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ON AUTOMORPHIC SYSTEMS OF FINITE -DIMENSIONAL

LIE GROUPS

A.A. TALYSHEV

Abstract. It is shown in the present paper that any automorphic system for a
finite-dimensional Lie group is a completely integrable system.
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Introduction

A system of differential equations is called automorphic with respect to a Lie group, if all its
solutions are on the orbit of one of them. The statement that the diversity 𝑈 ′ can be obtained
from the diversity 𝑈 by means of action of some transformation of the group if 𝑈 ′ ⊂ ℎ(𝑈,𝑂), is
used for justification of the structure of an automorphic system in the monograph [1, p. 329].
Generally speaking, this statement is incorrect.

It is shown in the present paper that the structure for the finite dimensional Lie groups
described in [1] (with some refinements) actually determines the automorphic system. It is also
shown that any automorphic system for the Lie group is always completely integrable. The
approach suggested here significantly uses finite dimensionality of the Lie group and therefore
is not applicable for infinite dimensional groups.

1. Automorphic systems

Definition. A system of differential equations is called automorphic with respect to a group
𝐺, if any solution of this system is obtained from one fixed solution by means of action of
transformations of the group 𝐺 [1, S25].

Further we use the following notation: 𝑋 = 𝑅𝑛 is a space of independent variables, 𝑌 =
𝑌0 = 𝑅𝑚 is a space of dependent variables, 𝑍𝑘 = 𝑋 × 𝑌0 × · · · × 𝑌𝑘, 𝑘 = 0, 1 . . ., where 𝑌𝑘 =
𝑅𝑚 ⊗ 𝑆𝑘𝑅𝑛, 𝑘 = 1, . . . are prolonged spaces. The vectors of the spaces 𝑌𝑘 are denoted by
𝑦
𝑘
, and their components are denoted by 𝑦𝛼, where 𝛼 = (𝛼1, . . . , 𝛼𝑛) are multi-indexes and

|𝛼| = 𝛼1 + · · · + 𝛼𝑛 = 𝑘. Dimension of the space 𝑍𝑘 is denoted by 𝜈𝑘, i.e.

𝜈𝑘 = dim(𝑍𝑘) = 𝑛+𝑚

(︂
𝑛+ 𝑘
𝑛

)︂
.

The natural projection 𝑍𝑘+1 on 𝑍𝑘 is denoted by 𝜌𝑘+1
𝑘 :

𝜌𝑘+1
𝑘 (𝑥, 𝑦, 𝑦

1
, . . . , 𝑦

𝑘
, 𝑦
𝑘+1

) = (𝑥, 𝑦, 𝑦
1
, . . . , 𝑦

𝑘
).

Operators of a total differentiation are denoted by 𝐷𝑖, i.e.

𝐷𝑖 = 𝜕𝑥𝑖
+

∑︁
|𝛼|>0

𝑦𝛼+𝛾𝑖𝜕𝑦𝛼 𝑖 = 1, . . . , 𝑛,

where |𝛾𝑖| = 1 and the component with the number 𝑖 is equal to 1.
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We consider the Lie group 𝐺𝑟(ℎ) of the finite dimension 𝑟, generated by the mapping ℎ :
𝑍 × 𝐵 → 𝑍, where 𝐵 = 𝑅𝑟. The mapping ℎ for every 𝑘 > 0 explicitly expands on the space
𝑍𝑘. Here this expansion is written in the form

ℎ
𝑘

: 𝑍𝑘 ×𝐵 → 𝑍𝑘.

Starting with some 𝑘, the general rank of the group 𝐺𝑟 on the space 𝑍𝑘 is equal to 𝑟. Here this
value of 𝑘 is denoted by 𝑘1.

