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ON ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS

TO SOME QUASILINEAR INEQUALITIES ON MODEL

RIEMANNIAN MANIFOLDS

A.G. LOSEV, E.A. MAZEPA

Abstract. In the paper we study asymptotic behavior of positive solutions to some
quasilinear elliptic inequalities on spherically symmetric noncompact (model) Riemannian
manifolds. In particular, we find conditions under which Liouville type theorems on absence
of nontrivial solutions hold true, as well as the conditions of existence and cardinality of
the set of positive solutions of the studied inequalities on the Riemannian manifolds. The
results generalize similar results obtained previously by Y. Naito and H. Usami for the
Euclidean space R𝑛.

Keywords: quasilinear elliptic inequality, Liouville type theorem, model Riemannian man-
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1. Introduction and main results

This work is devoted to studying the asymptotic behavior of solutions to the inequality

𝐿𝑢 ≡ div(𝐴(|∇𝑢|)∇𝑢) ≥ 𝑓(𝑢) (1)

on model Riemannian manifolds. In particular, we find the conditions for validity of Liouville
type theorems on the absence of nontrivial solutions to inequality (1).

As one of the origins of these problems, one traditionally mentions the classification theory for
two-dimensional Riemannian surfaces. The uniformization theorem implies that each simply-
connected Riemannian manifold is conformally equivalent to one of the following model surfaces,

1) the sphere (elliptic surface);
2) the complex plane (parabolic surface);
3) the unit disk or, that is the same, the hyperbolic plane with its complex analytic structure

(hyperbolic surface).
The feature of two-dimensional parabolic (hyperbolic) surfaces is the validity (or failure) of

Liouville theorem saying that each positive superharmonic function on this surface is identi-
cally constant. Exactly this property served as a basis for the extension of the parabolicity
notion for arbitrary Riemannian manifolds. Namely, manifolds on which any lower bounded
superharmonic function is constant are called parabolic manifolds.

During last years there was published a series of papers devoted to the questions on validity
of Liouville type theorems for various classes of solutions and subsolutions of linear equations on
non-compact Riemannian manifolds. The general overview on modern studies on this subject
can be obtained, for instance, from the survey by A.A. Grigor’yan, see [1].
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In particular, the exact conditions of validity of Liouville type theorems for solutions of
some equations and inequalities on spherically-symmetric or model Riemannian manifolds were
obtained in works [2]–[4]. Let us describe these manifolds in more details.

We fix the origin 𝑂 ∈ R𝑛 and a smooth function 𝑞 on the interval [0,∞) such that 𝑞(0) = 0
and 𝑞′(0) = 1. We define a model Riemannian manifold 𝑀𝑞 as follows,

1) the set of the points of 𝑀𝑞 is R𝑛;
2) in polar coordinates (𝑟, 𝜃) (where 𝑟 ∈ (0,∞) and 𝜃 ∈ 𝑆𝑛−1), the Riemann metrics on

𝑀𝑞 ∖ {𝑂} is defined as

𝑑𝑠2 = 𝑑𝑟2 + 𝑞2(𝑟)𝑑𝜃2, (2)

where 𝑑𝜃 is the standard Riemann metrics on the sphere 𝑆𝑛−1;
3) the Riemann metrics at the point 𝑂 is a smooth continuation of metrics (2).
In what follows the function 𝐴 in inequality (1) is assumed to satisfy the following conditions,⎧⎨⎩ 𝐴 ∈ 𝐶(0,∞), 𝐴(𝑝) > 0 as 𝑝 > 0,

𝑝𝐴(|𝑝|) ∈ 𝐶(R) ∩ 𝐶1(0,∞),
(𝑝𝐴(𝑝))′ > 0 for 𝑝 > 0,

and the function 𝑓 ̸≡ 0 is so that

𝑓 ∈ 𝐶(0,∞), 𝑓(𝑢) ≥ 0 as 𝑢 ≥ 0 and 𝑓(0) = 0.

We shall make use of the following assumption for the function 𝑓 ,

(F)

{︂
there exists a non-decaying function 𝑔 ∈ 𝐶(0,∞) such that
0 < 𝑔(𝑢) 6 𝑓(𝑢) as 𝑢 > 0 and 𝑔(0) = 0.

