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GENERALIZED WEBSTER EQUATION: EXACT

AND APPROXIMATE RENORMGROUP SYMMETRIES,

INVARIANT SOLUTIONS AND CONSERVATION LAWS.

V.F. KOVALEV, R.V. KULIKOV

Abstract. The exact point symmetry group for the generalized Webster type equation,
which describes nonlinear acoustic waves in lossy channels with variable cross-sections, is
found. It is shown that, for certain types of cross-section profiles 𝑆, the admitted three-
dimensional point symmetry group is extended and group classification problem for different
types of 𝑆 is solved. Optimal systems of one-dimensional subalgebras of the admitted
Lie algebra are revealed and the invariant solutions corresponding to these subalgebras
are obtained. Approximate renormgroup symmetries and the corresponding approximate
analytic solutions, as well as conservation laws to the generalized Webster equation are
derived for channels with constant and smoothly varying or constant cross-sections and
arbitrary initial conditions.

Keywords: Webster equation, exact and approximate renormgroup symmetries, invariant
solutions, conservation laws.

Introduction

The generalized Webster equation
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occurs in problems of propagation of the intensive sound [1, 2] in pipes, horns, concentrators and other
wavequiding systems with varying cross-section 𝑆(𝑥). Here 𝑡 is the time, 𝑥 is the space coordinate
calculated along the axis of the system, 𝑝 is the sound pressure, 𝑐 is the sound velocity, 𝜌 is the medium
density. The equation (1) is applicable for pipes, which characteristic width is small as compared with
the wave length. Besides, the cross-section is supposed to be smoothly varying along 𝑥: the area 𝑆(𝑥)
should vary a little with the increase of 𝑥 upon the value of the order of the width of the pipe [3]. The
generalized Webster equation (1) differs from the linear Webster equation [4, 5] by the presence of two
supplementary terms describing non-linear and dissipative effects: 𝜀, 𝑏 are parameters of non-linearity
and dissipation (the notations are similar to the ones in the book [6]).

Assuming every term in the right-hand side of the equation to be small as compared to its left-hand
side, let us consider a running wave. Then, applying the method of smoothly varying profile [6] and
following the standard procedure [7] we obtain the evolutionary equation
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where 𝜏 = 𝑡− 𝑥/𝑐 is the “slow” time in the coordinate system moving with the sound. Proceeding in
this equation from physical variables to the normalized ones,

𝑥 → 𝑐

𝜔
𝑥 , 𝜏 → 𝜏

𝜔
, 𝑝 → 𝑝0𝑝 ,

we rewrite the generalized Webster equation (2) in the form

𝜕𝑝

𝜕𝑥
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2

d ln𝑆(𝑥)

d𝑥
= 0 , 𝑝(0, 𝜏) = 𝑃 (𝜏) . (3)

Normalized constants 𝜔, 𝑝0 here have the meaning of characteristic values of frequency and amplitude
of the signal, respectively. Two parameters in the equation (3) are given by the following dimensionless
combinations of constants:

𝑎 =
𝜀𝑝0
𝑐2𝜌

, 𝜈 =
𝑏𝜔

2𝑐2𝜌
.

Their ratio 𝑎/𝜈 is called the acoustic Reynolds number [6]. It characterises relative contribution
of non-linear and dissipative effects into the distortion of the wave profile. With high values of 𝑎/𝜈
nonlinearity predominates, while low values of dissipation dominates here. Without loosing generality
in the equation (3) it is possible to assume that 𝑆(0) = 1.

We can remove the last term in (3) if we replace the variable 𝑥 by the absorption depending on the
coordinate along the channel and given by the function 𝜇:

𝑧 =

∫︁
1√︀
𝑆(𝑥)

d𝑥 , 𝑝
√
𝑆 = 𝑢 , 𝜇 = 𝜈

√︀
𝑆(𝑥(𝑧)) . (4)

Then the equation (3) in the new variables takes the form
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Introducing the new variable 𝑞 connected with 𝑢 by 𝑢 = 2(𝜕𝑞/𝜕𝜏), we write the modified generalized
Webster equation

𝐹 ≡ 𝜕𝑞

𝜕𝑧
− 𝑎
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𝜕𝜏

)︂2

− 𝜇
𝜕2𝑞

𝜕𝜏2
= 0 , 𝑞(0, 𝜏) = 𝑄(𝜏) (6)

instead of (3). The generalized Webster equation in the forms (5) and (6) is used not only as a model of
wave propagation in the pipes [8], but also for the calculation of acoustic field in inhomogeneous media
in the geometric acoustics approximation [1, 9] functioning therewith as transfer equation, written in
ray coordinates. The axis of the ray pipe is a geometric ray calculated from the eikonal equation,
and the function 𝑆(𝑥) is a cross-section of the ray pipe. Application of the equations (5) and (6)
containing, unlike linear Webster equations, supplementary contributions responsible for non-linear
effects and absorption, opens up possibilities for investigating problems of propagation of sound waves
of a finite amplitude in absorbing media, in particular, for acoustic sounding of media, through which
sound waves propagate [10].

One of the most effective instruments of constructing solutions of the generalized Webster equation
is application of methods of modern group analysis. In the present paper we apply this approach to the
symmetries of the Webster equations. Such a problem has already been analysed for the generalized
Burgers’ equation (5), known also as the Burgers’ equation with variable viscosity. E.g. in [11] exact
symmetries were found, the cases of extension of the admitted group with different values of 𝑆(𝑥)
were pointed out and finite transformations of the group were constructed. A form of representation
of an invariant solution for the operators, extending the admitted group of symmetries, the type of
reduction of the generalized Burgers’ equation to an ordinary differential equation were found there.
Finite transformations between the generalized Burgers’ equation (5) with different types of 𝑆(𝑥) were
discussed in the papers [12, 13]. Discussion of more complex variants (5), extending this equation to
the case of 𝑆 depending on a greater number of variables or to the case of two-dimensional geometry,
can be found, for example, in [14, 15]. In the present paper we concentrate on the Webster equation
(6) which is not obtained from (5) by a point transformation.

The paper is divided into five sections. In the second section we find a group of point transformations
for a modified generalized Webster equation and show, that for the profiles of the cross-section of a
special type this group of symmetries extends. We solve the problem of group classification of the
equation (6) with respect to the function 𝑆(𝑥) and construct optimal systems of one-dimensional
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subalgebras. We also find invariant solutions for certain subalgebras. The third section of the paper
is dedicated to construction of approximate symmetries and approximate analytical solutions of the
generalized Webster equation for arbitrarily varying cross-sections and arbitrary initial condition. The
small parameter in these constructions is slowness of varying of the profile of the wave conducting
cross-section 𝑆(𝑥). The fourth section of the paper is dedicated to construction of conservation laws
for the Webster equation. In the fifth section we shortly formulate general results of the paper.

1. Symmetry group and invariant solutions of the generalized Webster equation

1.1. Lie group transformations of the generalized Webster equation. The infinitesimal
operator of the group of Lie point transformations of the generalized Webster equation (6) has the
form

𝑋 = 𝜉1(𝑧, 𝜏, 𝑞)
𝜕

𝜕𝑧
+ 𝜉2(𝑧, 𝜏, 𝑞)

𝜕

𝜕𝜏
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𝜕

𝜕𝑞
. (7)

To find coefficients of the infinitesimal operator (7) we apply the standard method [16, 17]. The
operator action (7) extends on the derivatives by the formula
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and we write the invariance condition of the equation (6), considered as a differential manifold, under
the action of the operator (8):
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= 0 . (9)

The coefficients 𝜁1, 𝜁2 and 𝜁22 in the operator (8) and in the determining equation (9) are obtained
by the prolongation formulae
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by using the operators of total differentiation
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Substitution of (10) into the determining equation (9) provides the overdetermined system of linear
equations for the coefficients 𝜉1, 𝜉2 and 𝜂, which solution has the form:

𝜉1 = 𝑏(𝑧) , 𝑏(𝑧) = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑧
2 , 𝜉2 = 𝑐0 + 𝑐1𝑧 +
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+

∫︁
𝜇d𝑧
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.

