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NONLINEAR HYPERBOLIC DIFFERENTIAL EQUATIONS

RELATED WITH THE KLEIN-GORDON EQUATION BY

DIFFERENTIAL SUBSTITUTIONS

M.N. KUZNETSOVA

Abstract. We present a complete classification of nonlinear hyperbolic differential equa-
tions in two independent variables 𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦) reduced to the Klein- Gordon equation
𝑣𝑥𝑦 = 𝐹 (𝑣) by the substitutions of the special form 𝑣 = 𝜙(𝑢, 𝑢𝑥).
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1. Introduction

In the present paper we consider nonlinear hyperbolic equations of the form

𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦). (1.1)

The differential substitutions are widely used for studying the integrability of nonlinear dif-
ferential equations. Sometimes, by the help of differential substitutions one succeeds to get
a solution to an equation from a solution to another well-studied equation. The distinctive
feature of the integrability of an equation is the existence of the symmetries. In the paper [1],
it was proven that the nonlinear Klein-Gordon equation

𝑣𝑥𝑦 = 𝐹 (𝑣) (1.2)

possesses generalized symmetries if and only if it is equivalent either to Liouville equation

𝑣𝑥𝑦 = exp 𝑣, (1.3)

or to Sine-Gordon equation
𝑣𝑥𝑦 = sin 𝑣, (1.4)

or to Tzitzeica equation
𝑣𝑥𝑦 = exp 𝑣 + exp(−2𝑣). (1.5)

In the present paper we describe a class of nonlinear hyperbolic equations related to the
Klein-Gordon equation by differential substitutions of a special form. In order to formulate the
rigorous statements we mention the following. Since by 𝑢 we denote any solution to equation
(1.1), all the mixed derivatives are expressed via

𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑦𝑦, ... (1.6)

due to equation (1.1) and its differential consequences and are excluded from all the expressions.
At that variables (1.6) are regarded as independent ones since they can not be expressed one
via another by employing equation (1.1) and its differential consequences.
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Definition 1. The relation

𝑣 = Φ

(︂
𝑢,
𝜕𝑢

𝜕𝑥
, ...,

𝜕𝑛𝑢

𝜕𝑥𝑛
,
𝜕𝑢

𝜕𝑦
, ...,

𝜕𝑚𝑢

𝜕𝑦𝑚

)︂
(1.7)

is called a differential substitution from equation (1.1) into the equation

𝑣𝑥𝑦 = 𝑔(𝑣, 𝑣𝑥, 𝑣𝑦) (1.8)

if for each solution 𝑢(𝑥, 𝑦) of equation (1.1) function (1.7) satisfies equation (1.8).

Before we proceed to the detailed description of the essence of this work, we mention briefly
some publications devoted to the differential substitutions. As it is known ( [2–4]), one of the
integrability criteria for a nonlinear equations is the breaking on both sides the sequence of
Laplace invariants of its linearization. Such equations are usually referred as the equations
of Liouville type. In the works [5, 6] there were described the properties of the generalized
Laplace invariants for nonlinear equations possessing differential substitutions. One of the
most complete surveys devoted to the Liouville type equations is the work [7]. One should
also mention the work [8], which was devoted to nonlinear hyperbolic equations possessing
symmetries of the third order. We mention here exactly these works also because they contain
a rather great number of the examples of the differential substitutions relating pairs of nonlinear
equations.

The differential substitutions can be partial cases of Bäcklund transformation (see, for in-
stance, [9]). In the paper [10] they described the pairs of nonlinear equations like (1.1), whose
linearization are related by the first and second order Laplace transformation, and for each such
pair the corresponding Bäcklund transformation was constructed.

The aim of the present work is to describe all nonlinear hyperbolic equations (1.1) which can
be reduced by the differential substitutions

𝑣 = 𝜙(𝑢, 𝑢𝑥) (1.9)

to Klein-Gordon equation (1.2). In other words, the problem is to determine the functions 𝑓 ,
𝜙, and 𝐹 .

The complete list of the required equations and differential substitutions is given in the
second section. The third section is devoted to the proof of the main result. The last section is
devoted to a in some sense “inverse” problem, which is the description of equations (1.2) being
reduced to equation (1.1) by the differential substitutions

𝑢 = 𝜓(𝑣, 𝑣𝑦) (1.10)

Moreover, for partial pairs of the equations we construct Bäcklund transformations relating
their solutions.

2. Classification of the equations being reduced to Klein-Gordon equation

The main result of the work is the following statement.
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Theorem 1. Let equation (1.1) be reduced to Klein-Gordon equation (1.2) by differential
substitution (1.9). Then equations (1.1), (1.2) and substitution (1.9) up to point transforma-
tions 𝑢→ 𝜃(𝑢), 𝑣 → 𝜅(𝑣), 𝑥→ 𝜉𝑥, 𝑦 → 𝜂𝑦, where 𝜉 and 𝜂 are constant cast into the form

𝑢𝑥𝑦 = 𝑢𝐹 ′(︀𝐹−1(𝑢𝑥)
)︀
, 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑣 = 𝐹−1(𝑢𝑥); (2.1)

𝑢𝑥𝑦 = sin𝑢
√︀

1 − 𝑢2𝑥, 𝑣𝑥𝑦 = sin 𝑣, 𝑣 = 𝑢+ arcsin𝑢𝑥; (2.2)

𝑢𝑥𝑦 = exp𝑢
√︀

1 + 𝑢2𝑥, 𝑣𝑥𝑦 = exp 𝑣, 𝑣 = 𝑢+ ln
(︁
𝑢𝑥 +

√︀
1 + 𝑢2𝑥

)︁
; (2.3)

𝑢𝑥𝑦 =

√︀
2𝑢𝑦

𝑠′(𝑢𝑥)
, 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑣 = 𝑠(𝑢𝑥); (2.4)

𝑢𝑥𝑦 =
𝑐− 𝑢𝑦𝜙𝑢(𝑢, 𝑢𝑥)

𝜙𝑢𝑥(𝑢, 𝑢𝑥)
, 𝑣𝑥𝑦 = 0, 𝑣 = 𝜙(𝑢, 𝑢𝑥); (2.5)

𝑢𝑥𝑦 = 𝑢𝑥
(︀
𝜓(𝑢, 𝑢𝑦) − 𝑢𝑦𝛼

′(𝑢)
)︀
, 𝑣𝑥𝑦 = exp 𝑣, 𝑣 = 𝛼(𝑢) + ln𝑢𝑥; (2.6)

𝑢𝑥𝑦 = 𝑢𝑥
(︀
𝜓(𝑢, 𝑢𝑦) − 𝑢𝑦𝛼

′(𝑢)
)︀
, 𝑣𝑥𝑦 = 0, 𝑣 = 𝛼(𝑢) + ln𝑢𝑥; (2.7)

