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A VERSION OF DISCRETE HAAR TRANSFORM WITH

NODES OF Π0-GRIDS

K.A. KIRILLOV, M.V. NOSKOV

Abstract. We propose a version of the two-dimensional discrete Haar transform with 2𝐷

nodes forming Π0-grids associated with the triangular partial sums of Fourier –Haar series
of a given function. Due to the structure of Π0-grids, the computation of coefficients of
this discrete transform is based on a cubature formula with 2𝐷 nodes being exact for Haar

polynomials of degree at most𝐷, owing to that all the coefficients 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 of the constructed

transform coincide with the Fourier –Haar coefficients 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 for Haar polynomials of degree

at most𝐷−max{𝑚1,𝑚2} (0 6 𝑚1+𝑚2 6 𝑑, where 𝑑 6 𝐷). The standard two-dimensional
discrete Haar transform with 2𝐷 nodes does not possess this property.

Keywords: cubature formulae exact for Haar polynomials, discrete Haar transform, Π0-
grids

1. Introduction

In numerical mathematics, a substantial interest is attracted by the problem on applying
cubature formulae exact on some finite system of orthonormalized functions to the discrete
Fourier transform w.r.t. this system. For instance, applications of cubature formulae of high
trigonometric accuracy to the discrete Fourier transform w.r.t. the trigonometric system were
considered in [1].

The idea of employing triangular partial sums of Fourier series for a given function in
constructing the discrete Fourier transform, which was realized in paper [1], for the case of
the trigonometric system is applied in the present paper for constructing a version of two-
dimensional discrete Haar transform with nodes forming Π0-grids being the grids with rather
uniformly distributed nodes; if a Π0-grid is formed by 2𝐷 nodes, then each of its binary rect-
angles of area 2−𝐷 contains exactly one node. Owing to the mentioned structure of Π0-grids,
the calculation of the coefficients for the discrete transform constructed in the present paper
is based on a cubature formula with 2𝐷 nodes being exact for Haar polynomials of degree not
exceeding 𝐷 and due to this fact for each function being a Haar polynomial of degree at most

𝐷−max{𝑚1,𝑚2} (0 6 𝑚1+𝑚2 6 𝑑, where 𝑑 6 𝐷) all the coefficients 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 of the constructed

transform are equal to the corresponding Fourier-Haar coefficients 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 . The latter property

is absent for the standard discrete Haar transform related with rectangular partial sums of
Fourier-Haar series and based on a cubature formula with a rectangular grid of nodes for which
the Haar accuracy degree equals 𝑀 = min{𝑀1,𝑀2}, where 2𝑀1 and 2𝑀2 is a number of indices
in each component in construction of the nodes of the cubature formula, 𝑀1 +𝑀2 = 𝐷.
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2. Main definitions and auxiliary statements

In the present paper we employ original definition of the functions 𝜒𝑚,𝑗(𝑥) introduced by
A. Haar [2] and different from that in [3] in the points of discontinuity.

As binary interval 𝑙𝑚,𝑗 we call the intervals with the end-points (𝑗 − 1)/2𝑚−1, 𝑗/2𝑚−1 (𝑚 =
1, 2, . . ., 𝑗 = 1, 2, . . . , 2𝑚−1). If the left end-point of a binary segment coincides with 0, this
interval is assumed to be closed on the left; if the right end-point coincides with 1, the interval
is assumed to be closed on the right. Other binary intervals are supposed to be open. The left
and the right halves of 𝑙𝑚,𝑗 (without the center of this binary interval) will be indicated as 𝑙−𝑚,𝑗

and 𝑙+𝑚,𝑗, respectively.
As binary rectangles we call the sets 𝑙𝑚1,𝑗1 × 𝑙𝑚2,𝑗2 , as closed binary rectangles the closures

of these sets 𝑚𝑛 = 1, 2, . . ., 𝑗𝑛 = 1, 2, . . . , 2𝑚𝑛−1, 𝑛 = 1, 2.
The system of Haar function is constructed by groups; the group no. 𝑚 is comprised of 2𝑚−1

functions 𝜒𝑚,𝑗(𝑥), where 𝑚 = 1, 2, . . . , 𝑗 = 1, 2, . . . , 2𝑚−1. We define Haar functions 𝜒𝑚,𝑗(𝑥)
as follows,