(12)

In the equations (12) the functions 𝑏(𝑧) and 𝜇(𝑧) and the constant 𝑀 = const are connected by the
relationship

𝑀

(︂
d

d𝑧
ln(𝜇(𝑧))

)︂−1

= 𝑏(𝑧) , 𝑀 = const ̸= 0 . (13)

The function 𝑘(𝑧, 𝜏) differs from zero only in case of the channel of constant cross-section with d𝜇/d𝑧 =
0, when in (12) it is possible to assume that 𝑀 = 0. Then the linear parabolic equation follows:

𝜕𝑘
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− 𝜇

𝜕2𝑘

𝜕𝜏2
= 0 . (14)

Therefore, the group of point transformations admitted by the equation (6) with the arbitrary profile
of inhomogeneity 𝜇(𝑧) is generated by three infinitesimal operators:

𝑋1 =
𝜕
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1
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𝜕
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𝜕
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The first two operators in this list are evident from the physical point of view: they correspond to
translations: in the variables 𝜏 and 𝑞, and the last operator corresponds to the group of the Galilean
transformations. An extension of the group generators (15) occurs for the profiles of a cross-section
of a special form following the classical relationship (13), and the supplementary symmetry operator
𝑋4 is

𝑋4 = 𝑏
𝜕

𝜕𝑧
+

𝜏

2

(︂
𝑀 +

d𝑏

d𝑧

)︂
𝜕

𝜕𝜏
+

(︂
𝑀𝑞 −

(𝜏2 + 2
∫︀
𝜇d𝑧)

8𝑎

d2𝑏

d𝑧2

)︂
𝜕

𝜕𝑞
. (16)

The operators (15), (16) span the four-dimensional Lie algebra 𝐿4 = {𝑋1, 𝑋2, 𝑋3, 𝑋4} with the table
of commutators given in Table 1.

Table 1. Commutators of algebra 𝐿4

𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 −𝑋2/2 (𝑀 + 𝛽1)𝑋1/2 + 𝛽2𝑋3

𝑋2 0 0 0 𝑀𝑋2

𝑋3 𝑋2/2 0 0 (𝑀 − 𝛽1)𝑋3/2 − 𝛽0𝑋1

𝑋4 −(𝑀 + 𝛽1)𝑋1/2 − 𝛽2𝑋3 −𝑀𝑋2 (𝛽1 −𝑀)𝑋3/2 + 𝛽0𝑋1 0

The classifying relationship (13) is a first-order differential equation for the function 𝜇(𝑧), which is
integrated in the explicit form and gives a three-parameter (defined by the parameters 𝛽0, 𝛽1 and 𝛽2)
family of curves in the space {𝑧, 𝜇}:

ln(𝜇/𝜈) = 𝑑(𝑧) ≡ 𝑀

𝑧∫︁
0

d𝑦

𝑏(𝑦)
, (17)

where the form of the function 𝑑(𝑧) depends on the relationship between the parameters 𝛽𝑖 (𝑖 = 0, 1, 2),

𝑑(𝑧) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑀√

4𝛽0𝛽2−𝛽2
1

[︂
arctan 𝛽1+2𝛽2𝑧√
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1

− arctan 𝛽1√
4𝛽0𝛽2−𝛽2

1

]︂
, 𝛽2

1 < 4𝛽0𝛽2 ,

𝑀√
𝛽0𝛽2

𝑧

𝑧+
√

𝛽0/𝛽2
, 𝛽2

1 = 4𝛽0𝛽2 ,

𝑀√
𝛽2
1−4𝛽0𝛽2

ln
(
√

𝛽2
1−4𝛽0𝛽2−𝛽1−2𝛽2𝑧)(

√
𝛽2
1−4𝛽0𝛽2+𝛽1)

(
√

𝛽2
1−4𝛽0𝛽2+𝛽1+2𝛽2𝑧)(

√
𝛽2
1−4𝛽0𝛽2−𝛽1)

, 𝛽2
1 > 4𝛽0𝛽2 .

(18)

The choice 𝑀 = 0 corresponds to the channel with the constant cross-section with d𝜇(𝑧)/d𝑧 = 0, for
which the classifying relationship (13) is satisfied with any 𝛽𝑖. This gives three operators

𝑋41 =
𝜕

𝜕𝑧
, 𝑋42 = 𝑧

𝜕

𝜕𝑧
+

𝜏

2

𝜕

𝜕𝜏
, 𝑋43 = 𝑧2

𝜕

𝜕𝑧
+ 𝜏𝑧

𝜕

𝜕𝜏
− (𝜏2 + 2𝑧𝜈)

4𝑎

𝜕

𝜕𝑞
, (19)

instead of the operator 𝑋4. The first operator 𝑋41, gives the translation along the axis 𝑧, the second,
𝑋42, provides expansions, and the last operator, 𝑋43, corresponds to the group of projective transfor-
mations. Apart from the operators (19), the generalized Webster equation also admits an operator of
the infinite subgroup for the channel of the constant cross-section with 𝜇 ≡ 𝜈

𝑋∞ = 𝑘(𝑧, 𝜏) exp

(︂
−𝑎𝑞

𝜇

)︂
𝜕

𝜕𝑞
,

𝜕𝑘

𝜕𝑧
− 𝜇

𝜕2𝑘

𝜕𝜏2
= 0 . (20)

Therefore the linear parabolic equation, satisfied by the function of two variables 𝑘(𝑧, 𝜏) can be written
in the variables {𝑥, 𝜏}, i.e.

𝜕𝑘

𝜕𝑥
− 𝜈

𝜕2𝑘

𝜕𝜏2
= 0 .

We are intended to apply the last fact to construction of an approximate point symmetry for the
equation (6). Let us note, that the group of symmetries (15), (19) and (20) is well known in the
theory of the modified Burgers’ equation [17], to which in this case the generalized Webster equation
is reduced.
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1.2. The equivalence group for the generalized Webster equation. To exclude the arbitrary
way in the choice of the coefficients 𝛽𝑖 and 𝑀 in the function 𝜇(𝑧), we apply the equivalence trans-
formations defining the form of the group generator 𝑋4, i.e. the transformations conserving the form
of the system of the equations

𝜕𝑞

𝜕𝑧
− 𝑎

(︂
𝜕𝑞

𝜕𝜏

)︂2

− 𝜇
𝜕2𝑞

𝜕𝜏2
= 0 ,

𝜕𝜇

𝜕𝜏
= 0,

𝜕𝜇

𝜕𝑞
= 0 . (21)

The infinitesimal operator of the equivalence group for the system of equations (21) has the form

𝐸 = 𝜉1(𝑧, 𝜏, 𝑞)
𝜕

𝜕𝑧
+ 𝜉2(𝑧, 𝜏, 𝑞)

𝜕

𝜕𝜏
+ 𝜂(𝑧, 𝜏, 𝑞)

𝜕

𝜕𝑞
+ 𝜗(𝑧, 𝜏, 𝑞, 𝜇)

𝜕

𝜕𝜇
. (22)

The coefficients of the operator (22) are calculated from the invariance conditions of the equations
(21) under influence of the prolonged operator

�̃� = 𝐸 + 𝜁1
𝜕

𝜕𝑞𝑧
+ 𝜁2

𝜕

𝜕𝑞𝜏
+ 𝜁22

𝜕

𝜕𝑞𝜏𝜏
+ 𝜔0

𝜕

𝜕𝜇𝑞
+ 𝜔1

𝜕

𝜕𝜇𝑧
+ 𝜔2

𝜕

𝜕𝜇𝜏
. (23)

The coordinates 𝜁1, 𝜁2 and 𝜁22 are given by the formulae (10), and the coordinates 𝜔𝑖 are given by
similar formulae with a slight difference:

𝜔0 = �̃�𝑞(𝜗)− 𝜇𝑧�̃�𝑞(𝜉
1)− 𝜇𝜏 �̃�𝑞(𝜉

2)− 𝜇𝑞�̃�𝑞(𝜂) ,

𝜔1 = �̃�𝑧(𝜗)− 𝜇𝑧�̃�𝑧(𝜉
1)− 𝜇𝜏 �̃�𝑧(𝜉

2)− 𝜇𝑞�̃�𝑧(𝜂) ,

𝜔2 = �̃�𝜏 (𝜗)− 𝜇𝑧�̃�𝜏 (𝜉
1)− 𝜇𝜏 �̃�𝜏 (𝜉

2)− 𝜇𝑞�̃�𝜏 (𝜂) ,

�̃�𝑧 =
𝜕

𝜕𝑧
+ 𝜇𝑧

𝜕

𝜕𝜇
, �̃�𝜏 =

𝜕

𝜕𝜏
+ 𝜇𝜏

𝜕

𝜕𝜇
, �̃�𝑞 =

𝜕

𝜕𝑞
+ 𝜇𝑞

𝜕

𝜕𝜇
.