𝑢𝑥𝑦 = 𝑢, 𝑣𝑥𝑦 = 𝑣, 𝑣 = 𝑐1𝑢+ 𝑐2𝑢𝑥; (2.8)

𝑢𝑥𝑦 = 𝛿(𝑢𝑦), 𝑣𝑥𝑦 = 1, 𝑣 = 𝑐1𝑢+ 𝑐2𝑢𝑥. (2.9)

Here 𝑐 is an arbitrary constant, 𝑐1 and 𝑐2 are so that (𝑐1, 𝑐2) ̸= (0, 0), the function 𝜓 satisfies the
condition (𝜓𝑢, 𝜓𝑢𝑦) ̸= (0, 0). In case (2.4) the functions 𝑠 and 𝐹 are connected by the relation

𝑠′(𝑢𝑥)𝐹
(︀
𝑠(𝑢𝑥)

)︀
= 1; in case (2.6) the functions 𝜓 and 𝛼 satisfy the identity

𝜓𝑢 + 𝜓𝜓𝑢𝑦 − 𝛼′𝑢𝑦𝜓𝑢𝑦 = exp𝛼,

and in case (2.7) to the identity

𝜓𝑢 + 𝜓𝜓𝑢𝑦 − 𝛼′𝑢𝑦𝜓𝑢𝑦 = 0;

in case (2.9) the function 𝛿 is a solution to the ordinary differential equation 𝛿(𝑐1 + 𝑐2𝛿
′) = 1.

Let us dwell on in detail on some of the obtained equations.
Case (2.1). As 𝐹 (𝑣) = exp 𝑣, we get the equation

𝑢𝑥𝑦 = 𝑢𝑢𝑥, (2.10)

which is reduced by the differential substitution 𝑣 = ln𝑢𝑥 to Liouville equation (1.3). The
third order symmetries, integrals and the general solution to equation (2.10) can be found, for
instance, in [8].

As 𝐹 (𝑣) = sin 𝑣, we obtain the equation

𝑢𝑥𝑦 = 𝑢
√︀

1 − 𝑢2𝑥, (2.11)

being reduced by the differential substitution 𝑣 = arcsin𝑢𝑥 to Sine-Gordon equation (1.4). The
symmetries of equation (2.11) are given in [8].

As 𝐹 (𝑣) = exp 𝑣 + exp(−2𝑣), by point changes we arrive at the equations

𝑢𝑥𝑦 = 3𝑢𝑏(𝑢𝑥). (2.12)

Here the function 𝑏 is determined by the condition (2𝑢𝑥 + 𝑏)2(𝑢𝑥 − 𝑏) = 1. The differential
substitution 𝑣 = −1

2
ln
(︀
𝑢𝑥 − 𝑏(𝑢𝑥)

)︀
, reducing equation (2.12) to Tzitzeica equation (1.5), is

known (see [7]).

Case (2.2). The equation 𝑢𝑥𝑦 = sin𝑢
√︀

1 − 𝑢2𝑥 possesses third order symmetries [8].

Case (2.3). The integrals and general solution to the equation 𝑢𝑥𝑦 = exp𝑢
√︀

1 + 𝑢2𝑥 can be
found, for instance, in [8].

Case (2.4). As 𝐹 (𝑣) = 𝑣, we obtain a known Gürses equation

𝑢𝑥𝑦 = 2
√
𝑢𝑥𝑢𝑦, (2.13)
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being reduced by the substitution 𝑣 =
√

2𝑢𝑥 to Helmholtz equation 𝑣𝑥𝑦 = 𝑣. Equation (2.13)
possesses third order symmetries (see [8]).

As 𝐹 (𝑣) = sin 𝑣, we arrive at the 𝑆–integrable equation [8]

𝑢𝑥𝑦 =
√︀

2𝑢𝑦
√︀

1 − 𝑢2𝑥, (2.14)

being reduced by the substitution 𝑣 = arccos(−𝑢𝑥) to Sine-Gordon equation (1.4).
If 𝐹 (𝑣) = exp 𝑣, then the equation

𝑢𝑥𝑦 = 𝑢𝑥
√︀

2𝑢𝑦 (2.15)

is reduced by the transformation 𝑣 = ln𝑢𝑥 to Liouville equation (1.3). The symmetries, inte-
grals, and general solution for (2.15) can be found in [8].

The equation obtained as 𝐹 (𝑣) = exp 𝑣+ exp(−2𝑣), which after point change can be written
as

𝑢𝑥𝑦 =
√︀

2𝑢𝑦𝑎(𝑢𝑥), (2.16)

is also of interest. Here the function 𝑎 is determined by the relation 2(𝑎+ 2𝑢𝑥)2(𝑎− 𝑢𝑥) = 27.
The differential substitution

𝑣 = −1

2
ln

(︂
2𝑎(𝑢𝑥) − 2𝑢𝑥

3

)︂
transforms the solution to equation (2.16) to that of Tzitzeica equation (1.5). It should be
noticed here that equation (2.16) and the last substitution are given in the work [11]. This
substitution allows one to construct generalized symmetries of equation (2.16).

Case (2.5). The equation 𝑢𝑥𝑦 = 𝑐−𝑢𝑦𝜙𝑢(𝑢,𝑢𝑥)

𝜙𝑢𝑥 (𝑢,𝑢𝑥)
as 𝑐 = 0 possesses 𝑥-integral 𝑊 = 𝜙(𝑢, 𝑢𝑥); as

𝑐 ̸= 0 it does 𝑥-integral 𝑊 = 𝜙𝑢𝑥𝑢𝑥𝑥 + 𝜙𝑢𝑢𝑥.
Case (2.6). After the change 𝑣 → 𝑣 + ln 2𝑐2, 𝛼 → 𝛼 + ln 2𝑐2 as

𝜓 = 𝑐1 exp(−𝑢) + 𝑐2 exp(𝑢) + 𝑢𝑦, 𝛼 = 𝑢 we obtain the equation

𝑢𝑥𝑦 = 𝑢𝑥
(︀
𝑐1 exp(−𝑢) + 𝑐2 exp(𝑢)

)︀
, (2.17)

which is reduced by the substitution 𝑣 = 𝑢+ ln𝑢𝑥 to the Liouvill equation 𝑣𝑥𝑦 = 2𝑐2 exp 𝑣. The
symmetries, integrals, and general solution for (2.17) can be found in [8].

Next, as 𝛼(𝑢) = 𝑢, we arrive at the equation

𝑢𝑥𝑦 = 𝑢𝑥
exp(𝑢) − 𝜓𝑢(𝑢, 𝑢𝑦)

𝜓𝑢𝑦(𝑢, 𝑢𝑦)

with 𝑦-integral �̄� = 𝜓(𝑢, 𝑢𝑦) − exp𝑢.
In a general case the first equation (2.6) possesses 𝑦-integral

�̄� = 𝜓𝑢𝑦𝑢𝑦𝑦 + 𝜓𝑢𝑢𝑦 −
𝜓2

2

and 𝑥-integral

𝑊 =
𝑢𝑥𝑥𝑥
𝑢𝑥

− 3

2

𝑢2𝑥𝑥
𝑢2𝑥

+

(︂
𝛼′′(𝑢) − 𝛼′2(𝑢)

2

)︂
𝑢2𝑥.

