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ON GROWTH CHARACTERISTICS OF OPERATOR-VALUED

FUNCTIONS

S.N. MISHIN

Abstract. In the work we generalize Liouville theorem and the concept of order and
type of entire function to the case of an operator-valued function with values in the space
Lec(H1,H) of all linear continuous operators acting from a locally convex space H1 to a
locally convex space H with an equicontinuous bornology. We find the formulae expressing
the order and type of an operator-valued function in terms of the characteristics for the
sequence of the coefficients. Some properties of the order and type of an operator-valued
function are established.

Keywords: locally convex space, order and type of sequence of operators, order and type
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Introduction

It is known [3, 4] that if an entire scalar function 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑎𝑛𝑧
𝑛 is not a polynomial, the

maximum of its modulus 𝑀𝑓 (𝑟) = max
|𝑧|≤𝑟

|𝑓(𝑧)| grows faster than any positive power of 𝑟 as

𝑟 → ∞ (Liouville theorem). To estimate the growth of such functions, one usually uses the
characteristics (order and type),

𝜌 = lim
𝑟→∞

ln ln𝑀𝑓 (𝑟)

ln 𝑟
, 𝜎 = lim

𝑟→∞

ln𝑀𝑓 (𝑟)

𝑟𝜌
. (1)

At that, the formulae expressing these characteristics in terms of the coefficients

𝜌 = lim
𝑛→∞

𝑛 ln𝑛

− ln |𝑎𝑛|
, (𝜌𝑒𝜎)

1
𝜌 = lim

𝑛→∞
𝑛

1
𝜌 𝑛
√︀

|𝑎𝑛| (2)

are known. This work is devoted to the generalization of these formulae and the Liouville

theorem for the case of an entire operator-valued function 𝐹 (𝑡) =
∞∑︀
𝑛=0

𝐴𝑛𝑡
𝑛 with the values in

the space Lec(H1,H) of all linear continuous operators acting from a locally convex space H1

into a locally convex space H. The spaces H1 and H are in general not normable.

1. Entire operator-valued functions and analogue to Liouville theorem

H1 and H are separable locally convex spaces over the field of complex numbers with the
topologies defined respectively by the multinorms {‖ · ‖′𝑞}, 𝑞 ∈ 𝒬 and {‖ · ‖𝑝}, 𝑝 ∈ 𝒫 . Without
loss of generality one can regard the multinorms in H1 and H as majorant [2]. By 𝒜 = {𝐴𝑛}∞𝑛=0

we denote a sequence of linear continuous operators acting from the locally convex space H1
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into the locally convex space H. The sequence 𝒜 is called as having an order [1, 5], if there
exists a sequence of positive numbers {𝑐𝑛}∞𝑛=0 such that

∀𝑝 ∈ 𝒫 ∃𝐶𝑝 > 0 ∃𝑞(𝑝) ∈ 𝒬 ∀𝑥 ∈ H1 ∀𝑛 ∈ N : ‖𝑐𝑛𝐴𝑛(𝑥)‖𝑝 ≤ 𝐶𝑝‖𝑥‖′𝑞, (3)

i.e., the family of the operators {𝑐𝑛𝐴𝑛} is equicontinuous.
Let

𝜃𝒜(𝑝, 𝑞, 𝑛) = sup
‖𝑥‖′𝑞 ̸=0

{︂
‖𝐴𝑛(𝑥)‖𝑝
‖𝑥‖′𝑞

}︂
, 𝑛 = 0, 1, 2, · · ·

(the case 𝜃𝒜(𝑝, 𝑞, 𝑛) = +∞ is not excluded). We denote

𝛽𝑝,𝑞(𝒜) = lim
𝑛→∞

ln 𝜃𝒜(𝑝, 𝑞, 𝑛)

𝑛 ln𝑛
.

Definition 1. The number 𝛽𝑝(𝒜) = inf
𝑞∈𝒬

𝛽𝑝,𝑞(𝒜), (𝑝 ∈ 𝒫) is called a 𝑝-order of the sequence

of the operators 𝒜, and the number 𝛽(𝒜) = sup
𝑝∈𝒫

{𝛽𝑝(𝒜)} is called its order.

If 𝛽(𝒜) = ±∞ and at that the sequence 𝒜 has an order, then it is called a sequence of an
infinite order.

Remark. Let us note that there is an essential difference between the sequences having an
order 𝛽(𝒜) = +∞, and that having no order (despite formally 𝛽(𝒜) = +∞). If 𝛽(𝒜) = +∞,
but the sequence 𝒜 = {𝐴𝑛} has an order, it is possible to select a sequence of positive numbers
{𝑐𝑛} such that condition (3) holds. And one can not select such a sequence for the sequences
having no order.

If a sequence of operators 𝒜 has a 𝑝-order 𝛽𝑝(𝒜) ̸= ±∞, one introduces for it a finer
characteristics. Denote

𝛼𝑝,𝑞(𝒜) = lim
𝑛→∞

𝑛−𝛽𝑝(𝒜) 𝑛
√︀
𝜃𝒜(𝑝, 𝑞, 𝑛).

Definition 2. The number 𝛼𝑝(𝒜) = inf
𝑞∈𝒬

𝛼𝑝,𝑞(𝒜), (𝑝 ∈ 𝒫) is called a 𝑝-type of a sequence of

operators 𝒜 at the 𝑝-order 𝛽𝑝(𝒜).

It is obvious that 𝛽𝑝(𝒜) ≤ 𝛽(𝒜), ∀𝑝. It is possible to show [7] that the case when the identity
𝛽𝑝(𝒜) = 𝛽(𝒜) is valid not for all 𝑝, but just for some 𝑝, is reduced to the case 𝛽𝑝(𝒜) = 𝛽(𝒜),
∀𝑝 by replacing the multinorm to an equivalent one. This replacement changes neither the
order no the type of a sequence of operators. This is why (without loss of generality) we shall
consider two cases, either 𝛽𝑝(𝒜) = 𝛽(𝒜), ∀𝑝, or 𝛽𝑝(𝒜) < 𝛽(𝒜), ∀𝑝.

Definition 3. Let a sequence of operators 𝒜 has the 𝑝-orders 𝛽𝑝(𝒜) and the order 𝛽(𝒜) ̸=
±∞. The number

𝛼(𝒜) =

{︃
sup
𝑝∈𝒫

{𝛼𝑝(𝒜)} , 𝛽𝑝(𝒜) = 𝛽(𝒜), ∀𝑝

0 , 𝛽𝑝(𝒜) < 𝛽(𝒜), ∀𝑝
is called a type of the sequence of operators 𝒜 at the order 𝛽(𝒜).

A sequence of operators 𝒜 is called belonging to the class LH1,H[𝑏, 𝑎], (cf. [1, 5]) if its order
is less than 𝑏 or equal to 𝑏, but then the type does not exceed 𝑎.

Let H be a complete space. It is known [8] that in this case the space Lec(H1,H) of linear
continuous operators acting from H1 into H equipped with an equicontinuous bornology is a
complete bornological vector convex space.

