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ON ANALYTIC PROPERTIES OF WEYL FUNCTION OF

STURM–LIOUVILLE OPERATOR WITH A DECAYING

COMPLEX POTENTIAL

KH.K. ISHKIN

Abstract. We study the spectral properties of the operator 𝐿𝛽 associated with the qua-

dratic form ℒ𝛽 =
∞∫︀
0

(|𝑦′|2−𝛽𝑥−𝛾 |𝑦|2)𝑑𝑥 with the domain 𝑄0 = {𝑦 ∈ 𝑊 1
2 (0,+∞) : 𝑦(0) = 0},

0 < 𝛾 < 2, 𝛽 ∈ C, as well as of the perturbed operator 𝑀𝛽 = 𝐿𝛽 +𝑊 . Under the assump-

tion (1 + 𝑥𝛾/2)𝑊 ∈ 𝐿1(0,+∞) we prove the existence of the finite quantum defect of the
discrete spectrum that was established earlier by L.A. Sakhnovich for 𝛽 > 0, 𝛾 = 1 and for
real 𝑊 satisfying a stricter decay condition at infinity. The main result of the paper is the
proof of necessity (with some reservations) of the sufficient conditions for 𝑊 (𝑥) obtained
earlier by Kh.Kh. Murtazin under which the Weyl function of the operator 𝑀𝛽 possesses
an analytic continuation on some angle from non-physical sheet.

Keywords: spectral instability, localization of spectrum, quantum defect, Weyl function,
Darboux transformation.

1. Introduction

We shall call an operator 𝐿 acting in some Hilbert space as close to a self-adjoint one if
𝐿 = 𝐿0 +𝑉 , where 𝐿0 is self-adjoint, 𝑉 is relatively compact w.r.t. 𝐿0, i.e., 𝐷(𝑉 ) ⊃ 𝐷(𝐿0) and
the operator 𝑉 (𝐿0 + 𝑖)−1 is compact. If the operator 𝐿0 is lower-semibounded and for some
𝑟 > 0 the operator (𝐿0 + 𝑟)−1/2𝑉 (𝐿0 + 𝑟)−1/2 is compact, then the operator 𝐿 = 𝐿0 + 𝑉 , where
the sum is understood in the quadratic forms sense, will be called close to a self-adjoint one in
the quadratic forms sense. The operators close to self-adjoint ones form a natural class of non-
self-adjoint operators to that the methods of abstract perturbation theory are applicable and it
allows one to obtain rather general results on the asymptotic behavior of spectrum and on the
properties of root vectors systems. For example, according to M.V. Keldysh theorem [1], if 𝐿0

is a self-adjoint operator with discrete spectrum whose spectral counting function 𝑁(𝑟, 𝐿0) (the
number of eigenvalues counting multiplicities in the interval (−𝑟, 𝑟)) satisfies certain condition
(K)1, then each operator 𝐿 close to 𝐿0 possesses the properties

a) the root vectors system of 𝐿 is complete in 𝐻;
b) the spectrum of the operator 𝐿 has the same asymptotics as that of the operator 𝐿0, i.e., for

each 𝜀 > 0 the spectrum of the operator 𝐿 outside the angles {|arg 𝜆| < 𝜀} and {|arg 𝜆−𝜋| < 𝜀}
is finite and for the function ̃︀𝑁(𝑟, 𝐿), which is the number of the eigenvalues of the operator 𝐿
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counting multiplicities in the disk |𝜆| < 𝑟, the relatioñ︀𝑁(𝑟, 𝐿) ∼ 𝑁(𝑟, 𝐿0), 𝑟 → +∞. (1)

holds true.
Under stricter conditions for the function 𝑁(𝑟, 𝐿0) and the order of smallness of 𝑉 one can

obtain the statements on the basis property (in some sense) of the root vectors systems, see
[4] — [6], and specify the asymptotics for the eigenvalues up to terms allowing calculate the
regularized traces (see [7] and the references therein).

Thus, each operator 𝐿 close to a self-adjoint one 𝐿0 with the spectral counting function
𝑁(𝑟, 𝐿0) satisfying condition (K) possesses the property of spectral stability in the following
sense: each perturbation of 𝐿 like 𝑀 = 𝐿+𝑊 , where 𝑊 is 𝐿-compact, possesses properties a)
and b), where instead of (1) we havẽ︀𝑁(𝑟,𝑀) ∼ ̃︀𝑁(𝑟, 𝐿), 𝑟 → +∞. (2)

It is known (see, for instance, [8] and the bibliography therein) that the operators close to
self-adjoint ones do not possess such stability. Suppose now that 𝐿 is close to a self-adjoint
operator 𝐿0 with a non-discrete spectrum, i.e., 𝜎(𝐿0) = 𝜎disc(𝐿0) ∪ 𝜎ess(𝐿0), where 𝜎disc(𝐿0) and
𝜎ess(𝐿0)(̸= ∅) are the discrete and essential parts of the spectrum of 𝐿0, respectively. Since a
relatively compact perturbation does not change the spectrum (see [9, c. 306]), then 𝜎ess(𝐿) =
𝜎ess(𝐿0) ̸= ∅. Let 𝜎disc(𝐿) = {𝜆𝑘}∞𝑘=1, where 𝜆𝑘 are taken counting algebraic multiplicities and
let there exists a finite or infinite limit 𝑙 = lim

𝑘→∞
𝜆𝑘.

We pose a question: what is the class of perturbations 𝑊 preserving the asymptotics of the
discrete spectrum of 𝐿 in the following sense: the eigenvalues 𝜇𝑘 of the operator 𝑀 = 𝐿 + 𝑊
can be ordered so that

𝜇𝑘 ∼ 𝜆𝑘, 𝑘 → ∞? (3)

According to Weyl-von Neumann theorem [9, Ch. X, Sec. 2.1], each self-adjoint operator 𝐿0 in
a separable Hilbert space 𝐻 can be converted to a self-adjoint operator 𝐿0 +𝑉 with pure point
spectrum by adding a Hilbert-Schmidt operator 𝑉 of arbitrarily small norm. This is why it is
natural to expect that the classes of perturbations preserving the asymptotics of the discrete
spectrum of the operators 𝐿1 and 𝐿2 can differ substantially even in the case when 𝐿1 and
𝐿2 are close to the same self-adjoint operator. Moreover, the perturbations can be uniquely
determined by the spectrum (or its part) only in exceptional cases (see [10] and Theorem 5
below). Hence, a more correct problem seems to be the following

Problem 1. There given an operator 𝐿 whose spectrum possesses the properties 𝑃 = 𝑃disc∧
𝑃ess, where 𝑃disc and 𝑃ess are certain properties of discrete and essential parts of the spectrum
of 𝐿, respectively. It is required to find the conditions (necessary and sufficient, if possible) for
perturbations 𝑊 , under which the spectrum of the operator 𝑀 = 𝐿 + 𝑊 possesses the same
properties.

Of course, in such abstract form the problem is unlikely to be solvable; it is unclear how
to choose the properties 𝑃ess and it is even more unclear how to extract the conditions for 𝑊
from the properties 𝑃 . Nevertheless, for some operator classes (for instance, for differential
operators) one succeeds to formulate the conditions (quite natural) for the spectrum and to
give the exact description of the class of the perturbations preserving these properties [11, 12].

Let

𝑞𝛽(𝑥) =
𝛽

𝑥𝛾
.

Consider a family of quadratic forms ℒ𝛽[𝑦] =
∞∫︀
0

(|𝑦′|2 − 𝑞𝛽(𝑥)|𝑦|2)𝑑𝑥 with the domain 𝑄0 =

{𝑦 ∈ 𝑊 1
2 (0,∞) : 𝑦(0) = 0}, where 0 < 𝛾 < 2 is assumed to be fixed; we shall study just the

dependence on the parameter 𝛽 ∈ C (see Sec. 2).
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Lemma 1. ℒ𝛽 is a holomorphic family of type (A) on C, i.e., [9, Ch. VII, Sec. 4.2],
1) for each 𝛽 ∈ C the form ℒ𝛽 is sectorial and closed;
2) for each 𝑦 ∈ 𝑄0 the function 𝑓(𝛽) = ℒ𝛽[𝑦] is entire.

By representation theory [9, Ch. VI, Sec. 2.1] Item 1) of Lemma 1 implies that for each
𝛽 ∈ C there exists an 𝑚-sectorial operator 𝐿𝛽 associated with the form ℒ𝛽. The family 𝐿𝛽 is
called analytic family of type (B) (see [9, Ch. VII, Sec. 4.2]).

Lemma 2. The operator 𝐿𝛽 is determined as follows,

𝐿𝛽𝑦 = −𝑦′′ − 𝑞𝛽𝑦,

𝐷(𝐿𝛽) = {𝑦 ∈ 𝐿2(0,+∞) : 𝑦′ ∈ 𝐴𝐶[0, 𝑏] ∀ 𝑏 > 0,−𝑦′′ − 𝑞𝛽𝑦 ∈ 𝐿2(0,+∞), 𝑦(0) = 0}. (4)

For each 𝛽 ∈ C the operator 𝐿𝛽 is close (in the quadratic form sense) to the self-adjoint
operator 𝐿0 := 𝐿𝛽|𝛽=0 (see Sec. 2, Lemma 3), and thus [13, c. 133] 𝜎ess(𝐿𝛽) = 𝜎ess(𝐿0) =

[0,+∞) ∀ 𝛽 ∈ C. However, for the discrete spectrum the picture is completely different (The-
orem 1);

as 0 ≤ |arg 𝛽| < 2−𝛾
2
𝜋, 𝜎disc(𝐿𝛽) consists of infinitely many simple (of algebraic multiplicity

1) eigenvalues being 1 𝜆𝑘(𝛽) = −𝛽2/(2−𝛾)𝑟𝑘, 𝑘 = 1, 2, . . . , where 𝑟𝑘 ↘ 0, 𝑘 → +∞,
as 2−𝛾

2
𝜋 ≤ |arg 𝛽| ≤ 𝜋, the discrete spectrum of the operator 𝐿(𝛽) is empty.

This is why the property 𝑃 in Problem 1 is likely to depend somehow on 𝛽.
In the present paper we formulate a certain property 𝑃𝛽 (in terms of Weyl function for the

operator 𝐿𝛽) and obtain necessary and sufficient condition for the function 𝑊 (𝑥) under which
the operator 𝑀𝛽 obtained from 𝐿𝛽 by the replacement of the potential 𝑞𝛽(𝑥) by 𝑞𝛽(𝑥) +𝑊 (𝑥)
also possesses the property 𝑃𝛽. For a complex parameter 𝛽 this condition happens to differs
substantially from the corresponding condition in the case of real 𝛽.

The main result of the paper is Theorem 6 (Sec. 5). Before we formulate it, in Secs. 3 and 4
we establish some properties of analytic (Theorems 2, 3) and compactly supported (Theorems
4, 5) perturbations of the operator 𝐿𝛽 hinting in some sense the main result.

Our choice of 𝐿𝛽 as the unperturbed operator is due to the following reason: the Sturm-
Liouville operators with a complex decaying potential are quite well studied (see [14] —[19] and
the references therein), at the same time, the question on necessity of known sufficient condition
for the potentials under which one can obtain the asymptotics of the discrete spectrum (see
Remark 2) is still open. In what follows we shall show that this question is a part of Problem
1.

