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STRAIGHTENING EXPANSIONS OF GAS FROM VORTEX

WITH LINEAR VELOCITY FIELD

YU.V. YULMUKHAMETOVA

Abstract. In this paper we consider a submodel of the gas with a linear velocity field.
It is described by a system of nonlinear differential equations with initial data. Several
first integrals of the system are obtained. As a result the order of the system is reduced.
An approximate solution of differential equations of the submodel is obtained for special
initial data of the problem. Such a solution corresponds to world lines describing the radial
expansion of the gas particles from the vortex. Trajectories of motion of gas particles are
constructed.
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Introduction

Solution in the form of a linear field of velocities is fundamental for any equations of mechanics
of continuous media. Such models were obtained in gas dynamics already by Dirichlet and
Riemann [1], [2] in their study of dynamics of ellipsoidal figures of an ideal incompressible
liquid. For a polytropic gas such a model was obtained by L.V. Ovsyannikov [3] and Dyson
[4] in Lagrangian variables. Some integrals of the obtained system were found in this case.
O.V. Lavrentyeva [5] considered the mathematical model of motion of an incompressible liquid
ellipsoid with a free boundary, where the velocities of the liquid particles are linear functions
of coordinates. She has also studied quality behaviour of the solution of such a model at large
times. V.V. Pukhnachev in [6] considered plane motion of an ideal liquid with a linear field of
velocities. He obtained the solution describing rotation of a liquid circle around the centre with
constant angular velocity.

In the present paper we consider the model of gas motion with a linear field of velocities,
described in [7], namely, SUBMODEL 1. The submodel is described by a system of ordinary
differential equations with initial data. Several integrals of such a system and connections
between these initial data are found. This allowed to reduce the number of parameters of the
problem and lower the order of the system with the help of equivalence transformations. In
a particular of initial data choice the obtained system was reduced to the Riccati equation.
This allowed to find an approximate solution of the equations of the submodel. As a result we
constructed world lines of gas particles for the given solution, which describe the gas particles
expansion from the vortex.

1. Equations of SUBMODEL 1

In SUBMODEL 1 for the solution of equations of gas dynamics with a linear field of velociteis

~u = A(t)~x+ ~u0(t), (1.1)
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where A = ||aij(t)|| is matrix, ~u0(t) = ||u01, u02, u03||T , ~x = ||x1, x2, x3||T are vectors, we
introduce supplementary variables by the formulae

B = A′ + A2, ~v = ~u′0 + A~u0, τ ′ = τtrA, (1.2)

and the equation of state has the form

p = ργh(S)± a0
2
ln ρ, (1.3)

γ, a0 are constants, h(S) is the function of entropy S. The density and the pressure are given
by the formulae:

ρ =
a0 + τ−γ

~x · S~x+ 2~ξ · ~x+ φ(t)
, (1.4)

p = −a0 + τ−γ

2
ln(~x · S~x+ 2~ξ · ~x+ φ)−

−a0 + τ−γ

∆
ω1(v2~s3 − v3~s2 + ω1~v)

∫
d~x

~x · S~x+ 2~ξ · ~x+ φ
+ p0(t),

p′0 + (ln τ)′γp0 = (ln τ)′γa0 ln(a0 + τ−γ).

Then the entropy is determined from (1.3), S = ||sij|| is the symmetrical part of the matrix B.

The vector ~ξ(t) is determined from the equation:

∆~ξ(t) = (s33s22 − s223)~v − ω1(v2~s3 − v3~s2), (1.5)

∆ = (ω1)2 + s33s22 − s223 6= 0, s33s22 − s223 6= 0,

~si is the column of the matrix S, vj is a coordinate of the vector ~v, ωk is a coordinate of the
vector ~ω, which determines the antisymmatrical part of the matrix B:

E < ~ω >=

∥∥∥∥∥∥

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∥∥∥∥∥∥
, ω1 6= 0,

that is

B = S + E < ~ω > . (1.6)

The function φ(t) is determined by the relationship:

∆φ(t) = (v3)2s22 + (v2)2s33 + 2v2v3s23. (1.7)

Substituting of the solutions (1.1), (1.3), (1.4) in the equations of gas dynamics and taking
into account the equalities (1.2), (1.5), (1.7) we obtain differential equations for determining of
the matrix S, vectors ~ω, ~v [7]:

S ′ + SA+ ATS = (1− γ + c0(t)) (ln τ)
′S, ~ω′ = A~ω − γ(ln τ)′~ω, (1.8)

~v′ + AT~v + S~u0 + ~ω × ~u0 =
(
(1− γ)~v + c0(t)~ξ

)
(ln τ)′, c0(t) = γτγ (a0τ

γ + 1)−1 ,

and supplementary relationships

S~ω = 0, ~v · ~ω = 0, (1.9)

which hold due to the equations of the submodel, if they are satisfied at the initial moment of
time.

