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CONSTRUCTION OF OPTIMAL GRID INTERPOLATION

FORMULAS IN SOBOLEV SPACE ̃︁𝐿𝑚
2 (𝐻) OF PERIODIC

FUNCTION OF 𝑛 VARIABLES BY SOBOLEV METHOD

N.H. MAMATOVA, A.R. HAYOTOV, KH.M. SHADIMETOV

Abstract. In the present work we consider the problem of constructing optimal grid

interpolation formulas in the space ̃︁𝐿𝑚
2 (𝐻) of periodic function of 𝑛 variables. We find the

coefficients of grid interpolation formulas.

Keywords: Sobolev space, optimal interpolation formula, properties of the discrete ana-
logue of the operator Δ𝑚, optimal coefficients.

1. Main results

Let us remind the definition of Sobolev space
̃︂
𝐿
(𝑚)
2 (𝐻) of periodic functions of 𝑛 variables.

Let a function 𝜙(𝑥) be periodic with the periods matrix 𝐻,

𝜙(𝑥+𝐻𝛾) = 𝜙(𝑥), 𝑥 ∈ R𝑛,

where 𝛾 is an arbitrary integer column vector, 𝐻 is a matrix of size 𝑛×𝑛 having unit determi-
nant.

To the matrix 𝐻 we associate its fundamental parallelepiped Ω0 letting

Ω0 = {𝑥 ∈ R𝑛 : 𝑥 = 𝐻𝑦, 0 6 𝑦𝑗 < 1, 𝑗 = 1, 2, ..., 𝑛}.
Suppose 2𝑚 > 𝑛 and the integral∫︁

Ω0

∑︁
|𝛼|=𝑚

𝑚!

𝛼!
(𝐷𝛼𝜙(𝑥))2𝑑𝑥

is finite, where 𝛼 is a multi-index, 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛), 𝛼! = 𝛼1!𝛼2! . . . 𝛼𝑛!, |𝛼| =
𝑛∑︀

𝑗=1

𝛼𝑗,

𝐷𝛼𝜙(𝑥) = 𝜕|𝛼|𝜙(𝑥)

𝜕𝑥
𝛼1
1 𝜕𝑥

𝛼2
2 ...𝜕𝑥𝛼𝑛

𝑛
.

The norm in
̃︂
𝐿
(𝑚)
2 (𝐻) is defined by the formula

‖𝜙(𝑥)|̃︂𝐿(𝑚)
2 (𝐻)|| =

⎡⎣∫︁
Ω0

∑︁
|𝛼|=𝑚

𝑚!

𝛼!
(𝐷𝛼𝜙(𝑥))2𝑑𝑥

⎤⎦ 1
2

.

As the elements of the spaces
̃︂
𝐿
(𝑚)
2 (𝐻) serve the functions differing by a constant.

The space 𝐿
(𝑚)*
2 (𝐻) comprises of all periodic functionals orthogonal to one, i.e.,

(ℓ(𝑥), 1) = 0. (1)
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Consider the interpolation formula

𝜙(𝑥) ∼= 𝑃𝜙(𝑥) =
𝑁∑︁
𝑘=1

𝐶𝑘(𝑥)𝜙(𝑥
(𝑘)) (2)

in the space
̃︂
𝐿
(𝑚)
2 (𝐻), the points 𝑥(𝑘) ∈ Ω0 and parameters 𝐶𝑘(𝑥) are called respectively nodes

and coefficients of interpolation formula (2).
One of the main problems of interpolation theory is to find the maximum of the error of the

interpolation formula 𝜙(𝑥) ∼= 𝑃𝜙(𝑥) in functional spaces. The error at a point 𝑧 is the value of
an error functional on the function 𝜙,

(ℓ(𝑥), 𝜙) ≡ 𝜙(𝑧)− 𝑃𝜙(𝑧) = 𝜙(𝑧)−
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝜙(𝑥
(𝑘)) =

=

∫︁
Ω0

[︃(︃
𝛿(𝑥− 𝑧)−

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝛿(𝑥− 𝑥(𝑘))

)︃
* 𝜑0(𝐻

−1𝑥)

]︃
𝜙(𝑥)𝑑𝑥, 1

where 𝛿(𝑥) is the Dirac delta-function, 𝜑0(𝐻
−1𝑥) =

∑︀
𝛽

𝛿(𝑥−𝐻𝛽),

ℓ(𝑥) =

(︃
𝛿(𝑥− 𝑧)−

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝛿(𝑥− 𝑥(𝑘))

)︃
* 𝜑0(𝐻

−1𝑥) (3)

is the error functional of the interpolation formula.
The variable parameters of the interpolation formula are the nodes 𝑥(𝑘) and the coefficients

𝐶𝑘(𝑧). An optimal interpolation formula is that whose error functional has the minimal norm

in 𝐿
(𝑚)*
2 (𝐻) w.r.t. variations of the coefficients under given nodes. If the nodes 𝑥(𝑘) are the

points of a grid, i.e., are located at the points 𝑥(𝛾) = ℎ𝐻𝛾, the interpolation formula is called
a grid one. Here ℎ is a small parameter called grid spacing.

