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INTEGRATION OF HIGHER KORTEWEG-DE VRIES
EQUATION WITH SELF-CONSISTENT SOURCE IN CLASS
OF PERIODIC FUNCTIONS

M.M. MATYOQUBOV, A.B. YAKHSHIMURATOV

Abstract. In the present work the inverse spectral problem of Sturm-Liouville operator is
applied for integrating higher Korteweg-de Vries equation with a self-consistent source in
class of periodic functions
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1. INTRODUCTION

In 1967 in work [1] American scientists C.S. Gardner, J.M. Greene, M.D. Kruskal, and
R.M. Miura established the integrability of the Korteweg-de Vries equation (KdV) in the class
of “fast decaying” w.r.t. x functions by the method of inverse scattering problem for the Sturm-
Liouville equation. In work [2] P. Lax showed an universality of the inverse scattering problem
method and generalized the KAV equation by introducing a higher (general) KdV equation.

In works [3-10] KdV equation and higher KdV equation were studied in the class of finite-
band and periodic functions.

In the present work we study the higher KdV equation with a self-consistent source in the
class of periodic functions.

We note that in [11-15] and other papers the KdV equation with a self-consistent source was
considered in the class of fast decaying functions, and nonlinear equations with a source in the
class of periodic functions in various formulations were studied in works [16-19].

Let L P 4
H=—-——+2¢—+¢,
x dx
where g = ¢(x,t), and the prime denotes the derivative w.r.t. x. According to [20], there exists

polynomials Py, (of ¢ and the derivatives of ¢ w.r.t. x) such that

HP, = P'}..
For example,
1 3 1 5 5 5
=1 b= P:__xa: ~q P:_a:a:xx__ ac:c__2 _3-
o=1 PAi=q, B lee T 54 3= 14 544 1T 5

It is easy to prove the following properties of the operator H (see [20]).
Lemma 1. Ify(z,t) is a solution to the following Sturm-Liouville equation
L(t)y = —y" +q(z,thy= Ny, =€ R,
the identity
H(y*) = 2X(y*)
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holds true.

Lemma 2. For any y(x), z(x) € C®(0, ©1] the identity

™

—/z‘Hydx
0

0

[ 1 1 1
Hz- — [ = 9 Y N e /
/ z - ydx ( 22 Y+ qzy+22y sz)
0

holds true.

The following equation
@ = HPx[q], € R', t>0,

is called a higher KdV equation. Employing the properties of the operator H, we can rewrite
this equation as
g = Pyiilgl, z€R'Y, t>0.
For instance, as N = 0, 1, 2 we respectively have
5 15 ,

1 1
= {x, = TS5 Yzax 3 ) = “Qrxxxx — 5 rlrr — F4Yzzx e -
qt = ¢ qt 2(] + 949 qt 4q 429 2qq + 9 qq

2. FORMULATION OF PROBLEM

In this work we consider the following higher KdV equation with a self-consistent source
G = Pl ld + Q/ﬁ(k,t)s(ﬂ, M) (Wb (2 M O (A 0). dN, £ 0, € RY, (1)
0

subject to initial condition

(%, D)1= = 90(2), (2)
where go(x) € C*NT! (R') is a given real function. It is required to find a real function ¢(z,t)
being m-periodic w.r.t. x,

q(x +mt)=q(x,t), t>0, x€R' (3)
and satisfying the smoothness conditions
q(z,t) € C*N Tt > 0)NCHt > 0)NC(t>0).. (4)

Here p(A,t) € C ([0, 00) x [0, 00)) is a given real function having the uniform asymptotics
BN t) = O (%), A — 00, Yi(x, A\ t) are the Floquet solutions (normalized by the condition
¥4 (0, A\, t) = 1) to the Sturm-Liouville equation

Lit)y=—y" +q(z,t)y= Ay, z€R, (5)

s(x, A, t) is the solution to equation (5) satisfying the initial conditions s(0, A, ¢) = 0, s'(0, A\, t) =
1