Thus, SUBMODEL 1 consists of 6 nonlinear first order differential equations (equations for
A, ~u0, τ , S, ~ω, ~v) to find 6 unknowns. The density, pressure and the equation of state are given.
The submodel is completely determined.
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We call differential equations for the matrix A, the function τ from (1.2) and the equation
(1.8) for the matrix S and the vector ~ω basic, since they are independent of the equations for
the vectors ~u0 and ~v. Let us introduce initial data for basic equations when t = 0:

S(0) = S0 = ||s0ij||, ~ω(0) = ~ω0 = ||ω01, ω02, ω03||T , τ(0) = 1. (1.10)

The expansion A = SA + E < ~ωA >, SA = ST
A = ||sAij||, ~ωA = ||ω1

A, ω
2
A, ω

3
A||T holds for the

matrix A. Then the initial data for A when t = 0 have the form:

SA(0) = S1 = ||s1ij||, ~ωA(0) = ~ω1 = ||ω11, ω12, ω13||T ,
A(0) = S1 + E < ~ω1 > .

(1.11)

The basic equations provide a nonlinear system of the 19th order with 18 parameters for
initial data. To reduce the order of the system we find integrals of the system and reduce the
number of parameters of the problem with the help of equivalent transformations.

2. Integrals

We act on the vector ~ω by the matrix equation (1.2), taking into account (1.9), (1.6) and the
identity E < ~ω > ~ω = ~ω × ~ω = 0 and obtain the equation

A′~ω + A2~ω = 0.

From the equation (1.8) for the vector ~ω we find A~ω and substitute it into the last equality.
We obtain a linear homogeneous differential equation for the vector A~ω which solution has the
form:

A~ω = ~σ1τ
−γ , (2.1)

where ~σ1 is a constant vector. The integral (2.1) allows to find the solution for the linear
inhomogeneous differential equation (1.8) for the vector ~ω in the form:

~ω = (~σ1t + ~σ2) τ
−γ , (2.2)

where ~σ2 is a constant vector. Taking into account (2.2) the integral (2.1) can be rewritten in
the form of the linear integral:

A (~σ1t+ ~σ2) = ~σ1. (2.3)

The constant vectors ~σ1, ~σ2 are determined by the initial data (1.10), (1.11). When t = 0 we
obtain from (2.2), (2.3):

~σ2 = ~ω0, ~σ1 = S1~ω0 + ~ω1 × ~ω0. (2.4)

Initial data when t = 0 should satisfy the following relationship for the SUBMODEL 1:

S0~ω0 = 0. (2.5)

3. Equivalence transformations

The basic equations admit some equivalence transformations, conserving the structure of
equations but varying the initial data. Let us use this fact to reduce the number of parameters
of the problem with initial data.

The variable t is not included explicitly in the basic equations. Therefore they admit
transformations of the shift t→ t+ t0. Then due to the choice of t0 we can achieve ~σ1 · ~σ2 = 0
in the integral (2.3) and obtain from (2.4) a supplementary relationship of initial data:

~ω0 · S1~ω0 = 0. (3.1)

The basic equations, the integral (2.3) admit rotation given by the constant orthogonal matrix
O: A→ OTAO (~ωA → OT~ωA, SA → OTSAO), S → OTSO, ~ω → OT~ω. Due to the choice of the
matrix O, we turn the vectors ~ω, ~ωA at the initial moment of time into the position:

~ω0 = ||ω0, 0, 0||T , ω0 6= 0, ~ω1 = ||ω11, ω12, 0||T . (3.2)
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Then, we obtain:
s011 = s012 = s013 = 0, s111 = 0

using the connections of the initial data (2.5), (3.1).
The basic equations, the integral (2.3) admit the dilation: t → δ−1t, A → δA, S → δ2S,

~ω → δ2~ω. Due to the choice of parameter of δ the dilation, the value ω0 from (3.2) can be made
±1.