(24)

The variables 𝑧, 𝜏 and 𝑞 are considered to be independent, and 𝜇 is a dependent (differential) variable.
The action of (23) on (21) provides the system of defining equations{︂

𝜁1 − 2𝑎
𝜕𝑞

𝜕𝜏
𝜁2 − 𝜇𝜁22 − 𝜗

𝜕2𝑞

𝜕𝜏2

}︂⃒⃒
(21)

= 0 , {𝜔0}⃒⃒(21) = 0 , {𝜔2}⃒⃒(21) = 0 . (25)

Solution of the system (25) gives generators of the equivalence group:

𝐸1 =
𝜕

𝜕𝜏
, 𝐸2 =

1

𝑎

𝜕

𝜕𝑞
, 𝐸3 = 𝑧

𝜕

𝜕𝜏
− 𝜏

2𝑎

𝜕

𝜕𝑞
,

𝐸4 =
𝜕

𝜕𝑧
, 𝐸5 = 2𝑧

𝜕

𝜕𝑧
+ 𝜏

𝜕

𝜕𝜏
, 𝐸6 = 𝑧

𝜕

𝜕𝑧
− 𝑞

𝜕

𝜕𝑞
− 𝜇

𝜕

𝜕𝜇
.

(26)

Finite transformations of the equivalence group generated by the six-dimensional Lie algebra spanned
by the operators (26), have the form

𝑧 = (𝑧 + 𝑏4)e
2𝑏5+𝑏6 , 𝜏 = (𝜏 + 𝑏1)e

𝑏5 + 𝑏3(𝑧 + 𝑏4)e
2𝑏5+𝑏6 ,

𝑞 = (𝑞 + 𝑎𝑏2)e
−𝑏6 − 𝑏23

4𝑎
(𝑧 + 𝑏4)e

2𝑏5+𝑏6 − 𝑏3
2𝑎

(𝜏 + 𝑏1)e
𝑏5 , �̄� = 𝜇e−𝑏6 .

(27)

Application of the transformations (27) to the classifying relationship (13) allows to single out the
classes of functions 𝜇 presented in Table 2. We reduce to them all inhomogeneous profiles for which
extension of the basic algebra (15) occurs.

It is worth note the relationship of the basic types of profiles of acoustic wave conductors 𝜇/𝜈
(degree, linear fraction and exponential dependences of three types) resulting from the classifying
relationship (13) under the group analysis of the equation (6), with those obtained for the generalized
Burgers equation (5) in [11].

1.3. Optimal systems of one-dimensional subalgebras for the generalized Webster equa-
tion. To construct the optimal system of one-dimensional subalgebras Θ(𝐿) of the algebra 𝐿 spanned
by the operators (15), (16), it is necessary to calculate the group of inner automorphisms. The inner
automorphism of the algebra 𝐿 given by any of the operators 𝑋𝑖 of this algebra is constructed by
solving the Cauchy problem

d�̄�

d𝑎𝑖
=
[︀
𝑋𝑖, �̄�

]︀
, �̄�⃒⃒

𝑎𝑖=0
= 𝑋 , (28)
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Table 2. Admitted values of the function 𝜇/𝜈 in accordance with (13)

𝛽2 = 0 𝛽1 = 0, 𝛽0 ̸= 0 exp(±𝑧)

𝛽1 ̸= 0, 𝛽0 = arbitrary (1 + 𝑧)𝑀/𝛽1

𝛽2 ̸= 0 𝛽2
1 < 4𝛽0𝛽2 exp

[︁
4𝑀𝛽2

4𝛽0𝛽2−𝛽2
1

arctan 𝑧
]︁

𝛽2
1 > 4𝛽0𝛽2

(︀
1−𝑧
1+𝑧

)︀2𝑀𝛽2/(4𝛽0𝛽2−𝛽2
1)

𝛽2
1 = 4𝛽0𝛽2 exp

(︀
± 𝑧

1+𝑧

)︀
where the operators �̄� are represented by expansion in the basis operators 𝑋𝑖:

�̄� =

4∑︁
𝑖=1

𝑘𝑖𝑋𝑖 , 𝑘𝑖 = 𝑘𝑖(𝑎𝑖, 𝑘1, 𝑘2, 𝑘3, 𝑘4) . (29)

Applying the equation (29) and Table 1 of commutators, we write the inner automorphisms as the

transformations of the coordinates of the operator �̄� in the form of Table 3 where Ω =
√︀
𝛽2
1 − 4𝛽0𝛽2.

Table 3. Inner automorphisms of 𝐿4

𝑘1 𝑘2 𝑘3 𝑘4

𝐴1 𝑘1 + (𝑀 + 𝛽1)𝑘4𝑎1 𝑘2 − 𝑘3𝑎1 − 𝛽2𝑘4𝑎
2
1 𝑘3 + 2𝛽2𝑘4𝑎1 𝑘4

𝐴2 𝑘1 𝑘2 + 𝑀𝑘4𝑎2 𝑘3 𝑘4

𝐴3 𝑘1 − 2𝛽0𝑘4𝑎3 𝑘2 + 𝑘1𝑎3 − 𝛽0𝑘4𝑎
2
3 𝑘3 + 𝑘4(𝑀 − 𝛽1)𝑎3 𝑘4

𝐴4 (1/Ω)e−𝑀𝑎4 [𝑘1Ω cosh(Ω𝑎4) 𝑘2e
−2𝑀𝑎4 (1/Ω)e−𝑀𝑎4 [𝑘3Ω cosh(Ω𝑎4) 𝑘4

+ (2𝑘3𝛽0 − 𝑘1𝛽1) sinh(Ω𝑎4)] + (𝑘3𝛽1 − 2𝑘1𝛽2) sinh(Ω𝑎4)]

Knowledge of the inner automorphisms allows to construct optimal systems of one-dimensional
subalgebras Θ1(𝐿4) presented in Table 4.

1.4. Invariant solutions of the generalized Webster equation. In this section we consider
some types of invariant solutions for the generalized modified Webster equation obtained using one-
dimensional subalgebras from Table 4. The most interesting and non-trivial invariant solutions are
obtained using the operator 𝑋4 and its linear combinations with the operators 𝑋1 and 𝑋3. Applying
the standard procedure [16] of representation of an invariant solution to invariants of the operator of
the admitted group, we produce the type of invariant solutions for these combinations.