2. Properties of operators 𝐿𝛽

Proof of Lemma 1. Let 𝜀 > 0. We have
1

𝑥𝛾
= 𝑞1(𝑥) + 𝑞2(𝑥), where

𝑞1(𝑥) =

{︂
1
𝑥𝛾 , 0 < 𝑥 ≤ 𝛿𝜀,
0, 𝑥 > 𝛿𝜀,

𝑞2(𝑥) =
1

𝑥𝛾
− 𝑞1,

and the number 𝛿𝜀 is chosen so that
1

𝑥𝛾
<

𝜀

4𝑥2
for 𝑥 ∈ (0, 𝛿𝜀]. Then by a known inequality (see,

for instance, [20, Ch. II, Sec. 26]) for all 𝑦 ∈ 𝑄0(︂
1

𝑥𝛾
𝑦, 𝑦

)︂
< 𝜀‖𝑦′‖2 + 𝐶𝜀‖𝑦‖2, (5)

with some constant 𝐶𝜀 > 0.

1Hereinafter, if else is not said, the branch of the function 𝑧𝛼 (𝛼 ∈ R) is fixed so that 𝑧𝛼 > 0 as 𝑧 > 0.
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Hence, the quadratic form

(︂
1

𝑥𝛾
𝑦, 𝑦

)︂
is relatively bounded w.r.t. a closed positive form

ℒ0[𝑦] = ‖𝑦′‖2, 𝐷(ℒ0) = 𝑄0 and its relative bound is zero. It yields (see [9, Ch. VI, Sec. 3.2]
Item 1).

Item 2) is obvious. The proof is complete.

Proof of Lemma 2. We denote by ℒ𝛽[𝑦, 𝑣] the sesquilinear form determined by the quadratic
form ℒ𝛽[𝑦] by polarization identity (see [9, p. 387]):

ℒ𝛽[𝑦, 𝑣] =
1

4

3∑︀
𝑘=0

𝑖−𝑘ℒ𝛽[𝑦 + 𝑖𝑘𝑣, 𝑦 + 𝑖𝑘𝑣].

It is clear that

ℒ𝛽[𝑦, 𝑣] =

∞∫︁
0

(𝑦′𝑣′ − 𝑞𝛽(𝑥)𝑦𝑣) 𝑑𝑥, 𝑦, 𝑣 ∈ 𝑄0.

Further, we indicate by 𝐷𝛽 the right hand side of (4) and let us prove that 𝐷(𝐿𝛽) ⊂ 𝐷𝛽.
Let 𝑦 ∈ 𝐷(𝐿𝛽) and 𝐿𝛽𝑦 = 𝑓 . Then by the representation theorem

(𝑓, 𝑣) = ℒ𝛽[𝑦, 𝑣] :=

∞∫︁
0

(︀
𝑦′𝑣′ − 𝑞𝛽(𝑥)𝑦𝑣

)︀
𝑑𝑥, 𝑣 ∈ 𝑄0. (6)

Let (𝑎, 𝑏) ⊂ (0,+∞). Then identity (6) is valid for all 𝑣 belonging to the set 𝑄′
𝑎𝑏 = {𝑦 ∈ 𝑄0 :

𝑦(𝑥) ≡ 0 as 𝑥 /∈ (𝑎, 𝑏)}.
Let ℎ be a primitive for the function −𝑓 − 𝑞𝛽(𝑥)𝑦 on the interval (𝑎, 𝑏),

ℎ′ = −𝑓 − 𝑞𝛽(𝑥)𝑦 a.e. on (𝑎, 𝑏).

Then for all 𝑣 ∈ 𝑄′
𝑎𝑏

∞∫︁
0

(𝑓 + 𝑞𝛽(𝑥)𝑦) 𝑣𝑑𝑥 = −
𝑏∫︁

𝑎

ℎ′𝑣𝑑𝑥 =

𝑏∫︁
𝑎

ℎ𝑣′𝑑𝑥.

On the other hand, it follows from (6) that

𝑏∫︁
𝑎

(𝑓 + 𝑞𝛽(𝑥)𝑦) 𝑣𝑑𝑥 =

𝑏∫︁
𝑎

𝑦′𝑣′𝑑𝑥.

Therefore,
𝑏∫︁

𝑎

(ℎ− 𝑦′)𝑣′𝑑𝑥 = 0 for all 𝑣 ∈ 𝑄′
𝑎𝑏. (7)

Denote by 𝜙𝑎𝑏 the restriction of ℎ− 𝑦′ on (𝑎, 𝑏). Then (7) means

𝜙𝑎𝑏 ⊥ Ran𝑇𝑎𝑏, (8)

where 𝑇𝑎𝑏 is the operator 𝑑
𝑑𝑥

with the domain 𝐷(𝑇𝑎𝑏) = {𝑣 ∈ 𝑊 1
2 (𝑎, 𝑏) : 𝑣(𝑎) = 𝑣(𝑏) = 0}.

In its turn, (8) is equivalent to 𝜙𝑎𝑏 ∈ Ker(𝑇 *
𝑎𝑏). We have 𝑇 *

𝑎𝑏 = − 𝑑
𝑑𝑥

, 𝐷(𝑇 *
𝑎𝑏) = 𝑊 1

2 (𝑎, 𝑏), so,
𝜙𝑎𝑏 = 𝑐 = const a.e. on (𝑎, 𝑏) that by the arbitrariness of 𝑎, 𝑏 yields 𝑦′ = ℎ− 𝑐 a.e. on (0,+∞).
Hence, 𝑦′ ∈ 𝐴𝐶[0, 𝑏] ∀ 𝑏 > 0 and −𝑦′′ = 𝑓 + 𝑞𝛽(𝑥)𝑦, i.e., 𝐿𝛽𝑦 = −𝑦′′ + 𝑞𝛽(𝑥)𝑦.

Let us prove now that 𝐷𝛽 ⊂ 𝐷(𝐿𝛽). By the definition of the operator associated with the
quadratic form (see [9, Ch. VI, Sec. 2.1]), if 𝑦 ∈ 𝑄0, 𝑤 ∈ 𝐿2(0,+∞), and the identity

ℒ𝛽[𝑦, 𝑣] = (𝑤, 𝑣) (9)
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holds true for all 𝑣 in the core1 of the form ℒ𝛽, then 𝑦 ∈ 𝐷(𝐿𝛽) and 𝐿𝛽𝑦 = 𝑤.
Let us show that 𝐶∞

0 (0,+∞) is the core for ℒ𝛽. The closure of 𝐶∞
0 (0,+∞) w.r.t. the norm

of 𝑊 1
2 (0,+∞) is 𝑄0, and this is why 𝐶∞

0 (0,+∞) is the core for the form ℒ0[𝑦, 𝑣] =
∞∫︀
0

𝑦′𝑣′𝑑𝑥

with 𝐷(ℒ0) = 𝑄0. By inequality (5) it implies that 𝐶∞
0 (0,+∞) is the core for ℒ𝛽[𝑦, 𝑣] for all

𝛽 ∈ C.
Let 𝑦 ∈ 𝐷𝛽 and 𝑓 = −𝑦′′ − 𝑞𝛽(𝑥)𝑦. According to (9),

ℒ𝛽[𝑦, 𝑣] =

∞∫︁
0

(𝑦′𝑣′ − 𝑞𝛽(𝑥)𝑦) 𝑣𝑑𝑥 = (𝑓, 𝑣), for any 𝑣 ∈ 𝐶∞
0 (0,+∞).

On the other hand, integrating by parts, we get

ℒ𝛽[𝑦, 𝑣] =

∞∫︁
0

(−𝑦′′ − 𝑞𝛽(𝑥)𝑦) 𝑣𝑑𝑥 = (𝑓, 𝑣),

hence, (𝑓 − 𝑤, 𝑣) = 0 for all 𝑣 ∈ 𝐶∞
0 (0,+∞). But 𝐶∞

0 (0,+∞) is dense in 𝐿2(0,+∞) and
thus 𝑤 = 𝑓 a.e. on (𝑎, 𝑏). It yields that 𝑦 ∈ 𝐷(𝐿𝛽) and 𝐿𝛽𝑦 = −𝑦′′ − 𝑞𝛽(𝑥)𝑦. The proof is
complete.

Let 𝐿0 = 𝐿𝛽|𝛽=0, i.e., 𝐿0𝑦 = −𝑦′′, 𝑦 ∈ 𝐷(𝐿0) = {𝑦 ∈ 𝑊 2
2 (0,+∞) : 𝑦(0) = 0}. The following

lemma holds true.

Lemma 3. Let 𝑞 be the operator of multiplication by the function 𝑥−𝛾. Then for each 𝑟 > 0
the operator 𝐾 = (𝐿0 + 𝑟)−

1
2 𝑞(𝐿0 + 𝑟)−

1
2 is compact.

Proof. Let 𝛿 > 0, 𝜒1, 𝜒2, 𝜒3 be characteristic functions of the segments (0, 𝛿), (𝛿, 1
𝛿
), and

(1
𝛿
,+∞), respectively. Then 𝐾 = 𝐾1 +𝐾2 +𝐾3, where 𝐾𝑖 = (𝐿0 + 𝑟)−

1
2 𝑞𝜒𝑖(𝐿0 + 𝑟)−

1
2 , 𝑖 = 1, 3.

Since the kernel of the resolvent (𝐿0 + 1)−1 reads as

𝐺(𝑥, 𝑡) =

{︂
sh𝑥𝑒−𝑡, 0 ≤ 𝑥 < 𝑡,
𝑒−𝑥sh𝑡, 0 ≤ 𝑡 ≤ 𝑥,

𝑞𝜒2(𝐿0 + 1)−1 is a Hilbert-Schmidt operator. It is known [13, Sec. Problems] that if 𝐻0

is a positive self-adjoint operator, 𝑉 is symmetric operator with 𝐷(𝑉 ) ⊃ 𝐷(𝐻0), then the

compactness of the operator 𝑉 (𝐻0 + 1)−1 implies that of (𝐻0 + 1)−
1
2𝑉 (𝐻0 + 1)−

1
2 . This is why

the operator 𝐾2 is compact.
Further, since ‖𝐾3‖ < sup | 𝑞𝜒3 |= 𝛿𝛾 → 0, 𝛿 → 0, to prove the lemma, it is sufficient to

make sure that ‖𝐾1‖ → 0, 𝛿 → 0.
If 𝛿 < 1, for each 𝑢 ∈ 𝐿2(0,+∞) we have

(𝐾1𝑢, 𝑢) < 4𝛿2−𝛾

(︂
1

4
𝑥−2(𝐿0 + 1)−

1
2𝑢, (𝐿0 + 1)−

1
2𝑢

)︂
.

By the uncertainty principle [21, Ch. X, Sec. 2]

1

4

(︀
𝑥−2𝑦, 𝑦

)︀
<

∫︁ ∞

0

|𝑦′|2𝑑𝑥 = ‖𝐿
1
2
0 𝑦‖2, ∀ 𝑦 ∈ 𝑄0,

and thus (𝐾1𝑢, 𝑢) < 4𝛿2−𝛾‖𝐿
1
2
0 (𝐿0 + 1)−

1
2𝑢‖2 < 4𝛿2−𝛾‖𝑢‖2. Since for each bounded self-adjoint

operator 𝐴 on the whole Hilbert space 𝐻 ‖𝐴‖ = sup|(𝐴𝑢, 𝑢)| [22, Ch. VI, Sec. Problems], it
yields ‖𝐾1‖ < 4𝛿2−𝛾 → 0, 𝛿 → 0. The proof is complete.