There are no other linear equivalence transformations.
The integrals (2.2) and (2.3):

ω1 = ω0τ
−γ ,

ω2 = ω0ts
1

12τ
−γ ,

ω3 = ω0t
(
s113 − ω12

)
τ−γ ;

a11 + a12ts
1

12 + a13t
(
s113 − ω12

)
= 0,

a21 + a22ts
1

12 + a23t
(
s113 − ω12

)
= s112,

a31 + a32ts
1

12 + a33t
(
s113 − ω12

)
= s113 − ω12,

reduce the order of the basic system. Equivalence transformations have reduced the number of
parameters of the initial problem from 15 to 10 significant parameters. Taking into account the
found integrals, the solution of the basic equations is reduced to the solution of the system:

~a′3 + ~a3
(
a33 − a13t(s

1

13 − ω12)
)
+ ~a2

(
a23 − a13ts

1

12

)
=

= ~s3 + ~ω × ~k − a13

(
~ω1 ×~i+ ~s11

)
,

~a′2 + ~a2
(
a22 − a12ts

1

12

)
+ ~a3 (a32 − a12t(s13 − ω12)) =

= ~s2 + ~ω ×~j − a12

(
~ω1 ×~i+ ~s11

)
,

s′ij + ~sj · ~ai + ~si · ~aj = f(τ)(ln τ)′sij, i, j = 1, 2, 3,

τ ′ = τtrA,

(3.3)

where ~i,~j,~k is the Cartesian basis; f(τ) = 1 − γ + γτγ(a0τ
γ + 1)−1, A = ||~a1,~a2,~a3||, S =

||~s1, ~s2, ~s3||.
The initial data:

A(0) =




0 s112 s113 + ω12

s112 s122 s123 − ω11

s113 − ω12 s123 + ω11 s133


 ,

S0 =




0 0 0
0 s022 s023
0 s023 s033


 , τ(0) = 1.

(3.4)

We haven’t found further integrals of the system (3.3) different from (2.2), (2.3),therefore, it
seems impossible to solve the system (3.3) with arbitrary significant parameters analytically.
Therefore, let us consider the system (3.3) with special values of initial data.

4. A plane model

The system (3.3) is written for the matrices A and S of the third order. The system (3.3)
has supplementary integrals for special initial data.

Definition 1. If the matrices A and S have the form

A =

(
0 0
0 Ā

)
, S =

(
0 0
0 S̄

)
, Ā =

(
a22 a23
a32 a33

)
, S̄ =

(
s22 s23
s23 s33

)
,

we say that they determine a plane (two-dimensional) case of the system (3.3).
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Theorem 1. If the initial data for the matrix A are chosen in the form

S1 =




0 0 0
0 s122 s123
0 s123 s133


 , ~ω1 = ||ω11, 0, 0||T , ω11 6= 0,

then the system (3.3) is reduced to a plane case.

Proof. The conditions of the Theorem 1 mean that in the initial data (3.4) it is sufficient to
set s112 = s113 = 0, ω12 = 0. Then we obtain a11 = a21 = a31 = 0, ω2 = ω3 = 0 from the integrals
(2.2), (2.3) using (2.4). It results from (1.9) that s11 = s12 = s13 = 0. It remains to show that
a12 = a13 = 0. For these elements we write the Cauchy problem from (3.3):

a′12 + a12a22 + a13a32 = 0, a′13 + a12a23 + a13a33 = 0, a13(0) = a12(0) = 0.

The zero solution is the solution of the latter problem, and using the uniqueness of the
solution of the Cauchy problem it is unique in case of any functions a22(t), a23(t), a32(t), a33(t).
Consequently, a12(t) = a13(t) = 0, which was to be proved.

Let us rewrite the system (3.3) for a plane case due to expansion of the matrix
A = SA + E < ~ωA >:

ω′
A + ωA(ln τ)

′ = ω0τ
−γ,

(sA22)
′ + (sA22)

2 + (sA23)
2 − (ωA)

2 = s22,

(sA23)
′ + sA23(ln τ)

′ = s23,

(sA33)
′ + (sA33)

2 + (sA23)
2 − (ωA)

2 = s33,

s′22 + 2(s22s
A
22 + s23s

A
23 + s23ωA) = f(τ)(ln τ)′s22,

s′23 + s23(ln τ)
′ + sA23(s22 + s33) + ωA(s33 − s22) = f(τ)(ln τ)′s23,

s′33 + 2(s23s
A
23 + s33s

A
33 − s23ωA) = f(τ)(ln τ)′s33,

(ln τ)′ = sA22 + sA33,

(4.1)

with the initial data:

ωA(0) = ω11, s
A
22(0) = s022, s

A
33(0) = s033, s

A
23(0) = s023,

s22(0) = s122, s23(0) = s123, s33(0) = s133, τ(0) = 1.
(4.2)