Case (2.7). Equation (2.7) possesses the integrals

𝑊 =
𝑢𝑥𝑥
𝑢𝑥

+ 𝛼′(𝑢)𝑢𝑥, �̄� = 𝜓(𝑢, 𝑢𝑦).

All aforementioned equations possessing the integrals are contained in the list of Liouville type
equation given in the survey [7].
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3. Proof of the main result

In order to prove Theorem 1 we make the following transformations. We substitute function
(1.9) into equation (1.2), taking into consideration formula (1.1),(︀

𝜙𝑢𝑢𝑢𝑥 + 𝜙𝑢𝑢𝑥𝑢𝑥𝑥
)︀
𝑢𝑦 + 𝜙𝑢𝑓 +

(︀
𝜙𝑢𝑥𝑢𝑢𝑥 + 𝜙𝑢𝑥𝑢𝑥𝑢𝑥𝑥

)︀
𝑓+

+𝜙𝑢𝑥

(︀
𝑓𝑢𝑢𝑥 + 𝑓𝑢𝑥𝑢𝑥𝑥 + 𝑓𝑢𝑦𝑓

)︀
= 𝐹 (𝜙).

(3.1)

Since the variables 𝑢, 𝑢𝑥, 𝑢𝑦, and 𝑢𝑥𝑥 are independent and all the function appearing relation
(3.1) are independent of 𝑢𝑥𝑥, the last identity is equivalent to the following system

𝜙𝑢𝑢𝑥𝑢𝑦 + 𝜙𝑢𝑥𝑢𝑥𝑓 + 𝜙𝑢𝑥𝑓𝑢𝑥 = 0,
𝜙𝑢𝑢𝑢𝑥𝑢𝑦 + 𝜙𝑢𝑓 + 𝜙𝑢𝑢𝑥𝑢𝑥𝑓 + 𝜙𝑢𝑥𝑓𝑢𝑢𝑥 + 𝜙𝑢𝑥𝑓𝑢𝑦𝑓 = 𝐹 (𝜙).

(3.2)

Integrating the first equation (3.2) w.r.t. the variable 𝑢𝑥, we arrive at the system

𝜙𝑢𝑢𝑦 + 𝜙𝑢𝑥𝑓 = 𝜓(𝑢, 𝑢𝑦), 𝑢𝑥𝜓𝑢 +
(︀
𝜙𝑢 + 𝜙𝑢𝑥𝑓𝑢𝑦

)︀
𝑓 = 𝐹 (𝜙). (3.3)

Thus, original problem (1.1), (1.2), (1.9) is reduced to the studying of system (3.3). By the
first relation in (3.3) we determine the right hand side of equation (1.1),

𝑓 =
𝜓 − 𝑢𝑦𝜙𝑢

𝜙𝑢𝑥

. (3.4)

We substitute function (3.4) into the second identity in (3.3),

𝑢𝑥𝜙𝑢𝑥𝜓𝑢 + 𝜓𝜓𝑢𝑦 − 𝑢𝑦𝜓𝑢𝑦𝜙𝑢 = 𝜙𝑢𝑥𝐹 (𝜙). (3.5)

We apply the operator 𝜕2

𝜕𝑢𝑥𝜕𝑢𝑦
to both sides of relation (3.5)

𝜓𝑢𝑢𝑦

(︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

− 𝜙𝑢𝑢𝑥

(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

= 0. (3.6)

Identity (3.6) is valid if one of the following conditions

𝜓𝑢𝑢𝑦 = 0, 𝜙𝑢𝑢𝑥 = 0, (3.7)

𝜓𝑢𝑢𝑦 = 0,
(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

= 0, (3.8)

𝜙𝑢𝑢𝑥 = 0,
(︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

= 0, (3.9)

𝜓𝑢𝑢𝑦𝜙𝑢𝑢𝑥 ̸= 0 (3.10)

holds true.
We observe that if

(︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

= 0 and
(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

= 0, then

𝜙 = 𝑐1(𝑢) ln𝑢𝑥 + 𝑐3(𝑢), 𝜓 = 𝑐2(𝑢) ln𝑢𝑦 + 𝑐4(𝑢).

It is easy to see that this case is partial for (3.8), (3.10).
Let us show now that the requirement (3.10) leads one to condition (3.7). Indeed, in accor-

dance with relation (3.6) we have (︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

𝜙𝑢𝑢𝑥

=

(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

𝜓𝑢𝑢𝑦

. (3.11)

Since the variables 𝑢𝑥, 𝑢𝑦 are independent, identity (3.11) is equivalent to the system(︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

𝜙𝑢𝑢𝑥

= 𝛼(𝑢),

(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

𝜓𝑢𝑢𝑦

= 𝛼(𝑢).

Let 𝛼 ̸= 0, then (︀
𝜙𝑢𝑥𝑢𝑥

)︀
𝑢𝑥

= 𝛼(𝑢)𝜙𝑢𝑢𝑥 ,
(︀
𝜓𝑢𝑦𝑢𝑦

)︀
𝑢𝑦

= 𝛼(𝑢)𝜓𝑢𝑢𝑦 . (3.12)
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Integrating each equation in system (3.12), we determine the functions 𝜙 and 𝜓,

𝜙 = 𝜆(𝑢) + ℎ
(︀
𝜅(𝑢)𝑢𝑥

)︀
, 𝜓 = 𝜇(𝑢) +𝐻

(︀
𝜅(𝑢)𝑢𝑦

)︀
. (3.13)

Requirement (3.10) implies 𝜅′ ̸= 0. Let us return now to formulas (1.1) and (3.4) which give

𝑢𝑥𝑦 =
𝜓 − 𝑢𝑦𝜙𝑢

𝜙𝑢𝑥

or

𝜙𝑢𝑥𝑢𝑥𝑦 + 𝑢𝑦𝜙𝑢 = 𝜓.

The last relation means that �̄�(𝜙) = 𝜓, where �̄� denotes the operator of total differentiation
w.r.t. the variable 𝑦. Substituting here functions (3.13), we obtain

�̄�
(︁
𝜆(𝑢) + ℎ

(︀
𝜅(𝑢)𝑢𝑥

)︀)︁
= 𝜇(𝑢) +𝐻

(︀
𝜅(𝑢)𝑢𝑦

)︀
.

