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ITERATIVE LINEARIZATION OF THE EVOLUTION

NAVIER-STOKES EQUATIONS

I.I. GOLICHEV

Abstract. An iterative process is constructed and validated, which reduces the solution
of nonlinear time-dependent Navier-Stokes equations to the solution of a sequence of linear
problems. Using an priori estimates of solutions allows us to prove the convergence of the
method with any initial approximation. It is shown that the proposed method can be used
to prove the existence and uniqueness of the solution.
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1. Introduction

Let us consider an initial boundary-value problem for the generalized system of the Navier-
Stokes equations

v𝑡 − 𝜈Δv+ 𝑣𝑖v𝑥𝑖
+ 𝑔𝑟𝑎𝑑 𝑝 = f(𝑥, 𝑡), (1)

v|𝑆𝑇
= 0, v|𝑡=0 = a(𝑥), (2)

𝑑𝑖𝑣 v = 0 (3)

in the domain 𝑄𝑇 = Ω× [0, 𝑇 ], 𝑆𝑇 = 𝑆 × [0, 𝑇 ], 𝑆 is a boundary of the domain Ω, f ∈
∘
J(𝑄𝑇 ),

L2(𝑄𝑇 ) = G(𝑄𝑇 )⊕
∘
J(𝑄𝑇 ) is an orthogonal extension on the gradient and solenoidal consistent

parts of the space L2(𝑄𝑇 ), v = (𝑣1, 𝑣2, . . . , 𝑣𝑛),

𝑑𝑖𝑣 a = 0, a|𝑆 = 0. (4)

Here and in what follows we, generally, use the notations used in paper [1]. For the single-valued
definiteness of pressure we consider that

∫︀
Ω

𝑝(𝑥, 𝑡)𝑑𝑥 = 0 almost everywhere on t on [0,T].

2. Construction of an iteration process

For construction of the iteration process we use an a priori estimate

‖v𝑥(𝑡)‖ = ‖v𝑥(𝑥, 𝑡)‖ 6 𝑀(𝑡) 6 𝑀0, ∀𝑡 ∈ [0, 𝑇 ]. (5)

Let us introduce the following notations:

𝛼𝑅(𝑡,v𝑥) = 𝑚𝑖𝑛[1, 𝑅(𝑡)/ ‖v𝑥(𝑡)‖], (6)

where R(t) is a nondecreasing positive function on [0,T]. The operator 𝑃𝑅v𝑥 = 𝛼𝑅(𝑡,v𝑥)v𝑥(𝑡)
is a projection operator on the sphere {v𝑥(𝑡) : ‖v𝑥(𝑡)‖ 6 𝑅(𝑡)}, therefore due to the property
of the projection operator,⃦⃦

𝑃𝑅v
1
𝑥(𝑡)− 𝑃𝑅v

2
𝑥(𝑡)

⃦⃦
6

⃦⃦
v1
𝑥 − v2

𝑥

⃦⃦
∀𝑡 ∈ [0, 𝑇 ],v1(𝑡),v2(𝑡) ∈

∘
W1

2(Ω). (7)
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If there is a solution for the problem (1) − (3) and the contingency (5) holds, then if
𝑅(𝑇 ) ≥ 𝑀(𝑡) 𝛼𝑅(𝑡,v𝑥) ≡ 1, therefore v is also the solution of the equation

v𝑡 − 𝜈Δv+ 𝛼𝑅(𝑡,v𝑥)𝑣𝑖v𝑥𝑖
+ 𝑔𝑟𝑎𝑑 𝑝 = f (8)

with the initial boundary conditions (2) and the condition (3).
For the solution of the problem (8), (2), (3) we construct an iteration process:

v𝑘+1
𝑡 − 𝜈Δv𝑘+1 + 𝛼𝑘𝑣

𝑘
𝑖 v

𝑘+1
𝑥𝑖

+ 𝑔𝑟𝑎𝑑 𝑝𝑘+1 = f, (9)

v𝑘+1
⃒⃒
𝑆𝑇

= 0, v𝑘+1
⃒⃒
𝑡=0

= a(𝑥), (10)

𝑑𝑖𝑣 v𝑘+1 = 0, (11)

where 𝛼𝑘 = 𝛼𝑘(𝑡) = 𝛼𝑅(𝑡,v
𝑘
𝑥).

Let us assume that the domain Ω is bounded, 𝑆 ∈ 𝐶2, n is equal to 2 or 3. Let us denote
𝑎𝑘𝑖 = 𝛼𝑅(𝑡,v

𝑘
𝑥)𝑣

𝑘
𝑖 and show that⃦⃦

𝑎𝑘𝑖
⃦⃦
4
6 𝑐1𝑅(𝑡), 𝑖 = 1, 𝑛, 𝑘 = 0, 1, . . . , 𝑡 ∈ [0, 𝑇 ]. (12)

For this purpose we use the well known inequalities ([2] Ch. 2)

‖𝑣‖4 6 𝑐2‖𝑣𝑥‖
1
2‖𝑣‖

1
2 , for 𝑛 = 2, (13)

‖𝑣‖4 6 𝑐3‖𝑣𝑥‖
3
4‖𝑣‖

1
4 , for 𝑛 = 3, (14)

‖𝑣‖ 6 𝑐4‖𝑣𝑥‖, (15)

which hold for ∀𝑣 ∈
∘
𝑊

1

2(Ω), where 𝑐2 = 2
1
4 , 𝑐3 = 2

1
2 , 𝑐4 = 𝜆

− 1
2

1 , 𝜆1 is the first eigenvalue of the
Laplace operator with homogeneous boundary conditions of the first type.