1. The invariant solution for the operator 𝑋4:

𝑞 = 𝜇𝑈(𝜆)− 𝛽2
2𝑎𝑀

(︂
𝑧𝜇−

∫︁
𝜇d𝑧

)︂
− 𝜇

𝛽2
4𝑎

𝜆2𝑧 , 𝜆 =
𝜏√
𝑏𝜇

. (30)

2. The invariant solution for the operator 𝑋4 + 𝛼𝑋1:

𝑞 = 𝜇𝑈(𝜆)− 𝛽2
2𝑎𝑀

(︂
𝑧𝜇−

∫︁
𝜇 d𝑧

)︂
− 𝜇

𝛽2
4𝑎

(︂
𝜆2𝑧 − 2𝜆

∫︁
𝜆1d𝑧 +

∫︁
𝜆2
1d𝑧

)︂
,

𝜆 =
𝜏√
𝑏𝜇

+ 𝜆1(𝑧) , 𝜆1(𝑧) = −𝛼

∫︁
1

𝑏
√
𝑏𝜇

d𝑧 .

(31)
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Table 4. Optimal system Θ1(𝐿4) of one-dimensional subalgebras

𝛽2 = 0 𝛽1 = 0 𝛽0 ̸= 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋4 + 𝛼𝑋3}, 𝛼 = arbitrary

𝛽1/𝑀 = −1 𝛽0 ̸= 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4 + 𝛼𝑋3}, 𝛼 = arbitrary

𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}, {𝑋4 ±𝑋1}
𝛽1/𝑀 = 1 𝛽0 ̸= 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4 + 𝛼𝑋3}, 𝛼 = arbitrary

𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}, {𝑋4 ±𝑋3}
𝛽1/𝑀 ̸= ±1 𝛽0 = arbitrary {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}

𝛽2 ̸= 0 𝛽1 = 0 𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}
𝛽1 = 0 𝛽0 ̸= 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4 + 𝛼𝑋3}, 𝛼 = arbitrary

𝛽1/𝑀 = 1 𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4 + 𝛼𝑋1}, 𝛼 = arbitrary

𝛽1/𝑀 = −1 𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}, {𝑋4 ±𝑋1}
𝛽1/𝑀 ̸= ±1 𝛽0 = 0 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}
𝛽1𝛽0 ̸= 0 𝛽1/𝑀 = ±1 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4 + 𝛼𝑋3}, 𝛼 = arbitrary

𝛽1𝛽0 ̸= 0 𝛽1/𝑀 ̸= ±1 {𝑋1}, {𝑋2}, {𝑋3}, {𝑋3 ±𝑋1}, {𝑋4}

3. The invariant solution for the operator 𝑋4 + 𝛼𝑋3:

𝑞 = 𝜇𝑈(𝜆)− 𝛼
𝜇

2𝑎

(︂
𝜆

∫︁
1√
𝑏𝜇

d𝑧 −
∫︁

𝜆3√
𝑏𝜇

d𝑧

)︂
− 𝜇

𝛽2
4𝑎

(︂
𝜆2𝑧 − 2𝜆

∫︁
𝜆3 d𝑧 +

∫︁
𝜆2
3 d𝑧

)︂
−

− 𝛽2
2𝑎𝑀

(︂
𝑧𝜇−

∫︁
𝜇d𝑧

)︂
, 𝜆 =

𝜏√
𝑏𝜇

+ 𝜆3(𝑧) , 𝜆3(𝑧) = −𝛼

∫︁
𝑧

𝑏
√
𝑏𝜇

d𝑧 .

(32)

The substitution of the representations (30), (31) and (32) in the initial equation (6) provides the
unique factor-equation for the function 𝑈(𝜆) for all the three cases, the second-order ordinary differ-
ential equation:

d2𝑈

d𝜆2
+ 𝑎

(︂
d𝑈

d𝜆

)︂2

+ (𝑀 + 𝛽1)
𝜆

2

(︂
d𝑈

d𝜆

)︂
−𝑀𝑈 +

𝛽0𝛽2
4𝑎

𝜆2 = 0 . (33)

The equation (33) with arbitrary coefficients does not have any symmetry. If the coefficients of the
equation are connected by some definite relationship, then the equation (33) admits the group of point
transformations with the operator

𝑋 =
𝜕

𝜕𝜆
− 𝑀 + 𝛽1

4𝑎

𝜕

𝜕𝑈
, 4𝛽0𝛽2 = 𝛽2

1 −𝑀2 . (34)

Choosing the invariant of this operator as a new dependent variable 𝑉 (𝜆) we obtain an autonomous
equation for it

d2𝑉

d𝜆2
+ 𝑎

(︂
d𝑉

d𝜆

)︂2

−𝑀𝑉 = 0 , 𝑉 = 𝑈 +
𝑀 + 𝛽1

8𝑎
𝜆2 +

𝑀 + 𝛽1
4𝑎

. (35)

Its solution is written in the quadratures,

𝜆 =

∫︁ (︀
𝐶0 exp (−2𝑎𝑉 ) + (𝑀/2𝑎2)(2𝑎𝑉 − 1)

)︀−1/2
d𝑉 + 𝐶1 , 𝐶0, 𝐶1 = const . (36)

2. The group of approximate symmetries and approximate group invariant solutions
of the generalized Webster equation

The invariant solutions of the modified generalized Webster equation (6) constructed in the previous
section describe propagation of acoustic perturbations in wavequides of the variable cross-section with
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d𝜇/d𝑧 ̸= 0. The law of the cross-section varying along the axis of a wavequide, though, is not arbitrary,
and satisfies the supplementary constraint resulting from the classifying relationship (13). The choice
of the type of the initial perturbation 𝑄(𝜏) (boundary of initial condition) in the equation (6) is
also not arbitrary, it results from the solution of the factor-equation (33), occurring in the process
of searching for the group invariant solution. It is possible to release the constraints for the type of
dependence of the cross-section profile of the acoustic channel on the coordinate along its axis and for
the choice of initial conditions, applying approximate symmetries, to which construction we dedicated
the present section. The challenging motive for the use of the approximate symmetries in the present
problem is the fact, that in the channel of the constant cross-section d𝜇/d𝑧 = 0, boundary-value
problem (6) has an exact analytical solution in case of arbitrary smooth boundary conditions. This
solution can be constructed with the application of symmetries of the renormgroup type, for which
the orbit of the group coincides with the solution of the boundary-value problem (6), i.e. under the
influence of the group the solution of the boundary-value problem transforms again into the solution
of this problem with the same boundary parameters. The general description of the algorithm of
renormgroup symmetries construction and its substantiation can be found in [18, 19] (see also [16,
S29]), and details of calculations by the example of solution of the boundary-value problem for the
modified Burgers’ equation are given in [20]. The opportunity to construct renormgroup symmetries
for arbitrary boundary conditions in the channel of a constant cross-section is stipulated by existence
of the infinite dimensional Lie subalgebra with the operator (20). In the case of the acoustic channel
of the variable cross-section d𝜇/d𝑧 ̸= 0 considered here this symmetry does not exist. The aim of
the present section is to construct approximate symmetries, which exist in the system with a small
parameter, connected with comparative smoothness of varying of the area of the cross-section along
the axis of the waveguiding system, i.e. infinitesimality of the derivative d(ln𝜇(𝑧))/d𝑧 ≡ 𝜇𝑧/𝜇 ≪ 1
(the lower index here denotes a derivative by the respective argument).