In the present work we construct optimal grid interpolation formulas in the Sobolev spacẽ︂
𝐿
(𝑚)
2 (𝐻). A similar problem was first formulated and considered by Sobolev [1], where there

was found an extremal function of the interpolation formula in the space 𝑊
(𝑚)
2 of functions

whose derivatives of order 𝑚 are square integrable.
It should be noted that the solution for 𝑝 = 2 (Holladay theorem [2]) to the problem on

minimization of 𝐿𝑝-norm of 𝑚th derivative of the function interpolating given values 𝑦𝑖 at the
points 𝑥𝑖 led to the developing of spline theory. Later this problem was studied in numerous
works in a more general formulation as the problem of minimization of a functional under
restrictions (see, for instance, [3-8]).
The main result of the present work is

Theorem. In the Sobolev space
̃︂
𝐿
(𝑚)
2 (𝐻) there exists the unique optimal grid interpolation

formula (2) with error functional (3). Its coefficients are determined by the formula

∘
𝐶([𝛽]; 𝑧) = ℎ𝑛

(︃
1 +

∑︁
𝛾 ̸=0

exp(2𝜋𝑖𝐻−1(𝐻ℎ𝛽* − 𝑧)𝛾)

|𝐻−1*𝛾|2𝑚
·𝐾(𝛾)

)︃
,

where 𝐾(𝛾) =

⎡⎣ ∑︀
𝑡

𝑡̸=ℎ𝛾

1
|𝐻−1*(ℎ−1𝑡−𝛾)|2𝑚

⎤⎦−1

.

1The intergal of Dirac function is a historical convention,
∫︀
𝛿(𝑥− 𝑧)𝜙(𝑥)𝑑𝑥 ≡ (𝛿𝑧, 𝜙) ≡ 𝜙(𝑧); the convolution

of 𝛿-functions is defined as 𝛿(𝑥− 𝑎)𝛿(𝑥− 𝑏) = 𝛿(𝑥− (𝑎+ 𝑏)).



92 N.H. MAMATOVA, A.R. HAYOTOV, KH.M. SHADIMETOV

2. Extremal function of interpolation formula

In order to find explicitly the norm of the error functional ℓ(𝑥) in the space
̃︂
𝐿
(𝑚)
2 (𝐻) we shall

employ the notion of extremal function of a functional. A function 𝑢(𝑥) in
̃︂
𝐿
(𝑚)
2 (𝐻) is called

extremal for a given error functional ℓ(𝑥) if the identity

(ℓ(𝑥), 𝑢(𝑥)) =

⃦⃦⃦⃦
ℓ|𝐿(𝑚)*

2 (𝐻)

⃦⃦⃦⃦ ⃦⃦⃦⃦
𝑢|̃︂𝐿(𝑚)

2 (𝐻)

⃦⃦⃦⃦
holds true. The space

̃︂
𝐿
(𝑚)
2 (𝐻) is the Hilbert one with the scalar product

⟨𝜙, 𝜓⟩𝑚 =

∫︁
Ω0

∑︁
|𝛼|=𝑚

𝑚!

𝛼!
𝐷𝛼𝜙(𝑥)𝐷𝛼𝜓(𝑥)𝑑𝑥.

By the Riesz theorem, each bounded functional ℓ(𝑥) in the Hilbert space is represented as
the scalar product

(ℓ, 𝜙) = ⟨𝜙, 𝜓ℓ⟩𝑚 (4)

for each 𝜙(𝑥) in
̃︂
𝐿
(𝑚)
2 (𝐻). 𝜓ℓ(𝑥) is the function in

̃︂
𝐿
(𝑚)
2 (𝐻) determined uniquely by the func-

tional ℓ(𝑥) and extremal for it. Integrating by parts in the sense of generalized functions theory
in the right hand side of (4) and employing the periodicity of the functions 𝜙(𝑥) and 𝜓ℓ(𝑥), we
obtain the identity

(ℓ, 𝜙) = (−1)𝑚
∫︁
Ω0

Δ𝑚𝜓ℓ(𝑥)𝜙(𝑥)𝑑𝑥.

Thus, the function 𝜓ℓ(𝑥) is a generalized solution to the equation

Δ𝑚𝜓ℓ(𝑥) = (−1)𝑚ℓ(𝑥). (5)

The following lemma holds true.
Lemma 1. An explicit expression for an extremal function to error functional (3) is given

by the formula

𝜓𝑙(𝑥) = (−1)𝑚

[︃
𝐵2𝑚(𝑥− 𝑧)−

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝐵2𝑚(𝑥− 𝑥(𝑘)) + 𝑑0

]︃
, (6)

where 𝑑0 constant, the Bernoulli-Sobolev function 𝐵2𝑚(𝑥) = (−1)𝑚
∑︀
𝛾 ̸=0

exp(−2𝜋𝑖𝐻−1𝑥𝛾)
|2𝜋𝐻−1*𝛾|2𝑚 is the

periodic fundamental solution to the operator Δ𝑚.