We note for the further use that if the function 𝑣 does not vanish on S, but satisfies the
condition:

∫︀
Ω

𝑣𝑑𝑥 = 0, the same holds for the inequality (13), (14), but with the constants

𝑐2 = 𝑐2(Ω), 𝑐3 = 𝑐3(Ω) depending on the domain.
It results from the inequalities (13)− (15) that

‖𝑣‖4 6 𝑐2𝑐
1
2
4 ‖𝑣𝑥‖, 𝑛 = 2, (16)

‖𝑣‖4 6 𝑐3𝑐
1
4
4 ‖𝑣𝑥‖, 𝑛 = 3. (17)

Taking into account the last inequalities and the relationship (6), we obtain⃦⃦
𝛼𝑅(𝑡,v

𝑘
𝑥)𝑣

𝑘
𝑖

⃦⃦
4
6 𝑐5𝛼𝑅(𝑡,v

𝑘
𝑥)
⃦⃦
v𝑘
𝑥

⃦⃦
6 𝑐5𝑅(𝑡), (18)

where 𝑐5 = 2
1
4 𝑐

1
2
4 when 𝑛 = 2 and 𝑐5 = 2

1
2 𝑐

1
4
4 when 𝑛 = 3.

Applying the Theorem 1′, ch.4, [1], we make sure that there is only one solution of the
problem (9)− (11) in the class of functions W2,1

2 (𝑄𝑇 ), p𝑥 ∈ L2(𝑄𝑇 ).

3. Boundedness of the iteration sequence

Let us further denote ‖|v|‖0𝑡 = ‖v‖L2(𝑄𝑇 ), 𝑄𝑡 = Ω × [0, 𝑡] and introduce an auxiliary norm

[v]2𝜆,𝑡 =
1
2
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖v𝑥(𝜏)‖2 + 𝜈‖|Δv|‖20,𝑡 + 𝜆‖|Δv𝑥|‖20,𝑡.

Let us show that in case of rather large 𝜆 > 0 the sequence {𝑣𝑘}∞𝑘=0, determined by the

iteration process (9)− (11) with any v0 ∈
∘
W

2,1

2 (𝑄𝑇 ) is bounded

[v𝑘]𝜆𝑡 6 𝑐𝑡𝑒
𝜆𝑡 6 𝑐6 ∀𝑡 ∈ [0, 𝑇 ], 𝑘 = 0, 1, . . . . (19)
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Let us assume that v,w ∈
∘
W

2,1

2 (𝑄𝑇 ) and estimate the norm ‖|𝜆𝑣𝑖𝑤𝑥𝑖
|‖0,𝑡. Applying the

inequalities (16)− (18) and the second energetic inequality:

‖𝑣𝑥𝑥‖ 6 𝑐7‖Δ𝑣‖ ∀𝑣 ∈
∘
𝑊

1

2(Ω) ∩
∘
𝑊

2

2(Ω), (20)

we obtain

‖|𝛼𝑣𝑖𝑤𝑥𝑖
|‖0,𝑡 6

(︂
𝑡∫︀
0

∫︀
Ω

|𝛼v|2|w𝑥|2 𝑑𝑥𝑑𝜏
)︂ 1

2

6

(︂
𝑡∫︀
0

‖𝛼v‖24‖w𝑥‖24 𝑑𝜏
)︂ 1

2

6

6 𝑐5

⎛⎝ 𝑡∫︁
0

‖𝛼v𝑥‖2‖w𝑥‖24 𝑑𝜏

⎞⎠
1
2

6 𝑐5𝑅(𝑡)

⎛⎝ 𝑡∫︁
0

‖w𝑥‖24 𝑑𝜏

⎞⎠
1
2

. (21)

To estimate the integral in the right-hand side of the inequality (21), we apply the inequality
(20) and the inequalities (13), (14), in which 𝑐2 and 𝑐3 depend on the domain.
When 𝑛 = 2 we obtain(︂

𝑡∫︀
0

‖w𝑥‖24 𝑑𝜏
)︂ 1

2

6 𝑐2𝑐7

(︂
𝑡∫︀
0

‖w𝑥‖‖Δw‖ 𝑑𝜏
)︂ 1

2

6 𝑐2𝑐7‖|w𝑥|‖
1
2
0,𝑡‖|Δw|‖

1
2
0,𝑡.

Whence, when 𝑛 = 2

‖|𝛼𝑣𝑖𝑤𝑥𝑖
|‖0,𝑡 6 𝑐2𝑐5𝑐7𝑅(𝑡)‖|w𝑥|‖

1
2
0,𝑡‖|Δw|‖

1
2 . (22)

When 𝑛 = 3, we apply the Holder inequality with the indices 4
3
, 4 and obtain(︂

𝑡∫︀
0

‖w𝑥‖24 𝑑𝜏
)︂ 1

2

6 𝑐3𝑐7

(︂
𝑡∫︀
0

‖w𝑥‖
1
2‖Δw‖ 3

2 𝑑𝜏

)︂ 1
2

6 𝑐3𝑐7‖|w𝑥|‖
1
4
0,𝑡‖|Δw|‖

3
4
0,𝑡.

Therefore, we obtain the estimate

‖|𝛼𝑣𝑖𝑤𝑥𝑖
|‖0,𝑡 6 𝑐3𝑐5𝑐7𝑅(𝑡)‖|w𝑥|‖

1
4
0,𝑡‖|Δw|‖

3
4
0,𝑡, when 𝑛 = 3.

It results from the estimates (21), (22) that for any 𝜀 > 0 there is such 𝑐(𝜀) that

‖|𝛼𝑣𝑖𝑤𝑥𝑖
|‖0,𝑡 6 𝜀‖|Δw|‖0,𝑡 + 𝑐(𝜀)‖|w𝑥|‖0,𝑡, (23)

where 𝑐(𝜀) depends on 𝑐𝑖(𝑖 = 2, 3, 4, 7), 𝑅(𝑡), 𝜀. Here when 𝑛 = 2 we used the Jung inequality:

𝑎𝑏 6 1
𝑚
𝜀𝑚1 𝑎

𝑚 + 𝑚−1
𝑚

𝜀
−𝑚−1

𝑚
1 𝑏

𝑚
𝑚−1 , where 𝑚 = 2 when 𝑛 = 2, and when 𝑛 = 3 we assume that

𝑚 = 4
3
.