Calculation of the approximate group for the problem (6) is slightly different from the standard
approach [21, 22] in the meaning, that the initial equation itself does not contain a small parameter,
this parameter occurs in the process of construction and solution of the determining equation of the
group. Following the scheme applied for the modified Burgers’ equation we are intended to search for
the infinitesimal operator of an approximate group in the expanded space of the variables {𝑧, 𝜏, 𝑎, 𝑞},

𝑋𝑎 = 𝜉1(𝑧, 𝜏, 𝑎, 𝑞)
𝜕

𝜕𝑧
+ 𝜉2(𝑧, 𝜏, 𝑎, 𝑞)

𝜕

𝜕𝜏
+ 𝜉3(𝑧, 𝜏, 𝑎, 𝑞)

𝜕

𝜕𝑎
+ 𝜂(𝑧, 𝜏, 𝑎, 𝑞)

𝜕

𝜕𝑞
. (37)

Extension of action of the infinitesimal operator (37) upon variables is written by analogy with (8)

𝑋𝑎 = 𝑋𝑎 + 𝜁1
𝜕

𝜕𝑞𝑧
+ 𝜁2

𝜕

𝜕𝑞𝜏
+ 𝜁22

𝜕

𝜕𝑞𝜏𝜏
,

𝜁1 = 𝐷𝑧(𝜂)− 𝑞𝑧𝐷𝑧(𝜉
1)− 𝑞𝜏𝐷𝑧(𝜉

2)− 𝑞𝑎𝐷𝑧(𝜉
3) ,

𝜁2 = 𝐷𝜏 (𝜂)− 𝑞𝑧𝐷𝜏 (𝜉
1)− 𝑞𝜏𝐷𝜏 (𝜉

2)− 𝑞𝑎𝐷𝜏 (𝜉
3) ,

𝜁22 = 𝐷𝜏 (𝜁2)− 𝑞𝑧𝜏𝐷𝜏 (𝜉
1)− 𝑞𝜏𝜏𝐷𝜏 (𝜉

2)− 𝑞𝑎𝜏𝐷𝜏 (𝜉
3) ,

(38)

with the application of supplemented operators of complete differentiation

𝐷𝑧 =
𝜕

𝜕𝑧
+ 𝑞𝑧

𝜕

𝜕𝑞
+ 𝑞𝑧𝑧

𝜕

𝜕𝑞𝑧
+ 𝑞𝜏𝑧

𝜕

𝜕𝑞𝜏
+ 𝑞𝑎𝑧

𝜕

𝜕𝑞𝑎
+ . . . ,

𝐷𝜏 =
𝜕

𝜕𝜏
+ 𝑞𝜏

𝜕

𝜕𝑞
+ 𝑞𝑧𝜏

𝜕

𝜕𝑞𝑧
+ 𝑞𝜏𝜏

𝜕

𝜕𝑞𝜏
+ 𝑞𝑎𝜏

𝜕

𝜕𝑞𝑎
+ . . . .

(39)

The action of the operator (38) on (6) gives the determining equation

{𝑋𝑎𝐹}⃒⃒
𝐹=0

≡

{︃
𝜁1 − 2𝑎

𝜕𝑞

𝜕𝜏
𝜁2 − 𝜇𝜁22 −

d𝜇(𝑧)

d𝑧

𝜕2𝑞

𝜕𝜏2
𝜉1 −

(︂
𝜕𝑞

𝜕𝜏

)︂2

𝜉3

}︃
⃒⃒
𝐹=0

= 0 , (40)
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which after simplification is reduced to the following system of equations for coordinates of the operator
(37)

𝜂𝑧 − 𝜇𝜂𝜏𝜏 = 0 , (41)

𝜉1𝑧 − 2𝜉2𝜏 + (𝜇𝑧/𝜇)𝜉
1 = 0 , (42)

𝜉2𝑧 − 𝜇𝜉2𝜏𝜏 + 2(𝑎𝜂𝜏 + 𝜇𝜂𝑞𝜏 ) = 0 , (43)

𝑎(𝜉1𝑧 − 2𝜉2𝜏 ) + 𝜉3 + 𝑎𝜂𝑞 + 𝜇𝜂𝑞𝑞 = 0 , (44)

𝜉1 = 𝜉1(𝑧, 𝑎) , 𝜉2 = 𝜉2(𝑧, 𝜏, 𝑎) , 𝜉3 = 𝜉3(𝑎) . (45)

The solution of the last two equations (43) and (44), in virtue of (41) specifies the type of the coordi-
nates 𝜉1, 𝜉2 and 𝜉3, and, partially, 𝜂

𝜉1 = 𝛽0(𝑎) + 𝛽1(𝑎)𝑧 + 𝛽2(𝑎)𝑧
2 , 𝜉3 = 𝜉3(𝑎) ,

𝜉2 = 𝑐0(𝑎) + 𝑐1(𝑎)𝑧 +
𝜏

2

(︂
𝑀(𝑎) +

𝜕𝜉1

𝜕𝑧

)︂
,

𝜂 = 𝑘(𝑧, 𝜏, 𝑎) exp

(︂
−𝑎𝑞

𝜇

)︂
+ 𝑐2(𝑎)−

𝜏

2𝑎
𝑐1(𝑎)+

+

(︂
𝑀(𝑎)− 𝜉3

𝑎

)︂
𝑞 − 1

4𝑎

𝜕2𝜉1

𝜕𝑧2

(︂
𝜏2

2
+

∫︁
𝜇 d𝑧

)︂
,

(46)

though there are two more conditions that should be satisfied

𝜕𝑘

𝜕𝑧
− 𝜇

𝜕2𝑘

𝜕𝜏2
+

𝑎𝑞

𝜇2
𝜇𝑧𝑘 = 0 , (47)

(𝜇𝑧/𝜇)𝜉
1 = 𝑀 , 𝑀 = const . (48)

For the channel of the constant section d𝜇/d𝑧 = 0 the first of these bounds results in the linear
parabolic equation for the function 𝑘(𝑧, 𝜏, 𝑎), and the second bound gives 𝑀 = 0. As a result we
obtain an infinite dimensional group of symmetry (15), (19) and (20).

For the channels of the arbitrary variable cross-section d𝜇/d𝑧 ̸= 0 differentiating the first bound
(47) by 𝑞 gives 𝑘(𝑧, 𝜏, 𝑎) = 0. The second bound coincides with the equation (13). As a result we
obtain the group of symmetries (15), (16).

In the case of an acoustic channel with a slowly varying profile of the cross-section 𝜇𝑧/𝜇 ≪ 1
analysed below the bounds (47), (48) can be considered as approximate, and contributions that are
proportional to 𝜇𝑧/𝜇 are ignored in the zero-order limit. Therefore in the zero order approximation
with respect to this parameter we obtain a group of approximate symmetries with the operator (37).

Its coordinates are provided by the relationships (46) with 𝑀 = 0 and 𝑘(𝑧, 𝜏, 𝑎) = 𝑘(0), where 𝑘(0)

follows the linear equation

𝜕𝑘(0)

𝜕𝑧
− 𝜇

𝜕2𝑘(0)

𝜕𝜏2
= 0 , (49)

and 𝜇(𝑧) is an arbitrary smoothly varying function 𝑧.
In the next, first order in the parameter 𝜇𝑧/𝜇 the second bound (48) coincides with the classifying

relationship (13), and the first bound (47) is written in the form

𝜕𝑘(1)

𝜕𝑧
− 𝜇

𝜕2𝑘(1)

𝜕𝜏2
= −𝑎𝑞

𝜇2
𝜇𝑧𝑘

(0) . (50)

Here the functions 𝑘(0) and 𝑘(1) depend on 𝑧, 𝜏 and 𝑎, but do not depend on 𝑞. Therefore, differentiating
(47) by 𝑞 we obtain 𝑘(0) = 0, i.e. the first order approximation destroys the symmetry of the zero-order
approximation order. In other words, the infinite dimensional group given by the operator (37) with

the coordinate 𝑘(0) is not inherited (in the classical meaning [21, 22]) already in the next order in the
parameter 𝜇𝑧/𝜇. To conserve an infinite dimensional subgroup we use the fact, that the symmetry
of zero and the following approximations serves as an instrument for construction of the solution of
the boundary-value problem (6), i.e. with the chosen function 𝑘(0) we can construct the solution 𝑞(0).
Below, replacing in the right-hand side of the equation (50) the variable 𝑞 by the solution of the zero

approximation 𝑞(0)(𝑧, 𝜏, 𝑎), we obtain an inhomogeneous parabolic equation with a source for 𝑘(1).
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The infinite dimensional subgroup (37) with 𝑘 = 𝑘(1) constructed in this way is not a symmetry of the
initial equation, but it is a symmetry of the solution of the initial problem with the chosen boundary
(initial) condition used for the construction of 𝑞(0). The obtained symmetry of the first approximation

can be used for construction of the improved solution of the first approximation 𝑞(1)(𝑧, 𝜏, 𝑎), and then
to continue the described procedure for obtaining the function 𝑘 in a given order of precision in 𝜇𝑧/𝜇,