Proof. Let us find a periodic solution to equation (5). Applying the Fourier transform to both
sides of (5) and employing the well-known formulas 𝐹 [𝛿(𝑥 − 𝑧)] = 𝑒2𝜋𝑖𝑝

*𝑧, 𝐹 [𝜑0(𝐻
−1)𝑥] =

𝜑0(𝐻
*𝑝) (see [9]), we get[︃

𝑛∑︁
𝑗=1

(2𝜋𝑖𝑝𝑗)
2

]︃𝑚
𝐹 [𝜓ℓ(𝑥)] = (−1)𝑚[(𝑒−2𝜋𝑖𝑝*𝑧 −

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝑒
2𝜋𝑖𝑝*𝑥(𝑘)

)𝜑0(𝐻
*𝑝)]. (7)

Here 𝑝* is the row vector (𝑝1, 𝑝2, . . . , 𝑝𝑛) adjoint with the column-vector 𝑝. By (1) the right
hand side in (7) vanishes in a vicinity of the origin. This is why we can divide both sides of

(7) by (2𝜋𝑖)2𝑚(
𝑛∑︀

𝑗=1

𝑝2𝑗)
𝑚. The function 𝐹 [𝜓ℓ(𝑥)] is determined by equation (7) up to an additive

term

(−1)𝑚𝑑0𝛿(𝑝) +
∑︁

0<|𝛼|62𝑚

𝑑𝛼𝐷
𝛼𝛿(𝑝).
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Since, however, 𝐹 [𝜓ℓ(𝑥)] must be a harrow-like, i.e., a linear combination of 𝛿-functions concen-
trated at the nodes of the integer lattice, all the terms except (−1)𝑚𝑑0𝛿(𝑝) must be neglected.

Therefore,

𝐹 [𝜓ℓ(𝑥)] = (−1)𝑚𝑑0𝛿(𝑝) +
exp(2𝜋𝑖𝑝*𝑧)𝜑0(𝐻

*𝑝)

(2𝜋)2𝑚

(︃
𝑛∑︀

𝑗=1

𝑝2𝑗

)︃𝑚 −

−

𝑁∑︀
𝑘=1

𝐶𝑘(𝑧) exp(2𝜋𝑖𝑝
*𝑥(𝑘))𝜑0(𝐻

*𝑝)

(2𝜋)2𝑚

(︃
𝑛∑︀

𝑗=1

𝑝2𝑗

)︃𝑚 . (8)

Replacing 𝜑0(𝐻
*𝑝) by the series in 𝛿-functions and applying the inverse Fourier transform to

both sides of (8), we obtain (6) that proves the lemma.

3. Norm of error functional of interpolation formula

The norm of the error functional of the interpolation formula is expressed via a bilinear form
of the formula’s coefficients and the value of the extremal function 𝜓ℓ(𝑥). Since the spacẽ︂
𝐿
(𝑚)
2 (𝐻) is the Hilbert one, we have

(ℓ, 𝜓ℓ) = ‖ℓ|𝐿(𝑚)*
2 (𝐻)‖ ‖𝜓ℓ|

̃︂
𝐿
(𝑚)
2 (𝐻)‖ = ‖ℓ|𝐿(𝑚)*

2 (𝐻)‖2. (9)

Employing formulas (3), (6), (9), after straightforward calculations we get

‖ℓ|𝐿(𝑚)*
2 (𝐻)‖2 =

∫︁
Ω0

ℓ(𝑥)𝜓ℓ(𝑥)𝑑𝑥 =

= (−1)𝑚
∫︁
Ω0

(︃
𝛿(𝑥− 𝑧)−

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝛿(𝑥− 𝑥(𝑘))

)︃
* 𝜑0(𝐻

−1𝑥)

(︃
𝐵2𝑚(𝑥− 𝑧)−

−
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝐵2𝑚(𝑥− 𝑥(𝑘)) + 𝑑0

)︃
𝑑𝑥.

By (1) and the definition of delta-function it yields

‖ℓ | 𝐿(𝑚)*
2 (𝐻)‖2 =

= (−1)𝑚
∫︁
Ω0

(︃∑︁
𝛽

𝛿(𝑥− 𝑧 −𝐻𝛽)−
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)
∑︁
𝛽

𝛿(𝑥− 𝑥(𝑘) −𝐻𝛽)

)︃
×

×

(︃
𝐵2𝑚(𝑥− 𝑧)−

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝐵2𝑚(𝑥− 𝑥(𝑘))

)︃
𝑑𝑥.

Employing the characteristic function 𝜒Ω0(𝑥) of the domain Ω0, we rewrite the latter expres-
sion obtained from the norm of the functional as

‖ℓ(𝑥)|𝐿(𝑚)*
2 (𝐻)‖2 = (−1)𝑚

(︃∑︁
𝛽

𝜒Ω0(𝑧 +𝐻𝛽)𝐵2𝑚(𝐻𝛽)−

−
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)
∑︁
𝛽

𝜒Ω0(𝑧 +𝐻𝛽)𝐵2𝑚(𝑧 +𝐻𝛽 − 𝑥(𝑘))−
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−
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)
∑︁
𝛽

𝜒Ω0(𝑥
(𝑘) +𝐻𝛽)𝐵2𝑚(𝑥

(𝑘) +𝐻𝛽 − 𝑧)+

+
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)
𝑁∑︁

𝑘′=1

𝐶𝑘′(𝑧)
∑︁
𝛽

𝜒Ω0(𝑥
(𝑘) +𝐻𝛽)𝐵2𝑚(𝑥

(𝑘) +𝐻𝛽 − 𝑥(𝑘
′))

)︃
.