𝜒𝑚,𝑗(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
2

𝑚−1
2 as 𝑥 ∈ 𝑙−𝑚,𝑗,

−2
𝑚−1

2 as 𝑥 ∈ 𝑙+𝑚,𝑗,

0 as 𝑥 ∈ [0, 1] ∖ 𝑙𝑚,𝑗,
1
2
[𝜒𝑚,𝑗(𝑥− 0) + 𝜒𝑚,𝑗(𝑥+ 0)], if 𝑥 is an interior point of discontinuity

𝑙𝑚,𝑗 = [ 𝑗−1
2𝑚−1 ,

𝑗
2𝑚−1 ], 𝑚 = 1, 2, . . . , 𝑗 = 1, 2, . . . , 2𝑚−1. In the system of Haar function one also

include the function 𝜒0,1(𝑥) ≡ 1 which one relates to the zeroth group.
In the two-dimensional case, as Haar polynomials of degree 𝑑 we shall call linear combinations

with real coefficients of the functions 𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2) referred to as Haar monomials (𝑚1+
𝑚2 is the monomial’s degree), 𝑚1 +𝑚2 = 0, 1, . . . , 𝑑, 𝑗𝑛 ∈ Λ𝑚𝑛 ,

Λ𝑚𝑛 =

{︂
{1, . . . , 2𝑚𝑛−1}, if 𝑚𝑛 > 0,
{1}, if 𝑚𝑛 = 0,

(1)

𝑛 = 1, 2, at that, at least one of the coefficients at Haar monomials of degree 𝑑 must be nonzero.
Let a function 𝑓(𝑥1, 𝑥2) be defined and summable on [0, 1]2. We shall say that the cubature

formula

𝐼[𝑓 ] =

1 1∫︁∫︁
0 0

𝑓(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 ≈
𝑁∑︁
𝑖=1

𝐶𝑖𝑓(𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) = 𝑄[𝑓 ] (2)

with nodes (𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) ∈ [0, 1]2 and coefficients at the nodes 𝐶𝑖 ∈ R (𝑖 = 1, 2, . . . , 𝑁) possesses

Haar 𝑑-property, or simply 𝑑-property, if it is exact for each Haar polynomial 𝑃 (𝑥1, 𝑥2) of degree
at most 𝑑, i.e.,

𝑄[𝑃 ] = 𝐼[𝑃 ].

Cubature formula (2) will be called a formula of Haar accuracy degree 𝑑, or 𝑑-exact, if it
possesses 𝑑-property but not (𝑑+ 1)-property.

The following proposition holds true.

Proposition 1. [4] If cubature formula (2) possesses 𝑑-property, the number 𝑁 of its nodes
satisfies the inequality

𝑁 > 2𝑑−1 + 1.

In [3] there employed a definition of Haar functions that is different from the definition
introduced in [2], namely, in [3] Haar functions are supposed to be right-continuous at the points
of discontinuity, and because of this binary intervals 𝑙𝑚,𝑗 (𝑚 = 1, 2, . . ., 𝑗 = 1, 2, . . . , 2𝑚−1) are
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defined as follows,

𝑙𝑚,𝑗 =

⎧⎨⎩
[0, 1], if 𝑚 = 1, 𝑗 = 1,
[ 𝑗−1
2𝑚−1 ,

𝑗
2𝑚−1 ), if 𝑚 ∈ N ∖ {1}, 𝑗 ∈ {1, 2, . . . , 2𝑚−1 − 1},

[1− 1
2𝑚−1 , 1], if 𝑚 ∈ N ∖ {1}, 𝑗 = 2𝑚−1.

(3)

We shall say that 2𝑑 points of unit square [0, 1]2 form a Π0-grid if each binary rectangle 𝑙𝑚1,𝑗1 ×
𝑙𝑚2,𝑗2 of area 2−𝑑 (𝑚1+𝑚2 = 𝑑+2, 𝑗𝑛 = 1, 2, . . . , 2𝑚𝑛−1, 𝑛 = 1, 2) being the Cartesian product
of binary segments defined by (3) contains exactly one of these points.