𝜕𝑘(𝑖+1)

𝜕𝑧
− 𝜇

𝜕2𝑘(𝑖+1)

𝜕𝜏2
= −𝐴𝑖 , 𝐴𝑖 =

𝑎𝑞(𝑖)(𝑧, 𝜏, 𝑎)

𝜇2
𝜇𝑧𝑘

(𝑖) , 𝑖 = 0, 1, 2, . . . . (51)

Let us illustrate the given procedure by the example of construction of the solution with the use of
some first approximations for the function 𝑘. The needed for obtaining the solution of the boundary-
value problem (6) operator of the renormgroup symmetry is constructed like in [20], from the linear
combination of operators with the coordinates (46). We assume that the non-vanishing contributions
are associated with 𝜉3(𝑎) = 1 generating the transformations of the parameter of nonlinearity 𝑎, and
with the operator of an infinite subgroup with the function 𝑘 which differs from zero and which is
considered to be known

𝑅 =
𝜕

𝜕𝑎
+

(︂
𝑘(𝑧, 𝜏, 𝑎) exp

(︂
−𝑎𝑞

𝜇

)︂
− 𝑞

𝑎

)︂
𝜕

𝜕𝑞
. (52)

Here the zero approximation 𝑘 = 𝑘(0) of the function 𝑘(𝑧, 𝜏, 𝑎) solves the linear parabolic equation (49)

with the initial condition 𝑘(0)(0, 𝜏, 𝑎) = 𝑄(𝜏)/𝑎, which follows from the invariance condition of the
perturbation theory solution with 𝑎 → 0 with respect to the operator of the renormgroup symmetry
(52). As a result we obtain

𝑘(0) =
𝜈

𝑎
𝐾𝑎 , 𝐾(𝑎, 𝑥, 𝜏) =

∞∫︁
−∞

e
𝑎𝑄(𝜉)

𝜈 𝐺(𝑥, 𝜏 − 𝜉) d𝜉 , 𝐺(𝑥, 𝜏) =
1√
4𝜋𝜈𝑥

e−
𝜏2

4𝜈𝑥 . (53)

Here the subscript denotes the partial derivative: 𝐾𝑎 ≡ 𝜕𝐾/𝜕𝑎.
Finite transformations of the group with the operator (52), in which we use the function (53) for

𝑘, result in the following approximate analytical solution of the initial problem (6):

𝑞(0) =
𝜇

𝑎
ln

[︂
1 +

𝜈

𝜇
(𝐾 − 1)

]︂
, (54)

which holds in a medium with smoothly varying section 𝜇𝑧/𝜇 ≪ 1. In fact, the difference of (54) from
the solution in channels of a constant section appears in existence of the multiplier 𝜈/𝜇, which is not
equal to 1.

The advantage of the renormgroup approach in the whole and solution on the base of the operator
(52), in particular, is an opportunity of subsequent improving of the obtained analytical approxima-
tions. With respect to the considered problem such an improvement in the first order 𝜇𝑧/𝜇 is achieved
by using for the function 𝑘(𝑧, 𝜏, 𝑎) in the operator (52) the solution of the inhomogeneous parabolic
equation (51) with 𝑖 = 0, the right-hand side of which is proportional to the gradient of the cross-

section 𝜇𝑧/𝜇 of the channel and is linearly dependent on the function 𝑞(0) of the zero approximation
by this gradient,

𝐴0 = (𝜇𝑧/𝜇)(𝜈/𝑎)𝐾𝑎 ln [1 + (𝜈/𝜇)(𝐾 − 1)] . (55)

The solution of the equation (51) subject to (55) provides a modified (due to the contribution with

the gradient of the cross-section) expression for the function 𝑘(𝑎, 𝑥, 𝜏) in (52), i.e. for 𝑘(1)(𝑎, 𝑥, 𝜏)

𝑘(1) =
𝜈

𝑎
𝐾𝑎 −

𝑥∫︁
0

d𝑥′
∞∫︁

−∞

𝐺(𝑥− 𝑥′, 𝜏 − 𝜏 ′)
𝜈𝜇′

𝑥′

𝑎𝜇′ 𝐾
′
𝑎 ln

(︂
1 +

𝜈

𝜇′
(︀
𝐾 ′ − 1

)︀)︂
d𝜏 ′ ,

𝜇′ ≡ 𝜇(𝑥′) , 𝐾 ′ ≡ 𝐾(𝑎, 𝑥′, 𝜏 ′) .

(56)
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The substitution of 𝑘(1) instead of 𝑘 in the infinitesimal operator (52) and the following solution of
the Lie equation results in an improved approximation for the needed solution,

𝑞(1) =
𝜇

𝑎
ln

{︃
1 +

𝜈

𝜇
(𝐾 − 1)− 𝜈

𝜇

𝑥∫︁
0

𝜇′
𝑥′

𝜇′ d𝑥
′

∞∫︁
−∞

𝐺(𝑥− 𝑥′, 𝜏 − 𝜏 ′)×

×
[︂
1−𝐾 ′ +

(︂
𝐾 ′ − 1 +

𝜇′

𝜈

)︂
ln

(︂
1 +

𝜈

𝜇′
(︀
𝐾 ′ − 1

)︀)︂]︂
d𝜏 ′

}︃
.

(57)

This procedure can be continued if we use 𝑘(1) and 𝑞(1) for calculations of 𝐴1 in the right-hand side of
the equation (51) and the further substitution of the solution of the equation for 𝑘(1) instead of 𝑘 into
the operator (52) to find solution of the second approximation. However the result of such calculations
is rather lengthy and is not presented here.

Since the constructed solution is an approximate one, the natural question arises on its precision in
case of different values of the parameter 𝜇𝑧/𝜇. The answer to this question also depends on the value
of 𝑎/𝜈 : with small values of 𝑎/𝜈 the first two terms of the series expansion of the solution (57) with
respect to the parameter of nonlinearity 𝑎 has the form:

𝑞𝑝𝑡 = 𝜈𝐾(0)
𝑎 +

𝜈𝑎

2

⎡⎣𝐾(0)
𝑎𝑎 − 𝜈

𝜇
(𝐾(0)

𝑎 )2−

−
𝑥∫︁

0

𝜈𝜇′
𝑥′

(𝜇′)2
d𝑥′

∞∫︁
−∞

𝐺(𝑥− 𝑥′, 𝜏 − 𝜏 ′)((𝐾 ′)(0)𝑎 )2 d𝜏 ′

⎤⎦+𝑂(𝑎2) ,

(58)

where 𝐾
(0)
𝑎 and 𝐾

(0)
𝑎𝑎 denote the values of the partial derivatives of the function 𝐾, calculated within

the limit 𝑎 → 0. The direct substitution of the periodic initial condition 𝑄(𝜉) = cos 𝜉 into (53), for
which the function 𝐾 is given by

𝐾 = 𝐼0(𝑎/𝜈) + 2

∞∑︁
𝑘=1

𝐼𝑘(𝑎/𝜈) cos 𝑘𝜏 e
−𝜈𝑘2𝑥 , (59)

and calculation of the occurring integrals shows, that the expression for 𝑞𝑝𝑡 coincides with the result
obtained in [10] for the harmonic initial perturbation without a supplementary assumption on the
value of 𝜇𝑧/𝜇.

For non-small values of 𝑎/𝜈 comparison of the approximate solution of the first approximation (57)
with the numerical one [23] shows a good matching of the results (with precision to several percents)
even for high values of the acoustic Reynolds number 𝑎/𝜈 = 10.