In the course of proving the convergence of the iteration process (9) − (11) we require to
estimate the integral ‖|(𝛼1𝑣

1
𝑖 −𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡, where 𝛼𝑖 = 𝛼𝑖(𝑡,v
𝑖
𝑥) = 𝑚𝑖𝑛[1, 𝑅(𝑡)/‖v𝑥(𝑡)‖] under

the condition that
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝑡∈[0,𝑇 ]
‖v𝑥(𝑡)‖ 6 𝑐8, ‖|Δv|‖0,𝑇 6 𝑐8. (24)

When 𝑛 = 2 we obtain the estimates

‖|(𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡 6
(︂

𝑡∫︀
0

‖𝛼1v
1 − 𝛼2v

2‖24 ‖v𝑥‖24 𝑑𝜏

)︂ 1
2

6

6
√
2𝑐2𝑐7

(︂
𝑡∫︀
0

‖𝛼1v
1 − 𝛼2v

2‖‖𝛼1v
1
𝑥 − 𝛼2v

2
𝑥‖‖v𝑥‖‖Δv‖ 𝑑𝜏

)︂ 1
2

6

6
√
2𝑐2𝑐7 𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖v𝑥(𝜏)‖

1
2 𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖𝛼1v

1
𝑥 − 𝛼2v

2
𝑥‖

1
2 ·

·
(︂

𝑡∫︀
0

‖𝛼1v
1 − 𝛼2v

2‖ ‖Δv‖ 𝑑𝜏

)︂ 1
2

.

Taking into account the inequality (24) and the relationships
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‖𝛼1v
1
𝑥 − 𝛼2v

2
𝑥‖ = ‖𝑃𝑅v

1
𝑥 − 𝑃𝑅v

2
𝑥‖ 6 ‖v1

𝑥 − v2
𝑥‖ ,

we obtain

‖|(𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡 6

6
√
2𝑐2𝑐7𝑐

1
2
8 𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖v1

𝑥 − v2
𝑥‖

1
2

(︂
𝑡∫︀
0

‖𝛼1v
1
𝑥 − 𝛼2v

2
𝑥‖‖Δv‖ 𝑑𝜏

)︂ 1
2

6

6
√
2𝑐2𝑐7𝑐8 𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖v1

𝑥 − v2
𝑥‖

1
2‖v1

𝑥 − v2
𝑥‖

1
2
0,𝑡. (25)

When 𝑛 = 3 we likewise prove that

‖|(𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡 6 2𝑐3𝑐7𝑐8 𝑣𝑟𝑎𝑖𝑚𝑎𝑥
𝜏∈[0,𝑡]

‖v1
𝑥 − v2

𝑥‖
3
4‖|v1

𝑥 − v2
𝑥|‖

1
4
0,𝑡. (26)

Applying the Jung inequality again and taking into account the inequalities (25), (26) we
obtain that

‖|(𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡 6 𝜀 𝑣𝑟𝑎𝑖𝑚𝑎𝑥
𝜏∈[0,𝑡]

‖v1
𝑥 − v2

𝑥‖+ 𝑐(𝜀)‖|v1
𝑥 − v2

𝑥|‖0,𝑡, (27)

where 𝑐(𝜀) depends on 𝜀 and 𝑐𝑖(𝑖 = 2, 3, 7, 8).
In paper [1] we introduce the operator Δ̃ as the Friedrichs extension of the operator PjΔ,

where PjΔ is a projection from L2(Ω) in
∘
J(Ω) determined on W2

2(Ω) ∩
∘
J(Ω). The operator Δ̃

has the same properties in the subspace
∘
J(Ω) as the operator Δ in the space L2(Ω) (see S4, ch.

2 and S5, ch. 3, [1]).
Let us denote ṽ𝑘 = v𝑘𝑒−𝜆𝑡, multiply the equation (9) by −Δ̃v𝑘+1𝑒−2𝜆𝑡 and integrate it in the

domain 𝑄𝑡. Upon integrating by parts, we obtain the relationship

1
2
‖ṽ𝑘+1

𝑥 (𝑡)‖2 +
𝑡∫︀
0

(︁
𝜈‖Δ̃ṽ𝑘+1‖2 + 𝜆‖ṽ𝑘+1

𝑥 ‖2
)︁
𝑑𝜏 +

𝑡∫︀
0

𝛼𝑘𝑣
𝑘
𝑖 ṽ

𝑘+1
𝑥𝑖

Δṽ𝑘+1 𝑑𝑥𝑑𝜏 =

= −
∫︁
𝑄𝑡

f̃Δ̃v𝑘+1 𝑑𝑥𝑑𝑡, (28)

where f̃ = f𝑒−𝜆𝑡.
Applying the estimate (23) we obtain

𝐽1(𝑡) ≡
⃒⃒⃒⃒
𝑡∫︀
0

𝛼𝑘𝑣
𝑘
𝑖 ṽ

𝑘+1
𝑥𝑖

Δ̃ṽ𝑘+1 𝑑𝑥𝑑𝜏

⃒⃒⃒⃒
6 ‖|𝛼𝑘𝑣

𝑘
𝑖 ṽ

𝑘+1
𝑥𝑖

|‖0,𝑡 ‖|Δ̃ṽ𝑘+1|‖0,𝑡 6

6 𝜀
(︁
‖|Δ̃ṽ𝑘+1|‖0,𝑡 + 𝜀−1𝑐(𝜀)‖|ṽ𝑘+1

𝑥 |‖0,𝑡
)︁
‖|Δ̃ṽ𝑘+1|‖0,𝑡 6

6 𝜈−1𝜀
(︁
𝜈

1
2‖|Δ̃ṽ𝑘+1|‖0,𝑡 + 𝜈

1
2 𝑐(𝜀)𝜀−1‖|ṽ𝑘+1

𝑥 |‖0,𝑡
)︁
‖|𝜈 1

2 Δ̃v𝑘+1|‖0,𝑡 6

6 𝜈−1𝜀
(︁

3
2
𝜈‖|Δ̃v𝑘+1|‖20,𝑡 + 1

2
𝜈−2𝜀𝑐2(𝜀)‖|ṽ𝑘+1

𝑥 |‖20,𝑡
)︁
.