The mapping 𝑢 : 𝑋 → 𝑌 for every 𝑘 > 0 determines the variety (¡¡graph of the mapping¿¿)

𝑈
𝑘

=

{︂
𝑦𝛼 =

𝜕|𝛼|𝑢

𝜕𝑥𝛼1
1 . . . 𝜕𝑥𝛼𝑛

𝑛

, 0 6 |𝛼| 6 𝑘

}︂
(1)

in the prolonged space 𝑍𝑘.
The result of the action of the group 𝐺𝑟 on the variety (1) is called an orbit of the variety and

is denoted by ℎ
𝑘
(𝑈
𝑘
, 𝑂), where 𝑂 is a neighbourhood 0 in the space 𝐵. Obviously there exists

such 𝑘2 > 𝑘1 (𝑘2 depends of the mapping 𝑢), that when 𝑘 > 𝑘2 the orbit is a proper variety of
the space 𝑍𝑘. Dimension of the orbit 𝑑𝑘 when 𝑘 > 𝑘2 satisfies the inequalities

max{𝑛, 𝑟} 6 𝑑𝑘 = dimℎ
𝑘
(𝑈
𝑘
, 𝑂) 6 𝑛+ 𝑟. (2)

It is obvious that for all 𝑘 > 0

𝜌𝑘+1
𝑘

(︂
ℎ

𝑘+1
( 𝑈
𝑘+1

, 𝑂)

)︂
= ℎ

𝑘
(𝑈
𝑘
, 𝑂). (3)

When 𝑘 > 𝑘2 there exist such mappings 𝜓𝑘 : 𝑍𝑘 → 𝑅𝑠𝑘 that

ℎ
𝑘
(𝑈
𝑘
, 𝑂) = {𝑧𝑘 ∈ 𝑍𝑘 : 𝜓𝑘(𝑧𝑘) = 0},

where 𝑠𝑘 = 𝜈𝑘 − 𝑑𝑘. Due to (3) the mappings 𝜓𝑘 can be chosen so that the set of the mappings
𝜓𝑘+1 for every 𝑘 is an expansion of the set of the mappings 𝜓𝑘.

The relationships

𝜓𝑘(𝑧) = 0, 𝑧 ∈ 𝑍𝑘 (4)

give a system of differential equations of the order 𝑘 on 𝑚 functions of 𝑛 variables, and the
mapping 𝑢 is the solution of this system.

The system

𝑝(𝜓𝑘)(𝑧) = {𝜓𝑘(𝜌𝑘+1
𝑘 (𝑧)), (𝐷1𝜓𝑘)(𝑧), . . . , (𝐷𝑛𝜓𝑘)(𝑧)} = 0, 𝑧 ∈ 𝑍𝑘+1

is called the first prolongation of the system (4). Accordingly the variety

𝑝(ℎ
𝑘
(𝑈
𝑘
, 𝑂)) = {𝑧 ∈ 𝑍𝑘+1 : 𝑝(𝜓𝑘)(𝑧) = 0}

is called the first prolongation of the orbit ℎ
𝑘
(𝑈
𝑘
, 𝑂).

Lemma 1. The following relationship holds for every 𝑘 > 𝑘2:

𝑝(ℎ
𝑘
(𝑈
𝑘
, 𝑂)) ⊇ ℎ

𝑘+1
( 𝑈
𝑘+1

, 𝑂). (5)

Proof. Prolongation of any system of differential equations admits every symmetry of the initial
system [2], i.e. the prolonged system 𝑝(𝜓𝑘(𝑧)) = 0 admits the group 𝐺𝑟, and the mapping 𝑢 is
its solution. Therefore the orbit of the solution 𝑢 in the space 𝑍𝑘+1 belongs to the prolongation
of the orbit 𝑢 from the space 𝑍𝑘.

Lemma 2. The following relationship holds for every 𝑘 > 𝑘2:

𝜌𝑘+1
𝑘 (𝑝(ℎ

𝑘
(𝑈
𝑘
, 𝑂))) = ℎ

𝑘
(𝑈
𝑘
, 𝑂).
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Proof. On the one hand, the obvious embedding holds

𝜌𝑘+1
𝑘 (𝑝(ℎ

𝑘
(𝑈
𝑘
, 𝑂)) ⊆ ℎ

𝑘
(𝑈
𝑘
, 𝑂).