In the last identity we make the point change∫︁
𝜅(𝑢)𝑑𝑢 = 𝑈,

which casts it into the form

�̄�
(︀
𝜒(𝑈) + ℎ(𝑈𝑥)

)︀
= 𝜃(𝑈) +𝐻(𝑈𝑦).

Introducing the functions 𝜑(𝑈,𝑈𝑥) = 𝜒(𝑈) + ℎ(𝑈𝑥), Ψ(𝑈,𝑈𝑦) = 𝜃(𝑈) + 𝐻(𝑈𝑦), we reduce this
case to case (3.7).

If 𝛼 = 0, relations (3.12) give

𝜙 = ℎ(𝑢) ln𝑢𝑥 + 𝜖(𝑢), 𝜓 = 𝐻(𝑢) ln𝑢𝑦 + 𝛿(𝑢). (3.14)

We substitute functions (3.14) into identity (3.5),(︀
𝐻 ′ ln𝑢𝑦 + 𝛿′

)︀
ℎ+

(︀
𝐻 ln𝑢𝑦 + 𝛿

)︀𝐻
𝑢𝑦

−
(︀
ℎ′ ln𝑢𝑥 + 𝜖′

)︀
𝐻 =

ℎ

𝑢𝑥
𝐹 (ℎ ln𝑢𝑥 + 𝜖).

It follows 𝐻 = 0 that contradicts to the condition 𝜓𝑢𝑢𝑦 ̸= 0. Case (3.10) is completed.
Let us proceed to the description of equations (1.1), (1.2) and the differential substitutions

relating their solutions in cases (3.7) – (3.9). The following statement holds true.

Lemma 1. Suppose condition (3.7). Then equations (1.1), (1.2) and substitution (1.9) up
to the point transformations 𝑢→ 𝜃(𝑢), 𝑣 → 𝜅(𝑣), 𝑥→ 𝜉𝑥, 𝑦 → 𝜂𝑦, where 𝜉 and 𝜂 are constant,
cast into the form

𝑢𝑥𝑦 =
𝑐1 − 𝑢𝑦𝑞

′(𝑢)

𝑠′(𝑢𝑥)
, 𝑣𝑥𝑦 = 0, 𝑣 = 𝑞(𝑢) + 𝑠(𝑢𝑥); (3.15)

𝑢𝑥𝑦 = 𝑢𝑥

(︂
𝑔(𝑢) − 𝑢𝑦

𝑔′′(𝑢)

𝑔′(𝑢)

)︂
, 𝑣𝑥𝑦 = exp 𝑣, 𝑣 = ln 𝑔′(𝑢) + ln𝑢𝑥; (3.16)

𝑢𝑥𝑦 = 𝑢𝐹 ′(︀𝐹−1(𝑢𝑥)
)︀
, 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑣 = 𝐹−1(𝑢𝑥); (3.17)

𝑢𝑥𝑦 = 𝑢, 𝑣𝑥𝑦 = 𝑣, 𝑣 = 𝑐1𝑢+ 𝑐2𝑢𝑥, ; (3.18)

𝑢𝑥𝑦 = sin𝑢
√︀

1 − 𝑢2𝑥, 𝑣𝑥𝑦 = sin 𝑣, 𝑣 = 𝑢+ arcsin𝑢𝑥; (3.19)

𝑢𝑥𝑦 = 𝑢𝑥
(︀
𝑐1 exp(−𝑢) + 𝑐2 exp(𝑢)

)︀
, 𝑣𝑥𝑦 = 2𝑐2 exp 𝑣, 𝑣 = 𝑢+ ln𝑢𝑥; (3.20)

𝑢𝑥𝑦 = exp(𝑢)
√︀

1 + 𝑢2𝑥, 𝑣𝑥𝑦 = exp(𝑣), 𝑣 = 𝑢+ ln
(︁
𝑢𝑥 +

√︀
1 + 𝑢2𝑥

)︁
; (3.21)

𝑢𝑥𝑦 =

√︀
2𝑢𝑦

𝑆 ′(𝑢𝑥)
, 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑣 = 𝑆(𝑢𝑥); (3.22)
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𝑢𝑥𝑦 = 0, 𝑣𝑥𝑦 = 0, 𝑣 = 𝑢+ 𝑠(𝑢𝑥); (3.23)

𝑢𝑥𝑦 =

(︀
𝑝(𝑢𝑦) − 𝑐𝑢𝑦

)︀
𝑐3

𝑐4
, 𝑣𝑥𝑦 = 𝑐3, 𝑣 = 𝑐𝑢+

𝑐4
𝑐3
𝑢𝑥. (3.24)

Here 𝑐1, 𝑐2 are arbitrary, and 𝑐, 𝑐3, 𝑐4 are non-zero constant. The functions 𝑆 and 𝑝 satisfy
the equations 𝑆 ′(𝑢𝑥)𝐹

(︀
𝑆(𝑢𝑥)

)︀
= 1 and 𝑝′(𝑢𝑦)

(︀
𝑝(𝑢𝑦) − 𝑐𝑢𝑦

)︀
= 𝑐4, respectively.

Proof. Suppose condition (3.7), then

𝜙 = 𝑞(𝑢) + 𝑠(𝑢𝑥), 𝜓 = 𝑔(𝑢) + 𝑝(𝑢𝑦). (3.25)

We substitute functions (3.25) into relation (3.5),

𝑢𝑥𝑠
′(𝑢𝑥)𝑔′(𝑢) +

(︀
𝑔(𝑢) + 𝑝(𝑢𝑦)

)︀
𝑝′(𝑢𝑦) − 𝑢𝑦𝑝

′(𝑢𝑦)𝑞
′(𝑢) = 𝑠′(𝑢𝑥)𝐹

(︀
𝑞(𝑢) + 𝑠(𝑢𝑥)

)︀
. (3.26)

Due to the independence of 𝑢𝑥 and 𝑢𝑦, identity (3.26) is equivalent to the system

𝑝′(𝑢𝑦)
(︀
𝑢𝑦𝑞

′(𝑢) − 𝑔(𝑢) − 𝑝(𝑢𝑦)
)︀

= 𝜆(𝑢), 𝑠′(𝑢𝑥)
(︀
𝑢𝑥𝑔

′(𝑢) − 𝐹 (𝑞(𝑢) + 𝑠(𝑢𝑥))
)︀

= 𝜆(𝑢). (3.27)

Let us consider the case

𝑞′′(𝑢) ̸= 0. (3.28)

It follows from condition (3.28) that 𝑞′(𝑢) ̸= 0. Let

𝜆(𝑢) = 0, (3.29)

then 𝑝(𝑢𝑦) = 𝑐3, where 𝑐3 is an arbitrary constant. Moreover, addressing the second identity in
(3.27), we have

𝐹
(︀
𝑞(𝑢) + 𝑠(𝑢𝑥)

)︀
= 𝑢𝑥𝑔

′(𝑢). (3.30)

We differentiate the last identity w.r.t. the variables 𝑢 and 𝑢𝑥,

𝐹 ′(︀𝑞(𝑢) + 𝑠(𝑢𝑥)
)︀
𝑞′(𝑢) = 𝑢𝑥𝑔

′′(𝑢), 𝐹 ′(︀𝑞(𝑢) + 𝑠(𝑢𝑥)
)︀
𝑠′(𝑢𝑥) = 𝑔′(𝑢). (3.31)

As 𝐹 ′ = 0, employing relations (3.31), we get that 𝑔′(𝑢) = 0 and 𝐹 = 0. Then 𝜓 = 𝑐4 and
𝜙 = 𝑞(𝑢) + 𝑠(𝑢𝑥), and we arrive to equations (3.15).