We pass from the variables ωA, sA22, s
A
23, s

A
33, s22, s23, s33, τ of the system (4.1) of the 8th order

to the variables ωA, sA23, s23, trSA, τ , trS, |S|, |SA|, where |S| is a determinant of the matrix S:

(τωA)
′ = ω0τ

1−γ ,

(sA23τ)
′ = s23τ,

s′23 + sA23trS − ωA(s22 − s33) = (f(τ)− 1)(ln τ)′s23,

τ ′′τ−1 = trS + 2|SA|+ 2ω2

A,

(τ |SA|)′ = ω2

Aτ
′ + τ(G− 2sA23s23),

|S|′τ = 2|S|τ ′(f(τ)− 1),

(trS)′ = f(τ)trSτ ′τ−1 − 2(F + 2sA23s23),

τ ′ = τtrSA,

(4.3)
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where G = sA33s22 + sA22s33, F = s22s
A
22 + s33s

A
33 (the quantities F , G satisfy the relation of

relationship F +G = trStrSA),

s22 =
1

2
trS +

√
1

4
(trS)2 − s223 − |S|, s33 = trS − s22,

sA22 =
1

2
trSA ±

√
1

4
(trSA)2 − (sA23)

2 − |SA|, sA33 = trSA − sA22.

(4.4)

The sign + is chosen in the first equation because the sign − transforms to the sign + after
the transformation s22 ↔ s33.

The system (4.3) has the integral

|S| = |S0|(a0τγ + 1)2/a0

(a0 + 1)2/a0τ 2γ
, |S0| = s022s

0

33 − (s023)
2. (4.5)

Since (4.3) does not contain t explicitly, we make the substitution

τ ′ = λ(τ) 6= 0, (4.6)

λ is some function from the variable τ . Then dt = λ−1dτ . Therefore, the order of the system
(4.3) is reduced by 2:

(τωA)τ = ω0τ
1−γλ−1,

(τsA23)τ = s23τλ
−1,

λ(s23)τ + sA23trS − ωA(s22 − s33) = (f(τ)− 1)λτ−1s23,

λλττ
−1 = trS + 2|SA|+ 2ω2

A,

(τ |SA|)τ = ω2

A + τλ−1(G− 2sA23s23),

τ(trS)τ = f(τ)trS − 2τλ−1(F + 2s23s
A
23).

(4.7)

Here, ωA 6= 0 as a result of the first equation.

5. A particular solution of the plane model

Let in the system (4.7)
sA23 = 0.

Then the system (4.7) has one more integral. It results from the first and the second equations
(4.7) that

s23 = 0, s22 = s33, ωA 6= 0,

F = G = s22λτ
−1. Then the 6th equation is integrable:

s22 =
s022(a0τ

γ + 1)1/a0

(a0 + 1)1/a0τγ
.

The system (4.7) takes the form:

(τωA)τ = ω0τ
1−γλ−1, λλτ = 2(s22 + |SA|+ ω2

A)τ, (τ |SA|)τ = ω2

A + s22. (5.1)

It results from the equations for λ, |SA| that (λ2)τ = 4(τ 2|SA|)τ . We obtain the integral of the
system (5.1):

λ2 = 4τ 2|SA|+ k, k = (s122 − s133)
2. (5.2)

It determines |SA|. The equations (5.1) have been reduced to two equations:

λcτ = ω0τ
1−γ ,

2τλλτ = λ2 − k + 4c2 +N0(a0τ
γ + 1)1/a0τ 2−γ ,

c = τωA, N0 = 4s022(a0 + 1)−1/a0

(5.3)
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with the initial data
c(1) = ω11, λ(1) = s122 + s133. (5.4)

Let us find approximate solutions for the equations (5.3).

6. Approximate solutions

The first equation (5.3) admits the dilation τ = Tτ1, c = T 1−γ/2c1, λ = T 1−γ/2λ1. If we apply
the dilation to the second equation (5.3), we obtain

2τ1λ1(λ1)τ1 = λ21 − kT γ−2 + 4c21 +N0(a0T
γτγ1 + 1)1/a0τ 2−γ

1 .