It was shown in [5] that there exist functions 𝜅𝑚,𝑗(𝑥) being linear combination of Haar
functions from the groups nos. 0, 1, . . . ,𝑚 and satisfying the identity

𝜅𝑚,𝑗(𝑥) =

⎧⎨⎩
2𝑚 as 𝑥 ∈ 𝑙𝑚+1,𝑗,
2𝑚−1 as 𝑥 ∈ 𝑙𝑚+1,𝑗 ∖ 𝑙𝑚+1,𝑗,
0 as 𝑥 ∈ [0, 1] ∖ 𝑙𝑚+1,𝑗,

(4)

𝑚 = 0, 1, 2, . . . , 𝑗 = 1, 2, . . . , 2𝑚.
We shall call the functions 𝜅𝑚1,𝑗1(𝑥1)𝜅𝑚2,𝑗2(𝑥2) 𝜅-monomials of degree 𝑑, where 𝑚1+𝑚2 = 𝑑,

𝑗𝑛 = 1, 2, . . . , 2𝑚𝑛 , 𝑛 = 1, 2.
The following proposition holds true.

Proposition 2. [4] Cubature formula (2) possesses the 𝑑-property if and only if it is exact
for all 𝜅-monomials of degree 𝑑.

Remark 1. Identity (4) implies that each closed binary rectangle of area 2−𝑑 is the support
of some 𝜅-monomial of degree 𝑑, namely, 𝑙𝑚1+1,𝑗1 × 𝑙𝑚2+1,𝑗2 = supp{𝜅𝑚1,𝑗1(𝑥1)𝜅𝑚2,𝑗2(𝑥2)}, 𝑚𝑛 =
0, 1, 2, . . ., 𝑗𝑛 = 1, 2, . . . , 2𝑚𝑛 , 𝑛 = 1, 2.

Let us prove

Proposition 3. If 𝐾𝑑(𝑥1, 𝑥2) is an arbitrary 𝜅-monomial of degree 𝑑, then

𝐼[𝐾𝑑] =

1 1∫︁∫︁
0 0

𝐾𝑑(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 = 1. (5)

Proof. Relation (4) yields that 𝐾𝑑(𝑥1, 𝑥2) = 2𝑑 in the interior points of the set supp{𝐾𝑑}.
Bearing in mind that supp{𝐾𝑑} is a binary rectangle of area 2−𝑑 (Remark 1), we arrive at
identity (5). The proof is complete.

The next proposition holds true.

Proposition 4. [4] In the points of continuity of the Haar function 𝜒𝑚,𝑗(𝑥) (𝑚 = 1, 2,. . . ,
𝑗 = 1, . . . , 2𝑚−1) the identity

𝜒2
𝑚,𝑗(𝑥) = 𝜅𝑚−1,𝑗(𝑥) (6)

holds true. Everywhere except the points at which the functions 𝜒𝑘,𝑖(𝑥) and 𝜒𝑚,𝑗(𝑥) are simul-
taneously discontinuous (if such points exist), the product of these functions reads as

𝜒𝑘,𝑖(𝑥)𝜒𝑚,𝑗(𝑥) =

⎧⎨⎩
2

𝑘−1
2 𝜒𝑚,𝑗(𝑥), if, 𝑙𝑚,𝑗 ⊆ 𝑙−𝑘,𝑖,

−2
𝑘−1
2 𝜒𝑚,𝑗(𝑥), if, 𝑙𝑚,𝑗 ⊆ 𝑙+𝑘,𝑖,

0 othwerwise,

(7)

where 𝑚 > 𝑘, 𝑖 ̸= 𝑗 as 𝑚 = 𝑘.

Proposition 4 implies

Proposition 5. Everywhere except the points at which Haar polynomial 𝑃 (𝑥1, 𝑥2), 𝑅(𝑥1, 𝑥2)
of degree at most 𝑑 are simultaneously discontinuous (if such points exist), the function
𝐹 (𝑥1, 𝑥2) = 𝑃 (𝑥1, 𝑥2)𝑅(𝑥1, 𝑥2) is a Haar polynomial of degree at most 2𝑑.
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3. Standard method of discrete Haar transform

Let 𝑓(𝑥1, 𝑥2) be a defined and summable on [0, 1]2 function that can expanded into an
absolutely convergent Fourier-Haar series,

𝑓(𝑥1, 𝑥2) =
2∑︁

𝑛=1

∞∑︁
𝑚𝑛=0

∑︁
𝑗𝑛∈Λ𝑚𝑛

𝑐(𝑗1,𝑗2)𝑚1,𝑚2
𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2), (8)

where Λ𝑚𝑛 is defined by identity (1), 𝑛 = 1, 2.
Under the standard two-dimensional Haar transform a one-to-one correspondence is made

between the sequence of the values of the function 𝑓(𝑥1, 𝑥2) at the nodes (𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) ∈ [0, 1]2