On the other hand, applying the projection 𝜌𝑘+1
𝑘 to both sides of the relationship (5) invokingo

the equality (3) provides the reverse embedding.
Restriction of the Pfaff system

𝑑𝑦𝛼 −
𝑛∑︁

𝑗=1

𝑦𝛼+𝛾𝑗𝑑𝑥𝑗 = 0, 0 6 |𝛼| < 𝑘

on the variety ℎ
𝑘
(𝑈
𝑘
, 𝑂)) provides the Pfaff system with the given independent variables 𝑥.

This system is equivalent to the system of differential equations (4). The opposite also holds:
every Pfaff system with given independent variables corresponds to an equivalent system of
differential equations. The equivalence in this case is understood as the fact that there is a
reciprocal implicit relationship between integral diversities of the system of exterior equations
and solutions of the system of differential equations. In terms of this equivalence a system of
differential equations is called here completely integrable, if the Pfaff system equivalent to it is
also completely integrable. Further forms of the Pfaff system equivalent to the system (4) are
denoted by 𝜔(𝜓𝑘).

Lemma 3. There exists 𝑘3 > 𝑘2 such that for every 𝑘 > 𝑘3 the system (4) is completely
integrable.

Proof. Due to the first of the inequalities (2) there is such 𝑘3 that

𝑑𝑘3−1 = 𝑑𝑘3 < 𝜈𝑘3−1.

It follows that

rank
𝜕𝜓𝑘3

𝜕 𝑦
𝑘3

= 𝜈𝑘3 − 𝜈𝑘3−1 = dim𝑌𝑘3 ,

i.e. the system of differential equations 𝜓𝑘3 = 0 can be solved with respect to all higher deriva-
tives. Therefore the system 𝑝(𝜓𝑘3) = 0 is also solvable with respect to all higher derivatives
and, consequently,

dim 𝑝(ℎ
𝑘3

(𝑈
𝑘3
, 𝑂)) = dim ℎ

𝑘3
(𝑈
𝑘3
, 𝑂) = 𝑑𝑘3 . (6)

Therefore, due to Lemma 1, 𝑑𝑘 = 𝑑𝑘3 for all 𝑘 > 𝑘3.
It follows from Lemma 2 that for 𝑘 > 𝑘3 the ideal generated by the system 𝜔(𝜓𝑘) = 0 is

closed with respect to the operation of the exterior differentiation. Hence, the statement of the
Lemma results from the Frobenius theorem [3].

Lemma 4. The system (4) is automorphic for every 𝑘 > 𝑘3.

Proof. The system of exterior equations 𝜔(𝜓𝑘) with 𝑘 > 𝑘3 is completely integrable, i.e. the
unique integral manifold [3] passes through every point of the orbit ℎ

𝑘
(𝑈
𝑘
, 𝑂). On the other

hand, for any point 𝑧′ ∈ ℎ
𝑘
(𝑈
𝑘
, 𝑂) there exist a transformation 𝑔 ∈ 𝐺𝑟 and a point 𝑧 ∈ 𝑈

𝑘
such

that the transformation 𝑔 maps the point 𝑧 into the point 𝑧′. Therefore, this unique integral
manifold coincides with the image of the manifold 𝑈

𝑘
under the action of the transformation 𝑔.

Remark 1. It results from the equation (6), in particular, that the system 𝜓𝑘+1(𝑧) = 0 for
every 𝑘 > 𝑘3 is the first prolongation of the system 𝜓𝑘(𝑧) = 0. Consequently, all the systems
𝜓𝑘(𝑧) = 0 are expansions of the system 𝜓𝑘3(𝑧) = 0 when 𝑘 > 𝑘3. The system 𝜓𝑘3(𝑧) = 0, as
Example 1 (variant 7) shows, is not always the prolongation of the system 𝜓𝑘3−1(𝑧) = 0.
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Remark 2. Lemmas 1 and 2 also hold for the infinite dimensional Lie groups, if there exists
the finite 𝑘2. If the mapping 𝑢 is the solution of the system of differential equations, admitting
a group, then the finite 𝑘2 exists and does not exceed the order of the system.