We set
T 2 = k, T γ = ε, (6.1)

where ε is a small parameter, γ is a fixed constant, k is a small parameter. Let us expand λ1
and c1 in the series in the degrees ε:

λ1 = λ0 + ελ01 + . . . , c1 = c0 + εc01 + . . . . (6.2)

When ε = 0 we obtain the equation of zero approximation:

λ0c0τ1 = ω0τ
1−γ
1 , τ1(λ

2

0)τ1 = λ20 + 4c20 +N0τ
2−γ
1 ,

which, obviously, admits the dilation. Introducing the change of variables with the help of the
invariants of dilation [8]:

λ0 = µτ
1−γ/2
1 , c0 = 2−1gτ

1−γ/2
1 , s = ln τ1, (6.3)

we obtain the autonomous system

gs + g(1− γ/2) = 2ω0µ
−1, (µ2)s + (1− γ)µ2 = g2 +N0. (6.4)

This results in the Abel equation:

dµ

dg
=
N0 + g2 + (γ − 1)µ2

4ω0 + gµ(γ − 2)
. (6.5)

The equation (6.5) admits the discrete symmetries: µ → −µ, g → −g; ω0 → −ω0, µ → −µ.
Consequently, integral curves of the equation (6.5) can be constructed in the semiplane g ≥ 0
with ω0 = +1. We consider further the simple case γ = 2, N0 = 1. The equation (6.5) takes the
form:

4
dµ

dg
= 1 + g2 + µ2. (6.6)

Proposition 1. Any integral curve of the equation (6.6) has, as µ→ ∞, its own asymptote
g = g0, where g0 is a constant, 0 < g0 <∞ and it is represented by a convergent series

g = g0 −
4

µ
+

4(1 + g20)

3µ3
+O(µ−4) (6.7)

или
1

µ
= −(g − g0)

4
− (1 + g20)

192
(g − g0)

3 − O
(
(g − g0)

4
)
. (6.8)

Proof: Due to the inequality 1+ g2+µ2 > 1+µ2, the solution of the equation 4
dµ

dg
= 1 + µ2,

which is equal to µ = tg

(
g

4
+
C

4

)
, 0 < C < 2π is some constant, provides a lower bound of

the solution of the equation (6.6) (µ > µ in case of equal initial data). Since µ → ∞ when
g → 2π − C, then µ→ ∞ when g → g0 6 2π. Therefore, the solution µ−1(g) can be expanded
into a series by integral degrees of g − g0. Since the right-hand side of the equation (6.6) is
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an analytical function, then according to the Cauchy-Kovalevskaya theorem on existence and
uniqueness the function µ is expandable into a convergent power series.

Let us show that the equation (6.6) has the solution in the form of the series (6.7). For this
purpose we substitute the solution of the form

g = g0 +
g1
µ

+
g2
µ2

+
g3
µ3

+ . . .

into (6.6)

−4 =

(
1 + µ2 + g20 + 2g0

∑

j≥1

gj
µj

+
∑

k≥2

1

µk

k−1∑

j≥1

gjgk−j

)
∑

j≥1

jgj
µj+1

.

Equating coefficients of the series of different degrees µ we obtain the following expressions for
the coefficients of the series:

g1 = −4, g2 = 0, g3 =
4(1 + g20)

3
, . . . .

When k > 3

(k + 1)gk+1 + (1 + g20)(k − 1)gk−1 + 2g0

k−2∑

i≥1

gigk−1−i(k − 1− i)+

+
k−2∑

i=2

(
i−1∑

j≥1

gjgi−j

)
(k − i− 1)gk−i−1 = 0.

Coefficients of the series (6.7) are determined via the previous coefficients.
Inversion of the series (6.6) provides the series (6.7).
Let us construct a picture of integral curves of the equation (6.6) (Figure 1).
Since the right-hand side of the equation (6.6) is positive, the integral curves increase in the

semiplane g ≥ 0. Let us find the second derivative:

d2µ

dg2
= 2

(
g +

µ

4

(
1 + g2 + µ2

))
.

All the points of inflection lie on the curve 4g + µ (1 + g2 + µ2) = 0. This curve has a point

of minimum g =
√

(1 +
√
17)/2, µ = −2/g. A part of an integral curve lying above the

line of inflections is convex downwards; the one lying below is convex upwards. When g = 0:

4
dµ

dg
= 1+ µ2, the higher is |µ|, the closer is the slope angle of the tangent to π/2 in the points

of the straight line g = 0. When µ = 0: 4
dµ

dg
= 1+ g2, the higher is |g|, the closer is slope angle

of the tangent to π/2 in the points of the straight line µ = 0. When µ = g = 0 the tangent of
the slope angle of the integral curve is equal to 1/4. Integral curves passing through the points
(0, µ0), (0,−µ0) prolong each other after the reflection with respect to the origin of coordinates.

Every integral curve has an asymptote g = g0, g0 is a constant: µ = F (g, g0). Let us choose
initial data for this curve on the axis µ, i.e. in the point (0, µ0). Then there is a functional
relationship between µ0 and g0:

µ0 = F (0, g0).