If 𝐹 ′ ̸= 0, then it follows from (3.31) that

1

𝑠′(𝑢𝑥)𝑢𝑥
=

𝑔′′(𝑢)

𝑞′(𝑢)𝑔′(𝑢)
= 𝑐 ̸= 0.

It yields

𝑠(𝑢𝑥) =
1

𝑐
ln(𝑐1𝑢𝑥), 𝑔′(𝑢) = exp

(︀
𝑐𝑞(𝑢) + 𝑐2

)︀
.

We substitute the functions 𝑠 and 𝑔′ into formula (3.30),

𝐹
(︀
𝑞(𝑢) + 𝑠(𝑢𝑥)

)︀
= 𝑢𝑥 exp

(︀
𝑐𝑞(𝑢) + 𝑐2

)︀
=

= exp

(︂
𝑐

(︂
𝑞(𝑢) +

1

𝑐
ln(𝑐1𝑢) − 1

𝑐
ln 𝑐1

)︂
+ 𝑐2

)︂
=

= exp
(︁
𝑐
(︀
𝑞(𝑢) + 𝑠(𝑢𝑥)

)︀
+ 𝑐2 − ln 𝑐1

)︁
.

The last relation means that

𝐹 (𝑣) = exp
(︀
𝑐𝑣 + 𝑐2 − ln 𝑐1

)︀
.

Hence, we arrive at the equations

𝑢𝑥𝑦 = 𝑐𝑢𝑥

(︂
𝑔(𝑢) − 1

𝑐
𝑢𝑦
𝑔′′(𝑢)

𝑔′(𝑢)

)︂
, 𝑣 =

1

𝑐
ln 𝑔′(𝑢) − 𝑐2

𝑐
+

1

𝑐
ln(𝑐1𝑢𝑥),

𝑣𝑥𝑦 = exp
(︀
𝑐𝑣 + 𝑐2 − ln 𝑐1

)︀
.
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After the change 𝑐𝑣 + 𝑐2 − ln 𝑐1 → 𝑣 the obtained equations become

𝑢𝑥𝑦 = 𝑢𝑥

(︂
𝑐𝑔(𝑢) − 𝑢𝑦

𝑔′′(𝑢)

𝑔′(𝑢)

)︂
, 𝑣 = ln 𝑔′(𝑢) + ln𝑢𝑥,

1

𝑐
𝑣𝑥𝑦 = exp 𝑣.

The change 𝑐𝑔(𝑢) → 𝑔(𝑢) transforms the last system to

𝑢𝑥𝑦 = 𝑢𝑥

(︂
𝑔(𝑢) − 𝑢𝑦

𝑔′′(𝑢)

𝑔′(𝑢)

)︂
, 𝑣 = ln 𝑔′(𝑢) − ln 𝑐+ ln𝑢𝑥, 𝑣𝑥𝑦 = exp(𝑣 + ln 𝑐).

And, finally, the shift transformation 𝑣 + ln 𝑐→ 𝑣 lead us to equations (3.16).
It is easy to show that the case 𝜆 ̸= 0 is not realized.
Consider now the case 𝑞′(𝑢) = 𝑐 that implies

𝑞(𝑢) = 𝑐𝑢+ 𝑐3. (3.32)

We substitute function (3.32) into the last relation (3.27),

𝑝′(𝑢𝑦)
(︀
𝑐𝑢𝑦 − 𝑔(𝑢) − 𝑝(𝑢𝑦)

)︀
= 𝜆(𝑢). (3.33)

As 𝑔′(𝑢) ̸= 0, identity (3.33) follows

𝑝′(𝑢𝑦) = 𝑐1. (3.34)

If 𝑐1 = 0, then by (3.33) we get 𝜆(𝑢) = 0 and 𝑝(𝑢𝑦) = 𝑐2. And addressing the second identity
in (3.27), we obtain

𝑢𝑥𝑔
′(𝑢) = 𝐹

(︀
𝑐𝑢+ 𝑠(𝑢𝑥) + 𝑐3

)︀
.

The change 𝑠(𝑢𝑥) + 𝑐3 → 𝑠(𝑢𝑥) gives

𝑢𝑥𝑔
′(𝑢) = 𝐹

(︀
𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
. (3.35)

Let 𝑐 = 0, then functions (3.25) and relation (3.35) cast into the form

𝜓 = 𝑔(𝑢) + 𝑐2, 𝜙 = 𝑠(𝑢𝑥), 𝑢𝑥𝑔
′(𝑢) = 𝐹

(︀
𝑠(𝑢𝑥)

)︀
.

The change 𝑔(𝑢) + 𝑐2 → 𝑔(𝑢) leads to the formulas

𝜓 = 𝑔(𝑢), 𝜙 = 𝑠(𝑢𝑥), 𝑢𝑥𝑔
′(𝑢) = 𝐹

(︀
𝑠(𝑢𝑥)

)︀
. (3.36)

Due to the independence of the variables 𝑢, 𝑢𝑥 and the restriction 𝑔′(𝑢) ̸= 0, by the latter
identity (3.36) we conclude that 𝑔′(𝑢) = 𝑐4 ̸= 0, which yields

𝑔(𝑢) = 𝑐4𝑢+ 𝑐5. (3.37)

We substitute function (3.37) into the last relation in (3.36),

𝐹
(︀
𝑠(𝑢𝑥)

)︀
= 𝑐4𝑢𝑥. (3.38)

Employing relation (3.38), we determine the function 𝑠,

𝑠(𝑢𝑥) = 𝐹−1(𝑐4𝑢𝑥).

In this way we arrive at the equations

𝑢𝑥𝑦 =
𝑐4𝑢+ 𝑐5(︀

𝐹−1(𝑐4𝑢𝑥)
)︀′
𝑐4
, 𝑣 = 𝐹−1(𝑐4𝑢𝑥), 𝑣𝑥𝑦 = 𝐹 (𝑣).

By the scaling transformation 𝑐4𝑢 → 𝑢 and the shift of the variable 𝑢 + 𝑐5 → 𝑢 we reduce the
equations to (3.17).