Definition 4. An operator-valued function 𝐹 : C → Lec(H1,H) is called differentiable at a
point 𝑡0 ∈ C if there exists a limit (w.r.t. the bornology of the space Lec(H1,H))

lim
𝑡→𝑡0

𝐹 (𝑡) − 𝐹 (𝑡0)

𝑡− 𝑡0
. (4)
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This limit is called a derivative of the operator-valued function 𝐹 at the point 𝑡0 and is indicated
by 𝐹 ′(𝑡0).

Definition 5. An operator-valued function 𝐹 : C → Lec(H1,H) is called entire if its defined
and differentiable at each point 𝑡 ∈ C.

An entire operator-valued function is obviously continuous everywhere
(︀
w.r.t. the bornology

of the space Lec(H1,H)
)︀
.

Let

𝜃𝐹 (𝑝, 𝑞, 𝑡) = sup
‖𝑥‖′𝑞 ̸=0

{︂
‖𝐹 (𝑡)(𝑥)‖𝑝

‖𝑥‖′𝑞

}︂
, 𝑡 ∈ C

(the case 𝜃𝐹 (𝑝, 𝑞, 𝑡) = +∞ is not excluded).

Theorem 1. An entire operator-valued function 𝐹 (𝑡) is bounded on each closed disk, i.e.,
the family of the operators {𝐹 (𝑡)}|𝑡|≤𝑟 is equicontinuous for each 𝑟 > 0.

Proof. We fix an arbitrary 𝑟 > 0. Suppose the function 𝐹 (𝑡) is entire, and the family {𝐹 (𝑡)}|𝑡|≤𝑟

is not equicontinuous, i.e., there exists 𝑝0 ∈ 𝒫 such that for each 𝐶 > 0 and for each 𝑞 ∈ 𝒬
there exists 𝑡𝐶 = 𝑡𝐶(𝑞) such that |𝑡𝐶 | ≤ 𝑟 and 𝜃𝐹 (𝑝0, 𝑞, 𝑡𝐶) > 𝐶. We fix an arbitrary 𝑞 ∈ 𝒬 and
take 𝐶 = 𝑛, 𝑛 ∈ N. We obtain then a sequence of complex numbers 𝑡𝑛 = 𝑡𝑛(𝑞) lying within the
disk |𝑡| ≤ 𝑟. At that,

𝜃𝐹 (𝑝0, 𝑞, 𝑡𝑛) > 𝑛, ∀𝑛. (5)

By the boundedness of the sequence {𝑡𝑛} there exists a converging subsequence {𝑡𝑛𝑘
}. It

follows from (5) that 𝜃𝐹 (𝑝0, 𝑞, 𝑡𝑛𝑘
) > 𝑛𝑘, ∀𝑘, i.e., the sequence {𝐹 (𝑡𝑛𝑘

)} is not equicontinuous
and thus diverges. But by the continuity of the function 𝐹 it must converges. We obtain the
contradiction.

If the function 𝐹 (𝑡) is entire, then for each fixed 𝑥 ∈ H1, 𝐹 (𝑡)(𝑥) is an entire function with
values in H. Such function is represented as a power series [9]

𝐹 (𝑡)(𝑥) =
∞∑︁
𝑛=0

𝑥𝑛𝑡
𝑛, 𝑥 ∈ H1, {𝑥𝑛} ⊂ H

(the sequence {𝑥𝑛} depends on 𝑥). We let

𝑀𝐹 (𝑝, 𝑞, 𝑟) = sup
|𝑡|≤𝑟

𝜃𝐹 (𝑝, 𝑞, 𝑡).

We define a sequence of operators 𝐴𝑛 : H1 → H as follows, 𝐴𝑛(𝑥) = 𝑥𝑛, ∀𝑥 ∈ H1. We obtain
the expansion of the function 𝐹 (𝑡) as a power series

𝐹 (𝑡) =
∞∑︁
𝑛=0

𝐴𝑛𝑡
𝑛. (6)

At that, series (6) everywhere pointwise converges to the function 𝐹 (𝑡)
(︀
for each fixed 𝑥 ∈ H1

the series
∞∑︀
𝑛=0

𝐴𝑛(𝑥)𝑡𝑛 converges to the function 𝐹 (𝑡)(𝑥) everywhere
)︀
. Let us show that

{𝐴𝑛} ⊂ Lec(H1,H) and series (6) converges everywhere to the function 𝐹 (𝑡) w.r.t. the bornol-
ogy. First we prove the following theorem.

Theorem 2 (Analogue of Cauchy inequalty). The inequality

𝜃𝒜(𝑝, 𝑞, 𝑛) ≤ 𝑀𝐹 (𝑝, 𝑞, 𝑟)

𝑟𝑛
, ∀𝑝 ∀𝑞 ∀𝑛 ∀𝑟 > 0 (7)

holds true.



ON GROWTH CHARACTERISTICS OF OPERATOR-VALUED FUNCTIONS 115

Proof. Let 𝑝 ∈ 𝒫 , 𝑞 ∈ 𝒬, 𝑟 > 0. If 𝑀𝐹 (𝑝, 𝑞, 𝑟) = ∞, then inequality (7) holds true. Let

𝑀𝐹 (𝑝, 𝑞, 𝑟) < ∞. Since for each fixed 𝑥 the vector-function 𝐹 (𝑡)(𝑥) =
∞∑︀
𝑛=0

𝐴𝑛(𝑥)𝑡𝑛 is entire,

then (see, for instance, [9])

𝐴𝑛(𝑥) =
1

2𝜋𝑖

∫︁
|𝜉|=𝑟

𝐹 (𝜉)(𝑥)𝑑𝜉

𝜉𝑛+1
, 𝑛 ∈ N.

Hence, ∀𝑝 ∈ 𝒫 ∀𝑥 ∈ H1 ∀𝑟 > 0 ∀𝑛 ∈ N we have

‖𝐴𝑛(𝑥)‖𝑝 ≤
sup
|𝜉|≤𝑟

‖𝐹 (𝜉)(𝑥)‖𝑝

𝑟𝑛
≤

sup
|𝜉|≤𝑟

𝜃𝐹 (𝑝, 𝑞, 𝜉)

𝑟𝑛
‖𝑥‖′𝑞 =

𝑀𝐹 (𝑝, 𝑞, 𝑟)

𝑟𝑛
‖𝑥‖′𝑞

that yields inequality (7).

Since the function 𝐹 (𝑡) is entire, by Theorem 1 for each 𝑟 > 0 the family {𝐹 (𝑡)}|𝑡|≤𝑟 is
equicontinuous, i.e.,

∀𝑝 ∈ 𝒫 ∃𝐶𝑝 > 0 ∃𝑞𝑝 ∈ 𝒬 ∀𝑥 ∈ H1 ∀𝑡 |𝑡| ≤ 𝑟 ⇒ ‖𝐹 (𝑡)(𝑥)‖𝑝 ≤ 𝐶𝑝‖𝑥‖′𝑞𝑝 .
For each 𝑝 we choose 𝑞0 = 𝑞0(𝑝) such that ‖𝑥‖′𝑞0 ≥ ‖𝑥‖′𝑞𝑝 , ∀𝑥 ∈ H1 (it is always possible since

the multinorm is majorant). Then

𝜃𝐹 (𝑝, 𝑞0, 𝑡) = sup
‖𝑥‖′𝑞0 ̸=0

{︂
‖𝐹 (𝑡)(𝑥)‖𝑝

‖𝑥‖′𝑞0

}︂
≤ sup

‖𝑥‖′𝑞0 ̸=0

{︂
𝐶𝑝‖𝑥‖′𝑞𝑝
‖𝑥‖′𝑞0

}︂
= 𝐶𝑝(𝑞0), |𝑡| ≤ 𝑟.