Let us choose an integral curve corresponding to zero initial data µ(0) = 0:

µ = F (g). (6.9)

The further solution is searched for this curve. The numerical calculations provide g0 ≃ 3, 65.
For the further finding unknown functions it is necessary to determine initial data of the

problem (6.4) when t = 0. Since the function µ(τ1) is the zero approximation for λ(τ1), then
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–4

–2

0

2

4

mu(g)

1 2 3 4

g

Рис. 1. Integral curves of the equation (6.6)

µ(1/
√
ε) ∼ s122 + s133 = α, and since g(τ1) is the zero approximation for c(τ), then g(1/

√
ε) ∼

2ω11 = β (see (5.4), (6.2), (6.3)).
Determine the values of the variable τ at the boundary points of the chosen curve. The

function g(τ1) satisfies the equation (6.4):

µgµdµ = 2τ−1

1 dτ1 = 2τ−1dτ. (6.10)

Integrating (6.10) in τ from 1 to τ we obtain:

2 ln τ =

∫ µ

α

µdµ

1 + g2 + µ2
≥
∫ µ

α

µdµ

1 + g20 + µ2
=

1

2
ln |µ2 + g20 + 1| |µα .

Hence τ → ∞ as µ→ ∞.
If we integrate (6.10) in τ from τ to 1, we obtain:

τ = exp

(
−1

2

∫ β

g

F (g)dg

)
→ τ0(ω11),

when g → 0, τ0 is a finite number, contained within the interval 0 < τ0 < 1. Validity of the
following proposition results from the written above.

Proposition 2. When the point (g, µ) moves along the curve (6.9) from the point (0, 0) to
the point (g0,∞) the quantity τ varies from τ0 > 0 to ∞.

Let us determine the functions A(τ), ~u0(τ). The function g = G(τ) is determined from the
first equation (6.4) implicitly by the relationship

∫ g

g1

F (g)dg = 2 ln
τ

τ1
, µ = F (G(τ)) =M(τ) ∼ λ(τ), (6.11)

where g1 = g(τ1), τ1 ∈ (τ0;∞).
Dependence of the functions M and G on the variable τ is presented on Figure 2 and Figure 3.
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Figure 2. Graph of the function G(τ)
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Figure 3. Graph of the function M(τ)

It results from (5.3), (6.2), (6.3) that

ωA ∼ G(τ)

2τ
.

It results from (4.4), (5.2), (6.1) that sA22 =
1

2
(λ+

√
ε)τ−1, sA33 =

1

2
(λ−√

ε)τ−1, where the sign
± in (4.4) is replaced by + due to symmetry of the function µ = F (g) with respect to the origin
of coordinates. The elements of the matrix A from (1.1) are determined by

−AT = A =




0 0 0
0 sA22 −ωA

0 ωA sA33



 =
D

2τ
, D =




0 0 0
0 M(τ) +

√
ε −G(τ)

0 G(τ) M(τ)−√
ε



 . (6.12)

The equations (1.2), (1.8) hold for the vector ~u0. After substitution of (1.2) into (1.8) we
obtain:

~u′′0 + 2A′~u0 =

(
2τ 2

a0τ 2 + 1
~ξ − ~u′0 − A~u0

)
τ ′

τ
.

Let us proceed to differentiating by τ according to the formula (4.6) τ ′ = λ(τ) ∼ µ(τ):

µ~u0ττ +
(
µτ +

µ

τ

)
~u0τ +

(
2Aτ +

1

τ
A

)
~u0 =

2τ

a0τ 2 + 1
~ξ, (6.13)

where due to (1.5)

~ξ(1 + 16(a0τ
2 + 1)−2/a0) = µ~u0τ + A~u0 − 4(a0τ

2 + 1)−1/a0

∥∥∥∥∥∥

0
µ(~u02)τ + (A~u0)2
−µ(~u03)τ − (A~u0)3

∥∥∥∥∥∥
,

2Aτ +
1

τ
A =

1

τ 2

(
2

F (G)
H − 1

2
D

)
, H(G) =




0 0 0
0 Fg(G) −1
0 1 Fg(G)



 .

We expand the variable τ =
√
ετ1 for the approximate solution. The equation (6.13) takes

the form:

µ~u0τ1τ1 +

(
µτ1 +

µ

τ1

)
~u0τ1 +

[
2

τ 21F (G)
H(G)− 1

2τ 21
D(τ1)

]
~u0 = 0 (6.14)

with precision to ε.
Initial data at τ = 1 or τ1 = ε−1/2 can be taken in the form

~u0 = ~u00, ~u0τ = ~u01.