Since 𝑥(𝑘) ∈ Ω0, 𝑧 ∈ Ω0,
∑︀
𝛽

𝜒Ω0(𝑦 +𝐻𝛽) = 1, 𝑦 ∈ Ω0, employing the evenness of the Bernoulli-

Sobolev function 𝐵2𝑚(𝑦), i.e., 𝐵2𝑚(𝑦) = 𝐵2𝑚(−𝑦), we finally have

‖ℓ(𝑥)|𝐿(𝑚)*
2 (𝐻)‖2 =

= (−1)𝑚

(︃
𝐵2𝑚(0)− 2

𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)𝐵2𝑚(𝑧 − 𝑥(𝑘)) +
𝑁∑︁
𝑘=1

𝐶𝑘(𝑧)
𝑁∑︁

𝑘′=1

𝐶𝑘′(𝑧)𝐵2𝑚(𝑥
(𝑘) − 𝑥(𝑘

′))

)︃
. (10)

We note that the square of the norm of the functional ℓ is a nonnegative second order
polynomial of the 𝑁 real variables 𝐶1(𝑧), . . . , 𝐶𝑁(𝑧). This polynomial is considered on the

linear manifold
𝑁∑︀
𝑘=1

𝐶𝑘(𝑧) = 1. This function is obviously attains the minimum at a point

𝐶0(𝑧) = (𝐶0
1(𝑧), . . . , 𝐶

0
𝑁(𝑧)) . Owing to a strong convexity of the norm of the Hilbert space,

this point is unique.
To find the point of minimum for norm (10) under the condition (1), one can apply the

Lagrange method of undeterminate multipliers.
Consider an auxiliary function

Ψ(𝐶(𝑧), 𝜆) = ‖ℓ‖2 − 2(−1)𝑚𝜆(ℓ, 1).

Equating to zero the partial derivatives of Ψ(𝐶(𝑧), 𝜆) w.r.t. 𝐶𝑘(𝑧) and 𝜆, we obtain the system
of equations

𝑁∑︁
𝑘=1

𝐶0
𝑘(𝑧)𝐵2𝑚(𝑥

(𝑘′) − 𝑥(𝑘)) + 𝜆0 = 𝐵2𝑚(𝑧 − 𝑥(𝑘
′)), 𝑘′ = 1, 2, ..., 𝑁, (11)

𝑁∑︁
𝑘=1

𝐶0
𝑘(𝑧) = 1. (12)

Consider the system on the grid, i.e., let 𝑥(𝛾) = 𝐻ℎ𝛾. We call such interpolation formula a
grid one. Here ℎ is a small parameter which is the grid spacing. Then the system casts into
the form ∑︁

ℎ𝐻𝛾∈Ω0

∘
𝐶ℎ𝐻𝛾(𝑧) 𝐵2𝑚(ℎ𝐻(𝛽 − 𝛾)) + 𝜆0 = 𝐵2𝑚(𝑧 − ℎ𝐻𝛽), ℎ𝐻𝛽 ∈ Ω0, (13)

∑︁
ℎ𝐻𝛾∈Ω0

∘
𝐶ℎ𝐻𝛾(𝑧) = 1. (14)

Employing the convolution of two functions of a discrete argument defined by the formula
(see [9])

𝑓 [𝛽] * 𝑔[𝛽] =
∞∑︁

𝛾=−∞

𝑓 [𝛾] · 𝑔[𝛽 − 𝛾],

we write system (13), (14) as convolution equations,

𝐵2𝑚[𝛽] * (
∘
𝐶([𝛽]; 𝑧) 𝜒Ω0 [𝛽]) + 𝜆0 = 𝐵2𝑚(𝑧 − [𝛽]), [𝛽] ∈ Ω0, (15)
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∑︁
[𝛽]∈Ω0

∘
𝐶([𝛽]; 𝑧) = 1, (16)

where [𝛽] = ℎ𝐻𝛽.
System of equations (15), (16) is called Wiener-Hopf system and now the problem is to solve

this system w.r.t.
∘
𝐶([𝛽]; 𝑧) and 𝜆0.

Problem A. Find a function
∘
𝐶([𝛽]; 𝑧) and 𝜆 satisfying the Wiener-Hopf system.

In solving Problem A an important role is played by certain properties of a discrete analogue

𝐷
(𝑚)
ℎ𝐻 [𝛽] of the polyharmonic operator Δ𝑚; these properties will be proven in the next section.
Traditionally, a discrete analogue of the polyharmonic operator appears as the result of

the change of the derivatives involved in Δ𝑚 by appropriate finite differences. Another idea
of discretization of a differential operator coming from S.L. Sobolev [9] reads as follows. In
the equation determining the fundamental solution (in our case it is Δ𝑚𝐵2𝑚(𝑥) = Φ0(𝑥) in
the periodic version) one passes to the discrete arguments of the fundamental solution and
𝛿-function replacing the polyharmonic operator by some function of discrete variables acting
as the discrete convolution on the discretized fundamental solution.

It is given by the formula

𝐷𝑚
ℎ𝐻 [𝛽] *𝐵2𝑚[𝛽] =

∑︁
𝛾

𝛿[𝛽 − 𝛾/ℎ],

where [𝛽] = ℎ𝐻𝛽, 𝛽 ∈ Z𝑛, 1/ℎ is a natural number, 𝛿[𝛽] ≡ 𝛿
|𝛽|
0 is the Kronecker delta.

The operator of discrete convolution defined by this formula 𝐷𝑚
ℎ𝐻 [𝛽]* is a discrete analogue

to the polyharmonic operator.

4. New properties of operator 𝐷
(𝑚)
ℎ𝐻 [𝛽]

Let us justify new properties of the convolution operator 𝐷
(𝑚)
ℎ𝐻 [𝛽]. We note that as 𝑛 = 1, a

discrete analogue to the differential operator 𝑑2𝑚/𝑑𝑥2𝑚 was constructed in work [10].