The equations of this kind were considered by many authors in Euclidean spaces (see, for
instance, [5]–[8]). The functions 𝐴(𝑝) most frequently appearing in studies are of the following
types,

𝐴(𝑝) = 𝑝𝑚−2, 𝑚 > 1; (3)

𝐴(𝑝) = (1 + 𝑝2)−
1
2 ; (4)

or, in a more general form,

𝐴(𝑝) = (1 + 𝑝2)−𝛼, 𝛼 6
1

2
. (5)

According to that, the operator 𝐿 in inequality (1) is called 𝑚-Laplacian under the choice of
the function 𝐴 as (3), the mean curvature operator in case (4), and generalized mean curvature
operator in case (5) as 0 < 𝛼 < 1/2.

By an entire solution to inequality (1) on Riemannian manifold 𝑀 we shall call a function
𝑢 ∈ 𝐶1(𝑀) such that 𝐴(|∇𝑢|)∇𝑢 ∈ 𝐶1(𝑀) and obeying inequality (1) at each point 𝑥 ∈ 𝑀 .

In the simplest case 𝐴(𝑝) ≡ 1, the problem of existence of entire solutions to inequality (1)
in R𝑛 was studied in the series of paper. In particular, if 𝑓 is a non-decaying function, Keller J.
and Osserman R. (see [6] and [7]) showed that the inequality ∆𝑢 ≥ 𝑓(𝑢) had positive entire
solutions if and only if

∞∫︁ ⎛⎝ 𝑠∫︁
𝑓(𝑡)𝑑𝑡

⎞⎠− 1
2

𝑑𝑠 = ∞.

In work [5] Naito Y. and Usami H. generalized their result for inequality (1) and obtained the
criterion of existence of nontrivial nonnegative solutions to inequality (1) in R𝑛. The aim of the
present work is to obtain similar results on a class of model Riemannian manifolds. At that, it
is natural to consider the operator 𝐿 in inequality (1) in metrics (2) of the manifold 𝑀 .
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First we consider the case lim
𝑝→∞

𝑝𝐴(𝑝) < ∞. We introduce the notation

𝐼(𝑟) =
1

𝑞𝑛−1(𝑟)

𝑟∫︁
0

𝑞𝑛−1(𝑠) 𝑑𝑠.

We note that the conditions for the metrics of the model Riemannian manifold immediately
imply 𝐼(0) = lim

𝑟→+0
𝐼(𝑟) = 0.

Theorem 1. Suppose lim
𝑝→∞

𝑝𝐴(𝑝) < ∞ and the manifold 𝑀𝑞 is so that lim sup
𝑟→∞

𝐼(𝑟) = ∞. If

condition (F) is satisfied, there exists no entire positive solutions to inequality (1) on 𝑀𝑞.

Then we consider the case lim
𝑝→∞

𝑝𝐴(𝑝) = ∞. We define a continuous function Ψ : [0,∞) →
[0,∞) as

Ψ(𝑝) = 𝑝2𝐴(𝑝) −
𝑝∫︁

0

𝑡𝐴(𝑡)𝑑𝑡, 𝑝 ≥ 0.

It is easy to show that Ψ is strictly increasing and Ψ(0) = 0. We also mention that as 𝑝 ≥ 1,
the identity

Ψ(𝑝) +

1∫︁
0

𝑡𝐴(𝑡)𝑑𝑡 = 𝑝2𝐴(𝑝) −
𝑝∫︁

1

𝑡𝐴(𝑡)𝑑𝑡 ≥ 𝑝𝐴(𝑝)

holds true that yields lim
𝑝→∞

Ψ(𝑝) = ∞.

Thus, the inverse to Ψ function Φ is defined on [0,∞). It is clear that Φ is a strictly increasing
function and lim

𝑝→∞
Φ(𝑝) = ∞.