It results from the proof of Lemma 3 that if 𝑑𝑘−1 = 𝑑𝑘 for some 𝑘, then in the case of the
infinite dimensional Lie group the system (4) is also completely integrable and automorphic for
this and higher values ó of 𝑘.

2. Construction of automorphic systems

To construct automorphic systems one uses, according to [1, S25], the theorem on represen-
tation of a non-singular invariant manifold. Due to this Theorem one can choose the invariant
of the group 𝐺𝑟 of the corresponding dimension as 𝜓𝑘3 . This invariant is expressed via the
universal invariant of the group 𝐽

𝑘3
of the order 𝑘3, i.e.

𝜓𝑘3(𝑧) = Ψ(𝐽
𝑘3

(𝑧)) = 0. (7)

The requirement of complete integrability of this system imposes conditions on the mapping
Ψ. These conditions give a system of differential equations on the mapping Ψ, which is called
the ¡¡resolvent system¿¿ [1, S25].

The algorithm of construction of all the automorphic systems of the given group consists
in investigating all possible dimensions of orbits, determined by the inequalities (2). One and
the same dimension of the orbit, at least from the point of view of the inequalities (2), can be
obtained for different values 𝑘3. The number of these different values is finite. Therefore, up to
the operation of prolongation, there is a finite number of different automorphic systems. But
not all the variants admitted by the inequalities (2) are realized.

It is stated in the monograph [1, S25, s. 4] that for given 𝑛, 𝑚 and 𝑟 the type of the
automorphic system is completely determined by one parameter: rank, defect or dimension of
the orbit (these three values quantities are uniquely expressed via each other). As shown in
Example 1 (variants 6 and 7), apart from defect the value 𝑘3, i.e. the order of the automorphic
system, is also important.

The system (7) is written, as a rule, in the solved form with respect to the part of invariants.
The equation (3) allows to write the system (7) in the form

𝐽 ′′ = 𝜙(𝐽 ′), (8)

𝐽 ′′′ = 𝜓(𝐽 ′), (9)

where the order of the invariants 𝐽 ′ and 𝐽 ′′ is lower than 𝑘3, and all the invariants of the order
𝑘3 are denoted via 𝐽 ′′′. Dividing the invariants into 𝐽 ′ and 𝐽 ′′ is not always unique and ¡¡the
branching¿¿ of the process is possible. ¡¡The branching¿¿ is also possible for further calculations.

Apart from the inequalities (2) there is one more restriction on the dimension of the orbit,
which is connected with consideration of orbits of ¡¡graphs¿¿ of the mappings 𝑢 : 𝑋 → 𝑌 .
Therefore the equations of orbits should not impose restrictions on variables of the space 𝑋,
i.e. the following inequality should hold

𝜈𝑘 − rank
(︁
𝜕𝑣𝐽

𝑘

)︁
6 𝑑𝑘, where 𝑣 = (𝑦, 𝑦

1
, . . . , 𝑦

𝑘
), 𝑘 = 𝑘3 − 1. (10)

The set of invariants 𝐽 ′′ should be chosen so that 𝜕𝑣𝐽
′′ > 𝜈𝑘3−1 − 𝑑𝑘3−1.

If 𝑢 is not an arbitrary mapping but a solution of a system of differential equations 𝐸
admitting a group 𝐺𝑟, the following condition is imposed on the functions 𝜙 and 𝜓 from (8),
(9): the system 𝐸 should be a differential-algebraic corollary of the equations (8), (9). If the
order of the system 𝐸 does not exceed 𝑘3, then it is expedient to include the system 𝐸, written
via invariants of the group, into the system (8), (9).
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3. Invariant and partially invariant solutions

Invariant and partially invariant solutions [1, S19, S22] are solutions of corresponding auto-
morphic systems. For invariant solutions 𝑘3 = 1.