We find the function of discrete variable 𝐷
(𝑚)
ℎ𝐻 [𝛽] satisfying the identity

ℎ𝑛𝐷
(𝑚)
ℎ𝐻 [𝛽] *𝐵2𝑚[𝛽] = Φ[𝛽]− ℎ𝑛. (17)

Here 𝐵2𝑚[𝛽] is the Bernoulli-Sobolev function defined by the formula

𝐵2𝑚[𝛽] = (−1)𝑚
∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝛾*ℎ𝛽)

|2𝜋𝐻−1*𝛾|2𝑚
,

and Φ[𝛽] is a discrete periodic delta-function and

Φ[𝛽] =
∑︁
𝛾

𝛿[𝛽 − ℎ−1𝛾], (18)

[𝛽] = ℎ𝐻𝛽, ℎ−1 is a natural number, 𝛿[𝛽 − ℎ−1𝛾] is the discrete delta-function defined by the
formula

𝛿[𝛽 − ℎ−1𝛾] =

{︂
1, if 𝛽 − ℎ−1𝛾 = 0,
0, if 𝛽 − ℎ−1𝛾 ̸= 0,

(19)

𝛽 =↑ (𝛽1, 𝛽2, ..., 𝛽𝑛) is the column vector, 𝛽* = (𝛽1, 𝛽2, ..., 𝛽𝑛) is the row vector, 𝛽𝑗 ∈ Z, Z is
the set of integers.
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Lemma 2. A solution to convolution equation (17) is determined by the formula

𝐷
(𝑚)
ℎ𝐻 [𝛽] =

1

|Ω1|

∫︁
Ω1

Γ
(𝑚)
ℎ𝐻 (𝑝) exp(2𝜋𝑖𝛽*ℎ𝐻*𝑝)𝑑𝑝, (20)

where Ω1 is the fundamental parallelepiped for the matrix ℎ−1𝐻−1*, |Ω1| is the volume of the
domain Ω1,

Γ
(𝑚)
ℎ𝐻 (𝑝) =

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|𝑝− ℎ−1𝐻−1*𝛾|2𝑚

]︃−1

, 𝑝 ̸= ℎ−1𝐻−1*𝛾. (21)

Proof. To find 𝐷
(𝑚)
ℎ𝐻 [𝛽], we employ the Fourier transformation. The class of discrete functions

and the class of harrow-like functions are known to be isomorphic (see [9]). Employing this
fact, we pass from the discrete functions to harrow-like ones

↽⇁

𝜓 (𝑥) =
∑︁
𝛽

ℎ𝑛𝜓[𝛽]𝛿(𝑥− ℎ𝐻𝛽).

For Φ[𝛽] defined by formula (18) we have

↽⇁

Φ (𝑥) =
∑︁
𝛽

ℎ𝑛Φ[𝛽]𝛿(𝑥− ℎ𝐻𝛽) = ℎ𝑛
∑︁
𝛽

∑︁
𝛾

𝛿[𝛽 − ℎ−1𝛾]𝛿(𝑥− ℎ𝐻𝛽).

By (19) it implies
↽⇁

Φ (𝑥) =
∑︁
𝛾

ℎ𝑛𝛿(𝑥−𝐻𝛾) = ℎ𝑛𝜑0(𝐻
−1𝑥).

Equation (17) on the class of harrow-like function becomes

ℎ𝑛
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)*
↽⇁

𝐵 2𝑚(𝑥) = ℎ𝑛𝜑0(𝐻
−1𝑥)− ℎ𝑛𝜑0(ℎ

−1𝐻−1𝑥), (22)

where 𝜑0(ℎ
−1𝐻−1𝑥) =

∑︀
𝛽

ℎ𝑛𝛿(𝑥− ℎ𝐻𝛽).

As is known, the Fourier transform of the functions 𝜑0(𝐻
−1𝑥) and 𝜑0(ℎ

−1𝐻−1𝑥) is provided
by the formulas

𝐹 [𝜑0(𝐻
−1𝑥)] =

∫︁
𝑒2𝜋𝑖𝑝

*𝑥𝜑0(𝐻
−1𝑥)𝑑𝑥 =

=

∫︁
𝑒2𝜋𝑖𝑝

*𝑥
∑︁
𝛽

𝛿(𝑥−𝐻𝛽)𝑑𝑥 =
∑︁
𝛽

∫︁
𝑒2𝜋𝑖𝑝

*𝑥𝛿(𝑥−𝐻𝛽)𝑑𝑥 =
∑︁
𝛽

𝑒2𝜋𝑖𝑝
*𝐻𝛽, (23)

𝐹 [𝜑0(ℎ
−1𝐻−1𝑥)] =

∫︁
𝑒2𝜋𝑖𝑝

*𝑥𝜑0(ℎ
−1𝐻−1𝑥)𝑑𝑥 =

∑︁
𝛽

ℎ𝑛𝑒2𝜋𝑖𝑝
*ℎ𝐻𝛽. (24)

Employing the well-known Poisson formula

ℎ𝑛
∑︁
𝛽

𝑒2𝜋𝑖𝑝
*ℎ𝐻𝛽 =

∑︁
𝛽

𝛿(𝑝− ℎ−1𝐻−1*𝛽), (25)

we rewrite identities (23) and (24) as

𝐹 [𝜑0(𝐻
−1𝑥)] =

∑︁
𝛽

𝛿(𝑝−𝐻−1*𝛽), (26)

𝐹 [𝜑0(ℎ
−1𝐻−1𝑥)] =

∑︁
𝛽

𝛿(𝑝− ℎ−1𝐻−1*𝛽). (27)
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Let us calculate the Fourier transform of the function

↽⇁

𝐵 2𝑚(𝑥) = ℎ𝑛(−1)𝑚
∑︁
𝛽

∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝛾*ℎ𝛽)

|2𝜋𝐻−1*𝛾|2𝑚
𝛿(𝑥− ℎ𝐻𝛽).