1By the definition (see [9, Ch. VI, Sec. 1.4]), a linear subspace 𝑄′ of the set 𝑄0 is called a core of the form
ℒ𝛽 if the closure of the restriction of ℒ𝛽 on 𝑄′ coincides with ℒ𝛽 .
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Theorem 1. The following statements hold true,
1) as 0 ≤ |arg 𝛽| < 2−𝛾

2
𝜋, 𝜎disc(𝐿𝛽) consists of infinitely many simple (of geometric multi-

plicity 1) eigenvalues lying on the ray arg (−𝜆) = 2arg 𝛽
2−𝛾

, namely,

𝜎disc(𝐿𝛽) =
∞⋃︁
𝑘=1

𝜆𝑘(𝛽)

and

𝜆𝑘(𝛽) = −𝛽2/(2−𝛾)𝑟𝑘, (10)

where −𝑟𝑘 are taken in the ascending order eigenvalues of the self-adjoint operator 𝐿1 (i.e.,
𝐿𝛽|𝛽=1) having the asymptotics

𝑟𝑘 ∼ 𝐶 · (𝑘 − 1/4)−2𝛾/(2−𝛾), 𝑘 → +∞, 𝐶 =

[︃
Γ(−1

2
+ 1

𝛾
)

2
√
𝜋Γ( 1

𝛾
)

]︃ 2𝛾
2−𝛾

; (11)

2) as 2−𝛾
2
𝜋 ≤ |arg 𝛽| ≤ 𝜋, the discrete spectrum of the operator 𝐿𝛽 is empty;

3) for all 𝛽 ∈ C the operator 𝐿𝛽 on the semi-axis [0,+∞) has neither eigenvalues no spectral
singularities [23, c. 456]: 𝑣𝛽(0, 𝜆) ̸= 0 ∀ 𝜆 ≥ 0, where 𝑣𝛽(𝑥, 𝜆) is the solution to equation (19)
satisfying estimate (20) .

Proof. The identity 𝜎disc(𝐿𝛽) = 𝜎disc(𝐿𝛽) yields that it is sufficient to prove statements 1)–3)
for 0 ≤ arg 𝛽 ≤ 𝜋.

Let us prove 1). Consider a one-parametric family of unitary dilations in 𝐿2(0,+∞),
[𝑈𝜔𝜙](𝑥) = 𝑒

𝜔
2 𝜙(𝑒𝜔𝑥), where 𝜔 ∈ R. We have

𝑈𝜔𝐿1𝑈
−1
𝜔 = 𝑒−2𝜔𝐿𝑒(2−𝛾)𝜔 , 𝜔 ∈ C. (12)

By Lemma 1 it follows that the family of the operators 𝑇 (𝜔) = 𝑈𝜔𝐿1𝑈
−1
𝜔 is an analytic one

of type (B) on the whole complex plane C. Since −𝑟𝑘 is a simple eigenvalue of the operator
𝑇 (0), by Theorem XII.13 in [13], for small 𝜔 ∈ C in a vicinity of −𝑟𝑘 there exists the unique
eigenvalue 𝜆𝑘(𝜔) of the operator 𝑇 (𝜔) being analytic in a vicinity of 𝜔 = 0. On the other hand,
for real 𝜔 the operator 𝑇 (𝜔) is unitarily equivalent to the operator 𝐿1, so, 𝜆𝑘(𝜔) ≡ −𝑟𝑘 for
all small real 𝜔. The analyticity of 𝜆𝑘(𝜔) yields that 𝜆𝑘(𝜔) ≡ −𝑟𝑘 for all sufficiently small
𝜔 ∈ C. This statement obviously remains true, if one replaces 0 by any 𝜔0 ∈ C such that
−𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔0)).

Let 0 < |arg 𝛽| < 2−𝛾
2
𝜋 (as arg 𝛽 = 0, identity (10) becomes an identical equation). We let

𝜔𝛽 = 1
2−𝛾

(ln | 𝛽 | +𝑖(arg 𝛽)). Let us show that 𝑒2𝜔𝛽(−𝑟𝑘) is an eigenvalue of the operator 𝐿𝛽. It

will then imply (10).
Since 𝑒(2−𝛾)𝜔𝛽 = 𝛽, by (12) it is sufficient to show that −𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔𝛽)). Let 𝐼𝛽 = [0, 𝜔𝛽].

Denote by 𝐽𝛽 the set of all 𝜔 ∈ 𝐼𝛽, for which −𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔)). Since 0 ∈ 𝐽𝛽, then 𝐽𝛽 ̸= ∅.
It follows from the above that 𝐽𝛽 is open in 𝐼𝛽. On the other hand, since 𝐿𝛽 is an analytic
family of type (B), due to (12) the same is true for the family 𝑇 (𝜔), 𝜔 ∈ C, and this is why if
𝜔𝑛 → 𝜔 and − 𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔𝑛)) for all 𝑛, then −𝑟𝑘 ∈ 𝜎(𝑇 (𝜔)). But by (12) and Lemma 3

𝜎ess(𝑇 (𝜔)) = 𝑒−2(Im𝜔)𝑖[0,+∞) (13)

and Im𝜔𝛽 = −𝜋−𝑎𝑟𝑔𝛽
2−𝛾

> −𝜋
2
, thus, for all 𝜔 ∈ 𝐼𝛽 the point −𝑟𝑘 lies outside 𝜎ess(𝑇 (𝜔𝑛)). Hence,

if 𝜔 ∈ 𝐼𝛽 and 𝜔𝑛 → 𝜔,−𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔𝑛)), then −𝑟𝑘 ∈ 𝜎disc(𝑇 (𝜔)). It means that the set
𝐽𝛽 is closed in 𝐼𝛽. Thus, 𝐽𝛽 is a closed and open non-empty subset of 𝐼𝛽. Therefore, 𝐽𝛽 = 𝐼𝛽.
Identity (10) is proven.
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Let us prove (11). Let −𝑟, 𝑟 > 0, be an eigenvalue of the operator 𝐿1. Then for the associated
eigenfunction 𝑓 we have

−𝑓 ′′(𝑥) − 1

𝑥𝛾
𝑓(𝑥) = −𝑟 · 𝑓(𝑥), 𝑥 > 0,

𝑓(0) = 0.

After the change

𝜉 =
(︀√

𝑟𝑥
)︀(2−𝛾)/2

, 𝑓 = 𝑥𝛾/4𝑔(𝜉, 𝜇), 𝜇 =

(︂
2

2 − 𝛾

)︂2

𝑟−(2−𝛾)/2

we arrive at the problem

− 𝑑2𝑔

𝑑𝜉2
+ 𝑝(𝜉)𝑔 = 𝜇 · 𝑔, (14)

𝑔(0) = 0, (15)

where 𝑝(𝜉) = 4𝜈2𝜉𝛼 −
(︀
1
4
− 𝜈2

)︀
𝜉−2, 𝜈 = 1/(2 − 𝛾), 𝛼 = 2𝛾/(2 − 𝛾).

Hence, 𝑟 ∈ 𝜎disc(𝐿1) if and only if

𝜇 =

(︂
2

2 − 𝛾

)︂2

𝑟−(2−𝛾)/2 (16)

is the eigenvalue of problem (14)–(15). The asymptotics for the spectrum of problem (14)–(15)
is well-known [24],

𝜇𝑘 ∼ (𝐶0𝜋𝑘)2𝛼/(2+𝛼), 𝑘 → +∞, 𝐶0 =
𝛼Γ

(︀
3
2

+ 1
𝛼

)︀
Γ
(︀
3
2

)︀
Γ
(︀
1
𝛼

)︀ .
Together with (16) it implies (11).

2) Let us prove first that 𝜎disc(𝐿𝛽) = ∅ for arg 𝛽 = 2−𝛾
2
𝜋. Suppose the opposite; there exists

𝜆0 ∈ 𝜎disc(𝐿𝛽) for some 𝛽 = 𝑏 · 𝑒 2−𝛾
2

𝜋𝑖, 𝑏 > 0. Let 𝑓 be a normalized eigenfunction associated
with 𝜆0, in view of the relation 𝜆0 = ‖𝑓 ′‖2 − 𝛽(𝑥−𝛾𝑓, 𝑓) we obtain that

− 𝛾𝜋

2
< arg 𝜆0 < 0. (17)

We let 𝑇 (𝜔) = 𝑈(𝜔)𝐿𝛽𝑈
−1(𝜔). We have 𝑇 (𝜔) = 𝑒−2𝜔𝐿𝛽𝑒(2−𝛾)𝜔 , so that

𝑇

(︂
−𝑖𝜋

2

)︂
= −𝐿𝛽. (18)

Let 𝐼 = [0,− 𝑖𝜋
2

]. It follows from relation (13) that for all 𝜔 ∈ 𝐼 𝜆0 /∈ 𝜎ess(𝑇 (𝜔)), and arguing

as in the proof of Item 1), we obtain that 𝜆0 ∈ 𝜎disc(𝑇 (− 𝑖𝜋
2

)). By (18) it yields 𝜆0 > 0 that
contradicts (17).

Let us prove now that 𝜎disc(𝐿𝛽) = ∅ as 2−𝛾
2
𝜋 < arg 𝛽 ≤ 𝜋. We again arguing by contradiction;

let for some 𝛽0 = 𝑏0 · 𝑒𝑖𝜃0 , 𝑏0 > 0, 2−𝛾
2
𝜋 < 𝜃0 < 𝜋, the operator 𝐿𝛽0 has an eigenvalue 𝜆0. Then

−𝜋+𝜃0 < arg 𝜆0 < 0 and arguing as in the case arg 𝛽 = 2−𝛾
2
𝜋, we obtain 𝜆0 ∈ 𝜎disc(𝑇 (𝜔)), ∀𝜔 ∈

[0,− 𝑖𝜋
2

], i.e.,𝜎disc(𝐿𝛽) ̸= ∅ as 𝜃0 − 2−𝛾
2
𝜋 ≤ arg 𝛽 ≤ 𝜃0. Since 𝜎disc(𝐿𝛽) = ∅ as arg 𝛽 = 2−𝛾

2
𝜋, it

implies 𝜎disc(𝐿𝛽) = ∅ as 2−𝛾
2
𝜋 ≤ arg 𝛽 ≤ min{𝜋, (2 − 𝛾)𝜋}. If 𝛾 ≤ 1, then the proof of 2) is

completed. If 𝛾 ≤ 2(1 − 1/(𝑘 + 2), 𝑘 ∈ N, repeating the previous procedure 𝑘 more times, we
show that 𝜎disc(𝐿𝛽) = ∅ as 2−𝛾

2
𝜋 ≤ arg 𝛽 ≤ 𝜋. Statement 2) is proven.

3) Let 𝜆 ∈ C∖[0,+∞) and 𝛽 ∈ C and let 𝑎 = 𝑎(𝜆, 𝛽) > 0 be so that 𝜆+ 𝛽𝑥−𝛾 ̸= 0 as 𝑥 ≥ 𝑎.
Then (see, for instance, [25, c. 34]) the equation

− 𝑦′′(𝑥) − 𝑞𝛽(𝑥)𝑦(𝑥) = 𝜆 · 𝑦(𝑥), (19)
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has a solution 𝑣𝛽(𝑥, 𝜆) obeying WKB-estimate

𝑣𝛽(𝑥, 𝜆) ∼ (𝜆+ 𝑞𝛽(𝑥))−1/4 exp

(︂
𝑖

∫︁ 𝑥

0

(𝜆+ 𝑞𝛽(𝑡))1/2 𝑑𝑡

)︂[︀
1 +𝑂

(︀
𝑥𝛾/2−1

)︀]︀
, 𝑥→ +∞. (20)

Then for Weyl function 𝑚𝛽(𝜆) of the operator 𝐿𝛽 the formula

𝑚𝛽(𝜆) =
𝑣′𝛽(0, 𝜆)

𝑣𝛽(0, 𝜆)

holds true. In work [18] it was shown that the function 𝑚𝛽(𝜆) possesses an analytic continuation
via the cut on the semi-axis [0,+∞) on infinitely-sheeted Riemann manifold by the formula

𝑚𝛽(𝜆) = 𝑒−𝑖𝜙𝑚𝛽𝑒𝑖(2−𝛾)(𝑒2𝑖𝜙𝜆), 𝑣𝑏(0, 𝜆) ̸= 0. (21)

Suppose that 0 < arg 𝛽 < 𝜋 and 𝜆0 > 0 is pole of 𝑚𝛽(𝜆). Then it follows from (21) with
𝜙 = − arg 𝛽/(2 − 𝛾) that the point 𝑒−2𝑖 arg 𝛽/(2−𝛾)𝜆0 is a pole of the function 𝑚|𝛽|(𝜆), i.e., is an
eigenvalue of the self-adjoint operator 𝐿|𝛽| that is impossible.

