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THE PROBLEM OF DEFLECTION SHAPES OF A SIMPLY

SUPPORTED PLATE UNDER A LONGITUDINAL STRAIN

G.G. SHARAFUTDINOVA

Abstract. In this paper the approximate study of the problem of the bifurcation be-
haviour of an elastic plate with the change of the longitudinal compressive strain is carried
out. A new scheme which allows to determine the critical values of the strain at which
the plate takes a stable curvilinear equilibrium is constructed. The scheme also leads to
an asymptotic formula which describes the nonlinear deflections of the plate when passing
through the critical strain.

Keywords: Deflection of the plate, approximate study, critical strain, bifurcation points,
asymptotic formulas, state of balance.

1. Formulation of the problem

Let Ω = {(𝑥, 𝑦) : 0 6 𝑥 6 𝑎, 0 6 𝑦 6 𝑏} be a rectangular closed domain on the plane R2. We
consider the problem of deflections of a rectangular plate 𝑃 with the length 𝑎 and the width
𝑏. According to the theory of flexible plates [1] differential equations, combining the function
𝑣 of tensions (the Airy function) in the middle surface and the function of the deflection 𝑤 for
a freely supported by the contour plate, have the form

𝐿1 ≡ 𝑑 · ∆2𝑤 − ℎ · 𝐿(𝑤, 𝑣) = 0 , (1)

𝐿2 ≡ ∆2𝑣 +
1

2
𝐸 · 𝐿(𝑤,𝑤) = 0 , (2)

where ∆ is the Laplace operator, nonlinear operators 𝐿(𝑤, 𝑣) and 𝐿(𝑤,𝑤) are determined by
the equality

𝐿(𝑤, 𝑣) =
𝜕2𝑤

𝜕𝑥2

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑦2
𝜕2𝑣

𝜕𝑥2
− 2

𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝑣

𝜕𝑥𝜕𝑦
, (3)

𝑑, ℎ, 𝐸 are known positive constants (𝑑 is stiffness for the bend, ℎ is thickness of the plate, 𝐸
is module of elasticity).

Boundary conditions relating to deformation in the middle surface have the following form:

when 𝑥 = 0, 𝑎 𝜎𝑥 =
𝜕2𝑣

𝜕𝑦2
= 0, 𝜏𝑥𝑦 =

𝜕2𝑣

𝜕𝑥𝜕𝑦
= 0,

𝑤 = 0, 𝑤𝑥𝑥 = 0;

when 𝑦 = 0, 𝑏 𝜎𝑦 =
𝜕2𝑣

𝜕𝑥2
= −𝑁𝑦, 𝜏𝑥𝑦 = − 𝜕2𝑣

𝜕𝑥𝜕𝑦
= 0,

𝑤 = 0, 𝑤𝑦𝑦 = 0.

(4)

where 𝑁𝑦 is a longitudinal compressive strain, applied to the edges of the plate along the axis
𝑂𝑌 , the minus sign specifies that the strain 𝑁𝑦 is compressing.

In the paper we consider a problem of bifurcation behaviour of the plate under variation
of the parameter 𝑁𝑦. We suggest a new scheme which allows one to determine critical values
of this parameter and obtain approximate formulae for the deflection function. The scheme
suggested is based on methods of general theory of bifurcations described in [2].
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2. Definition of critical strains

The problem (1)-(4) is more convenient to be transformed into a different form. Assume

that 𝑐(𝑥, 𝑦) =
𝑥2

2
. It is obvious that the function 𝑐(𝑥, 𝑦) is the solution of the boundary-value

problem:
∆2𝑐 = 0 , 0 < 𝑥 < 𝑎 , 0 < 𝑦 < 𝑏,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕2𝑐

𝜕𝑦2
= 0 ,

𝜕2𝑐

𝜕𝑥𝜕𝑦
= 0 when 𝑥 = 0, 𝑎;

𝜕2𝑐

𝜕𝑥2
= 1 ,

𝜕2𝑐

𝜕𝑥𝜕𝑦
= 0 when 𝑦 = 0, 𝑏.