If initial data is equal to zero, then the solution is equal to zero ~u0 = 0.
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7. The time of existence of the solution

Dependence of τ on the time t is determined from the solution of the problem:

τ ′t = F (g), τ(0) = 1, (7.1)

where the right-hand part of the equation is determined by the formula (6.11).
Let us describe the behaviour of τ from t near the points τ = τ0, τ = 1, τ = ∞.
In the neighbourhood of the point τ = τ0 the function F (0) = 0 (see Figure 1). In this point

the function F is expanded into the series F =
g

4
+O(g3). We obtain from (6.11)

2 ln
τ

τ0
=
g2

8
+O(g4).

Let us introduce the small parameter
τ

τ0
− 1 = δ. Then the approximate equality:

g ∼ 4δ1/2 = 4

(
τ

τ0
− 1

)1/2

results from the last equation. Then the approximate equality

t− T0 ∼
∫ τ

τ0

4dτ

g(τ)
∼ 2τ0

(
τ

τ0
− 1

)1/2

, (7.2)

where T0 is the beginning of the time reading, results from the differential equation (7.1).
In the neighbourhood of the point τ = 1 the function F (β) = α. Let us expand F (g)

into series in the point (β, α), taking only two first terms of the series: F (g) ∼ ng + m,

4n = 1 + α2 + β2, m = α − βn. We obtain from (6.11) that 2 ln τ ∼ n

2
(g2 − β2) +m(g − β),

then F (g) = α+
2n

α
(τ − 1) +O ((τ − 1)2).

The equation (7.1) provides an approximate solution in the neighbourhood of t = 0 (or τ = 1)

t =
α

2n
ln

∣∣∣∣1 +
2n(τ − 1)

α2

∣∣∣∣ ∼
τ − 1

α
. (7.3)

When τ → ∞, g → g0 it results from (6.8) and (6.11) that

−2−1 ln
τ

τ1
=

∫ g

g1

(
1

g − g0
− 1 + g20

48
(g − g0) +O(δ2)

)
dg = ln δ − lnC +O(δ2),

where g0 − g = δ is a small parameter, C is some constant.
Consequently,

g0 − g ∼ c

τ 1/2
, (7.4)

where c is some constant.
In this case the differential equation (7.1) takes the form:

dt ∼ c

τ 1/2
dτ =⇒ t− t1 ∼ 2c(τ 1/2 − τ

1/2
1 ) → ∞ when τ → ∞. (7.5)

The formulae (7.2), (7.3), (7.5) describe the behaviour of the function t(τ) in the
neighbourhood of the point τ = τ0, τ = 1, τ → ∞.

The numerical calculations for the chosen α = 0, 3411, β = 1 showed that τ0 = 0, 7 and the
graph of the function t(τ) is presented on Figure 4.
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Figure 4. Graph of the function τ(t)

8. World lines of particles

World lines are given by the equation [9]

d~x

dt
= A~x+ ~u0,

where the matrix A is defined by the formula (6.12), the vector ~u0 is given by the formula
(6.14). Let us proceed to differentiating in τ :

M(τ)
d~x

dτ
∼ A~x+ ~u0.

In the coordinate form we have:

M(τ)xτ = u01,

M(τ)yτ =
1

2τ

(
(M(τ) +

√
ε)y −G(τ)z

)
+ u02,

M(τ)zτ =
1

2τ

(
G(τ)y + (M(τ) −

√
ε)z
)
+ u03,

(8.1)

where M(τ) and G(τ) are calculated by the formulae (6.11). Solving the system (8.1)
numerically when ǫ = 0, 1, τ ∈ [0, 7; 10], G(1) = 1, M(1) = 0, 3411, we obtain world lines.
Trajectories of particles are presented on Figure 5. Every particle of gas moves along by its
own trajectory. Particles belonging to one trajectory at the initial moment of time move along
by it. The particle velocity makes a turn during its motion. It is not clear from Figure 5 how
trajectories behave when τ → ∞. Let us clarify it with the help of expansion into the series of
functions G(τ), M(τ), x(τ), y(τ) when τ → ∞.
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Figure 5. Particles trajectory

The system (8.1) splits in polar coordinates y = r cosϕ, z = r sinϕ under zero initial
conditions for the equation (6.14):

2τr−1rτ = 1 +
√
εM−1 cos 2ϕ,

2τMϕτ = G−
√
ε sin 2ϕ.