Theorem 2. Suppose lim
𝑝→∞

𝑝𝐴(𝑝) = ∞ and the manifold 𝑀𝑞 is such that 𝐼 ′(𝑟) ≥ 𝑘 > 0. If

condition (F) is satisfied and moreover

∞∫︁ ⎛⎝Φ

⎛⎝𝑘

𝑠∫︁
𝑔(𝑡)𝑑𝑡

⎞⎠⎞⎠−1

𝑑𝑠 < ∞, (6)

there exists no entire positive solutions to inequality (1) on 𝑀𝑞.

Theorem 3. Suppose lim
𝑝→∞

𝑝𝐴(𝑝) = ∞ and the manifold 𝑀𝑞 is such that 𝑞′(𝑟) ≥ 0. If

∞∫︁ ⎛⎝Φ

⎛⎝ 𝑠∫︁
𝑓(𝑡)𝑑𝑡

⎞⎠⎞⎠−1

𝑑𝑠 = ∞, (7)

inequality (1) has continuum of positive entire solutions.

2. Radial solutions

In the beginning of the present section we formulate an analogue of comparison principle
obtained in work [5], on which the further arguments are based.

Lemma 1 ([5]). Suppose Ω ⊂ 𝑀 is a bounded domain with a smooth boundary 𝜕Ω, 𝑢 is
a nonnegative solution to (1) in Ω, and 𝑣 ∈ 𝐶(Ω)

⋂︀
𝐶1(Ω) is a positive function such that

𝐴(|∇𝑣|)∇𝑣 ∈ 𝐶1(Ω), 𝐿𝑣 6 𝑔(𝑣) in Ω, and 𝑢 6 𝑣 on the boundary 𝜕Ω. If condition (F) is
satisfied, then 𝑢 6 𝑣 in Ω.
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The key ingredient of the statements being proven is the study of radially symmetric solutions
𝑣(𝑟) of the considered inequalities. It is easy to show that on a model manifold 𝑀𝑞

𝐿𝑣(𝑟) ≡ div(𝐴(|∇𝑣(𝑟)|)∇𝑣(𝑟)) = 𝑞1−𝑛(𝑟)
(︁
𝑞𝑛−1(𝑟)𝐴(|𝑣′(𝑟)|)𝑣′(𝑟)

)︁′
.

Let us consider the following ordinary differential equation(︁
𝑞𝑛−1(𝑟)𝐴(|𝑣′(𝑟)|)𝑣′(𝑟)

)︁′
= 𝑞𝑛−1(𝑟)𝑔(𝑣(𝑟)), 𝑟 ≥ 0, (8)

where 𝑔 is continuous positive non-decaying on (0,∞) function in condition (F).
Let 𝑣(𝑟) be the solution to equation (8) with initial data 𝑣(0) > 0 and 𝑣′(0) = 0. We observe

that if 𝑣(𝑟) is defined for 0 6 𝑟 < 𝑅 6 ∞, then 𝑣′(𝑟) > 0 for 0 < 𝑟 < 𝑅. Indeed, integrating
identity (8) over segment [0, 𝑟], 𝑟 < 𝑅, we obtain

𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) = 𝑞1−𝑛(𝑟)

𝑟∫︁
0

𝑞𝑛−1(𝑠)𝑔(𝑣(𝑠))𝑑𝑠, 0 < 𝑟 < 𝑅. (9)

Therefore, 𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) > 0 for 0 < 𝑟 < 𝑅 that implies 𝑣′(𝑟) > 0 as 0 < 𝑟 < 𝑅.

Lemma 2. Suppose condition (F) holds true. If inequality (1) has a positive entire solution
𝑢(𝑟, 𝜃) > 0 on 𝑀𝑞, on [0;∞) there exists a positive solution 𝑣(𝑟) to equation (8) subject to
conditions 𝑣(0) > 0 and 𝑣′(0) = 0.

Proof. Suppose the opposite, i.e., there exists no solution 𝑣(𝑟) to equation (8) described in the
statement of the lemma, but at the same time there exists a positive entire solution 𝑢(𝑟, 𝜃)
of inequality (1). The positivity of solution to inequality in particular implies that 𝑢(𝑂) > 0.
Let 𝑎 ∈ (0, 𝑢(𝑂)), and [0;𝑅) be the maximal segment of the existence for the solution 𝑣 to
equation (8) subject to the conditions 𝑣(0) = 𝑎 and 𝑣′(0) = 0. By the assumption 𝑅 < ∞. We
have shown above that 𝑣′(𝑟) > 0 as 0 < 𝑟 < 𝑅. Then we have either 𝑣(𝑟) → ∞ as 𝑟 → 𝑅 or
𝑣′(𝑟) → ∞ as 𝑟 → 𝑅.