If 𝛽 ∈ R and 𝑣𝛽(0, 𝜆0) = 0 for some 𝜆0 > 0, then 𝑣𝛽(0, 𝜆0) = 0 and therefore the Wronskian
of the functions 𝑣𝛽 and 𝑣𝛽 vanishes at the origin. But the function 𝑣𝛽(𝑥, 𝜆0) is also a solution
to equation (19), and by (20) the Wronskian of 𝑣𝛽 and 𝑣𝛽 equals 2𝑖.

Thus, for each 𝛽 ∈ C the operator 𝐿𝛽 has neither positive eigenvalues no spectral singularities.
The fact that zero is neither eigenvalue no spectral singularity follows from the fact that 𝑣𝛽(𝑥, 0)

coincides with the function 𝑓(𝑥) =
√
𝑥𝐻

(1)
𝜈

(︀
2𝜈

√
𝛽𝑥(2−𝛾)/2

)︀
up to a multiplicative constant,

where 𝜈 = 1/(2 − 𝛾), 𝐻
(1)
𝜈 is the Hankel function and 𝑓(0) ̸= 0 [25, Ch. IV, Sec. 4]. The proof

is complete.

Remark 1. Formula (21) specifies Statements 1) and 2); as the argument 𝛽 grows (decays)
from 0 to 2−𝛾

2
𝜋 (respectively, to −2−𝛾

2
𝜋 ), for each fixed 𝑘 the eigenvalue 𝜆𝑘(𝛽) of the operator

𝐿𝛽 moves along the circle |𝜆| = −𝜆𝑘(|𝛽|) from the point 𝜆𝑘(|𝛽|) < 0 counterclockwise (respec-
tively, clockwise) and get to [0,+∞) that is the essential spectrum of 𝐿𝛽. Under further grow of
| arg 𝛽|, 𝜆𝑘(𝛽) continues the same movement along the same circle being a pole of the analytic
continuation of the Weyl function on the next sheet.

3. Calculation of quantum defects

We introduce the family of operators

𝑀𝛽 = 𝐿𝛽 +𝑊,

where 𝑊 is the operator of multiplication by a complex-valued measurable function 𝑊 (𝑥)
satisfying the condition ∫︁ ∞

0

(1 + 𝑥𝛾/2)|𝑊 (𝑥)|𝑑𝑥 <∞. (22)

In work [19] for 𝛽 > 0, 𝛾 = 1, and real 𝑊 satisfying the estimate

|𝑊 (𝑥)| ≤
∫︁ 2

3/2

𝑥−𝑡|𝑑𝜎(𝑡)|, where

∫︁ 2

3/2

|𝑑𝜎(𝑡)|
(𝑡− 3/2)(2 − 𝑡)

<∞ (23)

it was shown that {𝜇𝑘(𝛽)}∞1 , which are the eigenvalues of the operator𝑀𝛽 taken in the ascending
order, have the asymptotics (cf. (10) and (11))

𝜇𝑘(𝛽) ∼ −𝛽−2/(2−𝛾)𝐶(𝑘 − 1/4 + 𝛿𝛽)−2𝛾/(2−𝛾), 𝑘 → +∞, (24)

where 𝑧−2/(2−𝛾) > 0 as 𝑧 > 0, the constant 𝐶 is determined by formula (11), 𝛿𝛽 is a real constant
independent of 𝑘 called quantum defect [26].

It is easy to check that (23) implies (22).
We shall show that formula (24) remains true also for complex 𝑊 satisfying (22) and an

additional condition, which holds immediately in the case of real 𝑊 (see Remark 2). We shall
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also show that to satisfy (24) instead of (22), in the case 0 < arg 𝛽 < 2−𝛾
𝛾
𝜋 it is sufficient to

require that 𝑊 has an analytic continuation ̃︁𝑊 to an angle − arg 𝛽/(2 − 𝛾) < arg 𝑧 < 0 and
that (22) holds true only on the ray arg 𝑧 = − arg 𝛽/(2 − 𝛾).

3.1. Case 𝛽 > 0. Throughout this subsection the parameter 𝛽 is supposed to be fixed and
this is why in all the notations, if there is no special need, we shall not indicate the dependence
on 𝛽.

Lemma 4. Let 𝛽 > 0. Then the equation

− 𝑦′′ + (−𝑞𝛽 +𝑊 )𝑦 = 0 (25)

has two linearly independent solutions 𝑒±(𝑥) satisfying asymptotic estimates

𝑒
(𝜈)
± (𝑥) ∼ (𝑞𝛽(𝑥))−1/4+𝜈/2(±𝑖)𝜈 exp

(︂
±𝑖

∫︁ 𝑥

0

√︁
𝑞𝛽(𝑥)𝑑𝑥

)︂
, 𝑥→ +∞, 𝜈 = 0, 1. (26)

Proof. Consider equations

𝑒±(𝑥) = 𝑢±(𝑥) −
∫︁ +∞

𝑥

sin

(︂∫︁ 𝑥

𝑡

√︁
𝑞𝛽(𝜏)𝑑𝜏

)︂
𝑥𝛾/4𝑡𝛾/4

(︂
𝛾(4 − 𝛾)

16
𝑡−2 +𝑊 (𝑡)

)︂
𝑒±(𝑡)𝑑𝑡, (27)

where 𝑢± denotes the right hand side of (26). It is easy to check that each solution to (27)
solves also (25). Let us show that for sufficiently large 𝑥 > 0 the equation is uniquely solvable
and its solutions satisfies (26).

For ̃︀𝑒± = 𝑒±/𝑢± we have ̃︀𝑒± = 1 + 𝐴±̃︀𝑒±, (28)

where 𝐴 is the integral operator with kernel

𝐴±(𝑥, 𝑡) =

{︃
± 1

2𝑖

(︁
1 − exp

(︁
±2𝑖

∫︀ 𝑡

𝑥

√︀
𝑞𝛽(𝜏)𝑑𝜏

)︁)︁
𝑡𝛾/2

(︁
𝛾(4−𝛾)

16
𝑡−2 +𝑊 (𝑡)

)︁
, 𝑡 > 𝑥 > 0,

0, 0 < 𝑡 < 𝑥.

It follows from condition (22) that for each 𝑏 > 0 the operator 𝐴± is bounded in the space
𝐶[𝑏,+∞) and its norm tends to zero as 𝑏→ +∞. Hence,̃︀𝑒±(𝑥) ∼ 1, 𝑥→ +∞, (29)

that implies (26) for 𝜈 = 0. In order to obtain (26) as 𝜈 = 1, we differentiate (28) and substitute
there (29).

Theorem 2. Let 𝛽 > 0 and the function 𝑊 satisfy estimate (22) and condition 𝑒±(0) ̸= 0.
Then the eigenvalues 𝜇𝑘(𝛽) of the operator𝑀𝛽 (taken in an appropriate order) satisfy expansion
(24), where 𝛿𝛽 are calculated by formulae (48), (36), and (26).

Remark 2. If the function𝑊 is real, the condition 𝑒±(0) ̸= 0 holds true, since 𝑒−(𝑥) = 𝑒+(𝑥)
and 𝑊 (𝑒−, 𝑒+) = 2𝑖 ̸= 0.

A perturbation 𝑊 (𝑥) not satisfying the condition 𝑒±(0) ̸= 0 can be constructed sufficiently
easily. Let 𝑒+ = 𝑒+|𝑊≡0 and 𝑏 > 0 : 𝑒+(𝑏) ̸= 0. Further, let 𝜙(𝑥) = 𝑥𝜓(𝑥), where 𝜓(𝑥) is an
arbitrary twice continuously differentiable function on [0, 𝑏] having no zeroes and satisfying the
conditions

𝜓′(0) = 0, 𝜓(𝑏) =
𝑒+(𝑏)

𝑏
, 𝜓′(𝑏) =

𝑏 · 𝑒′+(𝑏) − 𝑒+(𝑏)

𝑏2
.

We let

𝑊 (𝑥) =

{︂
0, 𝑥 ≥ 𝑏,
𝜙′′(𝑥)
𝜙(𝑥)

− 𝑞𝛽(𝑥), 0 ≤ 𝑥 < 𝑏.

Then 𝑒+(𝑥) = 𝜙(𝑥) as 𝑥 ∈ [0, 𝑏], so that 𝑒+(0) = 0.
We split the proof of Theorem 2 into two lemmata.
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According to Lemma 4, the equation

− 𝑦′′ + (−𝑞𝛽 + 𝜀𝑊 )𝑦 = 0. (30)

has two solutions 𝑒±(𝜀, 𝑥) obeying estimates (26) uniform w.r.t. 𝜀 in each compact set 𝐾 ⊂ C.

Lemma 5. For each fixed 𝑥 ≥ 0 𝑒±(𝜀, 𝑥) are entire functions w.r.t. 𝜀.

Proof. The functions 𝑒±(𝜀, 𝑥) satisfy the equation

𝑒±(𝜀, 𝑥) = 𝑒±(0, 𝑥) +
𝜀

2𝑖

∫︁ +∞

𝑥

(𝑒+(0, 𝑥)𝑒−(0, 𝑡) − 𝑒−(0, 𝑥)𝑒+(0, 𝑡))𝑊 (𝑡)𝑒±(𝜀, 𝑡)𝑑𝑡.

Letting ̃︀𝑒±(𝜀, 𝑥) = 𝑒±(𝜀, 𝑥)(1 + 𝑥)−𝛾/4, we thus obtaiñ︀𝑒±(𝜀, ·) = ̃︀𝑒±(0, ·) + 𝜀𝐴±̃︀𝑒±(𝜀, ·),

where the operator 𝐴 acts by the formula

𝐴𝑓 =
1

2𝑖

∫︁ +∞

𝑥

(̃︀𝑒+(0, 𝑥)̃︀𝑒−(0, 𝑡) − ̃︀𝑒−(0, 𝑥)̃︀𝑒+(0, 𝑡))
(︀
1 + 𝑡𝛾/2

)︀
𝑊 (𝑡)𝑓(𝑡)𝑑𝑡.

It is clear that 𝐴 is a Volterra operator in the space 𝐶[0,+∞), so that

̃︀𝑒±(𝜀, ·) =
∞∑︁
𝑘=0

𝜀𝑘𝐴𝑘[̃︀𝑒±(0, ·)].

It yields the statement of the lemma.

Let 𝜙0(𝜀, 𝑥) be a solution to equation (30) satisfying the initial conditions

𝜙(𝜀, 0) = 0, 𝜙′(𝜀, 0) = 1. (31)

We have

𝜙0(𝜀, 𝑥) =
𝑒−(𝜀, 0)𝑒+(𝜀, 𝑥) − 𝑒+(𝜀, 0)𝑒−(𝜀, 𝑥)

2𝑖
. (32)

Since 𝑒±(1, 𝑥) = 𝑒±(𝑥), by the assumption of Theorem 2 𝑒±(1, 0) ̸= 0. In view of the inequality
𝑒±(0, 0) ̸= 0 (cf. Remark 2) and by Lemma 5 there exists a curve 𝑙 connecting the points 0 and
1 such that 𝑒±(𝜀, 0) ̸= 0 ∀ 𝜀 ∈ 𝑙.