We used here the inequalities (𝑎+ 𝑏)𝑐 6 1
2
(𝑎+ 𝑏)2 + 1

2
𝑐2 6 𝑎2 + 𝑏2 + 1

2
𝑐2. Further we choose

𝜀 = 𝜈/6, 𝜆 > 36𝜈−1𝑐2(𝜀), and obtain:

𝐽1(𝑡) 6
1

4
𝜈‖|Δ̃v𝑘+1|‖20,𝑡 +

1

2
𝜆‖|ṽ𝑘+1

𝑥 |‖20,𝑡. (29)

Taking into account the relationship (28), the inequality (29) and the inequality⃒⃒⃒⃒
⃒∫︀𝑄𝑡

f̃Δ̃ṽ𝑘+1 𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒ 6 1

4
𝜈‖|Δ̃ṽ𝑘+1|‖20,𝑡 + 4𝜈−1‖|̃f|‖20,𝑡,

we obtain
1
2

⃦⃦
ṽ𝑘+1
𝑥 (𝑡)

⃦⃦2
+ 1

2
𝜈‖|Δ̃ṽ𝑘+1|‖20,𝑡 + 1

2
𝜆‖|ṽ𝑘+1

𝑥 |‖20,𝑡 6 4𝜈−1‖|̃f|‖20,𝑡.
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Hence it follows that

𝜈‖|Δ̃ṽ𝑘+1|‖20,𝑡 + 𝜆‖|ṽ𝑘+1
𝑥 |‖20,𝑡 6 8𝜈−1‖|̃f|‖20,𝑡

and
1
2
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]
‖ṽ𝑥(𝜏)‖2 6 4𝜈−1‖|̃f|‖0,𝑡.

Considering further that ‖|̃f|‖0,𝑡 6 ‖|f|‖0,𝑡, ‖|ṽ𝑘+1
𝑥 |‖0,𝑡 ≥ 𝑒−𝜆𝑡‖|v𝑘+1|‖0,𝑡, ‖|Δ̃ṽ𝑘+1|‖0,𝑡 ≥

≥ 𝑒−𝜆𝑡‖|Δ̃ṽ𝑘+1|‖0,𝑡 and 𝑣𝑟𝑎𝑖𝑚𝑎𝑥
𝜏∈[0,𝑡]

‖ṽ𝑥(𝜏)‖ ≥ 𝑒−𝜆𝑡 𝑣𝑟𝑎𝑖𝑚𝑎𝑥
𝜏∈[0,𝑡]

‖v𝑥(𝜏)‖, we obtain the inequality:

[v𝑘+1]2𝜆,𝑡 6 12𝜈−1‖|f|‖20,𝑡 𝑒2𝜆𝑡. (30)

Let us note that in the last inequality the parameter 𝜆 is determined by the values 𝜈, 𝑅(𝑡)

and constants 𝑐𝑖
(︀
𝑖 = 2, 8

)︀
. Therefore, the inequality (19), where 𝑐𝑡 = 2

√
3𝜈− 1

2‖|f|‖0,𝑡 and 𝑐6 =

𝑐𝑇 𝑒
2𝜆𝑇 has been proved.

4. Convergence of the iteration sequence

Let us introduce the notation w𝑘 = v𝑘 − v𝑘−1, 𝛿𝑝𝑘 = 𝑝𝑘 − 𝑝𝑘−1 and note that w𝑘+1 ∈
∘
J(𝑄𝑇 )

satisfies the equation

w𝑘+1
𝑡 − 𝜈Δw𝑘+1 + 𝛼𝑘𝑣

𝑘
𝑖 w

𝑘+1
𝑥𝑖

+ 𝑔𝑟𝑎𝑑 𝛿𝑝𝑘 = −
(︀
𝛼𝑘𝑣

𝑘
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
, (31)

of the homogeneous and boundary conditions.
Let us multiply the equation (31) by −Δ̃w𝑘+1𝑒−2𝜆𝑡 and integrate it by parts. Then we obtain

the relationship:
1
2

⃦⃦
w̃𝑘+1(𝑡)

⃦⃦2
+ 𝜈‖|Δ̃w̃𝑘+1|‖20,𝑡 + 𝜆‖|w̃𝑘+1

𝑥 |‖20,𝑡 +
∫︀
𝑄𝑡

𝛼𝑘𝑣
𝑘
𝑖 w̃

𝑘+1
𝑥𝑖

Δ̃w̃𝑘+1 𝑑𝑥𝑑𝑡 =

=

∫︁
𝑄𝑡

(︀
𝛼𝑘𝑣

𝑘
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
Δ̃w̃𝑘+1 𝑑𝑥𝑑𝑡, (32)

where w̃𝑘+1 = w𝑘+1𝑒−𝜆𝑡.
As we have proved the sequence

{︀
v𝑘

}︀
satisfies the condition (24) if we assume that 𝑐8 = 𝑐6.