By the definition of the Fourier transform we get

𝐹 [
↽⇁

𝐵 2𝑚(𝑥)] =

∫︁
𝑒2𝜋𝑖𝑝

*𝑥
↽⇁

𝐵 2𝑚(𝑥)𝑑𝑥 =

=
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛽

ℎ𝑛
∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝛾*ℎ𝛽) exp(2𝜋𝑖𝑝*ℎ𝐻𝛽)

|𝐻−1*𝛾|2𝑚
=

=
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛽

ℎ𝑛
∑︁
𝛾 ̸=0

exp(2𝜋𝑖(𝑝*𝐻 − 𝛾*)ℎ𝛽)

|𝐻−1*𝛾|2𝑚
.

By (25) we have

ℎ𝑛
∑︁
𝛽

exp(2𝜋𝑖(𝑝*𝐻 − 𝛾*)ℎ𝛽) =
∑︁
𝛽

ℎ𝑛 exp(2𝜋𝑖(𝑝* − 𝛾*𝐻−1)ℎ𝐻𝛽) =

=
∑︁
𝛽

𝛿(𝑝−𝐻−1*𝛾 − ℎ−1𝐻−1*𝛽).

Then

𝐹 [
↽⇁

𝐵 2𝑚(𝑥)] =
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛽

∑︁
𝛾 ̸=0

𝛿(𝑝−𝐻−1*(𝛾 + ℎ−1𝛽))

|𝐻−1*𝛾|2𝑚
.

Making the change of the variables 𝛾 + ℎ−1𝛽 = 𝑘, we finally get

𝐹 [
↽⇁

𝐵 2𝑚(𝑥)] =
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛽

∑︁
𝑘

𝑘ℎ̸∈Z

𝛿(𝑝−𝐻−1*𝑘)

|𝐻−1*(𝑘 − ℎ−1𝛽)|2𝑚
. (28)

Applying the Fourier transform to both sides of (22), using formulas (26), (27), and (28), and
dividing by ℎ𝑛 > 0, we obtain the following equation,

𝐹 [
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)] · (−1)𝑚

(2𝜋)2𝑚

∑︁
𝛽

∑︁
𝛾

𝛾ℎ̸∈Z

𝛿(𝑝−𝐻−1*𝛾)

|𝐻−1*(𝛾 − ℎ−1𝛽)|2𝑚
=
∑︁

𝛾
ℎ𝛾 ̸∈Z

𝛿(𝑝−𝐻−1*𝛾). (29)

It is known that∑︁
𝛽

∑︁
𝛾

𝛾ℎ̸∈Z

𝛿(𝑝−𝐻−1*𝛾)

|𝐻−1*(𝛾 − ℎ−1𝛽)|2𝑚
=
∑︁
𝛽

∑︁
𝛾

𝛾ℎ̸∈Z

𝛿(𝑝−𝐻−1*𝛾)

|𝑝− ℎ−1𝐻−1*𝛽|2𝑚
. (30)

By (30), equation (29) is equivalent to

𝐹 [
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)] · (Γ(𝑚)
ℎ𝐻 (𝑝))−1 = 1, 𝑝 ̸= ℎ−1𝐻−1*𝛾, (31)

where Γ
(𝑚)
ℎ𝐻 (𝑝) is determined by formula (21). The function Γ

(𝑚)
ℎ𝐻 (𝑝) is periodic in 𝑝 with the

periods matrix ℎ−1𝐻−1*, real, and analytic for all 𝑝 ̸= ℎ−1𝐻−1*𝛾.
By (31) we have

𝐹 [
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)] = Γ
(𝑚)
ℎ𝐻 (𝑝). (32)

Applying the inverse Fourier transform to both sides of (32) and passing from harrow-like
generalized functions to discrete ones, we arrive at (20) that proves the lemma.
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Lemma 3. The operator 𝐷
(𝑚)
ℎ𝐻 [𝛽] and the function exp(2𝜋𝑖𝜎*ℎ𝐻𝛽) are related by the identity

𝐷
(𝑚)
ℎ𝐻 [𝛽] * exp(2𝜋𝑖𝜎*ℎ𝐻𝛽) =

= (−1)𝑚(2𝜋)2𝑚 exp(2𝜋𝑖𝜎*ℎ𝐻𝛽)

⎡⎣ ∑︁
𝛾

𝛾 ̸=ℎ𝐻*𝜎

1

|ℎ−1𝐻−1*𝛾 − 𝜎|2𝑚

⎤⎦−1

.

Here 𝐷
(𝑚)
ℎ𝐻 [𝛽] is determined by formula (20).

Proof. We denote by
↽⇁

𝑇 (𝑥) the convolution of harrow-like functions
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥) and
↽⇁
exp (2𝜋𝑖𝜎*𝑥),

↽⇁

𝑇 (𝑥) =
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)* ↽⇁
exp(2𝜋𝑖𝜎*𝑥).