Denote by 𝜙(𝜀, 𝑥, 𝜆) the solution to the equation

− 𝑦′′ + (−𝑞𝛽 + 𝜀𝑊 )𝑦 = 𝜆𝑦 (33)

satisfying initial conditions (31).

Lemma 6. Under the assumption of Theorem 2 for Ω(𝑟,𝑀) ∋ 𝜆→ 0

𝜙(𝜀, |𝜆|−1/2, 𝜆) = ∆|𝜆|−𝛾/8

[︂
sin

(︂
2
√
𝛽

2 − 𝛾
|𝜆|−(2−𝛾)/4 + 𝛿(𝜀)

)︂
+𝑂

(︀
𝜆(2−𝛾)/4

)︀]︂
, (34)

𝜕

𝜕𝑥
𝜙(𝜀, |𝜆|−1/2, 𝜆) = ∆

√︀
𝛽|𝜆| 𝛾/8

[︂
cos

(︂
2
√
𝛽

2 − 𝛾
|𝜆|−(2−𝛾)/4 + 𝛿(𝜀)

)︂
+𝑂

(︀
𝜆(2−𝛾)/4

)︀]︂
, (35)

where the estimate for the error terms in uniform in arg 𝜆, 𝜀 ∈ 𝑙,

∆ =
√︀
𝑒−(𝜀, 0)𝑒+(𝜀, 0), 𝛿(𝜀) = ln

√︃
𝑒−(𝜀, 0)

𝑒+(𝜀, 0)
, (36)

the branches of
√
𝑧, ln 𝑧 are fixed so that they are positive as 𝑧 > 1.
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Proof. The function 𝜙(𝜀, 𝑥, 𝜆) is the solution to the equation

𝜙(𝜀, 𝑥, 𝜆) = 𝜙0(𝜀, 𝑥) − 𝜆

2𝑖

∫︁ 𝑥

0

(𝑒+(𝜀, 𝑥)𝑒−(𝜀, 𝑡) − 𝑒−(𝜀, 𝑥)𝑒+(𝜀, 𝑡))𝜙(𝜀, 𝑡, 𝜆)𝑑𝑡, (37)

which by the change ̃︀𝜙(𝜀, 𝑥, 𝜆) = 𝜙(𝜀, 𝑥, 𝜆)(1 + 𝑥)−𝛾/4, ̃︀𝜙0(𝜀, 𝑥) = 𝜙0(𝜀, 𝑥)(1 + 𝑥)−𝛾/4,̃︀𝑒±(𝜀, 𝑥) = 𝑒±(𝜀, 𝑥)(1 + 𝑥)−𝛾/4 is reduced to the equatioñ︀𝜙 = ̃︀𝜙0 +𝐵(𝜀, 𝜆)̃︀𝜙,
where 𝐵(𝜀, 𝜆) acts by the formula

𝐵(𝜀, 𝜆)𝑓 = − 𝜆

2𝑖

∫︁ 𝑥

0

(𝑒+(𝜀, 𝑥)̃︀𝑒−(𝜀, 𝑡) − ̃︀𝑒−(𝜀, 𝑥)̃︀𝑒+(𝜀, 𝑡)) 𝑡𝛾/2𝜙(𝑡)𝑑𝑡.

Since by estimates (26)
sup

𝑥≤0, 𝜀∈𝑙
|̃︀𝑒±(𝜀, 𝑥)| ≤ 𝑐0 <∞

the norm of the operator 𝐵(𝜀, 𝜆) in the space 𝐶
[︀
0, |𝜆|−1/2

]︀
satisfies the estimate

‖𝐵(𝜀, 𝜆)‖ = 𝑂
(︀
|𝜆|(2−𝛾)/4

)︀
, 𝜆→ 0,

uniformly in 𝜀 ∈ 𝑙. Together with estimates (26) and by (32) it follows (34). In order to obtain
(35), one should differentiate (37) and employ the obtained estimate for 𝜙(𝜀, 𝑥, 𝜆). The proof
is complete.

Now we construct the solution to equation (33) belonging to 𝐿2(|𝜆|−1/2,+∞).
We introduce the notations. Let

Ω(𝑟,𝑀) = {𝜆 = 𝜇+ 𝑖𝜈 : −𝑟 < 𝜇 < 0, |𝜈| ≤𝑀 |𝜇|(2+𝛾)/(2𝛾)},
where 𝑟 > 0,𝑀 > 0. Further, let

𝑎𝜆 =

(︂
−𝜆
𝛽

)︂1/𝛾

, 𝑄(𝑥, 𝜆) =

∫︁ 𝑥

𝑎𝜆

√︁
−𝜆− 𝑞𝛽(𝑡)𝑑𝑡, 𝑃 (𝑥, 𝜆) =

∫︁ 𝑎𝜆

𝑥

√︁
𝜆+ 𝑞𝛽(𝑡)𝑑𝑡.

Lemma 7. Under condition (22) equation (33) has a solution𝑣(𝜀, 𝑥, 𝜆) satisfying the follow-
ing estimates,

a) for a fixed 𝜆 /∈ [0,+∞) and 𝑥→ +∞

𝑣(𝜀, 𝑥, 𝜆) ∼ 1

2
(−𝜆− 𝑞𝛽(𝑥))−1/4 exp (−𝑄(𝑥, 𝜆)) ; (38)

b) as Ω(𝑟,𝑀) ∋ 𝜆→ 0

𝑣(𝜀, |𝜆|−1/2, 𝜆) ∼ (𝜆+ 𝑞𝛽(|𝜆|−1/2))−1/4
[︀
sin

(︀
𝑃 (|𝜆|−1/2, 𝜆) + 𝜋/4

)︀
+ 𝑜(1)

]︀
, (39)

𝜕

𝜕𝑥
𝑣(𝜀, |𝜆|−1/2, 𝜆) ∼ (𝜆+ 𝑞𝛽(|𝜆|−1/2))1/4

[︀
− cos

(︀
𝑃 (|𝜆|−1/2, 𝜆) + 𝜋/4

)︀
+ 𝑜(1)

]︀
. (40)

The proof is the same as that of Lemma 6. Let us just describe how to choose sample
solutions and the corresponding integral equation. In the domain 𝐷0 = {𝜆 < 0, 𝑥 > 𝑎𝜆} we
consider a positive function

𝜉(𝑥, 𝜆) =

(︂
3

2
𝑄(𝑥, 𝜆)

)︂2/3

and continue it by the analyticity. It is easy to check that as 𝜆 < 0 and 0 < 𝑥 < 𝑎𝜆

𝜉(𝑥, 𝜆) = −
(︂

3

2
𝑃 (𝑥, 𝜆)

)︂2/3

.

We let
𝑣1(𝑥, 𝜆) = 𝜉′−1/2𝐵𝑖(𝜉(𝑥, 𝜆)), 𝑣2 = 𝜉′−1/2𝐴𝑖(𝜉(𝑥, 𝜆)), (41)

where 𝐴𝑖(𝜉), 𝐵𝑖(𝜉) are the Airy functions [25, Ch. IV, Sec. 1].
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Asymptotic formulae for Airy functions imply the following relations,

as Re𝑄→ +∞

𝑣𝑘(𝑥, 𝜆) ∼ 1

𝑘
(−𝜆− 𝑞𝛽(𝑥))−1/4 exp

(︀
(−1)𝑘−1𝑄(𝑥, 𝜆)

)︀ [︀
1 +𝑂

(︀
𝑄−1(𝑥, 𝜆)

)︀]︀
, 𝑘 = 1, 2,

as Re𝑃 → +∞
𝑣1(𝑥, 𝜆) ∼ (𝜆+ 𝑞𝛽(𝑥))−1/4

[︀
cos (𝑃 (𝑥, 𝜆) + 𝜋/4) +𝑂

(︀
𝑃−1(𝑥, 𝜆)

)︀]︀
,

𝑣2(𝑥, 𝜆) ∼ (𝜆+ 𝑞𝛽(𝑥))−1/4
[︀
sin (𝑃 (𝑥, 𝜆) + 𝜋/4) +𝑂

(︀
𝑃−1(𝑥, 𝜆)

)︀]︀
,

𝑣′1(𝑥, 𝜆) ∼ (𝜆+ 𝑞𝛽(𝑥))1/4
[︀
sin (𝑃 (𝑥, 𝜆) + 𝜋/4) +𝑂

(︀
𝑃−1(𝑥, 𝜆)

)︀]︀
,

𝑣′2(𝑥, 𝜆) ∼ (𝜆+ 𝑞𝛽(𝑥))1/4
[︀
− cos (𝑃 (𝑥, 𝜆) + 𝜋/4) +𝑂

(︀
𝑃−1(𝑥, 𝜆)

)︀]︀
.

Consider the equation

𝑣(𝜀, 𝑥, 𝜆) = 𝑣2(𝑥, 𝜆) − 𝜀

∫︁ +∞

𝑥

(𝑣1(𝑥, 𝜆)𝑣2(𝑡, 𝜆) − 𝑣2(𝑥, 𝜆)𝑣1(𝑡, 𝜆))𝑊 (𝑡)𝑣(𝜀, 𝑡, 𝜆)𝑑𝑡. (42)

According to (41), 𝑊 (𝑣1, 𝑣2) = −1, so, 𝑣(𝜀, 𝑥, 𝜆) solves equation (33). Arguing as in the proof
of Lemma 6, we obtain estimates (38)–(40).

Remark 3. As one can see in the proof, to satisfy estimate (38) instead of (22), it is
sufficient to suppose 𝑊 ∈ 𝐿1(0,+∞).

Proof of Theorem 2. Let 𝑀(𝛽, 𝜀) = 𝐿𝛽 +𝜀𝑊, 𝜀 ∈ C. It follows from estimate (38) that for each
𝜆 /∈ [0,+∞) 𝑣(𝜀, ·, 𝜆) ∈ 𝐿2[|𝜆|−1/2,+∞), so, 𝜆 is an eigenvalue of the operator 𝑀(𝛽, 𝜀) if and
only if

Φ(𝜀, 𝜆) := ⟨𝜙(𝜀, 𝑥, 𝜆), 𝑣(𝜀, 𝑥, 𝜆)⟩|𝑥=|𝜆|−1/2 = 0, (43)

where
⟨𝑓, 𝑔⟩(𝑥) = 𝑓(𝑥)𝑔′(𝑥) − 𝑓 ′(𝑥)𝑔(𝑥). (44)

Substituting here asymptotic formulae (34), (34) and (39), (40), we obtain

Φ(𝜀, 𝜆) = −∆
√︀
𝛽Φ0(𝜀, 𝜆) + 𝑜(1), Ω(𝑟,𝑀) ∋ 𝜆→ 0, (45)

where

Φ0(𝜀, 𝜆) = sin

(︂∫︁ 𝑎𝜆

0

√︁
𝜆+ 𝑞𝛽(𝑡)𝑑𝑡+ 𝜋/4 + 𝛿(𝜀)

)︂
, (46)

and the estimate for the error term is uniform in 𝜀 ∈ 𝑙.
We denote by 𝜆𝑘(𝛽, 𝜀)(𝑘 = 1, 2, . . . ) the negative roots of the function Φ0(𝜀, 𝜆) taken in the

ascending order. We have (see (10))

𝜆𝑘(𝛽, 𝜀) ∼ 𝜆𝑘(𝛽)

(︂
1 − 2𝛾

2 − 𝛾
𝛿(𝜀)𝑘−1

)︂
, 𝑘 → +∞. (47)

Due to relations (43)–(47) by Rouché theorem we conclude that for each 𝜎 > 0 there
exists 𝐾𝜎 ∈ N such that for all 𝑘 ∈ N: 𝑘 ≥ 𝐾𝜎 and 𝜀 ∈ 𝑙, there exists exactly
one simple (of algebraic multiplicity 1) eigenvalue of the operator 𝑀(𝛽, 𝜀) in the disk
𝐵𝑘(𝜀, 𝜎) = {|𝜆− 𝜆𝑘(𝛽, 𝜀)| ≤ 𝜎|𝜆𝑘(𝛽)|𝑘−1}. We call it 𝜎-property.