3. Conservation laws for the generalized Webster equation

In this section we consider possibility of construction of conservation laws for the equation (6) using
the method developed in [24, 25]. According to this method, every symmetry of the equation (or the
system of differential equations) leads to certain conservation law provided that this equation (the
system of differential equations) is nonlinearly self-adjoint in the sense of [24, 25]. Verification of
nonlinear self-adjointness of (6) consists in to introducing the formal Lagrangian

ℒ = 𝑤𝐹 ≡ 𝑤

(︃
𝜕𝑞

𝜕𝑧
− 𝑎

(︂
𝜕𝑞

𝜕𝜏

)︂2

− 𝜇
𝜕2𝑞

𝜕𝜏2

)︃
, (60)

calculating the adjoint equation to (6) by the formula

𝐹 * ≡ 𝛿ℒ
𝛿𝑞

= 0 ,
𝛿

𝛿𝑞
=

𝜕

𝜕𝑞
+

∞∑︁
𝑠=1

(−1)𝑠𝐷𝑖1 . . . 𝐷𝑖𝑠

𝜕

𝜕𝑞𝑖1...𝑖𝑠
, (61)

and solving the equation
𝐹 *⃒⃒

𝑤=𝜙(𝑧,𝜏,𝑞)
= 𝜆𝐹 , (62)
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where 𝑤 is a new dependent variable and 𝜆 is an undetermined coefficient. Substitution 𝑤 = 𝜙(𝑧, 𝜏, 𝑞)
in the equation (62) and solution of the resulting overdetermined system of equations for 𝜙 concretize
the form of 𝑤 and 𝜆.

For the generalized Webster equation (6) the adjoint equation (61) has the form

𝐹 * = −𝑤𝑧 + 2𝑎(𝑤𝜏𝑞𝜏 + 𝑤𝑞𝜏𝜏 )− 𝜇𝑤𝜏𝜏 . (63)

Substitution of (63) into (62) with substitution 𝑤 = 𝜙, 𝑤𝑧 = 𝐷𝑧(𝜙), 𝑤𝜏 = 𝐷2
𝜏 (𝜙) and 𝑤𝜏𝜏 = 𝐷𝜏 (𝜙)

provides an exponential dependence of the variable 𝑤 on 𝑞:

𝜆 = −𝜕𝜙

𝜕𝑞
, 𝜙 ≡ 𝑤 = Φ(𝑧, 𝜏) exp

(︂
𝑎𝑞

𝜇

)︂
, (64)

where the function Φ of two variables 𝑧 and 𝜏 satisfies the equation

𝜕Φ

𝜕𝑧
+ 𝜇

𝜕2Φ

𝜕𝜏2
− 𝑎𝑞

d𝜇

d𝑧

Φ

𝜇2
= 0 . (65)

In case of the arbitrary function 𝜇(𝑧) this equation holds only with zero values Φ. For the channels
of constant section d𝜇/d𝑧 = 0 we obtain the linear parabolic equation for Φ. In case of low gradients
(1/𝜇)d𝜇/d𝑧 ≪ 0 this equation can be considered as approximate, which solution can be constructed
by the method of subsequent approximations (see below section 3.2).

According to [24, 25] the conservation law for (6) is written in the form

𝐷𝑧(𝐶
1) +𝐷𝜏 (𝐶

2) = 0 , (66)

where the components of the conserved vector are expressed by (60), (64) and coordinates (12) of the
operator of the admitted symmetry group as follows:

𝐶𝑖 = 𝑊

[︂
𝜕ℒ
𝜕𝑞𝑖

−𝐷𝑗

(︂
𝜕ℒ
𝜕𝑞𝑖𝑗

)︂]︂
+𝐷𝑗(𝑊 )

𝜕ℒ
𝜕𝑞𝑖𝑗

, 𝑊 = 𝜂 − 𝜉𝑗𝑞𝑗 , 𝑖, 𝑗 = 1, 2 . (67)

The equation (66) should hold for solutions of the equation (6). This can be checked by the direct
substitution of expressions (67) for 𝐶1 and 𝐶2 subject to (64),

𝐶1 = 𝑊Φexp

(︂
𝑎𝑞

𝜇

)︂
, 𝑊 = 𝜂 − 𝜉1𝑞𝑧 − 𝜉2𝑞𝜏 ,

𝐶2 = 𝜇𝑊
𝜕Φ

𝜕𝑥
exp

(︂
𝑎𝑞

𝜇

)︂
− 𝜇Φ𝐷𝑥

(︂
𝑊 exp

(︂
𝑎𝑞

𝜇

)︂)︂
,

(68)

into the equation (66), which takes the form:

𝐷𝑧(𝐶
1) +𝐷𝜏 (𝐶

2) = Φ exp

(︂
𝑎𝑞

𝜇

)︂[︀(︀
𝐷𝑧 − 𝜇𝐷2

𝜏 − 2𝑎𝑞𝜏𝐷𝜏

)︀
𝑊
]︀
+

+𝑊
𝑎Φ

𝜇
exp

(︂
𝑎𝑞

𝜇

)︂[︀
𝑞𝑧 − 𝑎𝑞2𝜏 − 𝜇𝑞𝜏𝜏

]︀
+

+𝑊 exp

(︂
𝑎𝑞

𝜇

)︂[︂
𝜕Φ

𝜕𝑧
+ 𝜇

𝜕2Φ

𝜕𝜏2
− 𝑎𝑞

d𝜇

d𝑧

Φ

𝜇2

]︂
= 0 .

(69)

The equation (69) is valid because the expression in the first square bracket coincides with the defining
equation of the group for (6), the expression in the second square bracket coincides with the equation
(6) itself, and finally the expression in the third square bracket vanishes due to the equation (65).

3.1. Conservation laws in the case d𝜇/d𝑧 = 0. The results of this section are presented in
Table 5, where explicit expressions for the components 𝐶1 and 𝐶2 of the conserved vector are given
for each operator (15), (19), (14). Here 𝜇 = 𝜈 = const, when the function Φ(𝑧, 𝜏) solves the linear
parabolic equation. Due to the arbitrary way in the choice of Φ(𝑧, 𝜏) we have chosen the value Φ = 1
when constructing Table 5. Not that the table contains only symmetries providing “non-trivial”
conservation laws with 𝐶𝑖 ̸= 0.

Note that according to (69) and Table 5 the Webster equation (6) with the arbitrary coefficient
𝜇(𝑧) does not have a form of the conservation law. The potential Burgers’ equation (the equation (6)
when 𝜇 = 𝜈 = const) formally also does not have the form of the conservation law. However it can be
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rewritten in the form of the conservation law on an infinite number of ways. For example, using the
second line of Table 5 we obtain

𝐷𝑧

(︁
e𝑎𝑞/𝜈

)︁
+𝐷𝜏

(︁
−𝑎𝑞𝜏e

𝑎𝑞/𝜈
)︁
= 0 . (70)

3.2. Approximate conservation laws in the case d𝜇/d𝑧 ̸= 0. For the channels of the variable
section with 𝜇(𝑧) ̸= const it follows from the equation (65) that Φ = 0. Hence there is no non-vanishing
function 𝑤 depending on 𝑧, 𝜏 and 𝑞, for which the condition of nonlinear self-adjointness of the equation
(6) would hold. Ignoring the question of a more complex form of 𝑤, for example, depending not only
on dependent and independent variables, but also on derivatives of high orders and/or on non-local
variables, we show the possibility to construct an approximate conservation law for the equation (6).
Let us assume, that the area of the cross-section smoothly varies with the varying of the coordinate
𝑧 of the axis of the wave conductor, (1/𝜇)d𝜇/d𝑧 ≪ 1. Then, like for the approximate symmetries, in

constructing the zero approximation Φ(0) the last contribution in the equation for the function Φ in
(65) is not substantial, and while calculating the following approximation Φ(1) it is considered already
as a known source in the right-hand side of the parabolic equation (like in the equation (51)),

𝜕Φ(0)

𝜕𝑧
+ 𝜇

𝜕2Φ(0)

𝜕𝜏2
= 0 ,

𝜕Φ(1)

𝜕𝑧
+ 𝜇

𝜕2Φ(1)