Next we suppose that 𝑐 ̸= 0. Differentiate identity (3.35) w.r.t. the variables 𝑢 and 𝑢𝑥
independently,

𝑢𝑥𝑔
′′(𝑢) = 𝑐𝐹 ′(︀𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
, (3.39)

𝑔′(𝑢) = 𝑠′(𝑢𝑥)𝐹 ′(︀𝑐𝑢+ 𝑠(𝑢𝑥)
)︀
. (3.40)
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We exclude the function 𝐹 ′ from relations (3.39) and (3.40),

𝑔′′(𝑢)

𝑔′(𝑢)
=

𝑐

𝑢𝑥𝑠′(𝑢𝑥)
.

Due to the independence of 𝑢 and 𝑢𝑥, the last identity is equivalent to the system

𝑔′′(𝑢)

𝑔′(𝑢)
= 𝛼,

𝑐

𝑢𝑥𝑠′(𝑢𝑥)
= 𝛼, 𝛼 ̸= 0. (3.41)

Integrating equations (3.41) w.r.t. the variables 𝑢, 𝑢𝑥, respectively, we obtain

𝑔(𝑢) =
1

𝛼
exp(𝛼𝑢+ 𝛽) + 𝛿, 𝑠(𝑢𝑥) =

𝑐

𝛼
ln(𝛾𝑢𝑥). (3.42)

We substitute functions (3.42) into (3.35),

𝐹
(︀
𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝑢𝑥 exp(𝛼𝑢+ 𝛽) = exp

(︁𝛼
𝑐

(︁
𝑐𝑢+

𝑐

𝛼
ln(𝛾𝑢𝑥) − 𝑐

𝛼
ln 𝛾

)︁
+ 𝛽

)︁
=

= exp
(︁𝛼
𝑐

(︀
𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
− ln 𝛾 + 𝛽

)︁
.

The last relation means that

𝐹 (𝑣) = exp
(︁𝛼
𝑐
𝑣 − ln 𝛾 + 𝛽

)︁
.

Thus, we arrive at the equation

𝑢𝑥𝑦 = 𝑢𝑥

(︂
1

𝑐
exp(𝛼𝑢+ 𝛽) +

𝛼

𝑐
𝛿 − 𝛼𝑢𝑦

)︂
, 𝑣 = 𝑐𝑢+

𝑐

𝛼
ln(𝛾𝑢𝑥),

𝑣𝑥𝑦 = exp
(︁𝛼
𝑐
𝑣 − ln 𝛾 + 𝛽

)︁
.

The scaling and shift 𝛼𝑢→ 𝑢, 𝛼𝑣/𝑐→ 𝑣 give

𝑢𝑥𝑦 = 𝑢𝑥

(︂
1

𝑐
exp(𝑢+ 𝛽) +

𝛼

𝑐
𝛿 − 𝑢𝑦

)︂
,

𝑣 = 𝑢+ ln𝑢𝑥 + ln 𝛾 − ln𝛼, 𝑣𝑥𝑦 =
𝛼

𝑐
exp(𝑣 − ln 𝛾 + 𝛽).

After the transformations 𝑢+𝛽− ln 𝑐→ 𝑢, 𝑣− ln 𝛾+𝛽+ln𝛼− ln 𝑐→ 𝑣 the obtained equations
become

𝑢𝑥𝑦 = 𝑢𝑥

(︁
exp𝑢+

𝛼

𝑐
𝛿 − 𝑢𝑦

)︁
, 𝑣 = 𝑢+ ln𝑢𝑥, 𝑣𝑥𝑦 = exp 𝑣.

Therefore, we have obtained the case which partial for (3.16).
As 𝑐1 ̸= 0, addressing to formulas (3.34), we get

𝑝(𝑢𝑦) = 𝑐1𝑢𝑦 + 𝑐2. (3.43)

Substituting function (3.43) into (3.33), after the change 𝑔(𝑢) + 𝑐2 → 𝑔(𝑢) we have

𝑐1
(︀
𝑐𝑢𝑦 − 𝑔(𝑢) − 𝑐1𝑢𝑦

)︀
= 𝜆(𝑢).

Since the varibles 𝑢, 𝑢𝑦 are independent, by the last identity we conclude that 𝑐 = 𝑐1 and

𝜆(𝑢) = −𝑐1𝑔(𝑢). (3.44)

We substitute function (3.44) into the second relation in (3.27),

𝑠′(𝑢𝑦)
(︀
𝑢𝑥𝑔

′(𝑢) − 𝐹 (𝑐1𝑢+ 𝑐3 + 𝑠(𝑢𝑥))
)︀

= −𝑐1𝑔(𝑢).

After the change 𝑐3 + 𝑠(𝑢𝑥) → 𝑠(𝑢𝑥) the last identity casts into the form

𝐹
(︀
𝑐1𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝑢𝑥𝑔

′(𝑢) +
𝑐1𝑔(𝑢)

𝑠′(𝑢𝑥)
. (3.45)
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We differentiate (3.45) w.r.t. the variables 𝑢 and 𝑢𝑥 independently,

𝑐1𝐹
′(︀𝑐1𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝑢𝑥𝑔

′′(𝑢) +
𝑐1𝑔

′(𝑢)

𝑠′(𝑢𝑥)
, (3.46)

𝑠′(𝑢𝑥)𝐹 ′(︀𝑐1𝑢+ 𝑠(𝑢𝑥)
)︀

= 𝑔′(𝑢) − 𝑐1𝑔(𝑢)
𝑠′′(𝑢𝑥)

𝑠′2(𝑢𝑥)
. (3.47)

We exclude the function 𝐹 ′ from relations (3.46) and (3.47),

𝑔′′(𝑢)

𝑔(𝑢)
= −𝑐21

𝑠′′(𝑢𝑥)

𝑢𝑥𝑠′3(𝑢𝑥)
. (3.48)

since 𝑢, 𝑢𝑥 are independent, identity (3.48) is equivalent to the system

𝑔′′(𝑢)

𝑔(𝑢)
= −𝑐21𝛼2,

𝑐21𝑠
′′(𝑢𝑥)

𝑢𝑥𝑠′3(𝑢𝑥)
= 𝑐21𝛼

2,

where 𝛼 is an arbitrary constant. Or

𝑔′′(𝑢) + 𝑐21𝛼
2𝑔(𝑢) = 0,

𝑠′′(𝑢𝑥)

𝑠′3(𝑢𝑥)
= 𝛼2𝑢𝑥. (3.49)

If 𝛼 = 0, then 𝑔(𝑢) = 𝜖𝑢+ 𝛿, 𝑠(𝑢𝑥) = 𝛾𝑢𝑥 + 𝑑, 𝜖𝛾 ̸= 0. In addition, relation (3.45) yields

𝐹
(︀
𝑐1𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝜖𝑢𝑥 + 𝑐1

𝜖𝑢+ 𝛿

𝛾
=
𝜖

𝛾
(𝑐1𝑢+ 𝛾𝑢𝑥 + 𝑑) − 𝜖𝑑

𝛾
+
𝑐1𝛿

𝛾
=

=
𝜖

𝛾

(︀
𝑐1𝑢+ 𝑠(𝑢𝑥)

)︀
− 𝜖𝑑

𝛾
+
𝑐1𝛿

𝛾
.