Thus, for each 𝑟 > 0 and each 𝑝 ∈ 𝒫 there exists 𝑞0 ∈ 𝒬 such that 𝜃𝐹 (𝑝, 𝑞0, 𝑡) (as functions of
𝑡) are bounded in the disk |𝑡| ≤ 𝑟. And it means that

∀𝑟 ∀𝑝 ∃𝑞0(𝑝, 𝑟) : 𝑀𝐹 (𝑝, 𝑞0, 𝑟) < ∞.

Hence, by Theorem 2,

lim
𝑛→∞

𝑛
√︀

𝜃𝒜(𝑝, 𝑞0, 𝑛) ≤ 1

𝑟
, 𝑟 > 0. (8)

It follows from (8) that either 𝛽𝑝(𝒜) < 0 or 𝛽𝑝(𝒜) = 0, but then by the arbitrariness of 𝑟

𝛼𝑝(𝒜) = inf
𝑞∈𝒬

lim
𝑛→∞

𝑛
√︀
𝜃𝒜(𝑝, 𝑞, 𝑛) = 0.

Thus, the sequence {𝐴𝑛} belongs to the class LH1,H[0, 0] and therefore series (6) everywhere
converges to the function 𝐹 (𝑡) w.r.t. bornology (see [1, 5]).

Theorem 3 (Analogue of Liouville theorem). Suppose function (6) is entire and satisfies
the condition

∃𝑘 ∀𝑝 ∃𝐾𝑝 > 0 ∃𝑞(𝑝) ∀𝑟 > 0 : 𝑀𝐹 (𝑝, 𝑞, 𝑟) ≤ 𝐾𝑝𝑟
𝑘. (9)

Then 𝐹 is an operator-valued polynomial of degree at most 𝑘, i.e.,

𝐹 (𝑡) =

[𝑘]∑︁
𝑛=0

𝐴𝑛𝑡
𝑛.

Proof. By inequalities (7), (9) and the definition of the numbers 𝜃𝒜(𝑝, 𝑞, 𝑛) we have

‖𝐴𝑛(𝑥)‖𝑝 ≤ 𝜃𝒜(𝑝, 𝑞, 𝑛)‖𝑥‖′𝑞 ≤ 𝐾𝑝𝑟
𝑘−𝑛‖𝑥‖′𝑞, ∀𝑝 ∀𝑥 ∈ H1 ∀𝑟 > 0 ∀𝑛, 𝑞 = 𝑞(𝑝).

By the arbitrariness of 𝑟,

‖𝐴𝑛(𝑥)‖𝑝 = 0, ∀𝑛 > 𝑘 ∀𝑝 ∀𝑥 ∈ H1,

thus, 𝐴𝑛 = 0, ∀𝑛 > 𝑘.

Theorem 3 shows that if 𝐹 is an entire transcendental function, then the quantities 𝑀𝐹 (𝑝, 𝑞, 𝑟)
grows faster than any positive power as 𝑟 → ∞.
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2. Growth characteristics for entire function and formulae for their
calculation

Definition 6. Let 𝐹 : C → Lec(H1,H) be an entire transcendental function. The number
𝜌𝑝(𝐹 ) = inf

𝑞∈𝒬
𝜌𝑝,𝑞(𝐹 ), where

𝜌𝑝,𝑞(𝐹 ) = lim
𝑟→∞

ln ln𝑀𝐹 (𝑝, 𝑞, 𝑟)

ln 𝑟

will be called a 𝑝-order of the function 𝐹, and the number 𝜌(𝐹 ) = sup
𝑝∈𝒫

{𝜌𝑝(𝐹 )} will be called its

order.
If 0 < 𝜌𝑝(𝐹 ) < ∞, the number 𝜎𝑝(𝐹 ) = inf

𝑞∈𝒬
𝜎𝑝,𝑞(𝐹 ), where

𝜎𝑝,𝑞(𝐹 ) = lim
𝑟→∞

ln𝑀𝐹 (𝑝, 𝑞, 𝑟)

𝑟𝜌𝑝(𝐹 )
,

will be called a 𝑝-type of the function 𝑓 at 𝑝-order 𝜌(𝐹 ).

It can be shown that the case when for some 𝑝, 𝜌𝑝(𝐹 ) < 𝜌(𝐹 ), while for other 𝜌𝑝(𝐹 ) = 𝜌(𝐹 ), is
reduced to the case 𝜌𝑝(𝐹 ) = 𝜌(𝐹 ), ∀𝑝 by the replacement of the multinorm to an equivalent one.
This is why (without loss of generality) we shall consider two cases, either 𝜌𝑝(𝐹 ) < 𝜌(𝐹 ), ∀𝑝,
or 𝜌𝑝(𝐹 ) = 𝜌(𝐹 ), ∀𝑝.

Definition 7. Suppose a function 𝐹 (𝑡) has 𝑝-orders 𝜌𝑝(𝐹 ) and order 0 < 𝜌(𝐹 ) < ∞. The
number

𝜎(𝐹 ) =

{︃
0 , 𝜌𝑝(𝐹 ) < 𝜌(𝐹 ), ∀𝑝

sup
𝑝∈𝒫

{𝜎𝑝(𝐹 )} , 𝜌𝑝(𝐹 ) = 𝜌(𝐹 ), ∀𝑝

will be called a type of the function 𝑓 at the order 𝜌(𝐹 ).

Lemma 1. Suppose

∀𝑝 ∃𝑞𝑝 ∃𝑎𝑝, 𝑏𝑝 > 0 ∃𝑟0(𝑝) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) < 𝑒𝑎𝑝𝑟
𝑏𝑝
. (10)

Then

∀𝑝 ∃𝑛0(𝑝) ∀𝑛 > 𝑛0 : 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︂
𝑎𝑝𝑏𝑝𝑒

𝑛

)︂ 1
𝑏𝑝

. (11)

Proof. Suppose inequality (10) holds true, then by (7) we have

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <
𝑒𝑎𝑝𝑟

𝑏𝑝

𝑟𝑛
; ∀𝑝 ∀𝑟 > 𝑟0(𝑝) ∀𝑛. (12)

We denote 𝜇𝑝(𝑟) = 𝑒𝑎𝑝𝑟
𝑘𝑝
𝑟−𝑛. It is obvious that

∀𝑝 : 𝜇𝑝(0) = 𝜇𝑝(+∞) = +∞.