Taking into account the inequality (23) we obtain

𝐽2(𝑡) =
⃒⃒⃒∫︀

𝛼𝑘𝑣
𝑘
𝑖 w̃

𝑘+1
𝑥𝑖

Δ̃w̃𝑘+1 𝑑𝑥𝑑𝑡
⃒⃒⃒
6 ‖|𝛼𝑘𝑣

𝑘
𝑖 w̃

𝑘+1
𝑥𝑖

|‖0,𝑡 ‖|Δ̃w𝑘+1|‖0,𝑡 6

6 𝜀𝜈−1
(︁
𝜈

1
2‖|Δw̃𝑘+1|‖0,𝑡 + 𝜈

1
2 𝑐1(𝜀)‖|w̃𝑘+1

𝑥 |‖0,𝑡
)︁
‖|𝜈 1

2 Δ̃w𝑘+1|‖0,𝑡 6

6 2𝜀𝜈−1
(︀
𝜈‖|Δw̃𝑘+1|‖20,𝑡 + 𝜈𝑐21(𝜀)‖|w̃𝑘+1

𝑥 |‖20,𝑡
)︀
. (33)

We apply the inequality (27) to estimate the integral in the right-hand side of the relationship
(32) and obtain

𝐽3(𝑡) =

⃒⃒⃒⃒
⃒∫︀𝑄𝑡

(︀
𝛼𝑘𝑣

𝑘
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
Δ̃w̃𝑘+1 𝑑𝑥𝑑𝜏

⃒⃒⃒⃒
⃒ 6

6
√
2𝜀𝜈− 1

2

(︂
1√
2
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]

⃦⃦
w̃𝑘

𝑥(𝜏)
⃦⃦
+ 1√

2
𝑐2(𝜀)‖|w̃𝑘

𝑥|‖0,𝑡
)︂

‖|𝜈 1
2 Δ̃w̃𝑘+1|‖0,𝑡 6

6 2𝜀𝜈
1
2

(︂
1

2
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]

⃦⃦
w̃𝑘

𝑥(𝜏)
⃦⃦2

+
1

2
𝑐22(𝜀)‖|w̃𝑘|‖20,𝑡

)︂ 1
2

‖|𝜈
1
2 Δ̃w̃𝑘|‖0,𝑡. (34)

Note that here 𝑐1(𝜀), 𝑐2(𝜀) depend on 𝜀, 𝑐𝑖
(︀
𝑖 = 2, 7

)︀
, 𝑅(𝑡).

We choose 𝜆 satisfying the condition

𝜆 > 𝑚𝑎𝑥

[︂
𝜈𝑐21(𝜀),

1

2
𝑐2(𝜀)

]︂
, (35)
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then it results from the relationship (32) and the inequalities (33), (34) that

1

2

⃦⃦
w̃𝑘+1(𝑡)

⃦⃦2
+
(︀
1− 2𝜀𝜈−1

)︀ (︁
𝜈‖|Δ̃w̃𝑘+1|‖20,𝑡 + 𝜆‖|w̃𝑘+1

𝑥 |‖20,𝑡
)︁
6 2𝜀𝜈− 1

2

[︀
w̃𝑘

]︀
𝜆,𝑡

[︀
w̃𝑘+1

]︀
𝜆,𝑡

. (36)

Hence it follows that

𝜈‖|Δ̃w̃𝑘+1|‖20,𝑡 + 𝜆‖|w̃𝑘+1
𝑥 |‖20,𝑡 6 2𝜀𝜈− 1

2 (1− 2𝜀𝜈−1)
[︀
w̃𝑘

]︀
𝜆,𝑡

[︀
w̃𝑘+1

]︀
𝜆,𝑡

;

1
2
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]

⃦⃦
w̃𝑘+1(𝜏)

⃦⃦2
6 2𝜀𝜈− 1

2

[︀
w̃𝑘

]︀
𝜆,𝑡

[︀
w̃𝑘+1

]︀
𝜆,𝑡

.

It results from the last two inequalities that[︀
w̃𝑘+1

]︀
𝜆,𝑡

6 𝑞(𝜀)
[︀
w̃𝑘

]︀
𝜆,𝑡

, (37)

where 𝑞(𝜀) = 2𝜀𝜈− 1
2

(︁
(1 + 2𝜀𝜈−1)

−1
+ 1

)︁
= 4𝜀𝜈− 1

2 (𝜈 + 𝜀) (𝜈 + 2𝜀)−1. Since 𝑙𝑖𝑚
𝜀→0

𝑞(𝜀) = 0, then

in any 𝑞 ∈ (0, 1) we can find such 𝜀 > 0 that 𝑞 ∈ (0, 1) , and find 𝜆 in 𝜀 > 0 which satisfies the
condition (35).

Let us denote w𝑘,𝑙 = v𝑘+𝑙 − v𝑘, w̃𝑘,𝑙 = ṽ𝑘+𝑙 − ṽ𝑘, and considering the inequality (37), we
obtain [︀

w̃𝑘,𝑙
]︀
𝜆,𝑡

6
𝑘+𝑙∑︁
𝑗=𝑘

[︀
w̃𝑗

]︀
𝜆,𝑡

6 (1− 𝑞)−1 [︀w𝑘
]︀
𝜆,𝑡

6 𝑞𝑘−1 (1− 𝑞)−1 [︀w̃1
]︀
𝜆,𝑡

, (38)

where 𝑞 = 𝑞(𝜀). Hence it follows that[︀
w𝑘,𝑙

]︀
𝜆,𝑡

6 𝑒𝜆𝑡𝑞 (1− 𝑞)−1 [︀w1
]︀
𝜆,𝑡

. (39)