Let us determine the function 𝐹 (𝑥, 𝑦) = 𝑣(𝑥, 𝑦) + 𝑁𝑦𝑐(𝑥, 𝑦). Then

∆2𝑣 = ∆2𝐹 ,

𝐿(𝑤, 𝑣) = 𝐿(𝑤,𝐹 −𝑁𝑦𝑐) = 𝐿(𝑤,𝐹 ) −𝑁𝑦𝐿(𝑤, 𝑐).

Consequently, the functions 𝐹 and 𝑤 are the solution of the following boundary-value problem
with homogeneous boundary conditions:̃︁𝐿1 ≡ 𝑑 · ∆2𝑤 − ℎ · 𝐿(𝑤,𝐹 ) + ℎ𝑁𝑦𝐿(𝑤, 𝑐) = 0, (5)̃︁𝐿2 ≡ ∆2𝐹 +

1

2
𝐸 · 𝐿(𝑤,𝑤) = 0; (6)

when 𝑥 = 0, 𝑎 𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
= 0 , 𝜏𝑥𝑦 =

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0 , 𝑤 = 0 , 𝑤𝑥𝑥 = 0;

when 𝑦 = 0, 𝑏 𝜎𝑦 =
𝜕2𝐹

𝜕𝑥2
= 0 , 𝜏𝑦𝑥 = − 𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0 , 𝑤 = 0 , 𝑤𝑦𝑦 = 0.

(7)

The strain 𝑁𝑦 is considered here as a real parameter.
The problem (5)-(7) was studied in many papers, in particular, its solvability was proved in

[3] (p. 352–354) and the structure of a set of solutions was investigated in (p. 361–364).
In case of any value of the parameter 𝑁𝑦 the problem (5)–(7) has a trivial solution

𝑤(𝑥, 𝑦) ≡ 0, 𝐹 (𝑥, 𝑦) ≡ 0, but the zero solution is not always unique. This corresponds to
a well known experimental fact: a plate can have several different forms of balance in case of
one and the same strain. As a rule, only one form of balance is required. Transformation into
other forms can cause a failure of the construction. In this connection it becomes necessary to
foresee such a transformation, which is reduced to finding critical values of the strains 𝑁𝑦 or
bifurcation points of the problem (5)–(7).

From the point of view of the general theory of bifurcations, presence of critical values of
the strains 𝑁𝑦 does not denote a qualitative varying of the form of balance of the plate in
case of strain transformation through such critical values. In other words, in problems of
bifurcation points there are usually necessary and sufficient conditions of bifurcation. The
necessary condition is connected with the fact that the corresponding linearised equations have
nontrivial solutions, and the sufficient condition is connected with the transversal behaviour of
the corresponding eigenvalues of the linear problem. Though the necessary condition is also
the sufficient one in problems of deflations of plates.

Alongside with (5)-(7) we also consider the linear boundary-value problem

𝑑 · ∆2𝑤 = −𝑁𝑦ℎ · 𝐿(𝑤, 𝑐), (8)

for 𝑥 = 0, 𝑎 𝑤 = 𝑤𝑥𝑥 = 0;
for 𝑦 = 0, 𝑏 𝑤 = 𝑤𝑦𝑦 = 0.

(9)

In compliance with [3] we say that 𝜆0 is a bifurcation points of the problem (5)–(7), if the
linear problem (8)–(9) has a nontrivial solution when 𝑁𝑦 = 𝜆0.
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The solution of the problem (8)-(9) can be presented in the form

𝑤(𝑥, 𝑦) =
∞∑︁
𝑘=1

∞∑︁
𝑚=1

𝐵𝑘𝑚 sin
𝜋𝑘𝑥

𝑎
sin

𝜋𝑚𝑦

𝑏
.