Employing formula (32), we find the Fourier transform of the function
↽⇁

𝑇 (𝑥),

𝐹 [
↽⇁

𝑇 (𝑥)] = 𝐹 [
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)* ↽⇁
exp(2𝜋𝑖𝜎*𝑥)] =

= 𝐹 [
↽⇁

𝐷
(𝑚)

ℎ𝐻 (𝑥)] · 𝐹 [↽⇁exp(2𝜋𝑖𝜎*𝑥)] = Γ
(𝑚)
ℎ𝐻 (𝑝) · 𝐹 [↽⇁exp(2𝜋𝑖𝜎*𝑥)].

By the definition of harrow-like function and the Fourier transform of 𝛿(𝑥− ℎ𝐻𝛽) we have

𝐹 [
↽⇁
exp (2𝜋𝑖𝜎*𝑥)] = 𝐹

[︃∑︁
𝛽

ℎ𝑛 exp(2𝜋𝑖𝜎*ℎ𝐻𝛽)𝛿(𝑥− ℎ𝐻𝛽)

]︃
=

=
∑︁
𝛽

ℎ𝑛 exp(2𝜋𝑖𝜎*ℎ𝐻𝛽) exp(2𝜋𝑖𝑝*ℎ𝐻𝛽) =
∑︁
𝛽

ℎ𝑛 exp(2𝜋𝑖(𝜎* + 𝑝*)ℎ𝐻𝛽).

By (25) it yields

𝐹 [
↽⇁
exp(2𝜋𝑖𝜎*𝑥)] =

∑︁
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽). (33)

By formulas (21), (33) we get

𝐹 [
↽⇁

𝑇 (𝑥)] =

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|𝑝− ℎ−1𝐻−1*𝛾|2𝑚

]︃−1

·
∑︁
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽) =

=
∑︁
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽)

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|ℎ−1𝐻−1*𝛽 − 𝜎 − ℎ−1𝐻−1*𝛾|2𝑚

]︃−1

=

=
∑︁
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽)

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|ℎ−1𝐻−1*(𝛽 − 𝛾)− 𝜎|2𝑚

]︃−1

, (34)

𝑝 ̸= ℎ−1𝐻−1*𝛾, 𝛽 − 𝛾 ̸= ℎ𝐻*𝛾.

Employing formula (25), we calculate the inverse Fourier transform of the function∑︀
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽), and keeping in mind the definition of harrow-like functions, we get

𝐹−1

[︃∑︁
𝛽

𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽)

]︃
=
∑︁
𝛽

∫︁
𝑒−2𝜋𝑖𝑥*𝑝𝛿(𝜎 + 𝑝− ℎ−1𝐻−1*𝛽)𝑑𝑝 =

= 𝑒2𝜋𝑖𝑥
*𝜎
∑︁
𝛽

𝑒−2𝜋𝑖𝑥*ℎ−1𝐻−1*𝛽 = 𝑒2𝜋𝑖𝑥
*𝜎ℎ𝑛

∑︁
𝛽

𝛿(𝑥− ℎ𝐻𝛽) = 𝑒2𝜋𝑖𝜎
*𝑥
∑︁
𝛽

ℎ𝑛𝛿(𝑥− ℎ𝐻𝛽) =

=
∑︁
𝛽

ℎ𝑛𝑒2𝜋𝑖𝜎
*ℎ𝐻𝛽𝛿(𝑥− ℎ𝐻𝛽) =

↽⇁
exp (2𝜋𝑖𝜎*𝑥). (35)
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Now, applying the inverse Fourier transform to both sides of formula (34) and taking into
consideration (35), we obtain

↽⇁

𝑇 (𝑥) =
↽⇁
exp(2𝜋𝑖𝜎*𝑥) ·

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|ℎ−1𝐻−1*(𝛽 − 𝛾)− 𝜎|2𝑚

]︃−1

, 𝛽 − 𝛾 ̸= ℎ𝐻*𝜎.

Passing from harrow-like functions to usual discrete functions, we have

𝑇 [𝛽] = exp(2𝜋𝑖𝜎*ℎ𝐻𝛽) ·

[︃
(−1)𝑚

(2𝜋)2𝑚

∑︁
𝛾

1

|ℎ−1𝐻−1*(𝛽 − 𝛾)− 𝜎|2𝑚

]︃−1

, 𝛽 − 𝛾 ̸= ℎ𝐻*𝜎.

The proof is complete.

5. Solution to Problem A

The following lemma holds true.
Lemma 4. Let 𝑔[𝛽] be a discrete periodic function, i.e., 𝑔[𝛽] = 𝑔(ℎ𝐻𝛽) = 𝑔(ℎ𝐻𝛽 + 𝐻𝛾),

then the identity
𝑔[𝛽] = (𝑔[𝛽]𝜒Ω0 [𝛽]) * Φ[𝛽] (36)

holds true.