The last relation means that

𝐹 (𝑣) =
𝜖

𝛾
𝑣 − 𝜖𝑑

𝛾
+
𝑐1𝛿

𝛾
.

Thus, we have obtained the equations

𝑢𝑥𝑦 =
𝜖𝑢+ 𝛿

𝛾
, 𝑣 = 𝑐1𝑢+ 𝛾𝑢𝑥 + 𝑑, 𝑣𝑥𝑦 =

𝜖

𝛾
𝑣 − 𝜖𝑑

𝛾
+
𝑐1𝛿

𝛾
.

The transformations 𝑦 → 𝜖𝑦/𝛾, 𝑢+ 𝛿
𝜖
→ 𝑢, 𝑣 − 𝑑+ 𝑐1𝛿/𝜖→ 𝑣 imply (3.18).

If 𝛼 ̸= 0, then by equations (3.49) the functions 𝑔 and 𝑠′ are determined as follows,

𝑔(𝑢) = 𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢), (3.50)

𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝛼2𝑢2𝑥
. (3.51)

Let 𝛽 ̸= 0. Integrating (3.51) w.r.t. the variable 𝑢𝑥, we determine the function 𝑠,

𝑠(𝑢𝑥) =
1

𝑖𝛼
ln
(︁
𝑖𝛼𝑢𝑥 +

√︀
𝛽 − 𝛼2𝑢𝑥

)︁
+ 𝛾. (3.52)

Then relation (3.45) can be written as

𝐹 (𝑐1𝑢+ 𝑠(𝑢𝑥)) = 𝑐 exp
(︀
𝑖𝛼(𝑐1𝑢+ 𝑠(𝑢𝑥))

)︀
+𝐷 exp

(︀
−𝑖𝛼(𝑐1𝑢+ 𝑠(𝑢𝑥))

)︀
.

Thus, we arrive at the formulas

𝑢𝑥𝑦 =
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

𝑠′(𝑢𝑥)
, (3.53)

𝑣 = 𝑐1𝑢+ 𝑠(𝑢𝑥), (3.54)

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝛼𝑣) +𝐷 exp(−𝑖𝛼𝑣), (3.55)

where 𝑠 satisfy (3.51) and 𝐶𝐷 = 𝐴𝐵𝑐21𝛽. The following cases are possible,

𝐶𝐷 ̸= 0, (3.56)
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𝐶 = 𝐷 = 0, (3.57)

𝐶 = 0, 𝐷 ̸= 0, (3.58)

𝐷 = 0, 𝐶 ̸= 0. (3.59)

Suppose identity (3.56) holds true. Then in equations (3.51) — (3.55), having made the
change 𝛼𝑢→ 𝑢, 𝛼𝑣 → 𝑣, 𝛼𝑠(𝑢𝑥) → 𝑠(𝑢𝑥), we arrive at the formulas

𝑢𝑥𝑦 =
(︀
𝐴 exp(𝑖𝑐1𝑢) +𝐵 exp(−𝑖𝑐1𝑢)

)︀√︀
𝛽 − 𝑢2𝑥,

𝑣 = 𝑐1𝑢+ 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝑢2𝑥
,

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝑣) +𝐷 exp(−𝑖𝑣), 𝐶𝐷 = 𝐴𝐵𝑐21𝛽 ̸= 0.

The change 𝑢− 𝑏→ 𝑢, 𝑣 − 𝑎→ 𝑣 transforms the last system to

𝑢𝑥𝑦 =
(︀
𝐴 exp(𝑖𝑐1𝑏) exp(𝑖𝑐1𝑢) +𝐵 exp(−𝑖𝑐1𝑏) exp(−𝑖𝑐1𝑢)

)︀√︀
𝛽 − 𝑢2𝑥,

𝑣 + 𝑎 = 𝑐1(𝑢+ 𝑏) + 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝑢2𝑥
,

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝑎) exp(𝑖𝑣) +𝐷 exp(−𝑖𝑎) exp(−𝑖𝑣), 𝐶𝐷 = 𝐴𝐵𝑐21𝛽 ̸= 0.

We choose 𝑎 and 𝑏 so that 𝐴 exp(𝑖𝑐1𝑏) = 𝐵 exp(−𝑖𝑐1𝑏) and 𝐶 exp(𝑖𝑎) = 𝐷 exp(−𝑖𝑎), then

1

𝐴 exp(𝑖𝑐1𝑏)2𝑖
𝑢𝑥𝑦 = sin(𝑐1𝑢)

√︀
𝛽 − 𝑢2𝑥,

𝑣 = 𝑐1𝑢+ 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝑢2𝑥
,

1

𝐶 exp(𝑖𝑎)2𝑖
𝑣𝑥𝑦 = sin 𝑣, 𝐶2 exp(2𝑖𝑎) = 𝐴2 exp(2𝑖𝑐1𝑏)𝑐

2
1𝛽 ̸= 0.

The scaling of the variable 𝑦𝐴 exp(𝑖𝑐1𝑏)2𝑖→ 𝑦 leads us to the equations

𝑐1
√︀
𝛽𝑢𝑥𝑦 = sin(𝑐1𝑢)

√︀
𝛽 − 𝑢2𝑥

𝑣 = 𝑐1𝑢+ 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝑢2𝑥
,

𝑣𝑥𝑦 = sin 𝑣.

Next, we make the change 𝑢𝑐1 → 𝑢, 𝑠(𝑢𝑥/𝑐1) → 𝑠(𝑢𝑥), then√︀
𝛽𝑢𝑥𝑦 = sin(𝑢)

√︃
𝛽 − 𝑢2𝑥

𝑐21
,

𝑣 = 𝑢+ 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽𝑐21 − 𝑢2𝑥
,

𝑣𝑥𝑦 = sin 𝑣.