Then the critical strain 𝑁𝑦 is determined from the equations
ℎ𝑚2𝑁𝑦

𝜋2𝑏2𝑑
=

[︂
𝑘2

𝑎2
+

𝑚2

𝑏2

]︂2
; therefore

every pair 𝑘 and 𝑚 is put into correspondence by some bifurcation point. The lowest value of
𝑁𝑦 is achieved when 𝑘 = 1,𝑚 = 1, and

𝑁*
𝑦 =

𝜋2𝑑

ℎ
· (𝑎2 + 𝑏2)2

𝑎4𝑏2
.

The number 𝑁*
𝑦 is the lowest bifurcation point of the problem (5)-(7). A similar result was

obtained, for example, in [1].

3. Auxiliary data from theory of bifurcations
operator equations

To study problems of approximate construction of deflection functions in case of transition
of the parameter 𝑁𝑦 through the bifurcation points, we give some results from the paper [2] in
a convenient form. Let us consider the operator equation

𝑥 = 𝐴(𝜆)𝑥 + 𝑎(𝑥, 𝜆), (10)

where 𝐴(𝜆) is a linear completely continuous operator ‖𝑎(𝑥, 𝜆)‖ = 𝑜(‖𝑥‖), ‖𝑥‖ → 0 acting in
the Hilbert space 𝐻.

The number 𝜆0 is called a bifurcation point of small solutions of the equation (10), if there
is a sequence 𝜆𝑛 → 𝜆0 such that 𝜆 = 𝜆𝑛 the equation (10) has nontrivial solutions 𝑥𝑛 such that
𝑥𝑛 → 0 when 𝑛 → ∞. The bifurcation points of the equation (10) should be searched only
among those 𝜆0, for which the operator 𝐴(𝜆0) has the eigenvalue 1.

Let the following condition hold:

U1. The number 1 is a simple eigenvalue of the operator 𝐴(𝜆0).

Then there is a nontrivial vector 𝑒0 such that 𝐴(𝜆0)𝑒0 = 𝑒0. The adjoint operator 𝐴*(𝜆0) also
has a similar eigenvalue 1, correspondingly the eigenvector 𝑔0. The vectors 𝑒0 and 𝑔0 can be
chosen from the condition: ‖𝑒0‖ = 1, (𝑒0, 𝑔0) = 1. Let the following condition hold alongside
with U1

U2. (𝐴′(𝜆0)𝑒0, 𝑔0) ̸= 0, where 𝐴′(𝜆) is a derivative of the operator 𝐴(𝜆) with respect to the
parameter 𝜆.

Theorem 1. Let conditions U1 and U2 hold. Then 𝜆0 is the bifurcation point of the equation
(10).

Bifurcating solutions of the equation (10) usually make up continuous branches 𝑥 = 𝑥(𝜆),
where 𝑥(𝜆) is a continuous function and 𝑥(𝜆) ̸= 0 when 𝜆 ̸= 𝜆0 and 𝑥(𝜆) → 0 when 𝜆 → 𝜆0.
It is often convenient to search for the function 𝑥 = 𝑥(𝜆) in a parameter form 𝑥 = 𝑥(𝜀)
and 𝜆 = 𝜆(𝜀), where 𝜀 is an auxiliary small parameter. We call the functions 𝑥(𝜀) and 𝜆(𝜀)
asymptotic formulae for bifurcating solutions of the equations (10).