𝜕𝜏2
− 𝑎𝑞(0)

d𝜇

d𝑧

Φ(0)

𝜇2
= 0 . (71)

Table 5. The components 𝐶1, 𝐶2 for the symmetries (12) when d𝜇/d𝑧 = 0

𝐶1 𝐶2

𝑋∞ 𝑘 −𝜈𝑘𝜏

𝑋2 exp(𝑎𝑞/𝜈) −𝑎𝑞𝜏 exp(𝑎𝑞/𝜈)

𝑋3 −𝜏/(2𝑎) exp(𝑎𝑞/𝜈) (𝜏𝑞𝜏/2 − 𝜈/(2𝑎)) exp (𝑎𝑞/𝜈)

𝑋42 (−𝑧(𝑎𝑞2𝜏 + 𝜈𝑞𝜏𝜏 ) + 𝜈/(2𝑎)) exp(𝑎𝑞/𝜈) (𝑧 (3𝑎𝜈𝑞𝜏𝑞𝜏𝜏 + 𝜈2𝑞𝜏𝜏𝜏 + 𝑎2𝑞3𝜏 ) + 𝜈𝑞𝜏/2) exp (𝑎𝑞/𝜈)

𝑋43 (−(𝜏 2 − 2𝜈𝑧)/(4𝑎) (𝜏 2𝑞𝜏/4 − 𝜈𝜏/(2𝑎) + 3𝜈𝑧𝑞𝜏/2

−𝑧2 (𝑎𝑞2𝜏 + 𝜈𝑞𝜏𝜏 )) exp(𝑎𝑞/𝜈) +𝑧2 (3𝑎𝜈𝑞𝜏𝑞𝜏𝜏 + 𝜈2𝑞𝜏𝜏𝜏 + 𝑎2𝑞3𝜏 )) exp(𝑎𝑞/𝜈)

As an example we write an approximate conservation law associated with the renormgroup symmetry
with the generator (52). Though this symmetry acts in an expanded space of the independent variables
{𝑧, 𝜏, 𝑎}, the conservation law in this case is written in the form (66), the conjugated equation still
has the form (63), and the formulae for 𝑤 are provided by (64). The difference appears only in the
formula for 𝑊 , which in this case has the form 𝑊 = 𝜂 − 𝜉1𝑞𝑧 − 𝜉1𝑞𝜏 − 𝜉3𝑞𝑎. For the operator (52)
with 𝜉3 = 1, 𝜉1 = 𝜉2 = 0 and 𝜂 = 𝑘 exp(−𝑎𝑞/𝜇)− 𝑞/𝑎 this provides the following expressions for 𝐶𝑖:

𝐶1 = Φ

[︂
𝑘 −

(︁
𝑞𝑎 +

𝑞

𝑎

)︁
exp

(︂
𝑎𝑞

𝜇

)︂]︂
,

𝐶2 = 𝜇

(︂
𝑘
𝜕Φ

𝜕𝜏
− Φ

𝜕𝑘

𝜕𝜏

)︂
+

[︂(︁
𝑞𝑎 +

𝑞

𝑎

)︁(︂
𝑎𝑞𝜏Φ− 𝜇

𝜕Φ

𝜕𝜏

)︂
+ 𝜇Φ

(︁
𝑞𝑎𝜏 +

𝑞𝜏
𝑎

)︁]︂
exp

(︂
𝑎𝑞

𝜇

)︂
,

𝐶3 = 0 .

(72)

Precision of the conservation law is determined by precision of the equations (71).

Conclusion

In conclusion, let us note that in the present paper we have found a three-dimensional group of point
symmetries for the generalized Webster equation (6) describing nonlinear acoustic waves in channels
of an arbitrary variable section with absorption. It was shown that for the profiles of a cross-section
of a special type extension of an admitted three-parameter group of point transformations occurred,
and the problem of group classifications by different types of 𝑆 was solved. Optimal systems of one-
dimensional subalgebras of the admitted Lie algebra have been constructed and examples of invariant
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solutions have been given. We have also formulated an algorithm of finding a group of the approximate
renormgroup symmetries of the solution of the boundary-value problem for the generalized Webster
equation for channels with an arbitrary smoothly varying cross-section in the case with arbitrary
initial conditions. We have constructed approximate analytical solutions. We have also constructed
conservation laws for the generalized Webster equation for the case of an acoustic waveguide with an
invariable cross-section, and also for the case of a waveguide with a smoothly varying cross-section.

The obtained results can be applied not only in acoustics but also in other spheres, for example, in
medical research in describing nonlinear pulse waves [26]. Investigation of conditions of sound waves
propagation on the basis of the Webster equation with the variable function 𝑆(𝑥) can be also applied to
construction of a classical analogue of processes of perturbations propagation on diversities of different
topological dimension with the help of the Klein–Gordon equation [27].

The authors are thankful to Professor N.H. Ibragimov for productive discussion of problems with
respect to investigation of nonlinear self-adjointness of the Webster equation and help in construction
of conservation laws.

BIBLIOGRAPHY

1. Rudenko O.V. Nonlinear sawtooth-shaped waves // UFN. 1995. V. 165(9). P. 1011–1036; English
translation: Rudenko O.V. Nonlinear sawtooth-shaped waves // Physics-Uspekhi (Adv.Phys.Sci).
1995. V.38, P. 965–989.

2. B.O. Enflo, O.V. Rudenko To the theory of generalizied Burgers’ equation // Acta Acustica unified
with Acustica. 2002. V. 88. P. 155–162.

3. Landau L.D., Lifshitz E.M. Course of theoretical physics, V.6: Hydrodynamics, M.: Nauka, 1986;
English translation: L.D. Landau, and E.M. Lifshitz Fluid Mechanics. Oxford, Pergamon Press,
1986.

4. A.G. Webster Acoustical impedance, and the theory of horns and of the phonograph //
Proc.Nat.Acad.Sci. 5, 1919. P. 275–282; Reprinted in J. Audio Eng.Soc. 1977. V. 25(1-2).
P. 24–28.

5. E. Eisner Resonant oscillation system design // Physical Acoustics (Ed. W.P. Mason). V. 1.
Pt. B. Ch. 6. NY, Academic Press, 1964.

6. Rudenko O.V., Soluyan S.I. Theoretical Foundations of Nonlinear Acoustics. M.: Nauka, 1975,
288 p.; English translation: O.V. Rudenko, and S.I. Soluyan Theoretical Foundations of Nonlinear
Acoustics. Plenum, Consultants Bureau, 1977.

7. Vinogradova M.B., Rudenko O.V., Sukhorukov A.P. Wave theory (2nd edition). M.: Nauka, 1990.
8. O.V. Rudenko, A.B. Shvartsburg Nonlinear and linear phenomena in narrow pipes // Acoustical

Physics. 2010. V. 56(4). P. 429–434.
9. Rudenko O.V., Sukhorukova A.K., Sukhorukov A.P. Equations of high-frequency nonlinear acous-

tics for inhomogeneous media // Acoustic Journal, 1994. V. 40(2), P. 290–294; English translation:
O.V. Rudenko, A.K. Sukhorukova, and A.P. Sukhorukov Equations of high-frequency nonlinear
acoustics for inhomogeneous media // Acoustical Physics. 1994. V. 40. P. 264–268.

10. Lapidus Yu.R., Rudenko O.V. Non-linear generation of high harmonics as a method of channels
profiling // Acoustic Journal, 1990. V. 36(6). P. 1055–1058.

11. J. Doyle, M.J. Englefield Similarity solutions of a generalized Burgers equation // IMA Journal
of Applied Mathematics. 1990. V. 44. P. 145–153.

12. J.G. Kingston and C. Sophocleous On point transformations of a generalised Burgers equation //
Phys. Lett. A. 1991. V. 155. P. 15—19.

13. A.T. Cates A point transformation between forms of the generalised Burgers equation // Phys.
Lett. A. 1989. V. 137. P. 113—114.
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