Remark 1. Let us show the uniform convergence of the integral involved in (1). In order
to do it, we employ the identity

S<7T7 A’ t)¢+(7—7 A? t)w_(T7 A’ t) = 8(7]-7 >\7 t? T)7 (6)
where s(z, A, t, T) solves the equation
-y +q(z+7tly=Xy, =R,

and obeys the initial conditions s(0, A, t,7) =0, s'(0, A\, t,7) = 1.
The asymptotic formulae
1 sin vz 1
clz, A\t :COS\/XfL‘+O(—>, s(x, A\ 1) = +O(—),
. VAR S O
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1

VA

s(my A\ t,7) =c(m, \, t)s(m+ 1, A\ t) — s(T, A\, t)e(m + 7, A\, t)
imply the estimates

s(m Mt T) =0 (%) w ~0 (\%) (A o0).

These estimates and identity (6) ensures the uniform convergence of the integral involved in
equation (1).

The aim of the present work is to provide the procedure of constructing a solution ¢(z,t),
Yy (x, A\, t) to problem (1)-(5) in the framework of the inverse spectral problem for the Sturm-
Liouville operator with a periodic coefficient.

d(z, M 1) = —VAsinVaz +O(1), s'(z,\t) =cosVAz + O ( > , (A= o0)

and identities

3. PRELIMINARIES

In this section, for the completeness of the content, we present some basic information con-
cerning the inverse spectral problem for the Sturm-Liouville operator with a periodic coefficient
(see [21-26]).

Consider the following Sturm-Liouville operator on the axis

Ly=—y"+q(x)y =Xy, z€R, (7)

where ¢(x) is a real continuous 7-periodic function.

By ¢(x, A) and s(z, ) we denote the solutions to equation (7) satisfying the initial conditions
c(0,\) =1, d(0,\) =0 and s(0,\) =0, s'(0,A) = 1. The function A(X\) = ¢(m, A) + s'(m, A) is
called Lyapunov function or Hill discriminant.

The spectrum of operator (7) is pure continuous and coincides with the set

E:{)\ERlI —2§A<)\)§2}:[>\0,>\1]UP\2, )\3]U...U[)\2n,)\2n+1]u... .

The intervals (—oo, Ag), (Aan—1, A2n), n =1, 2, ... are called gaps. Here Ao, Agr_1, Ay are
the eigenvalues of the periodic problem (y(0) = y(7), ¢'(0) = ¢/(7)), and Agri1, Aagro are that
of the antiperiodic problem (y(0) = —y(7), ¥'(0) = —y/(7)) for equation (7).

Let &,,n = 1,2, ..., be the roots to the equation s(m, A\) = 0. We observe that &,, n = 1,2, ...,
coincide with the eigenvalues of the Dirichlet problem (y(0) = y(7) = 0) for equation (7), and
moreover, the belongings &, € [Agn_1, A2n), n =1, 2, ... are fulfilled.

The numbers &, n = 1, 2, ... with the signs o, = sign{s'(7,&,) — c(m,&,)}, n =1, 2,
are called spectral parameters of problem (7). The spectral parameters &,, 0,, n = 1, 2, ...
and the edges \,, n = 0, 1, 2, ... of the spectrum are called spectral data of operator (7).
Recovering of the coefficient g(x) by the spectral data is called the inverse spectral problem for
operator (7).

The spectrum of the Sturm-Liouville operator with the coefficient ¢(z + 7) is independent of
the real parameter 7, and the spectral parameters depend on 7; &,(7), o,(7), n =1, 2, ...
The spectral parameters satisfy the following Dubrovin system of equations

% = 2(_1)n_10n(7_) \/(&L — A2n-1) (A2 — &n) ¥
< el <A%_1(gkfﬁ>§j)2§ BN ®)

The Dubrovin system of equations and the following trace formula

q(1,t) = Ao + Z (Aok—1 + Ao — 26i(7, 1))
k=1
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give the method for solving the inverse spectral problem.
There are also other trace formulae, for instance, the second and third trace formulae read
as