Let us find min
𝑟>0

{𝜇𝑝(𝑟)},

𝜇′
𝑝(𝑟) = 𝜇𝑝(𝑟) ln′ 𝜇𝑝(𝑟)

𝜇′
𝑝(𝑟) = 𝜇𝑝(𝑟)

(︀
𝑎𝑝𝑟

𝑏𝑝 − 𝑛 ln 𝑟
)︀′

𝜇′
𝑝(𝑟) = 𝜇𝑝(𝑟)

(︁
𝑎𝑝𝑏𝑝𝑟

𝑏𝑝−1 − 𝑛

𝑟

)︁
𝜇′
𝑝(𝑟) = 0 as 𝑟 = 𝑟1 =

(︁
𝑛

𝑎𝑝𝑏𝑝

)︁ 1
𝑏𝑝
. Substituting 𝑟1 in inequality (12), we obtain (11).
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Lemma 2. Suppose

∀𝑝 ∃𝑞𝑝 ∃𝑎𝑝, 𝑏𝑝 > 0 ∃𝑛0(𝑝) ∀𝑛 > 𝑛0 : 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︂
𝑎𝑝𝑏𝑝𝑒

𝑛

)︂ 1
𝑏𝑝

. (13)

Then
∀𝑝 ∀𝜀 > 0 ∃𝑟0(𝑝, 𝜀) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) < 𝑒(𝑎𝑝+𝜀)𝑟𝑏𝑝 . (14)

Proof. By condition (13) 𝒜 ∈ LH1,H[0, 0], thus, 𝐹 is an entire operator-valued function. Let us
fix an arbitrary 𝑝 (and fix by this depending on it 𝑞𝑝, 𝑎𝑝, 𝑏𝑝) and consider the inequality

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 <

(︃(︂
𝑎𝑝𝑏𝑝𝑒

𝑛

)︂ 1
𝑏𝑝

𝑟

)︃𝑛

.

For sufficiently large 𝑛 (︂
𝑎𝑝𝑏𝑝𝑒

𝑛

)︂ 1
𝑏𝑝

𝑟 <
1

2
. (15)

By 𝑁𝑝(𝑟) we denote the lowest of natural numbers 𝑛 for which inequality (15) holds true.
Let us find the dependence of 𝑁𝑝(𝑟) on 𝑟. We have

2𝑟

(︂
𝑎𝑝𝑏𝑝𝑒

𝑛

)︂ 1
𝑏𝑝

< 1, as 𝑛 > (2𝑟)𝑏𝑝(𝑎𝑝𝑏𝑝𝑒).

Therefore, we can let 𝑁𝑝(𝑟) =
[︀
(2𝑟)𝑏𝑝(𝑎𝑝𝑏𝑝𝑒)

]︀
+ 1.

Further, for each fixed 𝑝 ∈ 𝒫 , 𝑡 ∈ C and 𝑥 ∈ H1 we have

‖𝐹 (𝑡)(𝑥)‖𝑝 ≤
∞∑︁
𝑛=0

‖𝐴𝑛(𝑥)‖𝑝 |𝑡|
𝑛 ≤

∞∑︁
𝑛=0

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)|𝑡|𝑛‖𝑥‖′𝑞𝑝 ,

hence,

𝜃𝐹 (𝑝, 𝑞𝑝, 𝑡) ≤
∞∑︁
𝑛=0

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)|𝑡|𝑛,

i.e.,

∀𝑝 ∀𝑟 > 0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) ≤
∞∑︁
𝑛=0

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 =

𝑁𝑝(𝑟)−1∑︁
𝑛=0

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 +
∞∑︁

𝑛=𝑁𝑝(𝑟)

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛.

For 𝑛 ≥ 𝑁𝑝(𝑟) the inequality 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 <
(︀
1
2

)︀𝑛
holds true and hence

∞∑︁
𝑛=𝑁𝑝(𝑟)

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 <

∞∑︁
𝑛=𝑁𝑝(𝑟)

(︂
1

2

)︂𝑛

<

∞∑︁
𝑛=0

(︂
1

2

)︂𝑛

= 2.

Since for each fixed 𝑝 and 𝑟
lim
𝑛→∞

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 = 0,

the sequence {𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛} has a maximal term. Let

𝑚𝑝(𝑟) = max
𝑛≥0

{𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛},

then
𝑁𝑝(𝑟)−1∑︁

𝑛=0

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)𝑟𝑛 ≤ 𝑚𝑝(𝑟)𝑁𝑝(𝑟).

Let us estimate 𝑚𝑝(𝑟). Let 𝜃𝒜(𝑝, 𝑞𝑝, 𝑠)𝑟
𝑠 be a maximal term. Under an unbound increasing of

𝑟 the index 𝑠 of maximal term increases unboundedly as well, i.e., 𝑠 → ∞ as 𝑟 → ∞. If 𝑟 is
sufficiently large, then 𝑠 > 𝑛0, where 𝑛0 is a number in (13).
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This is why

𝑚𝑝(𝑟) = 𝜃𝒜(𝑝, 𝑞𝑝, 𝑠)𝑟
𝑠 <

(︂
𝑎𝑝𝑏𝑝𝑒

𝑠

)︂ 𝑠
𝑏𝑝

𝑟𝑠 ≤ max
𝜉≥0

{︃(︂
𝑎𝑝𝑏𝑝𝑒

𝜉

)︂ 𝜉
𝑏𝑝

𝑟𝜉

}︃
.

We denote

𝜈𝑝(𝜉) =

(︂
𝑎𝑝𝑏𝑝𝑒

𝜉

)︂ 𝜉
𝑏𝑝

𝑟𝜉.

Clearly,

∀𝑝 : 𝜈𝑝(0) = 1, 𝜈𝑝(+∞) = 0.

Let us find max
𝜉≥0

{𝜈𝑝(𝜉)}. We have

𝜈 ′
𝑝(𝜉) = 𝜈𝑝(𝜉)

(︂
ln(𝑎𝑝𝑏𝑝𝑒)

𝑏𝑝
− ln 𝜉

𝑏𝑝
− 1

𝑏𝑝
+ ln 𝑟

)︂
.

𝜈 ′
𝑝(𝜉) = 0 as 𝜉 = 𝜉1 = (𝑎𝑝𝑏𝑝)𝑟

𝑏𝑝 .

𝜈𝑝(𝜉1) = 𝑒𝑎𝑝𝑟
𝑏𝑝
.

Therefore (for sufficiently large 𝑟), 𝑚𝑝(𝑟) < 𝑒𝑎𝑝𝑟
𝑏𝑝
.

Thus,

𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) ≤ 𝑁𝑝(𝑟)𝑚𝑝(𝑟) + 2 ≤ ((2𝑟)𝑏𝑝(𝑎𝑝𝑏𝑝𝑒) + 1)𝑒𝑎𝑝𝑟
𝑏𝑝

+ 2 < 𝑒(𝑎𝑝+𝜀)𝑟𝑏𝑝 .