Theorem 2. Let the nonlinearity 𝑎(𝑥, 𝜆) have the form 𝑎(𝑥, 𝜆) = 𝑎3(𝑥, 𝜆) + 𝜙(𝑥, 𝜆), where
𝑎3(𝑘𝑥, 𝜆) = 𝑘3𝑎(𝑥, 𝜆), 𝜙(𝑥, 𝜆) = 𝑜(‖𝑥‖3). Then the asymptotic formulae take the form:{︂

𝑥(𝜀) = 𝜀𝑒0 + 𝜀3𝑒1 + 𝑜(𝜀3),
𝜆(𝜀) = 𝜆0 + 𝜀2𝜆1 + 𝑜(𝜀2),

𝑒1 = Γ0𝑎3(𝑒0, 𝜆0), 𝜆1 = −
(︀
𝑎3(𝑒0, 𝜆0), 𝑔0

)︀
(𝐴′𝑒0, 𝑔0)

.
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Here 𝐴′ = 𝐴′(𝜆0) is a linear operator Γ0 and it is inverse to the operator
𝐵ℎ = ℎ− 𝜆0(ℎ, 𝑔0)𝐴

′(𝜆0)𝑒0 − 𝐴(𝜆0)ℎ.

4. Basic statements

Let 𝑊 2
2 (Ω) be the Sobolev space, 𝑊 ∘2

2 (Ω) be a subspace of the space 𝑊 2
2 (Ω), obtained by

means of closure of the set of all infinitely differentiated functions with carriers in Ω (i.e. the
subspace of the Sobolev space 𝑊 2

2 (Ω) with elements satisfying the corresponding homogeneous
conditions).

To study the problem of asymptotic functions, describing nonlinear deflections of the problem
(5)–(7) during transition trough the critical strains, we suggest the following scheme.

Let us denote the operator corresponding to the solution of the boundary-value problem to
the functions 𝑤 via 𝐴0 : 𝑊 ∘2

2 (Ω) → 𝑊 ∘2
2 (Ω)

∆2𝐹 = −1

2
𝐸 · 𝐿(𝑤,𝑤), (11)

when 𝑥 = 0, 𝑎 𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
= 0 , 𝜏𝑥𝑦 =

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0 ;

when 𝑦 = 0, 𝑏 𝜎𝑦 =
𝜕2𝐹

𝜕𝑥2
= 0 , 𝜏𝑦𝑥 = − 𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0 .

(12)

Let us consider the functional determined on 𝑊 ∘2
2 (Ω)

𝑓(𝑤) =

𝑎∫︁
0

𝑏∫︁
0

(︂
𝑑 · (∆𝑤)2 − ℎ

2
𝐿(𝑤,𝑤)𝐴0(𝑤)

)︂
𝑑𝑥𝑑𝑦 .

This functional is continuously differentiable by Frechet on 𝑊 ∘2
2 (Ω) , and its gradient ∇𝑓 :

𝑊 ∘2
2 → 𝑊 ∘2

2 is determined (see [3]) by the equality(︁
∇𝑓(𝑤), 𝜙

)︁
= 2

𝑎∫︁
0

𝑏∫︁
0

(︁
𝑑 · ∆𝑤∆𝜙− ℎ𝐿(𝑤,𝐴0(𝑤))𝜙

)︁
𝑑𝑥𝑑𝑦 ,

where 𝜙 = 𝜙(𝑥, 𝑦) is an arbitrary function from 𝑊 ∘2
2 .

The problem of finding solutions of the system (5)-(7) is equivalent (see [3]) to the problem
of finding solutions of the equation

∇𝑓(𝑤) = −𝑁𝑦∇𝑔(𝑤) , (13)

where the functions 𝑔(𝑤) is determined by the equality

𝑔(𝑤) = ℎ

𝑎∫︁
0

𝑏∫︁
0

𝐿(𝑤, 𝑐)𝑤𝑑𝑥𝑑𝑦.

Let us denote operators determined by the equalities

(𝐵𝑤,𝜙) = 2

𝑎∫︁
0

𝑏∫︁
0

𝑑 · ∆𝑤∆𝜙𝑑𝑥𝑑𝑦 , (𝐷𝑤,𝜙) = −2ℎ

𝑎∫︁
0

𝑏∫︁
0

𝐿(𝑤, 𝑐)𝜙𝑑𝑥𝑑𝑦

via 𝐵 : 𝑊 ∘2
2 → 𝑊 ∘2

2 and 𝐷 : 𝑊 ∘2
2 → 𝑊 ∘2

2 .