Invariant solutions exist when the inequality (10) holds. Moreover the equations (8) are
solvable with respect to the variables 𝑦, and the equations (9), due to Lemmas 2 and 3, simply
provide expressions for the functions 𝜓. Therefore there is no need to calculate invariants of the
first order and the resolvent system is obtained after substitution of expressions of the variables
𝑦 into the initial system of differential equations. That is the technology of construction of
invariant solutions with the use of the notion of automorphic systems does not differ from that
described in [1, S19].

To construct partially invariant solution with the use of automorphic systems one needs
differential invariants of the first or, possibly, a higher order. This complicates the algorithm as
compared to the one described in [1, S22]. But there is no need to use the notion of ¡¡redundant¿¿
functions.

4. On ¡¡simple¿¿ solutions

When 𝑟 > 𝑛, the minimal possible dimension of the orbit is equal to 𝑟. In case of this
minimal dimension 𝑠𝑘3 = 𝜈𝑘3 − 𝑟, i.e. it coincides with the dimension of the space of invariants
. Therefore the set of invariants 𝐽 ′ from (8), (9) is empty, and the functions 𝜙, 𝜓 are constants.
The resolvent system in this case is the system of algebraic equations for these constants. For
the case 𝑟 = 𝑛 such automorphic systems provide invariant solutions, which are called in the
paper [4] ¡¡simple¿¿. By analogy, solutions of such automorphic systems can be also called
¡¡simple¿¿ even when 𝑟 > 𝑛. We use this term up to the end of this section.

If𝐻 is a subgroup of the group𝐺𝑟, then every ¡¡simple¿¿ solution with respect to the subgroup
𝐻 is a ¡¡simple¿¿ solution with respect to the group 𝐺𝑟. Indeed, every differential invariant
of the group 𝐺𝑟 is a differential invariant of the subgroup 𝐻, and the subgroup 𝐻 also has
other invariants. Therefore the system (8), (9) for the subgroup 𝐻 is an expansion of a similar
system for the group 𝐺𝑟.

5. Example 1

Equations of one-dimensional dynamics of polytropic gas

𝑢𝑡 + 𝑢𝑢𝑥 + 𝜌−1𝑝𝑥 = 0, 𝜌𝑡 + 𝑢𝜌𝑥 + 𝜌𝑢𝑥 = 0, 𝑝𝑡 + 𝑢𝑝𝑥 + 𝛾𝑝𝑢𝑥 = 0, (11)

admit the group with the Lie algebra

𝜕𝑡, 𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢, 𝑡𝜕𝑡 + 𝑥𝜕𝑥, 𝑡𝜕𝑡 − 𝑢𝜕𝑢 + 2𝜌𝜕𝜌, 𝑝𝜕𝑝 + 𝜌𝜕𝜌.

Differential invariants of the first order can be chosen in the form

𝐽1 =
𝜌(𝑢𝑡 + 𝑢𝑢𝑥)

𝑝𝑥
, 𝐽2 =

𝜌𝑡 + 𝑢𝜌𝑥
𝜌𝑢𝑥

, 𝐽3 =
𝑝𝑡 + 𝑢𝑝𝑥
𝑝𝑢𝑥

,

𝐽4 =
𝑝𝑥

𝑢𝑥
√
𝜌𝑝
, 𝐽5 =

𝜌𝑥
√
𝑝

𝑢𝑥
√︀
𝜌3
.

The given set of invariants forms a basis, i.e. any invariant can be obtained from this set by
means of algebraic operations and actions of the operators of the invariant differentiation

Λ1 =
1

𝑢𝑥
𝐷𝑡 +

𝑢

𝑢𝑥
𝐷𝑥, Λ2 =

𝑢𝑡 + 𝑢𝑢𝑥
𝑢2𝑥

𝐷𝑥.