(𝑖 = 1, 2, . . . , 2𝐷) and the set of the coefficients of this transform 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 (𝑚𝑛 = 0, 1, . . . ,𝑀𝑛,

𝑗𝑛 ∈ Λ𝑚𝑛 , 𝑛 = 1, 2, 𝑀1 +𝑀2 = 𝐷) so that the Haar polynomial

𝐻(𝑥1, 𝑥2) =
2∑︁

𝑛=1

𝑀𝑛∑︁
𝑚𝑛=0

∑︁
𝑗𝑛∈Λ𝑚𝑛

𝐴(𝑗1,𝑗2)
𝑚1,𝑚2

𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2) (9)

recovers the function 𝑓(𝑥1, 𝑥2) in the mentioned nodes,

𝐻(𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) = 𝑓(𝑥

(𝑖)
1 , 𝑥

(𝑖)
2 ), 𝑖 = 1, 2, . . . , 2𝐷;

at that, the number 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 is the cubature sum in the cubature formula

𝑐(𝑗1,𝑗2)𝑚1,𝑚2
=

1 1∫︁∫︁
0 0

𝑓(𝑥1, 𝑥2)𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2) 𝑑𝑥1 𝑑𝑥2 ≈

≈ 2−𝐷

2𝐷∑︁
𝑖=1

𝑓(𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 )𝜒𝑚1,𝑗1(𝑥

(𝑖)
1 )𝜒𝑚2,𝑗2(𝑥

(𝑖)
2 ) = 𝐴(𝑗1,𝑗2)

𝑚1,𝑚2
,

(10)

i.e., an approximate value of the Fourier-Haar coefficient 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 for the function 𝑓(𝑥1, 𝑥2),

𝑚𝑛 = 0, 1, . . . ,𝑀𝑛, 𝑗𝑛 ∈ Λ𝑚𝑛 , 𝑛 = 1, 2. The nodes (𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) (𝑖 = 1, 2, . . . , 2𝐷), at which the

values of the function 𝑓(𝑥1, 𝑥2) are calculated, are supposed to belong to the rectangular grid

{
(︀
(2𝑖1 − 1)2−𝑀1−1, (2𝑖2 − 1)2−𝑀2−1

)︀
: 𝑖𝑛 = 1, 2, . . . , 2𝑀𝑛 , 𝑛 = 1, 2}.

Thus, according to (9), the standard method of two-dimensional discrete Haar transform as-
sumes that the set of the indices 𝑚1,𝑚2 is such that

𝑆(𝑥1, 𝑥2) =
2∑︁

𝑛=1

∑︁
𝑚𝑛

∑︁
𝑗𝑛∈Λ𝑚𝑛

𝑐(𝑗1,𝑗2)𝑚1,𝑚2
𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2) (11)

is a rectangular partial sum for series (8) (𝑚𝑛 in the sum in the right hand side of (11) ranges
as 0, 1, . . . ,𝑀𝑛, 𝑛 = 1, 2), and calculating of approximate Fourier-Haar coefficients by formula
(10) is based on the cubature formula

𝐼[𝑓 ] =
1 1∫︀∫︀
0 0

𝑓(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 ≈

≈ 2−𝑀1−𝑀2

2𝑀1∑︀
𝑖1=1

2𝑀2∑︀
𝑖2=1

𝑓
(︀
(2𝑖1 − 1)2−𝑀1−1, (2𝑖2 − 1)2−𝑀2−1

)︀
= 𝑄1[𝑓 ],

(12)

being the Cartesian product of two cubature formulae with 2𝑀1 and 2𝑀2 nodes.

Proposition 6. Haar accuracy degree of cubature formula (12) equals 𝑀 = min{𝑀1,𝑀2}.
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Proof. Each closed binary rectangle of area 2−𝑀 contains exactly 2max{𝑀1,𝑀2} nodes of cubature
formula (12), and all these nodes are its interior points. Then according to Remark 1 and
identities (4), (5), for each 𝜅-monomial 𝐾𝑀(𝑥1, 𝑥2) of degree 𝑀 we have

𝑄1[𝐾𝑀 ] = 2−𝑀1−𝑀2 × 2max{𝑀1,𝑀2} × 2min{𝑀1,𝑀2} = 1 = 𝐼[𝐾𝑀 ].