Theorem 3. The equation (𝐵 − 𝜆𝐷)𝑤 = 0 when 𝜆 = 𝜆0 = 𝑁*
𝑦 has a nontrivial solution

𝑤 = 𝐶 sin
𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
, where 𝐶 is an arbitrary constant.
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The Theorem holds because the function 𝑤 = 𝐶 sin
𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
is the solution of the problem

(8)-(9).
We rewrite the equation (13) in the following form

𝑤 = 𝐴(𝜆)𝑤 + 𝑎3(𝑤) , 𝑤 ∈ 𝑊 ∘2
2 , 𝜆 ∈ R , (14)

where 𝐴(𝜆) = 𝐼 + 𝐵 − 𝜆𝐷, 𝑎3(𝑤) = −𝑏(𝑤); here 𝑏(𝑤) is a nonlinear operator determined by
the equality

(︀
𝑏(𝑤), 𝜙

)︀
= 2ℎ

𝑎∫︁
0

𝑏∫︁
0

𝐿
(︀
𝑤,𝐴0(𝑤)

)︀
𝜙𝑑𝑥𝑑𝑦 .

Theorem 4. The value 𝜆0 = 𝑁*
𝑦 =

𝜋2𝑑

ℎ
· (𝑎2 + 𝑏2)2

𝑎4𝑏2
is a bifurcation point

of the equation (14).

Proof. The critical strains of the problem (5)-(7) coincide with bifurcation points of the
operator equation (14). In its turn, the equation (14) is similar to the equation (10). Therefore
to prove Theorem 4 it is sufficient to state that all conditions of Theorem 1 hold for the operator
equation (14).

Let us verify fulfilment of condition U1.
Since the problem (8)-(9) has a unique (with precision to a factor) nontrivial solution

𝑤 = 𝐶 sin
𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
when 𝜆 = 𝜆0 = 𝑁*

𝑦 , then the operator 𝐴(𝜆)𝑤 has a simple eigenvalue

1 corresponded by the function 𝑤 when 𝜆 = 𝜆0 = 𝑁*
𝑦 . Assume that 𝑤 = 𝑒0; the constant 𝐶 can

be choosing so from the condition (𝑒0, 𝑒0) = 1, hence 𝐶 =
2
√
𝑎3𝑏3

𝜋2(𝑎2 + 𝑏2)
. Therefore, condition

U1 holds.
Let us verify condition U2. The operator 𝐴(𝜆)𝑤 is selfadjount in the space 𝑊 ∘2

2 , therefore we
can choose the function 𝑔0(𝑥, 𝑦) = 𝑒0(𝑥, 𝑦) as an eigenvector of the adjoint operator. Therefore
we have

𝐴′𝑒0 = −𝐷𝑒0 = −ℎ
𝜋2

𝑏2
𝑒0,

(𝐴′(𝜆0)𝑒0, 𝑔0) = (−𝐷𝑒0, 𝑒0) = −ℎ
𝜋2

𝑏2
̸= 0 .

Therefore, condition U2 also holds. Consequently, 𝜆0 = 𝑁*
𝑦 is a critical strain of the problem

(5)-(7) or the equation (14). The Theorem has been proved.

Theorem 5. The bifurcation solutions 𝑤𝜀 of the equation (14) and corresponding values of
the parameter 𝜆𝜀 = 𝜆(𝑤𝜀) can be presented in the form

𝑤𝜀 = 𝜀𝑒0 + 𝜀3𝑒1 + 𝑜(𝜀3) , 𝜆𝜀 = 𝜆0 + 𝜀2𝜆1 + 𝑜(𝜀2) ,

where 𝜀 > 0 is a small parameter,

𝑒1 = Γ0𝑎3(𝑒0) , 𝜆1 =

(︀
𝑎3(𝑒0), 𝑒0

)︀
𝑏2

ℎ𝜋2
.