1 o0
(1) = 50 (1) = A+ D (Nyoy + X, — 260(7)),
k=1

3 3 15 ,
TGQTTTT(T> - §Q(T)QTT(T) - 1_6Q7—< ) + q (T> -
=+ Z (Aot + A3y — 26(7)).

k=1

Employing Dubrovin system of equations and the first trace formula, E. Trubowitz [25]
succeeded to prove theorems relating the analyticity of the potential and the decay of the
gaps lengths for the periodic potential of the Sturm-Liouville operator (7); if g(x) is a real
analytic m-periodic function, the lengths A9, — Ag,_1 of the gaps exponentially tend to zero,
i.e., there exist the constants a > 0, b > 0 such that Xg, — Aop_1 < ae™® , n > 1; and vice-
versa, if q(z) € C?(R') is a real m-periodic function and the lengths Ay, — Aa,_1 of the gaps
exponentially tend to zero, then ¢(x) is an analytic function.

In 1946 G. Borg proved a unique theorem (Borg’s inverse theorem) on the period of the
potential of the Hill equation (see [27]): the number 7/2 is a period of the potential ¢(z) of
the Sturm-Liouville equation (7), if and only if all the roots to the equation A(\) + 2 = 0 are
double, i.e., if and only if all the gaps with odd indices disappear.

In 1977 (see [28]) H. Hochstadt gave a short proof, and in 1984 a generalization of the Borg’s
theorem (see [29]). Let q(x) € C'(R') be a real m-periodic function. The number 7/n is the
period of the potential g(x) of Sturm-Liouville equation (7), if and only if all the gaps whose
indices are not divisible by n disappear. Here n > 2 is a natural number.

4. MAIN THEOREM
The main result of the present work is the following theorem.

Theorem 1. Let q(x,t), ¥i(z, N\, t) be a solution to problem (1)-(5). Then the spectrum of
operator (5) is independent of the parameter t, and the spectral parameters &,(t), n =1,2, ...
satisfies an analogue of Dubrovin system of equations,

N oo

€ =2(=1)"""o(1) ;(2§n)N_k - Pilg +O/S = f\\ g gn)\ t)d)\

X V(& = Aon—1)Nan — &) x| (& = 2] ] (AQ’“‘l(gfj)éA;ﬁ‘f"), n>1, (9

k#n
where the sign of o, (t) changes to the opposite under each collision of the point £,(t) and the
edges of the gap [Nan_1, Aan]. Moreover, the initial conditions

5n(t)|t:o = 2, Un(t)|t:o = 027 n>1,

n > 1 are spectral parameters to the Sturm-Liouville operator with the

hold true, where £°,
coefficient qo(z).

Proof. We introduce the notation

ni

Gla.t) =2 [ B s\ 8) (A ) - ¥ (A, 1), N
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and rewrite equation (1) as
g = Py yala] + Gz, 1)

(10)

By yn(x,t),n =1, 2, ... we denote orthonormalized eigenfunctions to the Dirichlet problem
(y(0) =0, y(m)=0) for equation (5) with the m-periodic potential ¢(z,t) being a solution to
equation (10); these eigenfunctions are associated with the eigenvalues &,(t), n =1, 2, ....

Differentiating the identity (L(t)y,,yn) = &, w.r.t. t and employing the symmetricity of the

operator L(t), we have

én = (Lyn + QtYn, yn) + (Lym yn) = (ym Lyn) + (Lym yn) + (%ﬁyna yﬂ) =

™

= gn((ymyn)j + (@Yns Yn) = /Qt(aja t)yi<x>t)d$'

Here (-, -) is a scalar product in the space L(0, ).
Employing (10) and identity H P, = P, we rewrite identity (11) as