Below we use the following set of differential invariants of the second order:
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𝐽21 =
𝑝𝑡𝑡 + 2𝑢𝑝𝑡𝑥 + 𝑢2𝑝𝑥𝑥

𝑝𝑢2𝑥
, 𝐽22 =

(𝑝𝑡𝑥 + 𝑢𝑝𝑥𝑥)𝑝𝑥
𝜌𝑝𝑢3𝑥

, 𝐽23 =
𝑝𝑥𝑥𝑝

2
𝑥

𝜌2𝑝𝑢4𝑥
,

𝐽24 =
(𝜌𝑡𝑡 + 2𝑢𝜌𝑡𝑥 + 𝑢2𝜌𝑥𝑥)𝑝2𝑥

𝜌2𝑝𝑢4𝑥
, 𝐽25 =

(𝜌𝑡𝑥 + 𝑢𝜌𝑥𝑥)𝑝3𝑥
𝜌3𝑝𝑢5𝑥

, 𝐽26 =
𝜌𝑥𝑥𝑝

4
𝑥

𝜌4𝑝𝑢6𝑥
,

𝐽27 =
(𝑢𝑡𝑡 + 2𝑢𝑢𝑡𝑥 + 𝑢2𝑢𝑥𝑥)𝜌

𝑝𝑥𝑢𝑥
, 𝐽28 =

𝑢𝑡𝑥 + 𝑢𝑢𝑥𝑥
𝑢2𝑥

, 𝐽29 =
𝑢𝑥𝑥𝑝𝑥
𝜌𝑢3𝑥

.

The system (11) is written in the space of invariants in the form

𝐽1 = −1, 𝐽2 = −1, 𝐽3 = −𝛾. (12)

The inequalities (2) admit the following variants of automorphic systems for the equations
(11):

𝑑1 𝑑2 𝑑3 𝑑4 𝑘3 𝛿
1 6 6 6 6 2 4
2 6 7 7 7 3 5
3 6 7 8 8 4 6
4 6 8 8 8 3 6

𝑑1 𝑑2 𝑑3 𝑑4 𝑘3 𝛿
5 7 7 7 7 2 5
6 7 8 8 8 3 6
7 8 8 8 8 2 6

Here 𝛿 = 𝑑𝑘3 − 𝑛 is the defect of invariance. Further we construct the system (8), (9) for every
variant from the table and investigate the resolvent system for some of them.

The dimension 𝑑1 = 6, i.e. 𝑠1 = 𝜈1 − 𝑑1 = 5 for variants 1-4 coincides with the number of
the invariants of the first order. Therefore all invariants of the first order should be equal to
constants, i.e. the equations (12) should be supplemented by the equations

𝐽4 = 𝑐4, 𝐽5 = 𝑐5, (13)

where 𝑐4, 𝑐5 are some constants.
Since the complete set of invariants of a higher order can be obtained by the action of

operators of invariant differentiation on the invariants of the first order, the invariants of a
higher order should be equal to zero. Therefore, the arbitrary way in construction of the
system (8), (9) for variants 1-4 does not exceed two constants.

The system (12), (13) is compatible if 𝑐5 = (𝑐24 − 𝛾 + 1)/𝑐4, and the first prolongation of
these equations is completely integrable under the condition 𝑐24 ̸= 𝛾. Under these conditions
and when 𝛾 ̸= 1 the solution of the system (12), (13) has the form

𝑢 = 𝑎𝑥+ 𝑢1(𝑡), 𝜌 = 𝜌1𝑝
𝛼, 𝑝 = (𝑝1(𝑡) + 0.5(1 − 𝛼)𝑐4𝑎

√
𝜌1𝑥)2/(1−𝛼),

where

𝛼 = (𝑐24 − 𝛾 + 1)/𝑐24, 𝑎 = 1/(𝑐6 + 0.5(1 + 𝛾)𝑡), 𝜌1 = 𝑐7(𝑐6 + 0.5(1 + 𝛾)𝑡)2/(1+𝛾),

𝑐6, 𝑐7 are constants, and the functions 𝑢1(𝑡) and 𝑝1(𝑡) satisfy the linear system of ordinary
differential equations

𝑑𝑢1
𝑑𝑡

= −𝑎
(︂
𝑢1 +

𝑐4√
𝜌1
𝑝1

)︂
,

𝑑𝑝1
𝑑𝑡

= −𝛾 − 1

2𝑐24
𝑎(𝑐4

√
𝜌1𝑢1 + 𝛾𝑝1).