In the case 𝑣(𝑟) → ∞ as 𝑟 → 𝑅 we choose 𝑅1 ∈ (0, 𝑅) so that

𝑣(𝑅1) > max
Ω

𝑢(𝑟, 𝜃), (10)

where Ω ≡ 𝐵𝑅1 = {(𝑟, 𝜃) : 𝑟 ∈ [0, 𝑅1]}. Then 𝐿𝑣 = 𝑔(𝑣) in Ω and 𝑣 ≥ 𝑢 on 𝜕Ω. Therefore, by
Lemma 1, 𝑢 6 𝑣 in Ω that contradicts the condition 𝑣(0) = 𝑎 < 𝑢(𝑂).

Consider the case 𝑣′(𝑟) → ∞ as 𝑟 → 𝑅. If there exists 𝑅1 ∈ (0;𝑅) such that inequality (10)
is satisfied, we obtain a contradiction similar to one obtained above. Let 𝑣(𝑟) 6 max

𝜃∈𝑆𝑛−1
𝑢(𝑟, 𝜃)

for all 0 < 𝑟 < 𝑅. We choose 𝑅1 ∈ (0;𝑅) so that

𝑣′(𝑅1) > max
Ω

{︂
𝜕𝑢

𝜕𝑟
(𝑟, 𝜃)

}︂
, (11)

where Ω ≡ 𝐵𝑅1 = {(𝑟, 𝜃) : 𝑟 ∈ [0, 𝑅1]}. Denote 𝛿 = max
𝜃∈𝑆𝑛−1

(𝑢(𝑅1, 𝜃) − 𝑣(𝑅1)) > 0 and let

𝑤(𝑟) = 𝑣(𝑟) + 𝛿. Then 𝑤(𝑅1) ≥ 𝑢(𝑅1, 𝜃) for all 𝜃 ∈ 𝑆𝑛−1 and 𝑤(𝑅1) = 𝑢(𝑅1, 𝜃
*) for some

𝜃* ∈ 𝑆𝑛−1. Then 𝐿𝑤 6 𝑔(𝑤) in the domain Ω, 𝑤 ≥ 𝑢 on the boundary 𝜕Ω and by Lemma we
get 𝑤 ≥ 𝑢 in Ω.

Taking into consideration the conditions 𝑤(𝑅1) = 𝑢(𝑅1, 𝜃
*), 𝑤(𝑟) ≥ 𝑢(𝑟, 𝜃) as (𝑟, 𝜃) ∈ 𝐵𝑅1 ,

we obtain

𝑣′(𝑅1) = 𝑤′(𝑅1) 6
𝜕𝑢

𝜕𝑟
(𝑅1, 𝜃

*),

that contradicts (11). The proof is complete.
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3. Proofs of theorems

Proof of Theorem 1. Suppose the opposite, namely, that inequality (1) has an entire solution
𝑢(𝑟, 𝜃) > 0. Then Lemma 2 implies the existence of positive solution 𝑣(𝑟) to equation (8)
subject to initial conditions 𝑣(0) > 0 and 𝑣′(0) = 0 on the ray [0;∞).

Since 𝑔(𝑣) and 𝑣(𝑟) are non-decaying functions, it follows from (9) that

𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) 6 𝑔(𝑣(𝑟))𝐼(𝑟). (12)

We note that equation (8) can be represented as

(𝐴(|𝑣′(𝑟)|)𝑣′(𝑟))′ + (𝑛− 1)
𝑞′(𝑟)

𝑞(𝑟)
𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) = 𝑔(𝑣(𝑟)). (13)

Combining (12) and (13), we obtain

(𝐴(|𝑣′|)𝑣′)′ ≥ 𝑔(𝑣(𝑟))

[︂
1 − (𝑛− 1)

𝑞′(𝑟)

𝑞(𝑟)
𝐼(𝑟)