Theorem 4. The growth characteristics of function (6) are calculated by the formulae

𝜌𝑝(𝐹 ) = − 1

𝛽𝑝(𝒜)
, ∀𝑝, (16)

𝜎𝑝(𝐹 ) = −𝛽𝑝(𝒜)

𝑒
(𝛼𝑝(𝒜))

− 1
𝛽𝑝(𝒜) , ∀𝑝, (17)

𝜌(𝐹 ) = − 1

𝛽(𝒜)
, (18)

𝜎(𝐹 ) =

{︂
0 , 𝛽𝑝(𝒜) < 𝛽(𝒜), ∀𝑝

−𝛽(𝒜)
𝑒

(𝛼(𝒜))−
1

𝛽(𝒜) , 𝛽𝑝(𝒜) = 𝛽(𝒜), ∀𝑝.
(19)

Proof. We fix an arbitrary 𝑝. Suppose the 𝑝-order of the function 𝐹 equals 𝜌𝑝(𝐹 ). Then

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑟0(𝑝, 𝜀) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) ≤ exp
{︀
𝑟𝜌𝑝(𝐹 )+𝜀

}︀
.

By Lemma 1 (𝑏𝑝 = 𝜌𝑝(𝐹 ) + 𝜀, 𝑎𝑝 = 1)

𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︂
(𝜌𝑝(𝐹 ) + 𝜀) 𝑒

𝑛

)︂ 1
𝜌𝑝(𝐹 )+𝜀

, ∀𝑛 > 𝑛0.

By this we successively find

1

𝑛
ln 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︂
1

𝜌𝑝(𝐹 ) + 𝜀

)︂
ln
(︀

(𝜌𝑝(𝐹 ) + 𝜀) 𝑒
)︀
− ln𝑛

𝜌𝑝(𝐹 ) + 𝜀
= 𝐶𝑝(𝜀) −

ln𝑛

𝜌𝑝(𝐹 ) + 𝜀
,

ln 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) < 𝐶𝑝(𝜀)𝑛− 𝑛 ln𝑛

𝜌𝑝(𝐹 ) + 𝜀
,

ln
1

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)
>

𝑛 ln𝑛

𝜌𝑝(𝐹 ) + 𝜀
− 𝐶𝑝(𝜀)𝑛 = 𝑛 ln𝑛

(︂
1

𝜌𝑝(𝐹 ) + 𝜀
− 𝐶𝑝(𝜀)

ln𝑛

)︂
, ∀𝑛 > 𝑛0. (20)
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As 𝑛 → ∞, the expression in parentheses in (20) tends to 1
𝜌𝑝(𝐹 )+𝜀

, and for large 𝑛

ln
1

𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)
>

𝑛 ln𝑛

𝜌𝑝(𝐹 ) + 2𝜀
,

i.e.,

𝜌𝑝(𝐹 ) + 2𝜀 >
𝑛 ln𝑛

− ln 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)
.

By the arbitrariness of 𝜀,

− 1

𝛽𝑝,𝑞𝑝(𝒜)
= lim

𝑛→∞

𝑛 ln𝑛

− ln 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)
≤ 𝜌𝑝(𝐹 ).

Since 𝛽𝑝(𝒜) = inf
𝑞
{𝛽𝑝,𝑞(𝒜)}, then

− 1

𝛽𝑝(𝒜)
≤ − 1

𝛽𝑝,𝑞𝑝(𝒜)
≤ 𝜌𝑝(𝐹 ).

Hence, 𝜌𝑝(𝐹 ) ≥ − 1
𝛽𝑝(𝒜)

, ∀𝑝.
Vice-versa, since

− 1

𝛽𝑝,𝑞(𝒜)
= lim

𝑛→∞

𝑛 ln𝑛

− ln 𝜃𝒜(𝑝, 𝑞, 𝑛)
,

then
𝑛 ln𝑛

− ln 𝜃𝒜(𝑝, 𝑞, 𝑛)
< − 1

𝛽𝑝,𝑞(𝒜)
+

𝜀

2
, ∀𝑝 ∀𝜀 > 0 ∀𝑞 ∀𝑛 > 𝑛0(𝑝, 𝑞, 𝜀).

And since 𝛽𝑝(𝒜) = inf
𝑞
{𝛽𝑝,𝑞(𝒜)}, then

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) : − 1

𝛽𝑝,𝑞𝑝(𝒜)
≤ − 1

𝛽𝑝(𝒜)
+

𝜀

2
.

Thus,

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑛0(𝑝, 𝜀) ∀𝑛 > 𝑛0 :
𝑛 ln𝑛

− ln 𝜃𝒜(𝑝, 𝑞𝑝, 𝑛)
< − 1

𝛽𝑝(𝒜)
+ 𝜀,

therefore,

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑛0(𝑝, 𝜀) ∀𝑛 > 𝑛0 : 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) < 𝑛

− 1

− 1
𝛽𝑝(𝒜)

+𝜀
.

By Lemma 2

(︂
𝑏𝑝 = − 1

𝛽𝑝(𝒜)
+ 𝜀, 𝑎𝑝 = 1

𝑒
(︁
− 1

𝛽𝑝(𝒜)
+𝜀

)︁
)︂

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑟0(𝑝, 𝜀) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) ≤ exp

{︂
(𝑎𝑝 + 𝜀)𝑟

(︁
− 1

𝛽𝑝(𝒜)
+𝜀

)︁}︂
.

It means that 𝜌𝑝(𝐹 ) ≤ − 1
𝛽𝑝(𝒜)

, ∀𝑝.
Thus, identity (16) is proven. Identity (18) follows immediately from (16).
Let us prove identity (17).
Suppose the function 𝐹 has the 𝑝-order 0 < 𝜌𝑝(𝐹 ) < ∞ and the 𝑝-type 𝜎𝑝(𝐹 ). Then

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑟0(𝑝, 𝜀) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) < exp
{︀

(𝜎𝑝(𝐹 ) + 𝜀)𝑟𝜌𝑝(𝐹 )
}︀
.

By Lemma 1
(︀
𝑎𝑝 = 𝜎𝑝(𝐹 ) + 𝜀, 𝑏𝑝 = 𝜌𝑝(𝐹 )

)︀
we have

𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︂
(𝜎𝑝(𝐹 ) + 𝜀) 𝜌𝑝(𝐹 )𝑒

𝑛

)︂ 1
𝜌𝑝(𝐹 )

, ∀𝑛 > 𝑛0,

𝑛
1

𝜌𝑝(𝐹 ) 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) <

(︀
(𝜎𝑝(𝐹 ) + 𝜀) 𝜌𝑝(𝐹 )𝑒

)︀ 1
𝜌𝑝(𝐹 ) , ∀𝑛 > 𝑛0.
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By the arbitrariness of 𝜀

𝛼𝑝,𝑞𝑝(𝒜) = lim
𝑛→∞

𝑛−𝛽𝑝(𝒜) 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) =

= lim
𝑛→∞

𝑛
1

𝜌𝑝(𝐹 ) 𝑛

√︁
𝜃𝒜(𝑝, 𝑞𝑝, 𝑛) ≤ (𝜎𝑝(𝐹 )𝜌𝑝(𝐹 )𝑒)

1
𝜌𝑝(𝐹 )

Since 𝛼𝑝(𝒜) = inf
𝑞
{𝛼𝑝,𝑞(𝒜)}, then

𝛼𝑝(𝒜) ≤ 𝛼𝑝,𝑞𝑝(𝒜) ≤ (𝜎𝑝(𝐹 )𝜌𝑝(𝐹 )𝑒)
1

𝜌𝑝(𝐹 ) , ∀𝑝.