We note further that w𝑘,𝑙 satisfies the equation

w𝑘,𝑙
𝑡 − 𝜈Δ̃w𝑘,𝑙 + 𝑔𝑟𝑎𝑑 𝛿𝑝𝑘,𝑙 + 𝛼𝑘+𝑙−1𝑣

𝑘+𝑙−1
𝑖 w𝑘,𝑙

𝑥𝑖
= −

(︀
𝛼𝑘+𝑙−1𝑣

𝑘+𝑙−1
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
, (40)

here 𝑝𝑘𝑙 = 𝑝𝑘+𝑙 − 𝑝𝑘.
Let us multiply the last equality by w𝑘,𝑙

𝑡 .Integrating by parts, we obtain

‖|w𝑘,𝑙
𝑡 |‖20,𝑡 + 1

2

⃦⃦
w𝑘,𝑙

𝑥 (𝑡)
⃦⃦2

= −
∫︀
𝑄𝑡

𝛼𝑘+𝑙−1𝑣
𝑘+𝑙−1
𝑖 w𝑘,𝑙

𝑥𝑖
w𝑘,𝑙

𝑡 𝑑𝑥𝑑𝜏−

−
∫︁
𝑄𝑡

(︀
𝛼𝑘+𝑙−1𝑣

𝑘+𝑙−1
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
w𝑘,𝑙

𝑡 𝑑𝑥𝑑𝜏. (41)

Taking into account the inequalities (23), (27), we obtain

‖|𝛼𝑘+𝑙−1𝑣
𝑘+𝑙−1
𝑖 w𝑘,𝑙

𝑥𝑖
|‖0,𝑡 6 𝜀

(︀
‖|Δw𝑘,𝑙|‖0,𝑡 + 𝜀−1𝑐(𝜀)‖|w𝑘,𝑙

𝑥 |‖0,𝑡
)︀
, (42)

‖|
(︀
𝛼𝑘+𝑙−1𝑣

𝑘+𝑙−1
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
|‖0,𝑡 6 𝜀

(︂
𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝜏∈[0,𝑡]

⃦⃦
w𝑘−1,𝑙(𝜏)

⃦⃦
+ 𝜀−1𝑐(𝜀)‖|w𝑘−1,𝑙

𝑥 |‖0,𝑡
)︂
. (43)

Consider that 𝜆 satisfies the condition (35) and 𝜆 > 𝜀−1𝑐(𝜀), where 𝑐(𝜀) is taken from the in-
equalities (23), (27). Taking into account the equality (41) and the inequalities (42), (43), (39),
we obtain

‖|w𝑘,𝑙
𝑡 |‖0,𝑡 6

√
2𝜀

(︁[︀
w𝑘,𝑙

]︀
𝜆,𝑡

+
[︀
w𝑘−1,𝑙

]︀
𝜆,𝑡

)︁
6 2

√
2𝑞𝑘−2 (1− 𝑞)−1 𝑒𝜆,𝑡

[︀
w1

]︀
𝜆,𝑡

. (44)

Note that the equation (40) is the solution of the Stokes system

−Δw𝑘,𝑙 + 𝑔𝑟𝑎𝑑 𝛿𝑝𝑘,𝑙 = −𝛼𝑘+𝑙−1𝑣
𝑘+𝑙−1
𝑖 v𝑘+𝑙

𝑥𝑖
−

(︀
𝛼𝑘+𝑙−1𝑣

𝑘+𝑙−1
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑘
𝑥𝑖
−w𝑘,𝑙

𝑡 ≡ 𝑔𝑘(𝑡)

almost everywhere on t on [0,T].
By virtue of the known inequality for the Stokes operator(see, for example, [3] ch.1)⃦⃦

w𝑘,𝑙
⃦⃦
w2

2(Ω)
+ ‖𝛿𝑘,𝑙‖w1

2(Ω) 6 𝑐0 ‖𝑔𝑘(𝑡)‖L𝑛
2 (Ω) .
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Therefore, taking into account the estimates (39), (42)−−(44), we obtain

‖|𝑝𝑘,𝑙|‖w1,0
2 (𝑄𝑡)

6 𝑐0‖|𝑔𝑘|‖0,𝑡 6 4𝑐0𝜀𝑞
𝑘−1 (1− 𝑞)−1 𝑒𝜆,𝑡

[︀
w1

]︀
𝜆𝑡
. (45)

It results from the estimates (39), (44), (45) that the sequence
{︀
v𝑘

}︀∞
𝑘=0

converges to the

norm ‖|v𝑡|‖0,𝑇 + [v]𝜆,𝑇 , and the sequence {𝑝𝑘}∞𝑘=1 converges to the norm W1,0
2 (𝑄𝑡). Proceeding

to the limit when 𝑘 → ∞ in the iteration process (9) − (11), we make sure that the functions
v, 𝑝 are the solutions of the problem (8), (2), (3).

Let us denote z𝑘 = v𝑘 − v and 𝛿𝑝𝑘 = 𝑝𝑘 − 𝑝, then it is easy to obtain the following equality
instead of the relationship (31):

z𝑘+1
𝑡 − 𝜈Δz𝑘+1 + 𝛼𝑘𝑣

𝑘
𝑖 z

𝑘+1
𝑥𝑖

=
(︀
𝛼𝑘𝑣

𝑘
𝑖 − 𝛼𝑘−1𝑣

𝑘−1
𝑖

)︀
v𝑥𝑖

,

from which we obtain both the inequality (37) and[︀
z̃𝑘+1

]︀
𝜆,𝑡

6 𝑞 (𝜀)
[︀
z̃𝑘
]︀
𝜆,𝑡
,

where z̃𝑘 = z𝑘𝑒−𝜆𝑡. Taking into account the last inequality we find that[︀
z𝑘
]︀
𝜆,𝑡

6 𝑒𝜆𝑡𝑞𝑘
[︀
z0
]︀
𝜆,𝑡

. (46)

Further instead of the inequality (44), we sequentially obtain the estimate

‖|z𝑘𝑡 |‖0,𝑡 6 2𝜀𝑒𝜆𝑡𝑞𝑘
[︀
z0
]︀
𝜆,𝑡

(47)

and instead of the estimate (45) we obtain the inequality

‖𝛿𝑝𝑘‖W1,0
2 (𝑄𝑡)

6 4𝑐0𝑒
𝜆𝑡𝑞𝑘

[︀
z0
]︀
𝜆,𝑡

. (48)

