.V. Vynnyts’kyi, V.M. Dilnyi. On some analogues of Paley-Wiener theorem and one boundary

value problem for Bessel operator. in Proc. of Int. Conf. on complex analysis in memory of A.A.
Gol’dberg, Lviv, Ukraine, May 31 – June 5, 2010, pp. 63-64.

27. B.V. Vynnyts’kyi, R.V. Khats’. Some approximation properties of the systems of Bessel functions
of index −3/2 // Mat. Stud. 2010. V. 34, No. 2. P. 152-159.

28. B.V. Vynnyts’kyi, R.V. Khats’. Approximation properties of Bessel functions and a generaliza-
tion of the notion of eigenvector. in: Proc. of Int. Conf. on complex analysis in memory of A.A.
Gol’dberg, Lviv, Ukraine, May 31 – June 5, 2010, pp. 64-65.

29. B.V. Vynnyts’kyi, R.V. Khats’. A generalization of the notion of eigenvector. in: Proc. of Int.
Conf. “Modern problems of analysis”, Chernivtsi, Ukraine, September 30 – October 3, 2010, pp.
51-52. (in Ukrainian)

30. B.V. Vynnyts’kyi, O.V. Shavala. Boundedness of solutions of a second-order linear differential
equation and a boundary value problem for Bessel’s equation // Mat. Stud. 2008. V. 30, No. 1. P.
31-41. (in Ukrainian)

31. B.V. Vynnyts’kyi, O.V. Shavala. On completeness of the system (cos(𝜌𝑛𝑥) + 𝜌𝑛𝑥 sin(𝜌𝑛𝑥)) and a
boundary value problem for Bessel operator, in: Proc. of Int. Conf. ”Analysis and topology”, Lviv,
Ukraine, May 26 – June 7, 2008, pp. 54-55.

32. G.N. Watson. A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge.
1944.

33. G.M. Wing. The mean convergence of orthogonal series // Amer. J. Math. 1950. V. 72, No. 4. P.
792-808.



COMPLETENESS AND MINIMALITY OF SYSTEMS OF BESSEL FUNCTIONS 141

Bohdan V. Vynnyts’kyi,
Institute of Physics, Mathematics and Informatics,
Ivan Franko Drohobych State Pedagogical University,
3 Stryiska Str.,
82100 Drohobych, Ukraine
E-mail: vynnytskyi@ukr.net

Ruslan V. Khats’,
Institute of Physics, Mathematics and Informatics,
Ivan Franko Drohobych State Pedagogical University,
3 Stryiska Str.,
82100 Drohobych, Ukraine
E-mail: khats@ukr.net


	to1. Introduction and preliminaries
	to2. Main results
	 References