Vice-versa, since

𝛼𝑝,𝑞(𝒜) = lim
𝑛→∞

𝑛−𝛽𝑝(𝒜) 𝑛
√︀
𝜃𝒜(𝑝, 𝑞, 𝑛) = lim

𝑛→∞
𝑛

1
𝜌𝑝(𝐹 ) 𝑛

√︀
𝜃𝒜(𝑝, 𝑞, 𝑛), ∀𝑝, ∀𝑞,

then

∀𝜀 > 0 ∀𝑝 ∃𝑞(𝑝, 𝜀) ∃𝑛0(𝑝, 𝜀) ∀𝑛 > 𝑛0,

𝑛
√︀

𝜃𝒜(𝑝, 𝑞, 𝑛) <

(︂
(𝛼𝑝,𝑞(𝒜) + 𝜀)𝜌𝑝(𝐹 )

𝑛

)︂ 1
𝜌𝑝(𝐹 )

<

(︂
(𝛼𝑝(𝒜) + 2𝜀)𝜌𝑝(𝐹 )

𝑛

)︂ 1
𝜌𝑝(𝐹 )

.

By Lemma 2
(︁
𝑏𝑝 = 𝜌𝑝(𝐹 ), 𝑎𝑝 = (𝛼𝑝(𝒜)+2𝜀)𝜌𝑝(𝐹 )

𝜌𝑝(𝐹 )𝑒

)︁
we obtain

∀𝑝 ∀𝜀 > 0 ∃𝑞𝑝(𝜀) ∃𝑟0(𝑝, 𝜀) ∀𝑟 > 𝑟0 : 𝑀𝐹 (𝑝, 𝑞𝑝, 𝑟) < exp
{︀

(𝑎𝑝 + 𝜀)𝑟𝜌𝑝(𝐹 )
}︀
.

It implies

𝜎𝑝(𝐹 ) ≤ 𝑎𝑝 =
(𝛼𝑝(𝒜) + 2𝜀)𝜌𝑝(𝐹 )

𝜌𝑝(𝐹 )𝑒
.

By the arbitrariness of 𝜀

𝜎𝑝(𝐹 )𝜌𝑝(𝐹 )𝑒 ≤ (𝛼𝑝(𝒜))𝜌𝑝(𝐹 ),

therefore,

𝛼𝑝(𝒜) ≥ (𝜎𝑝(𝐹 )𝜌𝑝(𝐹 )𝑒)
1

𝜌𝑝(𝐹 ) ,

i.e.,

𝜎𝑝(𝐹 ) = −𝛽𝑝(𝒜)

𝑒
(𝛼𝑝(𝒜))

− 1
𝛽𝑝(𝒜) , ∀𝑝.

Hence, identity (17) is proven.
Let us prove identity (19).
If 𝛽𝑝(𝒜) < 𝛽(𝒜), ∀𝑝, from identity (16) it follows 𝜌𝑝(𝐹 ) < 𝜌(𝐹 ), ∀𝑝 and by the definition

𝜎(𝐹 ) = 0.
If 𝛽𝑝(𝒜) = 𝛽(𝒜), ∀𝑝, identity (16) yields 𝜌𝑝(𝐹 ) = 𝜌(𝐹 ), ∀𝑝 and by the definition

𝜎(𝐹 ) = sup
𝑝
{𝜎𝑝(𝐹 )} = −𝛽(𝒜)

𝑒
sup
𝑝
{(𝛼𝑝(𝒜))−

1
𝛽(𝒜)} = −𝛽(𝒜)

𝑒
(𝛼(𝒜))−

1
𝛽(𝒜) .

Remark. We observe that relation (16) is true also for 𝜌𝑝(𝐹 ) = ∞. If we suppose 𝜌𝑝(𝐹 ) =
∞ and 𝛽𝑝(𝒜) < 0, by (above proven) 𝜌𝑝(𝐹 ) < ∞ that is false. Similarly, identity (17) holds
also for 𝜎𝑝(𝐹 ) = ∞.

Remark. Formulae (16) and (17) show that 𝑝-orders and 𝑝-type of an entire operator-valued
function are completely determined by the characteristics of the sequence of its coefficients.

Examples.
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1. Let H1 = H = H(C) be the space of all entire functions with the topology of uniform
convergence on the compacts

‖𝑥(𝑧)‖𝑝 = max
|𝑧|≤𝑝

|𝑥(𝑧)|, 𝑝 > 0.

Let us find the characteristics of the function

𝐹 (𝑡) = 𝑒𝑡
𝑑
𝑑𝑧 =

∞∑︁
𝑛=0

𝑡𝑛

𝑛!

𝑑𝑛

𝑑𝑧𝑛
: C → Lec(H(C)).

The sequence 𝒜 =
{︀

1
𝑛!

𝑑𝑛

𝑑𝑧𝑛

}︀
has the following characteristics [1],

𝛽𝑝(𝒜) = 𝛼𝑝(𝒜) = 0, ∀𝑝.
Therefore, 𝜌𝑝(𝐹 ) = ∞, ∀𝑝.

2. Let H1 = [𝜌, 𝜎], H = [𝜌, 𝜃], 𝜃 ≥ 𝜎. The topologies on these spaces are determined by the
multinorms

‖𝑥(𝑧)‖𝜀 = sup
𝑝>0

{︂
max
|𝑧|≤𝑝

|𝑥(𝑧)|𝑒−(𝜎+𝜀)𝑝𝜌
}︂
, 𝜀 > 0, 𝑥 ∈ [𝜌, 𝜎].

‖𝑦(𝑧)‖𝜀 = sup
𝑝>0

{︂
max
|𝑧|≤𝑝

|𝑦(𝑧)|𝑒−(𝜃+𝜀)𝑝𝜌
}︂
, 𝜀 > 0, 𝑦 ∈ [𝜌, 𝜃].

Let us find the characteristics of the function

𝐹 (𝑡) = 𝑒𝑡
𝑑
𝑑𝑧 =

∞∑︁
𝑛=0

𝑡𝑛

𝑛!

𝑑𝑛

𝑑𝑧𝑛
: C → Lec([𝜌, 𝜎], [𝜌, 𝜃]).

The sequence 𝒜 =
{︀

1
𝑛!

𝑑𝑛

𝑑𝑧𝑛

}︀
has the following characteristics [1]:

𝛽𝜀(𝒜) = −1

𝜌
, 𝛼𝜀(𝒜) = (𝜌𝑒𝜎Ω𝜀)

1
𝜌 , ∀𝜀,

where

Ω𝜀 =

{︃ (︁
1 −

(︀
𝜎

𝜃+𝜀

)︀ 1
𝜌−1

)︁1−𝜌

, 𝜌 > 1

1 , 𝜌 ≤ 1

Therefore,
𝜌𝜀(𝐹 ) = 𝜌, 𝜎𝜀(𝐹 ) = 𝜎Ω𝜀, ∀𝜀.

3. Let H1 = H = H(C) be the space of all entire functions with the topology of uniform
convergence on the compacts

‖𝑥(𝑧)‖𝑝 = max
|𝑧|≤𝑝

|𝑥(𝑧)|, 𝑝 > 0.