We denote by 𝜇𝑛(𝛽, 𝜀), 𝑛 = 1, 2, . . . , the eigenvalues of the operator𝑀(𝛽, 𝜀) taken in the order
of modules descending counting multiplicities. It follows from (10), (11), and the definition of
𝐵𝑘(𝜀, 𝜎) that there exists 𝜎0 > 0, 𝐾0 ∈ N such that for all 0 < 𝜎 < 𝜎0 and 𝑘 ≤ 𝐾0 the disks
𝐵𝑘(𝜀, 𝜎) are mutually disjoint. We choose 0 < 𝜎 < 𝜎0 so that 𝐾𝜎 ≥ 𝐾0. Let us show that for
all 𝑘 ≥ 𝐾𝜎 𝜇𝑘(𝛽, 𝜀) ∈ 𝐵𝑘(𝜀, 𝜎) for all 𝜀 ∈ 𝑙.

We make several notations. Let 𝜀 = 𝜀(𝑡), 0 ≤ 𝑡 ≤ 1 be a parametrization of the curve 𝑙. For
the points 𝜀1 = 𝜀(𝑡1) and 𝜀2 = 𝜀(𝑡2) we write 𝜀1 ≺ 𝜀2 if 𝑡1 < 𝑡2. If 𝑎 ≺ 𝑏, by 𝑙𝑎𝑏 we denote the
arc {𝜀 ∈ 𝑙 : 𝑎 ≺ 𝜀 ≺ 𝑏}.
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Suppose that for some 𝑚 ≥ 𝐾0 and 𝛿 ∈ 𝑙 𝜇𝑚(𝛽, 𝛿) /∈ 𝐵𝑚(𝛿, 𝜎). Lemma 5 and formulae (36)
yield that the function 𝜆𝑚(𝛽, 𝜀) is continuous w.r.t. 𝜀 on the curve 𝑙. This is why the family
of the circles Γ𝑚(𝜀, 𝜎) = {|𝜆− 𝜆𝑚(𝛽, 𝜀)| = 𝜎|𝜆𝑚(𝛽)|𝑚−1} moves continuously as 𝜀 moves along
the curve 𝑙. The function𝜇𝑚(𝛽, 𝜀) is also continuous on 𝑙 (that implied by the analyticity of the
function Φ(𝛽, 𝜀) on 𝑙). This is why in the arc 𝑙0𝛿 there exists a point 𝜉 such that 𝜇𝑚(𝛽, 𝜉) lies in
the circle Γ𝑚(𝜉, 𝜎) and 𝜇𝑚(𝛽, 𝜀) lies outside 𝐵𝑚(𝜀, 𝜎) for all 𝜀 ≻ 𝜉. By 𝜎-property, on Γ𝑚(𝜉, 𝜎)
there exists at least one eigenvalue of the operator 𝑀(𝛽, 𝜉) not coinciding with 𝜇𝑚(𝛽, 𝜉). Then
the disk 𝐵𝑚(𝜉, 𝜎1), where 𝜎1 > 𝜎, contains at least two eigenvalues of the operator 𝑀(𝛽, 𝜉) that
contradicts 𝜎-property.

Thus, 𝜇𝑘(𝛽, 𝜀) ∼ 𝜆𝑘(𝛽, 𝜀), 𝑘 → +∞, uniformly in 𝜀 ∈ 𝑙. By the identities 𝜇𝑘(𝛽, 1) = 𝜇𝑘(𝛽)
and

𝜆𝑘(𝛽, 1) = 𝐶 [𝑘 − 1/4 + 𝛿𝛽]−
2𝛾
2−𝛾 ,

where

𝛿𝛽 = −𝛿(1)

𝜋
, (48)

it implies (24). The proof is complete.

Remark 4. In work [27] by the same method the quantum defect of Dirac operator on the
semi-axis was calculated.

3.2. Case 0 < arg 𝛽 < 2−𝛾
2
𝜋. Since the cases −2−𝛾

2
𝜋 < arg < 0 and 0 < arg 𝛽 < 2−𝛾

2
𝜋 are

equal in rights, we consider only the case 0 < arg 𝛽 < 2−𝛾
2
𝜋. Let 𝜔𝛽 = −arg 𝛽

2−𝛾
, 𝑈𝛽 = {𝑧 : 𝜔𝛽 <

arg 𝑧 < 0}, 𝑈𝛽(𝑅) = 𝑈𝛽 ∩ {|𝑧| < 𝑅}, Ω be the domain bounded by a rectifiable Jordan curve
𝛾, 𝑝 > 1, and 𝐸𝑝(Ω) be the Smirnov class [28, c. 203], i.e., the set of functions 𝑓(𝑧) analytic in
the domain Ω and such that for some sequence of rectifiable curves 𝛾𝑛 contracting to 𝛾∫︁

𝛾𝑛

|𝑓(𝑧)|𝑝|𝑑𝑧| < 𝐶,

where 𝐶 is independent of 𝑛.

If 𝑓 ∈ 𝐿𝑝
𝑙𝑜𝑐[0,+∞), 𝑝 > 1, we shall say that 𝑓 possesses an analytic continuation ̃︀𝑓(𝑧) into

the angle 𝑈𝛽 if ∀ 𝑅 > 0 ̃︀𝑓(𝑧) ∈ 𝐸𝑝(𝑈𝛽(𝑅)) and for a.e. 𝑥 > 0 the angular boundary value of

the function ̃︀𝑓 at the point 𝑥 coincides with 𝑓(𝑥).

Theorem 3. Let
a) a function 𝑊 ∈ 𝐿2

𝑙𝑜𝑐(0,+∞) possesses an analytic continuation ̃︁𝑊 (𝑧) into the angle 𝑈𝛽

so that ̃︁𝑊 (𝑧) → 0, 𝑧 → ∞ uniformly in 𝜔𝛽 ≤ arg 𝑧 ≤ 0 (on rays arg 𝑧 = 0 and arg 𝑧 = 𝜔𝛽 the
limit is understood in a.e. sense);

b) the function ̂︁𝑊 (𝑥) = ̃︁𝑊 (𝑥𝑒𝑖𝜔𝛽) satisfies the estimate∫︁ ∞

0

(1 + 𝑥𝛾/2)|̂︁𝑊 (𝑥)|𝑑𝑥 <∞, (49)

c) ̂︀𝑒±(0) ̸= 0, where ̂︀𝑒± are obtained from 𝑒± by replacing −𝑞𝛽(𝑥) + 𝑊 (𝑥) to −|𝛽|𝑥−𝛾 +

𝑒2𝜔𝛽𝑖̂︁𝑊 (𝑥) in (25).
Then for the eigenvalues 𝜇𝑘(𝛽) of the operator 𝑀𝛽 (under an appropriate ordering) the

expansion (24) holds true, where 𝛿𝛽 are calculated by the formulae (48), (36), and (26) for

𝑊 (𝑥) = 𝑒2𝜔𝛽𝑖̂︁𝑊 (𝑥).

Proof. Since 𝑊 ∈ 𝐿2
𝑙𝑜𝑐(0,+∞) and 𝑊 → 0, 𝑥 → +∞, the operator 𝑊 (𝐿0 + 1)−1 (𝑊 is

the operator of multiplication by the function 𝑊 (𝑥)) is the uniform limit of Hilbert-Schmidt
operators (see the proof of Lemma 3) and is thus compact. Therefore, 𝜎ess(𝑀𝛽) = [0,+∞).
Arguing then as in the proof of Item 1) of Theorem 1, we obtain

𝜇𝑘(𝛽) = 𝑒2𝜔𝛽𝑖𝑟𝑘(𝛽),
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where {𝑟𝑘(𝛽)}∞𝑘=1 are the eigenvalues of the operator 𝐿|𝛽| + 𝑒2𝜔𝛽𝑖̂︁𝑊 having expansion (24) by
the conditions b), c), and Theorem 2. The proof is complete.

Remark 5. In order to obtain expansion (24) for complex 𝛽, we have to impose much stricter
restrictions on 𝑊 (analyticity in the angle 𝑈𝛽) in comparison with the case 𝛽 > 0. In view of
this fact a question on how necessary this condition appears. In Sec. 5 we shall show that up
to some reservations this condition is necessary.

4. Compactly supported perturbations

It was shown in work [18] that under the assumption of Theorem 3 the Weyl function (cf.
(62)) of operator 𝑀𝛽 possesses a meromorphic continuation into the angle

𝑌𝛽 = {2𝜋 < arg 𝜆 < 2(𝜋 + arg 𝛽/(2 − 𝛾))}, (50)

and its poles in this angle form a bounded set and can accumulate to the ray arg 𝜆 = 2(𝜋 +
arg 𝛽/(2−𝛾)) only. In this section we formulate two statements which in some sense justify the
necessity of the analyticity of the perturbation 𝑊 in order to ensure the mentioned properties
of the Weyl function and in this way hint the choice of the property 𝑃 appearing in Problem 1.

Theorem 4. Let𝑊 be compactly supported (supp𝑊 ⊂ [0, 𝑏]) and in some semi-neighborhood
of the point 𝑏 it can be represented as

𝑊 (𝑥) = (𝑏− 𝑥)𝑛𝑉 (𝑥),

where 𝑛 ≥ 0, 𝑉 (𝑏− 0) is well-defined, finite, and is non-zero.
Then the Weyl function of the operator 𝑀𝛽 possesses a meromorphic continuation into the

angle 𝑌𝛽, which has an unbounded sequence of poles in a vicinity of the ray arg 𝜆 = 2𝜋,

𝜆𝑘 ∼
(︂
𝜋𝑘

𝑏
+ 𝑖

𝑛+ 2

2𝑏
ln 𝑘 +𝑂(1)

)︂2

, 𝑘 → +∞. (51)

Proof. The existence of the meromorphic extension for the Weyl function of the operator 𝑀𝛽

into the angle 𝑌𝛽 follows from the arguments of work [18] (see Theorem 2 and Remark 4).
Formula (51) is proven exactly in the same way as in [29] (see Theorem 3).

The next result being an analogue of well-known Ambartsumian theorem seems to be com-
pletely unexpected; the possibility of recovering the perturbation just by a part of spectrum
has an exceptional character and can be realized very rarely.

Theorem 5. Let the function 𝑊 be a compactly supported and summable on its support. If
𝜎disc(𝑀𝛽) = 𝜎disc(𝐿𝛽), then 𝑊 = 0 a.e. on (0,+∞).