Let us denote the space W2,1(𝑄𝑇 ) ∩ L∞(0, 𝑇 ;W1
2(Ω)) via V2 with the norm

‖v‖V2
= ‖v‖W2,1(𝑄) + 𝑣𝑟𝑎𝑖𝑚𝑎𝑥

𝑡∈[0,𝑇 ]
‖v𝑥‖ (49)

and note that the norm determined by the formula ‖v‖𝜆,𝑇 = ‖|v𝑡|‖0,𝑇 + [v]𝜆,𝑇 is equivalent to

the norm (49).
As it was specified above, there is 𝜀 for any 𝑞 ∈ (0, 1), and for 𝜀−𝜆, under which the estimates

(46) − (48) hold. Therefore it results from these estimates that⃦⃦
z𝑘
⃦⃦
V2

6 𝑐 (𝑞) 𝑞𝑘
⃦⃦
z0
⃦⃦
V2

, (50)

‖𝛿𝑝𝑘‖W1,0
2 (𝑄𝑡)

6 𝑐 (𝑞) 𝑞𝑘
⃦⃦
z0
⃦⃦
V2

. (51)

Let us show that the solution of the problem (8), (2), (3) is unique. Indeed, assume that
v1, v2; 𝑝1, 𝑝2 are two solutions of this problem. Then w = v1 − v2 is the solution of the
equation

w𝑡 − 𝜈Δw+ 𝛼1𝑣
1
𝑖w𝑥𝑖

+ (𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v

2
𝑥𝑖
= 𝑔𝑟𝑎𝑑 (𝑝1 − 𝑝2),

where 𝛼𝑖 = 𝛼𝑖 (𝑡,v
𝑖
𝑥) = 𝑚𝑖𝑛

[︁
1, 𝑅(𝑡) ‖v𝑖

𝑥‖
−1
]︁
(𝑖 = 1, 2).

The last equation has the form of the equation (31). Repeating estimates similarly to deduc-
ing the inequality (37), we obtain the inequality:

[w̃]𝜆,𝑡 6 𝑞 (𝜀) [w̃]𝜆,𝑡,

where w̃ = w𝑒𝜆𝑡, 𝑞 (𝜀) ∈ (0, 1). Therefore w̃ = 0 and, consequently, v1 ≡ v2, 𝑝1 = 𝑝2.

Thus, we have proved Theorem. Assume that f ∈
∘
J(𝑄𝑇 ), Ω is a bounded domain with the

boundary 𝑆 ∈ 𝐶2, a(𝑥) satisfies the conditions (4); then the problem (8), (2), (3) has a unique
solution v, 𝑝 with v𝑥𝑥, v𝑡, 𝑝𝑥 from L2(𝑄𝑇 ), the sequences

{︀
v𝑘

}︀∞
𝑘=0

,
{︀
𝑝𝑘
}︀∞
𝑘=1

, determined by the

iteration process (9) − (11), where 𝛼𝑘 = 𝑚𝑖𝑛
[︁
1, 𝑅(𝑡)

⃦⃦
v𝑘
𝑥

⃦⃦−1
]︁
, 𝑅(𝑡) is a bounded nondecreasing
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function. The following estimates converge to the solution of the problem (8), (2), (3), and
hold: ⃦⃦

v𝑘 − v
⃦⃦
V2

6 𝑐(𝑞)𝑞𝑘
⃦⃦
v0 − v

⃦⃦
V2

, (52)

‖𝑝𝑘 − 𝑝‖W1,0
2 (𝑄𝑇 ) 6 𝑐(𝑞)𝑞𝑘

⃦⃦
v0 − v

⃦⃦
V2

(53)

with any 𝑞 ∈ (0, 1).

4. Corollaries, remarks, other variants of iteration processes

Remark 2. The proved theorem guarantees the existence of the solution of the problem
(8), (2), (3) and the convergence of the iteration process (9) − (11) at any interval [0, 𝑇 ],

where f ∈
∘
J(𝑄𝑇 ).

Corollary 1. If the solution v*, 𝑝* of the problem (8), (2), (3) satisfies the inequality

‖v*
𝑥‖ 6 𝑅(𝑡) ∀𝑡 ∈ [0, 𝑇1], (54)

then the solution of the problem (1) − −(3) at the interval [0, 𝑇1](𝑇1 6 𝑇 ) also exists at this
interval for v = v*, 𝑝 = 𝑝*.
Indeed, if the inequality (54) holds, then 𝛼 (𝑡,v*

𝑥) = 1, therefore the equations (1) and (8)
coincide.
Corollary 2. If the a priori estimate (5) holds at the interval [0, 𝑇1] for the solution of the
problem (1) − (3) and the problem (8), (2), (3) when 𝑅(𝑡) ≥ 𝑀(𝑡), then at the same interval
there is the solution of the problem (1) − (3), which coincides with the solution of the problem
(8), (2), (3).

Let us note that as a rule (see, for example, Lemma 9, ch. 6, [1]) the a priori es-
timate (5) for the problem (1) − (3) is, obtained from the estimate of the integral