Let us find the characteristics of the function

𝐹 (𝑡)(𝑥) = 𝑥(𝑧) + 𝑡

𝑧∫︁
0

𝑒(𝑧−𝜉)𝑡𝑥(𝜉)𝑑𝜉 =

= 𝑥(𝑧) + 𝑡

∞∑︁
𝑛=0

𝑧∫︁
0

(𝑧 − 𝜉)𝑛𝑡𝑛

𝑛!
𝑥(𝜉)𝑑𝜉,

𝐹 (𝑡) : C → Lec(H(C)).

Here

𝐴𝑛(𝑥) =

𝑧∫︁
0

(𝑧 − 𝜉)𝑛−1

(𝑛− 1)!
𝑥(𝜉)𝑑𝜉, 𝑛 = 1, 2, . . . , 𝐴0 = 𝐸.
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The sequence 𝒜 = {𝐴𝑛} has the following characteristics [1],

𝛽𝑝(𝒜) = −1, 𝛼𝑝(𝒜) = 𝑝, ∀𝑝.

Therefore, 𝜌𝑝(𝐹 ) = 1, 𝜎𝑝(𝐹 ) =
𝑝
𝑒 , ∀𝑝.

3. Properties of growth characteristics for operator-valued functions

Let us note certain properties of the growth characteristics for operator-valued functions
implied by Theorem 4.

10. Entire function 𝐹 and its 𝑘th derivative 𝐹 (𝑘) has the same 𝑝-orders and 𝑝-types of growth.

The validity follows from the fact the sequences {𝐴𝑛} and
{︁

(𝑛+𝑘)!
𝑛!

𝐴𝑛+𝑘

}︁
has the same char-

acteristics for each fixed 𝑘.
20. If a function 𝐹1 has the 𝑝-orders 𝜌𝑝(𝐹1) and the 𝑝-types 𝜎𝑝(𝐹1), and a function 𝐹2 has the

𝑝-orders 𝜌𝑝(𝐹2) > 𝜌𝑝(𝐹1), ∀𝑝 and the 𝑝-types 𝜎𝑝(𝐹2), the function 𝐹 = 𝐹1 +𝐹2 has the 𝑝-orders
𝜌𝑝(𝐹 ) = 𝜌𝑝(𝐹2), ∀𝑝 and the 𝑝-types 𝜎𝑝(𝐹 ) = 𝜎𝑝(𝐹2), ∀𝑝.

The validity is implied by the fact that the characteristics of the sum of operators are equal
to the characteristics of the term of the greater order.

30. If a function 𝐹1 has the 𝑝-orders 𝜌𝑝(𝐹1) and the 𝑝-types 𝜎𝑝(𝐹1), and a function 𝐹2 has
the 𝑝-orders 𝜌𝑝(𝐹2) = 𝜌𝑝(𝐹1), ∀𝑝 and the 𝑝-types 𝜎𝑝(𝐹2) > 𝜎𝑝(𝐹1), ∀𝑝, then the function
𝐹 = 𝐹1 + 𝐹2 has the 𝑝-orders 𝜌𝑝(𝐹 ) = 𝜌𝑝(𝐹2), ∀𝑝 and the 𝑝-types 𝜎𝑝(𝐹 ) = 𝜎𝑝(𝐹2), ∀𝑝.

The validity follows from the fact that the characteristics of the sum of operators of same
orders are equal to the characteristics of the term of the greater type.

40. (The case H1 = H.) Suppose a function 𝐹1 has the order 𝜌(𝐹1) and the type 𝜎(𝐹1), and
a function 𝐹2 has the order 𝜌(𝐹2) > 𝜌(𝐹1) and the type 𝜎(𝐹2). Then the function 𝐹 = 𝐹1𝐹2

has the order 𝜌(𝐹 ) ≤ 𝜌(𝐹2) and the type 𝜎(𝐹 ). If 𝜌(𝐹 ) = 𝜌(𝐹2), then 𝜎(𝐹 ) ≤ 𝜎(𝐹2). A similar
statement holds for the function 𝐹 = 𝐹2𝐹1.

The proof is based on the following lemma.

Lemma 3. Suppose a sequence of operators 𝒜 = {𝐴𝑛} has the order 𝛽(𝒜) and the type
𝛼(𝒜), and a sequence of the operators ℬ = {𝐵𝑛} has the order 𝛽(ℬ) > 𝛽(𝒜) and the type

𝛼(ℬ). Then the sequence of the operators 𝒞 = {𝐶𝑛}, where 𝐶𝑛 =
𝑛∑︀

𝑘=0

𝐴𝑘𝐵𝑛−𝑘 has the order

𝛽(𝒞) ≤ 𝛽(ℬ) and the type 𝛼(𝒞). If 𝛽(𝒞) = 𝛽(ℬ), then 𝛼(𝒞) ≤ 𝛼(ℬ).

Proof. Denote 𝑎 = 𝛼(𝒜)𝑒𝛽(𝒜), 𝑏 = 𝛼(ℬ)𝑒𝛽(ℬ).
The definition of the order and type of a sequence of operators implies [1]

∀𝜀, 𝜀1 > 0, ∀𝑝, ∃𝑀𝑝, ∃𝑞, ∀𝑛, ∀𝑥 ∈ H :

‖𝐶𝑛(𝑥)‖𝑝 ≤ 𝑀𝑝

(︃
(𝑏 + 𝜀)𝑛𝑛!𝛽(ℬ) + (𝑎 + 𝜀1)(𝑏 + 𝜀)𝑛−11!𝛽(𝒜)(𝑛− 1)!𝛽(ℬ) + · · ·+

+ (𝑎 + 𝜀1)
𝑛−1(𝑏 + 𝜀)(𝑛− 1)!𝛽(𝒜)1!𝛽(ℬ) + (𝑎 + 𝜀1)

𝑛𝑛!𝛽(𝒜)

)︃
‖𝑥‖𝑞 ≤

≤ 𝑀𝑝(𝑏 + 𝜀)𝑛𝑛!𝛽(ℬ)

[︃
1 +

(︂
𝑛

1

)︂−𝛽(ℬ)(︂
𝑎 + 𝜀1
𝑏 + 𝜀

)︂
1!𝜈 +

(︂
𝑛

2

)︂−𝛽(ℬ)(︂
𝑎 + 𝜀1
𝑏 + 𝜀

)︂2

2!𝜈 + · · ·+

+

(︂
𝑛

𝑛

)︂−𝛽(ℬ)(︂
𝑎 + 𝜀1
𝑏 + 𝜀

)︂𝑛

𝑛!𝜈

]︃
‖𝑥‖𝑞, (21)

where 𝜈 = 𝛽(𝒜) − 𝛽(ℬ).
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If 𝛽(ℬ) > 𝛽(𝒜) (𝜈 < 0), for large 𝑛 the expression in brackets in (21) does not exceed
(1 + 𝜀2)

𝑛, ∀𝜀2 > 0 and thus 𝛽(𝒞) ≤ 𝛽(ℬ), and if 𝛽(𝒞) = 𝛽(ℬ), then 𝛼(𝒞) ≤ 𝛼(ℬ).