Proof. We introduce the notations. Let 𝑆(𝑥, 𝜆) and 𝐶(𝑥, 𝜆) be the solutions to the equation

− 𝑦′′ + (−𝑞𝛽 +𝑊 )𝑦 = 𝜆𝑦 (52)

satisfying the conditions

𝑆(0, 𝜆) = 0, 𝑆 ′(0, 𝜆) = 1, 𝐶(𝑏, 𝜆) = 1, 𝐶 ′(𝑏, 𝜆) = 0,

and let
𝑆0(𝑥, 𝜆) = 𝑆(𝑥, 𝜆)|𝑊≡0 , 𝐶0(𝑥, 𝜆) = 𝐶(𝑥, 𝜆)|𝑊≡0 . (53)

By 𝑣0(𝑥, 𝜆) we denote the solution to equation (19) satisfying asymptotic relation (20) for all
𝜆 /∈ [0,+∞).

Let 𝑏 > 0 be such that supp 𝑊 ⊂ [0, 𝑏]. Then the eigenvalues of the operator 𝑀𝛽 are the
roots of the equation (cf. (44))

⟨𝑆, 𝑣0⟩(𝑏) = 0. (54)

Since 𝑊 (𝑥) ≡ 0 as 𝑥 > 𝑏,

𝑆(𝑥, 𝜆) = 𝑎1(𝜆)𝑆0(𝑥, 𝜆) + 𝑎2(𝜆)𝐶0(𝑥, 𝜆), (55)
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where 𝑎1(𝜆) = ⟨𝐶0, 𝑆⟩(𝑏), 𝑎2(𝜆) = −⟨𝑆0, 𝑆⟩(𝑏). Substituting (55) into (54) and taking into con-
sideration that ⟨𝑆0, 𝑣0⟩(𝑏) = ⟨𝑆0, 𝑣0⟩(0) = −𝑣0(0, 𝜆), ⟨𝐶0, 𝑣0⟩(𝑏) = 𝑣′0(𝑏, 𝜆), for the eigenvalues
of the operator 𝑀𝛽 we get

− 𝑎1(𝜆)𝑣0(0, 𝜆) + 𝑎2(𝜆)𝑣′0(𝑏, 𝜆) = 0. (56)

By the hypothesis of the theorem, 𝜎disc(𝑀𝛽) = 𝜎disc(𝐿𝛽) = {𝜆𝑘}∞1 , where 𝜆𝑘 → 0, 𝑘 → ∞.
Then ∀ 𝑘 ∈ N, 𝑣0(0, 𝜆𝑘) = 0. Let us show that 𝑣′0(𝑏, 𝜆𝑘) ̸= 0 for sufficiently large 𝑘. Indeed,
otherwise the spectrum of the problem

−𝑦′′ − 𝑞𝛽𝑦 = 𝜆𝑦, 0 < 𝑥 < 𝑏,

𝑦(0) = 𝑦′(𝑏) = 0

accumulates at zero that is impossible due to the discreteness of the spectrum of this problem.
Then it follows from (53) that 𝑎2(𝜆𝑘) = 0 starting from some index. But 𝑎2(𝜆) is entire

function and hence 𝑎2(𝜆) ≡ 0, so (55) becomes

𝑆(𝑥, 𝜆) = 𝑎1(𝜆)𝑆0(𝑥, 𝜆), 𝑥 ≥ 𝑏.

The entire function 𝑎1(𝜆) has no zeroes (if 𝑎1(𝜆0) = 0, then 𝑆(𝑥, 𝜆0) ≡ 0), so 𝑎1(𝜆) = 𝑒𝑃 (𝜆),
where 𝑃 (𝜆) is entire. We have ln |𝑎1(𝜆)| = 𝑂(𝜆1/2), 𝜆 → ∞, and hence 𝑃 (𝜆) = const, i.e.,
𝑎1(𝜆) ≡ const.

Further,

𝑎1(𝜆) = ⟨𝐶0, 𝑆⟩(0) +

∫︁ 𝑏

0

(𝐶0𝑆
′′ − 𝐶 ′′

0𝑆)𝑑𝑥 = 1 +

∫︁ 𝑏

0

𝑊𝐶0𝑆𝑑𝑥.

On the other hand (see, for instance, [30, c. 13]), as 𝜆→ +∞,

𝐶0(𝑥, 𝜆) ∼ cos
√
𝜆𝑥+𝑂(𝜆−1/2), (57)

𝑆(𝑥, 𝜆) ∼ sin
√
𝜆𝑥√
𝜆

+𝑂(𝜆−1) (58)

uniformly in 𝑥 ∈ [0, 𝑏]. It yields 𝑎1(𝜆) = 1 +𝑂(𝜆−1/2), 𝜆→ +∞, therefore, 𝑎1(𝜆) ≡ 1, i.e.,

𝑆(𝑥, 𝜆) ≡ 𝑆0(𝑥, 𝜆), 𝑥 ≥ 𝑏, 𝜆 ∈ C. (59)

Further,

𝐶(𝑥, 𝜆) = 𝑏(𝜆)𝐶0(𝑥, 𝜆), 𝑥 ≥ 𝑏, (60)

where 𝑏(𝜆) = −⟨𝑆0, 𝐶⟩(𝑏) = −𝑆0(𝜆). Let us find 𝑏(𝜆). Since

𝑣0(𝑥, 𝜆) = 𝐶(𝑥, 𝜆) +𝑚0
𝛽(𝜆)𝑆0(𝑥, 𝜆),

it follows from (59) and (60) that

𝑣(𝑥, 𝜆) = 𝑏(𝜆))𝑣0(𝑥, 𝜆), 𝑥 ≥ 𝑏,

hence, 𝑚𝛽(𝜆) = 𝑏(𝜆)𝑚0
𝛽(𝜆) or

𝑏(𝜆) =
𝑚𝛽(𝜆)

𝑚0
𝛽(𝜆)

.

For large 𝜆 uniformly in arg 𝜆 ∈ [0, 2𝜋] we have [30, Ch I, Sec. 12]

𝑚𝛽(𝜆) ∼ 𝑖
√
𝜆+𝑂(1),

𝑚0
𝛽(𝜆) ∼ 𝑖

√
𝜆+𝑂(1).

Therefore, the entire function 𝑏(𝜆) is bounded on C, and hence 𝑏(𝜆) ≡ 1. Thus, 𝑚𝛽(𝜆) ≡ 𝑚0
𝛽(𝜆)

that by the unique solvability of the inverse problem [31, c. 202] implies 𝑀𝛽 = 𝐿𝛽, i.e., 𝑊 = 0
a.e.
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5. Main result

We introduce the notations. Let 𝑈𝛽 be an angle introduced in Subsec. 3.2. We shall say

that a locally summable on [0,+∞) function 𝑓 possesses a meromorphic continuation ̃︀𝑓 in the
angle 𝑈𝛽, if

a) ∀ 𝑅 > 0 the function ̃︀𝑓 in the domain 𝑈𝛽(𝑅) has a finite number of poles 𝑧1, . . . , 𝑧𝑛 so
that the function ̃︀𝑓 −

𝑛∑︁
𝑘=1

𝐺𝑘(𝑧)

belongs to 𝐸1(𝑈𝛽(𝑅)), where 𝐺𝑘(𝑧) is the principal part of Laurent series for ̃︀𝑓 at the point 𝑧𝑘;

b) for a.e. 𝑥 ∈ (0,+∞) the angular boundary value of the function ̃︀𝑓 at the point 𝑥 equals
𝑓(𝑥).

Further, we shall say that the pole 𝑧0 of the function 𝑓(𝑧) satisfy the monodromy-free con-
dition, if in some neighborhood 𝑈 of the point 𝑧0 the expansion

𝑓(𝑧) =
𝑚(𝑚+ 1)

(𝑧 − 𝑧0)2
+

𝑚−1∑︁
𝑘=0

𝑓𝑘(𝑧 − 𝑧0)
2𝑘 + (𝑧 − 𝑧0)

2𝑚𝑟𝑚(𝑧) (61)

holds true, where 𝑚 ∈ N, 𝑟𝑚(𝑧) is analytic in 𝑈 .

Remark 6. It is known [32] that condition (61) is necessary and sufficient for all the solu-
tions to the equations −𝑦′′ + 𝑓𝑦 = 𝜆𝑦 to be uniquely defined in the neighborhood 𝑈 of the point
𝑧0 for all values of the parameter 𝜆. Following [33], we call it the monodromy-free condition.

Let 𝑊 ∈ 𝐿1(0,+∞). According to Remark 3, equation (52) has a solution 𝑣(𝑥, 𝜆) satisfying
estimate (38) for 𝜆 /∈ [0,+∞). It is known (see, for instance, [18] or [31, Ch. 2]) that for each
fixed 𝑥 ≥ 0 the functions 𝑣𝛽(𝑥, 𝜆) and 𝑣′𝛽(𝑥, 𝜆) are analytic in C ∖ [0,+∞) and continuous up
to upper and lower sides of the cut w.r.t. 𝜆 > 0 and the zeroes of 𝑣𝛽(0, 𝜆) form a bounded set
Λ. Therefore,

𝑚𝛽(𝜆) =
𝑣′(0, 𝜆)

𝑣(0, 𝜆)
, (62)

which is the Weyl function of the operator 𝑀𝛽(𝜆), is meromorphic in C ∖ [0,+∞), its poles
form a bounded set, can accumulate to the ray [0,+∞) only, and 𝑀𝛽(𝜆) is continuous in
{𝜆 ̸= 0 : 0 ≤ arg 𝜆 ≤ 2𝜋} ∖ Λ.

Now we are in the position to formulate the main result.Let 0 < arg 𝛽 < 2−𝛾
2
𝜋 (the case

−2−𝛾
2
𝜋 < arg 𝛽 < 0 is similar). Consider the operator 𝑀𝛽 = 𝐿𝛽 +𝑊 , where 𝑊 ∈ 𝐿1(0,+∞).

Theorem 6. Suppose the function 𝑊 has a meromorphic continuation ̃︁𝑊 (𝑧) to an angle 𝑈𝛽

so that
(a) each pole of the function ̃︁𝑊 (𝑧) satisfies monodromy-free condition;

(b) the function ̂︁𝑊 (𝑥) := 𝑒2𝑖𝜔𝛽̃︁𝑊 (𝑒𝑖𝜔𝛽𝑥), 𝑥 > 0, is summable on (0,+∞);
(c) there exists an infinite set Λ′ ⊂ {𝜆 ̸= 0 : −2𝜔𝛽 ≤ arg 𝜆 ≤ 2𝜋} having at least one finite

limit point 𝜆0 ̸= 0 such that for all 𝜆 ∈ Λ′

𝑣′(0, 𝜆)̂︀𝑣 (︀0, 𝜆𝑒2𝑖𝜔𝛽
)︀
− 𝑒−𝑖𝜔𝛽𝑣(0, 𝜆)̂︀𝑣′ (︀0, 𝜆𝑒2𝑖𝜔𝛽

)︀
= 0, (63)

where ̂︀𝑣(𝑥, 𝜇) is the solution to the equation

− 𝑣′′ + (−|𝛽|𝑥−𝛾 + ̂︁𝑊 )𝑣 = 𝜇𝑣 (64)

satisfying the estimate (38).
Then𝑚𝛽(𝜆), which is the Weyl function for the operator𝑀𝛽, has a meromorphic continuatioñ︀𝑚𝛽(𝜆) from the domain C ∖ [0,+∞) into the agnle 𝑌𝛽 (see (50)) such that̂︀𝑚𝛽(𝜇) := 𝑒𝑖𝜔𝛽 ̃︀𝑚𝛽

(︀
𝑒−2𝑖𝜔𝛽𝜇

)︀
(65)
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is the Weyl function of the operator 𝐿|𝛽| + ̂︁𝑊 .
Vice versa, if 𝑚𝛽(𝜆) has a meromorphic continuation ̃︀𝑚𝛽(𝜆) into the angle 𝑌𝛽 so that (65) is

the Weyl function of the operator 𝐿|𝛽|+𝑉 with some 𝑉 ∈ 𝐿1(0,+∞), then𝑊 has a meromorphic

continuation ̃︁𝑊 (𝑧) into the angle 𝑈𝛽, at that, (a)-(b) hold true, and ̂︁𝑊 (𝑥) ≡ 𝑉 (𝑥).