]︂
= 𝑔(𝑣(𝑟))𝐼 ′(𝑟). (14)

We recall that 𝐼(0) = 0. Integrating inequality (14) over the segment [0; 𝑟], we obtain

𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) ≥
𝑟∫︁

0

𝑔(𝑣(𝑠))𝐼 ′(𝑠) 𝑑𝑠 ≥ 𝑔(𝑣(0))𝐼(𝑟). (15)

The conditions for the functions 𝐴 follow that

𝑔(𝑣(0))𝐼(𝑟) ≤ 𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) 6 lim
𝑝→∞

𝑝𝐴(𝑝) < ∞, 𝑟 > 0.

Letting 𝑟 → ∞ and passing to the upper limit in the left hand side of the inequality, we arrive
at the contradiction with the finiteness of the right hand side. The proof is complete.

Proof of Theorem 2. Suppose inequality (1) has a positive entire solution 𝑢(𝑟, 𝜃) > 0. Then
Lemma 2 yields that on [0,∞) there exists a solution 𝑣(𝑟) to equation (8) subject to initial
conditions 𝑣(0) > 0 and 𝑣′(0) = 0. It follows from (15) and the hypothesis of the theorem that
lim
𝑟→∞

𝑣′(𝑟) = ∞ as 𝑟 → ∞. Hence, lim
𝑟→∞

𝑣(𝑟) = ∞. Multiplying inequality (14) by 𝑣′ > 0 and

integrating over the segment [0; 𝑟], we obtain

𝑟∫︁
0

(𝐴(|𝑣′|)𝑣′)′𝑣′ 𝑑𝑠 ≥
𝑟∫︁

0

𝑔(𝑣(𝑠))𝐼 ′(𝑠)𝑣′(𝑠)𝑑𝑠 ≥ 𝑘

𝑟∫︁
0

𝑔(𝑣(𝑠))𝑣′(𝑠)𝑑𝑠 = 𝑘

𝑣(𝑟)∫︁
𝑣(0)

𝑔(𝑡)𝑑𝑡.

On the the hand, applying integration by parts, we get

𝑟∫︁
0

(𝐴(|𝑣′|)𝑣′)′𝑣′ 𝑑𝑠 =

𝑟∫︁
0

𝑣′ 𝑑(𝐴(|𝑣′|)𝑣′) = (𝑣′(𝑟))2𝐴(|𝑣′(𝑟)|) −
𝑣′(𝑟)∫︁
0

𝐴(𝑡)𝑡 𝑑𝑡 = Ψ(𝑣′(𝑟)).

Therefore,

Ψ(𝑣′(𝑟)) ≥ 𝑘

𝑣(𝑟)∫︁
𝑣(0)

𝑔(𝑡) 𝑑𝑡.

Passing to the inverse function Φ, by the latter inequality we obtain⎛⎜⎝Φ

⎛⎜⎝𝑘

𝑣(𝑟)∫︁
𝑣(0)

𝑔(𝑠)𝑑𝑠

⎞⎟⎠
⎞⎟⎠

−1

· 𝑣′(𝑟) ≥ 1, 𝑟 > 0.
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Integrating the obtained inequality over the segment [0; 𝑟], we get

𝑣(𝑟)∫︁
𝑣(0)

⎛⎜⎝Φ

⎛⎜⎝𝑘

𝑠∫︁
𝑣(0)

𝑔(𝑡)𝑑𝑡

⎞⎟⎠
⎞⎟⎠

−1

𝑑𝑠 ≥ 𝑟. (16)

Passing in (16) to the limit as 𝑟 → ∞, we have

∞∫︁
𝑣(0)

⎛⎜⎝Φ

⎛⎜⎝𝑘

𝑠∫︁
𝑣(0)

𝑔(𝑡)𝑑𝑡

⎞⎟⎠
⎞⎟⎠

−1

𝑑𝑠 = ∞,

that contradicts to (6). The proof is complete.