0 0

Employing Lemmata 1 and 2, we convert the following integral

™

1 1 1
D= [ R0 Pde = (<3P0 4 P+ G E 02— 5 G
0

s

0

T T

_/Pk H(y2)dw = —Pilq(0,)] - [y,*(m. t) — 4,°(0,1)] — /Pk - 26, (y2) dx =

™

= Bg(0,8)] - [, ) — o) 7(0,1)] + 2, / Pl 2,
0
ie.,

Jp — 2571 g1 = _Pk[q<0a t)] ’ [y:z2(ﬂ-a t) - y;z2(07t)]
Calculating the following sum

N
In = (26)Y - Jo = (26)N T (Jp = 260 - Teoa) =
k=1
N
_[y;z <7T t Z 2671 N g Pk (Oat)]
k=1
and the integral
D= [ itz = [ g2 e = {5 mt) 1, 20,1)
0 0
we deduce the identity
N
I = —[y, (m. 1) = 4,2 (0,0)] - > (26,)N - Piq(0, 1),

k=0

(11)

(12)
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Now we proceed to calculating the second integral in identity (12),

U o0 m

/Gyidrc = /S(W,)\,t)ﬁ()\,t) Q/yg - (pyrp ) dx pdN.
0 0 0
Integrating by parts, it is easy to see that

™

=2 [ Yo = [ (o) = @)+ () o =

0

- / (9= (s — Yods) + yutbs (vt — b))
0

It yields
_ 1 ’2 . /2
Hence,
[ Gpan = 20 - 200 - [ HERDER gy (14)
0 0 "

Substituting expressions (13) and (14) into (12), we obtain the identity
En = [y (m, 1) = 4, °(0,8)]

{ZanN’“Pk 0,1)] +/ s(m A D)8 “)dA} (15)

0 0
Employing the identities

(i, 1) = ﬁsmn(t),t),

20)= [ o600 = (.0, 2S00

oA
0
we have . .
72 ;2 /
)= 20,t) = =——— ()% [ —
020 20,0 = g (Y600~ )
Substituting here the expression
1
! o) — ————— =0, (t)\V/A? (&,(t)) —
Y(5.60) = Sy = VAP 0)

we obtain

/ / Un(t) Az (fn(t)) _
ynz(ﬂ-’ t) - yn2<07 t) = 9s(m.én(t).t)
o

Here 0,(t) = sign{s'(m, &, (t),t) — c(m, &u(t), 1)}

The expansions

T Aokt — A)(Aor — A)
k4 7
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imply
v (1) = 5,7(0,) = 2(=1)"00 (1) V/ (&0 = Aan—1) (Ao — &)
o B 1 Aok — &) Aok — &)
& AO)g G- (16)

By (15) and (16) we get (9).

Let us prove the independence of t for the eigenvalues A\,, n = 0, 1, 2, ... of the periodic
and anti-periodic problems for Sturm-Liouville equation (5). By analogy with formula (15) one
can show that

™

An(t) = / G(z, )02 (x,t)dr,

where v, (2, t) is a normalized eigenfunction of either periodic or antiperiodic problem for Sturm-
Liouville equation (5). Taking into consideration for structure of the function G(z,t) and

proceeding as above, we obtain )\n(t) = 0. The proof is complete. ]

5. COROLLARIES OF MAIN THEOREM

Corollary 1. If instead of q(x,t) we consider q(x + 7,t), the eigenvalues to periodic and
antiperiodic problem are independent of the parameters T and t, and the eigenvalues &, of the
Dirichlet problem and the signs o,, depend on T and t; &, = &,(7,1), 0, = on(7,t) = 1, n > 1.
In this case system (9) casts into the form

N o¢]

agn n—1 N—k s\, )\ t, 7' )\ t)
—, = 2(=1)""on(7,1) (26,)7 7" - Pela(r, )] + dX
ot ; kla 0/ X — 5n
X /(€0 — Aan—1)(Aan — &n) X =l Qars — & ;)2’“ —&) s (17)
2 "
Here
s(my A\t T) = 7TH &(157;'# (18)

Corollary 2. Consider the case N = 2. In this case differential equation (1) becomes