If 𝑐24 = 𝛾, the system (12), (13) is involutive, and none of its prolongations is completely
integrable. Hence, in particular, there are no automorphic systems of variants 2, 3, 4 for the
system (11).

For variant 5 the equations (8), (9) consist of the equations (12) and one of the following
systems of equations

𝐽4 = 𝜙(𝐽5), 𝐽2𝑖 = 𝜓𝑖(𝐽5), 𝑖 = 1, . . . , 9,

𝐽5 = 𝑐5, 𝐽2𝑖 = 𝜓𝑖(𝐽4), 𝑖 = 1, . . . , 9.
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For variant 6 the equations (8), (9) consist of the equations (12) and one of the following
system of equations

𝐽4 = 𝜙0(𝐽5), 𝐽2𝑖 = 𝜙𝑖(𝐽5, 𝐽26), 𝑖 ∈ {1, . . . , 9}, 𝑖 ̸= 6, Λ2𝐽26 = 𝜓(𝐽5, 𝐽26),

𝐽5 = 𝑐5, 𝐽2𝑖 = 𝜙𝑖(𝐽4, 𝐽23), 𝑖 ∈ {1, . . . , 9}, 𝑖 ̸= 3, Λ2𝐽23 = 𝜓(𝐽4, 𝐽23). (14)

The condition of complete integrability of the system (12), (14) gives the following equations
for determining the functions 𝜙𝑖:

𝜙21 = (𝛾2𝐽2
4 + 𝛾𝐽23 + 𝛾𝐽2

4 + 𝐽4
4 )/𝐽2

4 , 𝜙22 = −𝐽2
4 (𝛾 + 1), 𝜙24 = 𝐽23 + 2𝐽2

4 ,

𝜙25 = 𝜙26 = 𝜙29 = 0, 𝜙27 = 𝛾 + 1, 𝜙28 = −(𝐽23 + 𝐽2
4 )/𝐽2

4 ,

𝑐5 = 0 and 𝜓 = 𝜃(𝐽23/𝐽
4
4 )𝐽6

4 , where 𝜃 is an arbitrary function of one argument.
For variant 7 the equations (8) coincide with the equations (12), and the equations (9) are

written in the form
𝐽2𝑖 = 𝜓𝑖(𝐽4, 𝐽5), 𝑖 = 1, . . . , 9. (15)

Six of the functions 𝜓𝑖 are determined from the condition of complete integrability of the system
(12), (15) by the equations