Proof. Employing formulas (18), (19),∑︁
𝛾

𝜒Ω0(ℎ𝐻𝛽 +𝐻𝛾) = 1

and the periodicity of the discrete function 𝑔[𝛽], we have

𝑔[𝛽] = 𝑔[𝛽]
∑︁
𝛾

𝜒Ω0(ℎ𝐻𝛽 +𝐻𝛾) =
∑︁
𝛾

𝑔[𝛽]𝜒Ω0(ℎ𝐻𝛽 +𝐻𝛾) =

=
∑︁
𝛾

𝑔(ℎ𝐻𝛽 +𝐻𝛾)𝜒Ω0(ℎ𝐻𝛽 +𝐻𝛾) =
∑︁
𝛾

𝑔(ℎ𝐻𝛽 −𝐻𝛾)𝜒Ω0(ℎ𝐻𝛽 −𝐻𝛾) =

=
∑︁
𝛾

𝑔[𝛽 − ℎ−1𝛾]𝜒Ω0 [𝛽 − ℎ−1𝛾] =
∑︁
𝛾

∑︁
𝑘

𝑔[𝑘]𝜒Ω0 [𝑘]𝛿[𝛽 − 𝑘 − ℎ−1𝛾] =

=
∑︁
𝑘

𝑔[𝑘]𝜒Ω0 [𝑘]
∑︁
𝛾

𝛿[𝛽 − 𝑘 − ℎ−1𝛾] =
∑︁
𝑘

𝑔[𝑘]𝜒Ω0 [𝑘]Φ[𝛽 − 𝑘] =

= (𝑔[𝛽]𝜒Ω0 [𝛽]) * Φ[𝛽].
The proof is complete.

Proof of Theorem. We employ the following well-known formula from [9],

𝐷
(𝑚)
ℎ𝐻 [𝛽] * [𝛽]𝑘 = 0 as 𝑘 < 2𝑚. (37)

Applying the operator ℎ𝑛𝐷
(𝑚)
ℎ𝐻 [𝛽] to both sides of equation (15), we obtain

ℎ𝑛𝐷
(𝑚)
ℎ𝐻 [𝛽]*

(︁
𝐵2𝑚[𝛽] * (

∘
𝐶([𝛽]; 𝑧)𝜒Ω0 [𝛽]) + 𝜆

)︁
= ℎ𝑛 ·𝐷(𝑚)

ℎ𝐻 [𝛽]*𝐵2𝑚(𝑧−ℎ𝐻𝛽), ℎ𝐻𝛽 ∈ Ω0. (38)

Employing formulas (17), (36), (37), due to (38) we have
∘
𝐶([𝛽]; 𝑧)− ℎ𝑛

∑︁
ℎ𝐻𝛽∈Ω0

∘
𝐶([𝛽]; 𝑧) = ℎ𝑛𝐷

(𝑚)
ℎ𝐻 [𝛽] *𝐵2𝑚(𝑧 − ℎ𝐻𝛽), ℎ𝐻𝛽 ∈ Ω0.

By (16) we find
∘
𝐶([𝛽]; 𝑧) = ℎ𝑛 + ℎ𝑛 ·𝐷(𝑚)

ℎ𝐻 [𝛽] *𝐵2𝑚(𝑧 − ℎ𝐻𝛽), ℎ𝐻𝛽 ∈ Ω0.



100 N.H. MAMATOVA, A.R. HAYOTOV, KH.M. SHADIMETOV

Since the function 𝐵2𝑚(𝑧 − ℎ𝐻𝛽) is the Bernoulli-Sobolev one, it yields

∘
𝐶([𝛽]; 𝑧) = ℎ𝑛 + ℎ𝑛 ·𝐷(𝑚)

ℎ𝐻 [𝛽] * (−1)𝑚
∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝐻−1(𝑧 − ℎ𝐻𝛽)𝛾)

|2𝜋𝐻−1*𝛾|2𝑚
=

= ℎ𝑛 + (−1)𝑚ℎ𝑛
∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝐻−1𝑧𝛾)

|2𝜋𝐻−1*𝛾|2𝑚
𝐷

(𝑚)
ℎ𝐻 [𝛽] * exp(2𝜋𝑖ℎ𝛽*𝛾) =

= ℎ𝑛 + (−1)𝑚ℎ𝑛
∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝐻−1𝑧𝛾)

|2𝜋𝐻−1*𝛾|2𝑚
𝐷

(𝑚)
ℎ𝐻 [𝛽] * exp(2𝜋𝑖𝛾*𝐻−1(ℎ𝐻𝛽)). (39)

Employing now Lemma 6, by (39) we obtain

∘
𝐶([𝛽]; 𝑧) = ℎ𝑛 + (−1)𝑚ℎ𝑛

∑︁
𝛾 ̸=0

exp(−2𝜋𝑖𝐻−1𝑧𝛾)

|2𝜋𝐻−1*𝛾|2𝑚
(−1)𝑚(2𝜋)2𝑚 exp(2𝜋𝑖𝛾*𝐻−1ℎ𝐻𝛽)×

×

⎡⎢⎣∑︁
𝑡

𝑡 ̸=ℎ𝛾

1

|ℎ−1𝐻−1*𝑡−𝐻−1*𝛾|2𝑚

⎤⎥⎦
−1

.

Introducing the notation 𝐾(𝛾) =

⎡⎣ ∑︀
𝑡

𝑡̸=ℎ𝛾

1
|𝐻−1*(ℎ−1𝑡−𝛾)|2𝑚

⎤⎦−1

, we obtain the final form of the

optimal coefficients,

∘
𝐶([𝛽]; 𝑧) = ℎ𝑛

(︃
1 +

∑︁
𝛾 ̸=0

exp(2𝜋𝑖𝐻−1(𝐻ℎ𝛽* − 𝑧)𝛾)

|𝐻−1*𝛾|2𝑚
·𝐾(𝛾)

)︃
.

The proof is complete.
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