By Proposition 2 it yields that cubature formula (12) possesses 𝑀 -property. However, it does
not possess (𝑀 + 1)-property, since in the case 𝑀 = 𝑀1 it is not exact, for instance, for the
𝜅-monomial 𝜅𝑀+1,1(𝑥1) as well as in the case 𝑀 = 𝑀2 for 𝜅𝑀+1,1(𝑥2). Thus, Haar accuracy
degree of formula (12) equals 𝑀 . The proof is complete.

Propositions 5, 6 imply that under the condition 𝑚1+𝑚2 6 𝑀 the Fourier-Haar coefficients
of the functions 𝑓(𝑥1, 𝑥2) being Haar polynomials of degrees at most 𝑀 − max{𝑚1,𝑚2} in
approximate identity (10) the exact idenity

𝐴(𝑗1,𝑗2)
𝑚1,𝑚2

= 𝑐(𝑗1,𝑗2)𝑚1,𝑚2
, 𝑗𝑛 ∈ Λ𝑚𝑛 , 𝑛 = 1, 2, (13)

holds true, and if 𝑚1 + 𝑚2 > 𝑀 , validity of identity (13) can not be guaranteed even for
𝑓(𝑥1, 𝑥2) ≡ const for any indices 𝑚1,𝑚2.

4. Discrete Haar transform with nodes forming Π0-grids

The considered version of discrete Haar transform with 2𝐷 nodes is related with a triangular
partial sum of series (8), i.e., with sum (11) for which the subscripts 𝑚1,𝑚2 appearing in its
Fourier-Haar coefficients obey the condition

𝑚1 +𝑚2 6 𝑑, (14)

where 𝑑 6 𝐷 is some fixed natural number. Calculating of the coefficients 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 (𝑚1+𝑚2 6 𝑑,

𝑗𝑛 ∈ Λ𝑚𝑛 , 𝑛 = 1, 2) of this discrete transform is made by formulae (10), at that it is assumed

that the nodes (𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) ∈ [0, 1]2 (𝑖 = 1, . . . , 2𝐷) do not lie on the boundaries of the binary

rectangles 𝑙𝑚1,𝑗1 × 𝑙𝑚2,𝑗2 of area 2−𝐷 (𝑚1 +𝑚2 = 𝐷+2) and form a Π0-grid. Thus, calculating

of the coefficients 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 is based on the cubature formula

𝐼[𝑓 ] =

1 1∫︁∫︁
0 0

𝑓(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 ≈ 2−𝐷

2𝐷∑︁
𝑖=1

𝑓(𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ) = 𝑄2[𝑓 ] (15)

with the aforementioned location of the nodes.

Proposition 7. The Haar accuracy degree of formula (15) equals 𝐷.

Proof. Each closed binary rectangle of area 2−𝐷 contains exactly one node of cubature formula
(15) which is its interior point. Then according to Remark 1 and identities (4), (5), for each
𝜅-monomial 𝐾𝐷(𝑥1, 𝑥2) of degree 𝐷

𝑄2[𝐾𝐷] = 1 = 𝐼[𝐾𝐷].

By Proposition 2 it implies that cubature formula (15) possesses 𝐷-property. However, it does
not possess (𝐷 + 1)-property, since the number of nodes of each cubature formula possessing
(𝐷+1)-property is at least 2𝐷 +1 (Proposition 1). Thus, the Haar accuracy degree of formula
(15) equals 𝐷. The proof is complete.

Propositions 5, 7 imply that in the approximative identity (10) one has exact identity (13) for
Fourier-Haar coefficients of the functions 𝑓(𝑥1, 𝑥2) being Haar polynomials of degree at most
𝐷 −max{𝑚1,𝑚2}.
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We denote by ̃︀𝑁(𝑑) the number of the Fourier-Haar coefficients whose subscripts satisfy
inequality (14). It is determined by the formulã︀𝑁(𝑑) = 2𝑑(0.5 𝑑+ 1). (16)

The value of the parameter 𝑑 in inequality (14) will be fixed as follows,

𝑑 = max{𝑝 ∈ N : 2𝑝(0.5 𝑝+ 1) 6 2𝐷}. (17)

Proposition 8. For each 𝐷 ∈ N there exists the unique represention of the form

𝐷 = 2𝑟+1 + 𝑟 + 𝑠− 1, where 𝑠 = 0, 1, . . . , 2𝑟+1, 𝑟 = 0, 1, 2, . . . (18)

The value 𝑑 satisfying identity (17) is determined by the formula

𝑑 = 2𝑟+1 + 𝑠− 2 = 𝐷 − 𝑟 − 1, (19)

where 𝑟, 𝑠 are values of the parameters in representation (18) of the corresponding number 𝐷.