Proof of Theorem 3. To prove the theorem, it is sufficient to prove the existence of a positive
solution 𝑣(𝑟) to the equation

(𝑞𝑛−1(𝑟)𝐴(|𝑣′(𝑟)|)𝑣′(𝑟))′ = 𝑞𝑛−1(𝑟)𝑓(𝑣(𝑟)) (17)

on the interval [0;∞) subject to the initial conditions 𝑣(0) > 0 and 𝑣′(0) = 0, since the function
𝑣(𝑟) a radially-symmetric positive entire solution to inequality (1).

We choose 𝑎 > 0 such that 𝑓(𝑎) > 0 and let 𝑣(𝑟) be the solution to (17) subject to initial
conditions 𝑣(0) = 𝑎 and 𝑣′(0) = 0. Integrating identity (17) over [0; 𝑟], 𝑟 < 𝑅, we obtain

𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) =
1

𝑞𝑛−1(𝑟)

𝑟∫︁
0

𝑞𝑛−1(𝑠)𝑓(𝑣(𝑠))𝑑𝑠, 0 < 𝑟 < 𝑅. (18)

Then 𝑣′(𝑟) ≥ 0 for 0 6 𝑟 < 𝑅, since 𝐴(𝑣′(𝑟))𝑣′(𝑟) ≥ 0. Let us show that the solution 𝑣(𝑟)
exists on [0;∞). Suppose the opposite, namely, that the solution 𝑣(𝑟) is defined on a finite
segment [0;𝑅), 𝑅 < ∞.

Since 𝑣′(𝑟) ≥ 0 as 0 6 𝑟 < 𝑅, then 𝑣(𝑅 − 0) has the values in the segment (0;∞]. Consider
the case 𝑣(𝑅−0) < ∞. Then it follows from (18) that 𝑣′(𝑅−0) < ∞ and therefore the solution
𝑣 can be extended to the right through 𝑅 (see [9], pp. 58-62). It contradicts to the choice of
𝑅. Hence, 𝑣(𝑅− 0) = ∞.

Let us represent (17) as

(𝐴(|𝑣′(𝑟)|)𝑣′(𝑟))′ + (𝑛− 1)
𝑞′(𝑟)

𝑞(𝑟)
𝐴(|𝑣′(𝑟)|)𝑣′(𝑟) = 𝑓(𝑣(𝑟)).

Since 𝑣′(𝑟) ≥ 0 as 0 6 𝑟 < 𝑅 and 𝑞′(𝑟) ≥ 0, then

(𝐴(|𝑣′(𝑟)|)𝑣′(𝑟))′ 6 𝑓(𝑣(𝑟)).

Multiplying the latter inequality by 𝑣′(𝑟) and integrating it over the segment [0; 𝑟], 𝑟 < 𝑅, we
obtain

Ψ(𝑣′(𝑟)) 6

𝑣(𝑟)∫︁
𝑣(0)

𝑓(𝑠)𝑑𝑠.

It yields ⎛⎜⎝Φ

⎛⎜⎝ 𝑣(𝑟)∫︁
𝑣(0)

𝑓(𝑠)𝑑𝑠

⎞⎟⎠
⎞⎟⎠

−1

𝑣′(𝑟) 6 1, 𝑟 > 0.
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Integrating over the segment [0; 𝑟] as 𝑟 < 𝑅 once again, we have

𝑣(𝑟)∫︁
𝑣(0)

⎛⎜⎝Φ

⎛⎜⎝ 𝑠∫︁
𝑣(0)

𝑓(𝑡)𝑑𝑡

⎞⎟⎠
⎞⎟⎠

−1

𝑑𝑠 6 𝑟, 𝑟 > 0.

Letting 𝑟 → 𝑅, we obtain

∞∫︁
𝑣(0)

⎛⎜⎝Φ

⎛⎜⎝ 𝑠∫︁
𝑣(0)

𝑓(𝑡)𝑑𝑡

⎞⎟⎠
⎞⎟⎠

−1

𝑑𝑠 6 𝑅 < ∞

that contradicts (7). Therefore, the solution 𝑣 to equation (17) subject to initial conditions
𝑣(0) = 𝑎 and 𝑣′(0) = 0 there exists on the ray [0,∞). By the arbitrariness of 𝑎 > 0 we obtain
the continuum of various positive solutions to equation (17) and thus to inequality (1). The
proof is complete.
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