1

5 15

2 2

and Dubrovin system of differential equations (17) is written as

[ s(m At )80 )
[

%,
ot

o 1 3
= 2(_1) 1Un(7—7 t) 452 + 2£nq - §q7T + §q2 +

0

X \/ /\2n 1 )\271 - gn) X (gn - )‘O)ﬁ ()\Zkil - Sn)()\2k — Sn)v n =1 (20)

k=1 (Sk - 671)2 N
k#n
Employing the following trace formulae
g(mt) = Ao+ Y Mokt + Aop — 26(7, 1)), (21)

k=1
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1 o
QQ(Tv t) QTT T, t = (2) Z )‘gk—l + /\gk - 252(77 t))v (22)
k=1

2
system (20) can be rewritten in a closed form.
Corollary 3. This theorem provides a method for solving problem (19), (2)-(5).
Indeed, denote by \,, n =0, 1, 2, ..., &.(7, 1), o,(7,t), n =1, 2, ..., the spectral data of
the problem
— +qlr+7,t)y =Xy, x€R.
Let us find spectral data \,, n =0, 1, 2, ..., &%(7), 6%(7),n =1, 2, ... for the equation

— +qo(z+7)y=Ny, x€R.

We solve then the Cauchy problem &,(7,t)|i—o =&2(7), on(T,t)|t=0 = 02(7), n = 1, 2,
for Dubrovin system of equations (20). By trace formula (21) we find the solution to problem
(19), (2)-(5). Then it is easy to find the Floquet solutions ¢4 (z, A, t).

Remark 2. Let us show that the constructed function ¢(7,t) satisfies equation (19). In
order to do it, we employ the following Dubrovin system of equations

% =2(=1)""Lo, (7, )/ (€n — Aan—1) (Dan — &) X

x (&= 2]] (AQ’”(gff)éA;; — 5”), n=1,2, ..., (23)
= "

and trace formulae (21), (22), as well as (see [26])

3 15
1_6q7'7'7'7'(7_7 t) - 5@(77 t)qTT(T7 t) 16QT(7— t) + q (7_ t)
= Ao+ Z (Aopo1 + A3y — 26(7,1)). (24)
k=1

Dubrovin system (20) and (23) imply

o0

0
% _ Lagt+ 26 - qw+ q2+/

ot

s(m, A\ t, 7)B(A )
d\ p——, k>1. 2
A — gk 67" - (5)

First trace formula (21) and (25) yield

= —22 Ok _ (¢rr — 3¢%) - Z ai - 4qZ Skagk 82 G 85’“

L s(m A\t T) O
+2/ﬁ/\t{; e aT}d)\ (26)

Differentiating trace formulae (21), (22), and (24) w.r.t. 7, we obtain

22 agk - - 42 gkagk = 1q7'7'7' 2qQT7

agk 1 1 9
22 gk = QTTTTT - §QqTTT - §QTq7'T + q2QT-
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It

Employing these identities and expansion (18), by (26) we deduce

1 5 TNt T
9t = 7 Y9rrrrr — 5%'(]7'7' — 5499+ + q qr + 2 6 /\ t —)d/\
4 2 or
follows from identity (6) that
1 - 5, 15
qt = 4q7'T7'T7' qr4rr 2qq7'7'7' 2 q qr

+2/B (A 1)s(m, A, t) — (W (T ) - (T A1) dA.

Corollary 4. From the results of work [25] we deduce that if the initial function qo(x) is

real and analytic, then the lengths g, — Aan_1 of the gaps corresponding to this coefficients
decay exponentially. Since the lengths of the gaps corresponding to the coefficients q(z,t) are
independent of t, the function q(x,t) is analytic w.r.t. x.

Corollary 5. The generalized Borg’s inverse theorem (see [29]) follows that if qo(z) has the

period T, the solution q(x,t) to problem (19), (2)-(5) is T-periodic w.r.t. x.

The authors are grateful to prof. A.B. Khasanov (Urgench State University, Uzbekistan) for

the formulation of the problem and a discussion of the work.
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