The operator is calculated (see [2]) by the formula Γ0𝑦 = ℎ0 + ℎ0 Γ0 : 𝑊 ∘2
2 → 𝑊 ∘2

2 with any
𝑦 ∈: 𝑊 ∘2

2 , where

ℎ0 =
(𝑦, 𝑒0)𝑒0

𝜆0(𝐷𝑒0, 𝑒0)
, ℎ0 = (𝐼 − 𝐴(𝜆0))

−1

[︂
𝑦 − (𝑦, 𝑒0)𝐷𝑒0

(𝐷𝑒0, 𝑒0)

]︂
.
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Validity of this statement results from Theorem 2.
Direct calculations show that the value 𝜆1 is presented in the form of a fraction

𝜆1 =
𝜆11

𝜆12

,

in which

𝜆11 = 8192 · 𝐸𝑎𝑏3𝜋2(̃︀𝜆4 − 32𝜋4)×

×

(︃
2(1 + sin ̃︀𝜆 sinh ̃︀𝜆)

(︁
8𝜋4(𝑎2 − 𝑏2)2 + ̃︀𝜆4(𝑎4 + 𝑏4)

)︁
− (16𝜋4 + ̃︀𝜆4)(3𝑏4 + 3𝑎4 − 2𝑎2𝑏2)

)︃
,

𝜆12 = ̃︀𝜆4(𝑎2 + 𝑏2)4(16𝜋4 − ̃︀𝜆4)3

[︃(︂
𝑎2

𝑏2
+

𝑏2

𝑎2

)︂(︂
𝛼− 2̃︀𝜆

)︂2

𝛼2 + 2

(︂
1 − 𝛼̃︀𝜆

)︂2
]︃

.

The constants 𝛼 and ̃︀𝜆 are determined from the relationships

cos ̃︀𝜆 · ch̃︀𝜆 = 1 , 𝛼 =
sin ̃︀𝜆− sh̃︀𝜆
cos ̃︀𝜆− ch̃︀𝜆 .

The choice of values 𝛼 and ̃︀𝜆 is determined by the necessity to satisfy conditions of the problem
(11)-(12).

The value 𝑒1 can be also calculated, but this demands significantly longer calculations. Let
us present only a scheme of calculations for 𝑒1.

Since 𝑒1 = Γ0𝑎3(𝑒0, 𝜆0), where Γ0 is inverse to the operator 𝐵ℎ = ℎ− 𝜆0(ℎ, 𝑔0)𝐴
′(𝜆0)𝑒0 − 𝐴(𝜆0)ℎ,

then 𝐵𝑒1 = 𝑎3(𝑒0, 𝜆0). According to Theorem 5 we have 𝑒1 = ℎ = ℎ0 +ℎ0. As a result we arrive
to the equation

𝑎3(𝑒0, 𝜆0) = ℎ0 + ℎ0 − 𝜆0(ℎ0 + ℎ0, 𝑒0)𝐴
′(𝜆0)𝑒0 − 𝐴(𝜆0)(ℎ0 + ℎ0),

which, in its turn, is simplified if we take into account that

(ℎ0, 𝑒0) = 0, 𝐴ℎ0 = ℎ0, 𝐴′(𝜆0)𝑒0 = −𝐷𝑒0, 𝜆0 = 𝑁*
𝑦 , ℎ0 =

(𝑎3, 𝑒0)𝑏
2𝑒0

𝑁*
𝑦ℎ𝜋

2
.

It remains only to calculate the function ℎ0, solving the equation

𝑎3(𝑒0, 𝜆0) = ℎ0 + (𝑎3, 𝑒0)𝑒0 − 𝐴ℎ0

by means of the method of indefinite coefficients.
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