Proof. For a fixed 𝑟 ∈ N ∪ {0},
Δ𝑟 = {2𝑟+1 + 𝑟 + 𝑠− 1 : 𝑠 = 0, 1, . . . , 2𝑟+1}

is the set of natural numbers in the segment [2𝑟+1 + 𝑟− 1, 2𝑟+2 + 𝑟− 1], and to different values
𝑠 ∈ {0, 1, . . . , 2𝑟+1} different natural numbers in this segment are associated. Δ𝑟+1 is the set of
natural number in the segment [2𝑟+2+𝑟, 2𝑟+3+𝑟] not intersecting with [2𝑟+1+𝑟−1, 2𝑟+2+𝑟−1].
Therefore, to different pairs (𝑟, 𝑠) there correspond different values 2𝑟+1 + 𝑟 + 𝑠 − 1 (𝑠 =
0, 1, . . . , 2𝑟+1, 𝑟 = 0, 1, 2, . . .), and representation (18) is thus unique for all values of 𝐷 for
which it exists. And since

∞⋃︁
𝑟=0

Δ𝑟 =
∞⋃︁
𝑟=0

{[2𝑟+1 + 𝑟 − 1, 2𝑟+2 + 𝑟 − 1] ∩ N} = N,

then it exists for each 𝐷 ∈ N.
Let us prove now that the value 𝑑 determined by formula (19) satisfies condition (17).
Indeed, according to (16),̃︀𝑁(2𝑟+1 + 𝑠− 2) = ̃︀𝑁(𝐷 − 𝑟 − 1) = 2𝐷−1 + 2𝐷−𝑟−2𝑠 6 2𝐷,

since 𝑠 6 2𝑟+1. At the same time,̃︀𝑁(2𝑟+1 + 𝑠− 1) = ̃︀𝑁(𝐷 − 𝑟) = 2𝐷 + 2𝐷−𝑟−1(𝑠+ 1) > 2𝐷.

The proof is complete.

Remark 2. If value 𝑑 is determined by formula (19), then ̃︀𝑁(𝑑) = 2𝐷 only in the case
𝑠 = 2𝑟+1, i.e., for 𝐷 = 2𝑟+2 + 𝑟 − 1, 𝑟 = 0, 1, 2, . . .. In the case 𝑠 = 0 (𝐷 = 2𝑟+1 + 𝑟 − 1,

𝑟 = 0, 1, 2, . . .) ̃︀𝑁(𝑑) = 2𝐷−1, and in the case 0 < 𝑠 < 2𝑟+1 the quantity ̃︀𝑁(𝑑)/2𝐷 ∈ (0.5, 1)
grows as 𝑠 grows.

Hence, as 𝐷 ̸= 2𝑟+2 + 𝑟 − 1, 𝑟 = 0, 1, 2, . . ., in triangular partial sum (11) involving Haar
monomials 𝜒𝑚1,𝑗1(𝑥1)𝜒𝑚2,𝑗2(𝑥2) of degrees at most 𝑑 there are less terms than in the corre-
sponding rectangular partial sum involving Haar monomials for which 𝑚𝑛 6 𝑀𝑛, 𝑛 = 1, 2,

𝑀1 +𝑀2 = 𝐷. However, bearing in mind the convergence to zero of the coefficients 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 as

𝑚1 + 𝑚2 increases, one can expect that the quality of the suggested version of discrete Haar
transform is not worse than for standard scheme.
At the same time, the suggested in the present paper version of the discrete Haar transform

has certain advantages in comparison with the standard transform. Firstly, under the same
number of nodes as in the standard transform, the set of the functions 𝑓(𝑥1, 𝑥2) satisfying

identity (13) is enlarged, and in distinction to the standard transform all the coefficients 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2

coincide with the corresponding Fourier-Haar coefficients 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 of Haar polynomials of several
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first degrees. Secondly, reduction of the number of terms in partial sum (11) leads one to the
reduction of calculations amount under the approximation of a function by a mentioned partial

sum, in which instead of Fourier-Haar coefficients 𝑐
(𝑗1,𝑗2)
𝑚1,𝑚2 of a given function one should take

the corresponding values 𝐴
(𝑗1,𝑗2)
𝑚1,𝑚2 ≈ 𝑐

(𝑗1,𝑗2)
𝑚1,𝑚2 .
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