Proof. According to (62) and the definition of ̂︀𝑣(𝑥, 𝜇), the Weyl function of the operator

𝐿|𝛽| + ̂︁𝑊 reads as

̂︀𝑚𝛽(𝜇) =
̂︀𝑣′(0, 𝜇)̂︀𝑣(0, 𝜇)

. (66)

Further, by the above the functions 𝑣𝛽(0, 𝜇) and 𝑣′𝛽(0, 𝜇) are analytic in C ∖ [0,+∞) and
continuous up to upper and lower sides of the cut along 𝜇 > 0 and the zeroes of 𝑣𝛽(0, 𝜇) form
a bounded set in 𝑀 . Therefore, the left hand side of (63) is analytic in the angle {𝜆 ̸= 0 :
−2𝜔𝛽 < arg 𝜆 < 2𝜋}, continuous up to its sides except the origin. This is why identity (63)
holds true for all 𝜆 ∈ {𝜆 ̸= 0 : −2𝜔𝛽 ≤ arg 𝜆 ≤ 2𝜋}, i.e.,

𝑚𝛽(𝜆) = 𝑒−𝑖𝜔𝛽 ̂︀𝑚𝛽

(︀
𝑒2𝑖𝜔𝛽𝜆

)︀
, −2𝜔𝛽 ≤ arg 𝜆 ≤ 2𝜋, 𝜆 /∈ Λ ∪ Λ′′, (67)

where Λ′′ = 𝑒−2𝑖𝜔𝛽𝑀. But the right hand side is defined also for 𝜆 ∈ 𝑌𝛽 ∖ Λ′′ that gives an
analytic continuation of 𝑚𝛽(𝜆) into the domain 𝑌𝛽 ∖ Λ′′. Identity (65) follows from (66) and
(67).

Let us prove the inverse statement. Suppose 𝑚𝛽(𝜆) has a meromorphic continuation ̃︀𝑚𝛽(𝜆)
into the angle 𝑌𝛽 so that (65) is the Weyl function of the operator 𝐿|𝛽| + 𝑉 for some 𝑉 ∈
𝐿1(0,+∞). We introduce a family of polygonal lines Γ𝑎 = [𝑎, 0] ∪ [0, 𝑎𝑒𝑖𝜔𝛽 ], 𝑎 > 0, with a
parametrization

𝑧 =

{︂
𝑎(1 − 2𝑡), 0 ≤ 𝑡 ≤ 1/2,

𝑎𝑒𝑖𝜔𝛽(2𝑡− 1), 1/2 < 𝑡 ≤ 1.

We then let ̃︁𝑊 (𝑧) =

{︂
𝑊 (𝑧), 𝑧 > 0,
𝑒−2𝑖𝜔𝛽𝑉 (𝑒−𝑖𝜔𝛽𝑧) , 𝑧 = 𝑒−𝑖𝜔𝛽𝑟, 𝑟 > 0,

and introduce the family of Strum-Liouville operator 𝑇𝑎, 𝑎 > 0 defined as follows

𝑇𝑎𝑦 = −𝑦′′(𝑧) + (−𝑞𝛽(𝑧) + ̃︁𝑊 (𝑧))𝑦(𝑧), 𝑧 ∈ Γ𝑎,

𝐷(𝑇𝑎) = {𝑦 : 𝑦, 𝑦′ ∈ 𝐴𝐶(Γ𝑎), −𝑦′′ + (−𝑞𝛽 + ̃︁𝑊 )𝑦 ∈ 𝐿2(Γ𝑎), 𝑦(𝑎) = 𝑦(𝑎𝑒𝑖𝜔𝛽) = 0},
where the prime indicates the differentiation along Γ𝑎.

Let 𝜙𝑎(𝑧, 𝜆) be the solution to the equation

− 𝑦′′(𝑧) + (−𝑞𝛽(𝑧) + ̃︁𝑊 (𝑧)𝑦(𝑧) = 𝜆2𝑦(𝑧) (68)

satisfying initial conditions

𝜙𝑎(𝑎, 𝜆) = 0,
𝑑

𝑑𝑧
𝜙𝑎(𝑧, 𝜆)

⃒⃒⃒⃒
𝑧=𝑎

= 1.

We let Φ𝑎(𝜆) = 𝜙𝑎 (𝑎𝑒𝑖𝜔𝛽). Then 𝜆2 is an eigenvalue of the operator 𝑇𝑎 if and only if

Φ𝑎(𝜆) = 0. (69)

The function Φ𝑎(𝜆) is even. By {𝜆𝑛}∞1 we denote the roots to equation (69) lying in the upper
half-plane and taken in the order of ascending modules counting algebraic multiplicities. Lemma
2 of work [34] yields that except a finite number all 𝜆𝑛 lie in the angle {−𝜔𝛽 ≤ arg 𝜆 ≤ 𝜋}.

Lemma 8. If (65) is the Weyl function of the operator 𝐿|𝛽| + 𝑉 , then

𝜆𝑛 ∼ 𝜋𝑛

𝑎(𝑒𝑖𝜔𝛽 − 1)
, 𝑛→ +∞. (70)
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Proof. Let

𝛼 = arg 𝜆, 𝐵𝛼 =

⎧⎨⎩ 0, −𝜔𝛽 ≤ 𝛼 ≤ 𝜋,
𝑎, 𝜋 < 𝛼 ≤ 𝜋 − 𝜔𝛽,
𝑏, 0 ≤ 𝛼 < −𝜔𝛽.

Denote by 𝜓(𝑧, 𝜆) the solution to equation (68) satisfying conditions 𝜓(𝐵𝛼) = 1, 𝜓′(𝐵𝛼, 𝜆) =
−𝑖𝜆. We let

𝑒±(𝑧, 𝜆) = (𝜆2 + 𝑝𝛽)−1/4 exp

(︂
±𝑖

∫︁ 𝑥

0

√︀
𝜆2 + 𝑝𝛽𝑑𝑡

)︂
,

where 𝑝𝛽 = 𝑞𝛽 · (1 − 𝜒𝑟), 𝜒𝑟 is the characteristic function of the disk |𝑧| < 𝑟, 𝑟 > 𝑎. Then 𝜓
satisfies the equation

𝜓(𝑧, 𝜆) =
√
𝜆𝑒(𝑧, 𝜆) +

1

2𝑖

∫︁ 𝑧

𝐵𝛼

(𝑒−(𝑧, 𝜆)𝑒+(𝑡, 𝜆) − 𝑒+(𝑧, 𝜆)𝑒−(𝑡, 𝜆))𝑉𝛽(𝑡, 𝜆)𝜓(𝑡, 𝜆)𝑑𝑡,

where 𝑉𝛽 = 𝜒𝑟𝑞𝛽 − ̃︁𝑊 + 𝑑2

𝑑𝑡2

(︀
(𝑝𝛽 + 𝜆2)−1/4

)︀
(𝑝𝛽 + 𝜆2)1/4. For the function ̃︀𝜓 = 𝜓/(

√
𝜆𝑒−) it

implies ̃︀𝜓 = 1 + 𝐴(𝜆) ̃︀𝜓,
where

𝐴(𝜆)𝑓 =
1

2𝑖

∫︁ 𝑧

𝐵𝛼

(︂
1 − exp

(︂
2𝑖

∫︁ 𝑧

𝑡

√︀
𝜆2 + 𝑝𝛽𝑑𝑡

)︂)︂(︀
𝜆2 + 𝑝𝛽

)︀−1/2
𝑉𝛽(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡.

It is easy to check the operator 𝐴(𝜆) is bounded in the space 𝐶(Γ), and its norm in this space
can be estimated by 𝑂(𝜆−1), 𝑙 → ∞, uniformly in 0 ≤ arg 𝜆 ≤ 𝜋 − 𝜔. It yields

𝜓(𝑧, 𝜆) ∼
√
𝜆𝑒(𝑧, 𝜆)

(︀
1 +𝑂

(︀
𝜆−1

)︀)︀
, 𝜆→ ∞, (71)

uniformly in 𝑧 ∈ Γ, 0 ≤ arg 𝜆 ≤ 𝜋 − 𝜔.
Then

𝜙𝑎(𝑧, 𝜆) = 𝜓(𝑎, 𝜆)𝜓(𝑧, 𝜆)

∫︁ 𝑧

𝑎

𝜓−2(𝑡, 𝜆)𝑑𝑡

for sufficiently large 𝜆 and −𝜔𝛽 ≤ 𝛼 ≤ 𝜋. Therefore,

Φ𝑎(𝜆) ∼ 𝜆−1𝑒−𝜆𝑎(1+𝑒𝑖𝜔)𝐹𝑎(𝜆), (72)

where

𝐹𝑎(𝜆) =

∫︁ 𝑎𝑒𝑖𝜔

𝑎

𝜓−2(𝑡, 𝜆)𝑑𝑡. (73)

According to (71), for sufficiently large 𝜆 in the angle {0 ≤ arg 𝜆 ≤ 𝜋 − 𝜔}

𝜓(𝑧, 𝜆) ∼
√
𝜆𝑒(𝑧, 𝜆)(1 +𝑂

(︀
𝜆−1

)︀
, Γ ∋ 𝑧 → ∞.

Hence,

𝑣𝛽(𝑥, 𝜆) = 𝐶0𝜓(𝑥, 𝜆)

∫︁ +∞

𝑥

𝜓−2(𝑡, 𝜆)𝑑𝑡, ̂︀𝑣𝛽(𝑥, 𝜆) = 𝐶1𝜓(𝑥𝑒𝑖𝜔𝛽 , 𝜆)

∫︁ +∞

𝑥

𝜓−2(𝑡𝑒𝑖𝜔𝛽 , 𝜆)𝑑𝑡, (74)

where 𝐶0,1 = const.
The assumption of the lemma implies that the functions 𝑣𝛽 and ̂︀𝑣𝛽 satisfy identity (63) (for

all 𝜆 for which the functions 𝑣𝛽 and ̂︀𝑣𝛽 are well-defined) that by identities (72) yield∫︁
Γ

𝜓−2(𝑡, 𝜆)𝑑𝑡 = 0,

and due to (73) it implies

𝐹𝑎(𝜆) =

∫︁ +∞

𝑎

𝜓−2(𝑡, 𝜆)𝑑𝑡−
∫︁ ∞𝑒𝑖𝜔

𝑎𝑒𝑖𝜔
𝜓−2(𝑡, 𝜆)𝑑𝑡.
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Substituting here (71), we get

𝐹𝑎(𝜆) ∼ 1

2𝑖𝜆

(︁
𝑒2𝑖𝜆𝑎(1 +𝑂

(︀
𝜆−1

)︀
− 𝑒2𝑖𝜆𝑎𝑒

𝑖𝜔

(1 +𝑂
(︀
𝜆−1

)︀)︁
=

=
1

2𝑖𝜆
𝑒2𝑖𝜆𝑎

(︁
1 − 𝑒2𝑖𝜆𝑎(1−𝑒𝑖𝜔)

(︀
1 +𝑂

(︀
𝜆−1

)︀)︀)︁
, 𝜆→ ∞,

uniformly in −𝜔𝛽 ≤ arg 𝜆 ≤ 𝜋. Together with (72) it implies the statement of the lemma.

Now it remains to apply Theorem 2 from [11], according to which relation (70) follow a) —
c). The proof is complete.
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