𝜓1 = (𝛾2𝐽2
4 − 𝛾𝐽3

4𝐽5 + 𝛾𝐽2
4 + 𝛾𝜓3 + 𝐽4

4 )𝐽−2
4 ,

𝜓2 = −(𝛾𝐽2
4 + 𝛾𝜓9 + 𝐽2

4 ),

𝜓4 = 2𝐽2
4 + 𝜓3,

𝜓5 = −𝐽2
4 (2𝐽4𝐽5 + 𝜓9),

𝜓7 = (𝛾𝐽2
4 + 𝛾𝜓9 + 𝐽2

4 )𝐽−2
4 ,

𝜓8 = (𝐽3
4𝐽5 − 𝐽2

4 − 𝜓3)𝐽
−2
4 ,

and the rest of them satisfy the system of quasi-linear equations

𝐽3
4𝐴𝜓9 +𝐵𝜓3 + 2𝐽4(𝛾𝐽

4
4𝜓9 + 𝛾𝐽2

4𝜓
2
9 + 2𝐽6

4𝐽
2
5 + 3𝐽5

4𝐽5𝜓9 +

+𝐽4
4𝜓3 + 𝐽2

4𝜓9𝜓3 − 𝐽2
4𝜓6 − 2𝜓2

3) = 0,

𝛾𝐵𝜓9 + 𝐽4𝐴𝜓3 + 2𝐽4(2𝛾𝐽
4
4𝜓9 + 𝛾𝐽3

4𝐽5𝜓9 + 3𝛾𝐽2
4𝜓

2
9 + 2𝛾𝐽2

4𝜓3 +

+𝛾𝜓9𝜓3 + 𝐽4
4𝜓9 + 4𝐽3

4𝐽5𝜓3 − 2𝐽2
4𝜓3 − 4𝜓2

3) = 0,

𝐽4𝐵𝜓9 + 𝐴𝜓6 + 2(3𝛾𝐽2
4𝜓6 + 4𝛾𝜓9𝜓6 + 4𝐽5

4𝐽5𝜓9 + 3𝐽4
4𝜓

2
9 +

+6𝐽3
4𝐽5𝜓6 − 𝐽2

4𝜓9𝜓3 − 3𝐽2
4𝜓6 − 6𝜓6𝜓3) = 0,

where

𝐴 = 𝐽4𝛼1
𝜕

𝜕𝐽4
+ 𝛼2

𝜕

𝜕𝐽5
, 𝐵 = 𝐽2

4𝛼3
𝜕

𝜕𝐽4
+ 𝛼4

𝜕

𝜕𝐽5
,

𝛼1 = −𝛾𝐽2
4 − 2𝛾𝜓9 − 2𝐽3

4𝐽5 + 𝐽2
4 + 2𝜓3,

𝛼2 = −𝛾𝐽2
4𝐽5 − 2𝐽3

4𝐽
2
5 + 𝐽2

4𝐽5 − 2𝐽4𝜓9 + 2𝐽5𝜓3,

𝛼3 = −𝐽4
4 − 𝐽3

4𝐽5 − 2𝐽2
4𝜓9 + 2𝜓3,

𝛼4 = 𝐽5
4𝐽5 − 3𝐽4

4𝐽
2
5 − 2𝐽3

4𝐽5𝜓9 + 2𝜓6.

6. Example 2

The example of the present section demonstrates that the automorphic system of the infinite
dimensional Lie group is not necessarily completely integrable.

Group foliation for the Karman-Guderley equation

− 𝜙𝑥𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧 = 0 (16)

was constructed in the paper [5] with respect to the finite dimensional group with the infinitesi-
mal operator
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𝑓(𝑦, 𝑧)𝜕𝜙, where 𝑓(𝑦, 𝑧) is an arbitrary harmonic function. This operator determines the trans-
formation 𝜙→ 𝜙+ 𝑓(𝑦, 𝑧).

Group foliation of the equation (16) is given, as shown in the paper [5], by the automorphic
system

𝜙𝑥 = 𝑎, 𝜙𝑦𝑦 + 𝜙𝑧𝑧 = 𝑎𝑎𝑥 (17)

and the resolvent equation
−𝑎𝑎𝑥𝑥 − 𝑎2𝑥 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧 = 0.

The difference of any two solutions of the system (17) is a harmonic function of variables 𝑦, 𝑧
and does not depend on the variable 𝑥. Therefore the system (17) is in fact automorphic. The
system (17), where 𝑎 satisfies the resolvent equation, is involutive but not completely integrable.

Conclusion

If the system of differential equations 𝐸 admits the finite dimensional Lie group 𝐺𝑟, then
any solution of the system 𝐸 is the solution of some automorphic system of the group 𝐺𝑟. An
automorphic system is relatively simply integrable, but the resolvent system can be significantly
more complex than the initial system 𝐸. Example 1 (variant 7) demonstrates it. An exception
is provided by automorphic systems of a minimal defect. In this case the resolvent system is a
system of algebraic equations for the totality of constants.

The fact that an automorphic system should be completely integrable allows to write repre-
sentation of the system of a given type (or several representations like in variants 5 and 6 of
Example 1) immediately. There is no need to write all the equations of the system (9) for defi-
nite calculations. To carry out length calculations we used the system of analytical calculations
¡¡Reduce 3.8¿¿ (http://reduce-algebra.sourceforge.net).
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