50. (The case H1 = H.) Suppose a function 𝐹1 has the order 𝜌(𝐹1) and the type 𝜎(𝐹1), and
a function 𝐹2 has the order 𝜌(𝐹2) = 𝜌(𝐹1) and the type 𝜎(𝐹2) ≥ 𝜎(𝐹1). Then the function
𝐹 = 𝐹1𝐹2 has the order 𝜌(𝐹 ) ≤ 𝜌(𝐹2) and the type 𝜎(𝐹 ). If 𝜌(𝐹 ) = 𝜌(𝐹2), then 𝜎(𝐹 ) ≤ 2𝜎(𝐹2).
A similar statement holds true for the function 𝐹 = 𝐹2𝐹1.

The proof is based on the following lemma.

Lemma 4. Let a sequence of operators 𝒜 = {𝐴𝑛} has the order 𝛽(𝒜) and the type 𝛼(𝒜), and
a sequence of operators ℬ = {𝐵𝑛} does the order 𝛽(ℬ) = 𝛽(𝒜) and the type 𝛼(ℬ) ≥ 𝛼(𝒜). The

the sequence of the operators 𝒞 = {𝐶𝑛}, where 𝐶𝑛 =
𝑛∑︀

𝑘=0

𝐴𝑘𝐵𝑛−𝑘, has the order 𝛽(𝒞) ≤ 𝛽(ℬ)

and the type 𝛼(𝒞). If 𝛽(𝒞) = 𝛽(ℬ), then 𝛼(𝒞) ≤ 2−𝛽(ℬ)𝛼(ℬ).

Proof. Under the hypothesis of the lemma the expression in the brackets in (21) does not exceed
2−𝛽(ℬ)𝑛𝑛 and thus 𝛽(𝒞) ≤ 𝛽(ℬ), and if 𝛽(𝒞) = 𝛽(ℬ), then 𝛼(𝒞) ≤ 2−𝛽(ℬ)𝛼(ℬ).

Remark. As it is known, in the scalar case the theorem on categories [3, Th. 12] is valid.
In the case of operator-valued function this question is still open.

60. (Invariance). Suppose H1, ̃︀H1,H and ̃︀H are four locally convex spaces with the topologies

induced respectively by the multinorms ‖ · ‖′𝑞, 𝑞 ∈ 𝒬, ‖ · ‖′̃︀𝑞, ̃︀𝑞 ∈ ̃︀𝒬, ‖ · ‖𝑝, 𝑝 ∈ 𝒫 , ‖ · ‖̃︀𝑝, ̃︀𝑝 ∈ ̃︀𝒫
and let 𝑇1 : H1 → ̃︀H1, 𝑇 : H → ̃︀H are two topological isomorphisms. Then

1) for each operator-valued function

𝐹 (𝑡) =
∞∑︁
𝑛=0

𝐴𝑛𝑡
𝑛 : C → Lec(H1,H)

its order and type coincide with the order and type of the function

𝐹 (𝑡) =
∞∑︁
𝑛=0

𝑇𝐴𝑛𝑇
−1
1 𝑡𝑛 : C → Lec(̃︀H1, ̃︀H);

2) if all the 𝑝-orders of the function 𝐹 are strictly less than its order, then all the ̃︀𝑝-orders of
the function 𝐹 are strictly less than its order;

3) if at least one 𝑝-order of the function 𝐹 equals to its order, then at least one ̃︀𝑝-order of
the function 𝐹 equals to its order;

4) if the function 𝐹 has the 𝑝-orders 𝜌𝑝(𝐹 ), the order 𝜌(𝐹 ), the 𝑝-types 𝜎𝑝(𝐹 ) and the type
𝜎(𝐹 ), at that the set

𝒫𝐹 = {𝑝 ∈ 𝒫 : 𝜌𝑝(𝐹 ) = 𝜌(𝐹 )}
is non-empty and ∀𝑝 ∈ 𝒫𝐹 : 𝜎𝑝(𝐹 ) < 𝜎(𝐹 ), then the function 𝐹 has the ̃︀𝑝-orders 𝜌̃︀𝑝(𝐹 ), the

order 𝜌(𝐹 ), the ̃︀𝑝-types 𝜎̃︀𝑝(𝐹 ) and the type 𝜎(𝐹 ), at that the set̃︀𝒫𝐹 = {̃︀𝑝 ∈ ̃︀𝒫 : 𝜌̃︀𝑝(𝐹 ) = 𝜌(𝐹 )}

is non-empty and ∀̃︀𝑝 ∈ ̃︀𝒫𝐹 : 𝜎̃︀𝑝(𝐹 ) < 𝜎(𝐹 );

5) if under hypothesis of Item 4) ∃𝑝 ∈ 𝒫𝐹 : 𝜎𝑝(𝐹 ) = 𝜎(𝐹 ), then ∃̃︀𝑝 ∈ ̃︀𝒫𝐹 : 𝜎̃︀𝑝(𝐹 ) = 𝜎(𝐹 ).
The validity of property 60 follows from analogous properties for the characteristics of a

sequence of operators [1, 6].
The invariance property implies that under any replacements of the multinorms in H1 and

H to equivalent ones (𝑇1 and 𝑇 are identity operators)
1) the order and type of the operator-valued function 𝐹 remain the same;
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2) if all the 𝑝-orders of the function 𝐹 were strictly less than its order before the replacement
of the multinorms, after the replacement of the multinorms all its ̃︀𝑝-orders are also strictly less
than the order;

3) if at least one 𝑝-order of the function 𝐹 equals its order before the replacement of the
multinorms, after the replacement at least one its ̃︀𝑝-order (not necessarily the same) is also
equal to its order;

4) if the function 𝐹 has the 𝑝-order 𝜌𝑝(𝐹 ) before the replacement of the multinorms, the
order 𝜌(𝐹 ), the 𝑝-types 𝜎𝑝(𝐹 ), and the type 𝜎(𝐹 ), at that the set

𝒫𝐹 = {𝑝 ∈ 𝒫 : 𝜌𝑝(𝐹 ) = 𝜌(𝐹 )}
is non-empty and ∀𝑝 ∈ 𝒫𝐹 : 𝜎𝑝(𝐹 ) < 𝜎(𝐹 ), then after the replacement of the multinorms this
function has the ̃︀𝑝-orders 𝜌̃︀𝑝(𝐹 ), the order 𝜌(𝐹 ), the ̃︀𝑝-types 𝜎̃︀𝑝(𝐹 ), and the type 𝜎(𝐹 ), at that
the set ̃︀𝒫𝐹 = {̃︀𝑝 ∈ ̃︀𝒫 : 𝜌̃︀𝑝(𝐹 ) = 𝜌(𝐹 )}
is non-empty and ∀̃︀𝑝 ∈ ̃︀𝒫𝐹 : 𝜎̃︀𝑝(𝐹 ) < 𝜎(𝐹 );

5) if under the hypothesis of Item 4) ∃𝑝 ∈ 𝒫𝐹 : 𝜎𝑝(𝐹 ) = 𝜎(𝐹 ), then ∃̃︀𝑝 ∈ ̃︀𝒫𝐹 : 𝜎̃︀𝑝(𝐹 ) = 𝜎(𝐹 ).
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