𝐽1 =

⃒⃒⃒⃒∫︀
Ω

𝑣𝑖v𝑥𝑖
Δ̃v 𝑑𝑥

⃒⃒⃒⃒
6 𝑐𝜈− 1

2

⃦⃦⃦
Δ̃v

⃦⃦⃦ 3
2 ‖v𝑥‖

3
2 (in the case 𝑛 = 3). Whereas |𝛼(𝑡,v𝑥)| 6 1 and

does not depend on 𝑥, then one can readily see that the integral

⃒⃒⃒⃒∫︀
Ω

𝛼(𝑡,v𝑥)𝑣𝑖v𝑥𝑖
Δ̃v 𝑑𝑥

⃒⃒⃒⃒
has the

same estimate. Therefore the a priori estimate for the problem (1) − (3) obtained also holds
for the problem (8), (2), (3).
Remark 3. Taking into account the corollaries 1, 2 it is easy to construct an iteration process,
converging to the solution of the problem (1) − (3) without application of the estimate of the
form (5) under the condition that the solution of the problem (1) − (3) does exist and satisfies
the limit of the form (5). Indeed, we set some positive, bounded and nondecreasing function
𝑅1(𝑡) and solve the problem (8), (2), (3) when 𝑅(𝑡) = 𝑅1(𝑡). Further we verify the condition
(54) when 𝑅(𝑡) = 𝑅1(𝑡). If the condition holds, then the problem (1) − (3) is solved. If the
condition does not hold, then we assume that 𝑅2(𝑡) = 𝑅1(𝑡) + 𝐾 (K is the parameter of the
method) and repeat the iteration process. It is clear that after the finite number of steps the
condition (54) holds and, consequently, the problem (1) − (3) is solved.
Remark 4. If the condition (5) holds, then ‖v(𝑡)‖4 6 𝑐𝑀(𝑡) as it results from the inequalities
(16), (17). Analysing the proof of the theorem it is easy to see that the statement of the
theorem and the remarks specified above hold if we determine 𝛼𝑘 by the formula

𝛼𝑘 = 𝛼𝑘(𝑡,v
𝑘) = 𝑚𝑖𝑛

[︀
1, 𝑅(𝑡)/

⃦⃦
v𝑘

⃦⃦
4

]︀
. (55)

In this case 𝛼𝑘v
𝑘 = 𝑃v𝑘 is a projection of the vector v𝑘 on the sphere {v ∈ 𝐿4(Ω) : ‖v‖4 6 𝑅(𝑡)}.

The key inequalities in the proof of the Theorem are the inequalities (23), (27), which proof
is even simplified in this case. For example, the inequality (23) is obtained from the inequality
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(21), which in this case can be rewritten in the form:

‖|𝛼𝑣𝑖w𝑥𝑖
|‖0,𝑡 6

⎛⎝ 𝑡∫︁
0

‖𝛼v‖24 ‖w𝑥‖24 𝑑𝜏

⎞⎠
1
2

6 𝑅(𝑡)

⎛⎝ 𝑡∫︁
0

‖w𝑥‖24 𝑑𝜏

⎞⎠
1
2

. (56)

Taking into account the fact that in case of the estimate of the integral
𝑡∫︀
0

‖w𝑥‖24 𝑑𝜏 the a priori

estimate is not used. It is easy to see that the inequality (23) holds.
In the course of proving the inequalities (27) we use the fact that ‖𝛼1v

1 − 𝛼2v
2‖4 6

6 ‖v1 − v2‖4, then ‖| (𝛼1𝑣
1
𝑖 − 𝛼2𝑣

2
𝑖 )v𝑥𝑖

|‖0,𝑡 6
(︂

𝑡∫︀
0

‖v1 − v2‖24 ‖v𝑥‖24 𝑑𝜏

)︂ 1
2

. Simplifying the cal-

culations in the course of proving the inequalities (27), we make sure that it holds when 𝛼𝑘 is
determined by the formula (55).
Remark 5. In the case when the uniform estimate is known

𝑅1(𝑡) 6 |v(𝑥, 𝑡)| 6 𝑅2(𝑡) ∀ (𝑥, 𝑡) ∈ 𝑄𝑡 (57)

we consider instead of the equation (8) the equation

v𝑡 − 𝜈Δv+ 𝑃𝑣𝑖v𝑥𝑖
+ 𝑔𝑟𝑎𝑑 𝑝 = f, (58)

where

𝑃𝑣𝑖(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
𝑅1(𝑡), if 𝑣𝑖(𝑥, 𝑡) < 𝑅1(𝑡),

𝑣𝑖(𝑥, 𝑡), if 𝑅1(𝑡) 6 𝑣𝑖(𝑥, 𝑡) 6 𝑅2(𝑡),

𝑅2(𝑡), if 𝑣𝑖(𝑥, 𝑡) > 𝑅2(𝑡)

(59)

and we substitute the equation (9) by the equation

v𝑘+1
𝑡 − 𝜈Δv𝑘+1 + 𝑃𝑣𝑘𝑖 v

𝑘+1
𝑥𝑖

+ 𝑔𝑟𝑎𝑑 𝑝𝑘+1 = f. (9′)

One can readily see that the statements of the Theorem and also corollaries and remarks,
which are similar to the corollaries 1, 2 and remarks 2, 3 hold for the problem (58), (2), (3).
The sequence

{︀
v𝑘

}︀
is determined here by the iteration process (9′), (10), (11).

Indeed, the inequality (23) obviously holds when 𝜀 = 0, 𝑐(𝜀) = 𝑅2(𝑡). The validity of the
inequality of the form (27) can be easily verified if we take into account that |𝑃𝑣1𝑖 − 𝑃𝑣2𝑖 | 6
|𝑣1𝑖 − 𝑣2𝑖 |
∀ (𝑥, 𝜏) ∈ 𝑄𝑡, therefore ‖𝑃v1 − 𝑃v2‖4 6 ‖v1 − v2‖4.
In conclusion we note that the present paper allows one to reduce the solution of the non-

linear Navier-Stokes system to the solution of the sequence of linear problems. There are
different approaches to the solution of linear problems. We can find among them an approach
based on gradient methods of minimisation of the functional 𝐽(v) =

∫︀
𝑄𝑇

|𝑑𝑖𝑣 v|2 𝑑𝑥𝑑𝑡, in which

the pressure 𝑝 is considered as control (see, for example, [4], [5]). In paper [6] we introduce
the Theorem on convergence of one of the variants of the gradient method for the solution of
the non-linear Navier-Stokes problem. We have constructed an iteration method of the fastest
descent for the solution of a linear problem. The method parameters are found explicitly, which
makes the preliminary linearisation of the problem expedient.
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