(8.2)

The last equation is the Riccati equation after the substitution ν = tgϕ.
The solution with respect to ϕ is periodical with the period π. Therefore, the initial data

ϕ(1) = ϕ0 can be taken within the interval ϕ0 ∈ (0; π). The initial data r(1) = r0 are determined
by an arbitrary constant r0. When r0 = 0 we have the solution r = 0. The particle is not moving.

An approximate solution for ϕ is as follows

ϕ = ϕ1 +
√
εϕ2 +O(ε), (8.3)

with the initial data
ϕ0 = ϕ01 +

√
εϕ02,

where
2τMϕ1τ = G, 2τMϕ2τ = − sin 2ϕ1 =⇒

=⇒ ϕ1 = ϕ̃01 +

∫
G

2τM
dτ, ϕ2 = ϕ̃02 −

∫
sin 2ϕ1

2τM
dτ,

where ϕ̃01, ϕ̃02 are constants matching the limits of integrating.
The approximate solution (8.2) for r has the form

r = r0
√
τ exp

{√
ε

2

∫
cos 2ϕ

Mτ
dτ

}
= r0

√
τ

(
1 +

√
ε

2

∫
cos 2ϕ1

Mτ
dτ

)
+O(ε). (8.4)

We determine the function M(τ) when τ → ∞ by the formulae (6.11), (6.8) and (7.4):

M(τ) =
4τ 1/2

c
.
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We find the function ϕ by the formulae (8.3):

ϕ ∼ ϕ0 −
c

4τ 1/2
(
g0 −

√
ǫ sin 2ϕ01

)
,

where ϕ0 = ϕ̃01 +
√
ǫϕ̃02 +

c

4τ
1/2
1

(g0 −
√
ǫ sin 2ϕ01). We find the function r(τ) by the formula

(8.4):

r = r0

(√
τ − c

√
ǫ

4

(
cos 2ϕ01 −

cg0
4
√
τ
sin 2ϕ01

))
+O(ε

√
τ ) +O(

√
ετ−1/2),

where ϕ01 = ϕ̃01 +
cg0

4τ
1/2
1

. Thus, ϕ→ ϕ0, r → ∞ when τ → ∞.

We find from the formulae for ϕ(τ) and r(τ) an expression for r = r(ϕ):

r ∼ r1(ϕ0 − ϕ)−1 + r2 +O(ϕ0 − ϕ),

where r1 = r0k, r2 = −r0ck−1
√
ǫ sin 2ϕ01/16, k = c(g0 −

√
ǫ sin 2ϕ01)/4 > 0.

Let us determine the angle ψ between the tangent to the line r = r(ϕ) in some point and
a radius-vector of this point when τ → ∞. The angle is calculated by the formula:

ctgψ =
d ln r

dϕ
∼ r1

(ϕ0 − ϕ)(r1 + r2(ϕ0 − ϕ))
→ ∞ ⇒ ψ ∼ ϕ0 − ϕ.

It means that when τ → ∞ the tangent approaches the radius-vector: ψ → 0. The slope angle
of the tangent to the axis y has the limit: ϕ+ ψ → ϕ0.

Let us clarify existence of asymptotes of the trajectory. For this purpose we determine how
the value of y1 varies when r → ∞ (see Figure 6):

y1 = r cosϕ− r sinϕ ctg(ϕ+ ψ) = r
sinψ

sin(ϕ+ ψ)
∼ r1(ϕ0 − ϕ)−1

(ϕ0 − ϕ)

sinϕ0

=
r1

sinϕ0

<∞.

Consequently, the tangent has eliminating position, i.e. any trajectory has an asymptote.
This fact completely corresponds to Figure 5.

Therefore, the solution described in the paper defines a radial expansion of gas from vortex.
Remark. If u01 6= 0 in (8.1), then we have a non-vanishing component of the velocity on the

axis x. We obtain an unfolding vortex column.
The trajectories of particles illustrated in Figure 5 are constructed in the case when initial

data for the functions G(τ) and M(τ) have the form G(1) = 1, M(1) = 1. These initial data
correspond to zero initial data for the equation (6.6). Let us construct trajectories of particles
in the case when the initial data of the equation (6.6) have the form µ(0) = 1, µ(0) = 3.5,
µ(0) = −2, µ(0) = −4 (Figures 7, 8, 9, 10 respectively).

Figures 7, 8 show that the higher is the value of the function µ(g) at zero, the closer to
straight lines particles trajectories become. In case of negative values of the function µ(g) at
zero we obtain a vortex (Figures 9, 10).
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Figure 6. Position of the tangent to the trajectory

Figure 7. Particles trajectory when µ(0) = 1
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