We introduce the notation 𝑐1
√
𝑏 = 𝑎 and after the scaling of the variables 𝑎𝑥→ 𝑥, 𝑦/𝑎→ 𝑦 we

arrive at equations (3.19).
Assume condition (3.57) holds true. We substitute (3.54) into (3.55), bearing in mind (3.53),

𝑐1
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢)+𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀√︀
𝛽 − 𝛼2𝑢2𝑥+

(︀
𝐴 exp(𝑖𝑐1𝛼𝑢)𝑖𝑐1𝛼−𝐵𝑖𝑐1𝛼 exp(−𝑖𝑐1𝛼𝑢)

)︀
𝑢𝑥 = 0,

which implies 𝛽 = 0, 𝐴 = 0. Equations (3.51) – (3.55) become

𝑢𝑥𝑦 = 𝐵𝑖𝛼𝑢𝑥 exp(−𝑖𝑐1𝛼𝑢), 𝑣 = 𝑐1𝑢−
𝑖

𝛼
ln𝑢𝑥 + 𝛾, 𝑣𝑥𝑦 = 0.
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By the change −𝑖𝑐1𝛼𝑢→ 𝑢 we reduce the last system to

𝑢𝑥𝑦 = 𝐵𝑖𝛼 exp(𝑢)𝑢𝑥, 𝑣 = − 1

𝑖𝛼
𝑢− 𝑖

𝛼
ln𝑢𝑥 +

𝑖

𝛼
ln(−𝑖𝑐1𝛼) + 𝛾, 𝑣𝑥𝑦 = 0.

Then the transformations 𝑢+ ln(𝐵𝑖𝛼) → 𝑢, −𝑖𝛼𝑣 + ln(−𝑖𝑐1𝛼) − 𝛼𝛾
𝑖

+ ln(𝐵𝑖𝛼) → 𝑣 give

𝑢𝑥𝑦 = exp(𝑢)𝑢𝑥, 𝑣 = 𝑢− ln𝑢𝑥, 𝑣𝑥𝑦 = 0. (3.60)

Thus, we have obtained the equation which are partial cases of equations (3.20).
Suppose condition (3.58) holds. Substituting (3.54) into (3.55), taking into consideration

(3.53), we arrive at the identities

𝐴𝑐1
√︀
𝛽 − 𝛼2𝑢2𝑥 + 𝑖𝑐1𝛼𝑢𝑥𝐴 = 0. (3.61)

𝑐1𝐵
√︀
𝛽 − 𝛼2𝑢2𝑥 −𝐵𝑖𝑐1𝛼𝑢𝑥 = 𝐷 exp

(︀
−𝑠(𝑢𝑥)𝑖𝛼

)︀
. (3.62)

It follows from (3.61) that 𝐴 = 0. And also 𝐵 ̸= 0, since 𝐷 ̸= 0. We rewrite relation (3.62),
bearing in mind (3.52) as follows,

𝐵

𝐷
𝑐1
(︀√︀

𝛽 − 𝛼2𝑢2𝑥 − 𝑖𝛼𝑢𝑥
)︀

=
1

𝑖𝛼𝑢𝑥 +
√︀
𝛽 − 𝛼2𝑢2𝑥

.

The last identity holds only under the condition 𝐵𝑐1𝛽/𝐷 = 1. Thus, employing formula (3.52),
system (3.51) — (3.55) can be represented as

𝑢𝑥𝑦 = 𝐵 exp(−𝑖𝑐1𝛼𝑢)
√︀
𝛽 − 𝛼2𝑢2𝑥,

𝑣 = 𝑐1𝑢−
1

𝑖𝛼
ln
(︀
−𝑖𝛼𝑢𝑥 +

√︀
𝛽 − 𝛼2𝑢2𝑥

)︀
+ 𝑐,

𝑣𝑥𝑦 = 𝐷 exp(−𝑖𝛼𝑣),
𝐵

𝐷
𝑐1𝛽 = 1.

The scaling of the variable −𝑖𝛼𝑢→ 𝑢 leads us to the equations

𝑢𝑥𝑦 = −𝑖𝛼𝐵 exp(𝑐1𝑢)
√︀
𝛽 + 𝑢2𝑥,

𝑣 = −𝑐1𝑢
𝑖𝛼

− 1

𝑖𝛼
ln
(︀
𝑢𝑥 +

√︀
𝛽 + 𝑢2𝑥

)︀
+ 𝑐,

𝑣𝑥𝑦 = 𝐷 exp(−𝑖𝛼𝑣),
𝐵

𝐷
𝑐1𝛽 = 1.

After the change −𝑖𝛼𝑣 → 𝑣 we obtain

𝑢𝑥𝑦 = −𝑖𝛼𝐵 exp(𝑐1𝑢)
√︀
𝛽 + 𝑢2𝑥,

𝑣 = 𝑐1𝑢+ ln
(︀
𝑢𝑥 +

√︀
𝛽 + 𝑢2𝑥

)︀
+ 𝑐,

𝑣𝑥𝑦 = −𝑖𝛼𝐷 exp(𝑣).

Or
𝑢𝑥𝑦 = 𝐵 exp(𝑐1𝑢)

√︀
𝛽 + 𝑢2𝑥,

𝑣 = 𝑐1𝑢+ ln
(︀
𝑢𝑥 +

√︀
𝛽 + 𝑢2𝑥

)︀
+ 𝑐,

𝑣𝑥𝑦 = 𝐷 exp(𝑣).

Substituting the function 𝑣 into the last equation, we obtain that 𝑐1𝐵 = 𝐷 exp(𝑐), and the
obtained equations cast into the form

𝑢𝑥𝑦 = 𝐵 exp(𝑐1𝑢)
√︀
𝛽 + 𝑢2𝑥, 𝑣 = 𝑐1𝑢+ ln

(︁
𝑢𝑥 +

√︀
𝛽 + 𝑢2𝑥

)︁
+ 𝑐, 𝑣𝑥𝑦 = 𝑐1𝐵 exp(𝑣 − 𝑐).

The shift 𝑣 − 𝑐→ 𝑣 gives

𝑢𝑥𝑦 = 𝐵 exp(𝑐1𝑢)
√︀
𝛽 + 𝑢2𝑥, 𝑣 = 𝑐1𝑢+ ln

(︁
𝑢𝑥 +

√︀
𝛽 + 𝑢2𝑥

)︁
, 𝑣𝑥𝑦 = 𝑐1𝐵 exp(𝑣).
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The change 𝑐1𝑢 → 𝑢, the scaling of the variable 𝑎𝑥 → 𝑥 for 𝑎 so that 𝛽𝑐21/𝑎
2 = 1, the shift

𝑣 + ln 𝑐1 − ln 𝑎 → 𝑣, and, finally, the transformation 𝑢 + ln𝐵 → 𝑢, 𝑣 + ln𝐵 → 𝑣 lead us to
equations (3.21).

Let us consider now case (3.59). Equations (3.51)– (3.55) become

𝑢𝑥𝑦 =
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

𝑠′(𝑢𝑥)
,

𝑣 = 𝑐1𝑢+ 𝑠(𝑢𝑥), 𝑠′(𝑢𝑥) =
1√︀

𝛽 − 𝛼2𝑢2𝑥
,

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝛼𝑣).

We substitute the function 𝑣 into the last equation,

𝑐1
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀√︀
𝛽 − 𝛼2𝑢2𝑥+

+𝑖𝑐1𝛼
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) −𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀
𝑢𝑥 = 𝐶 exp

(︀
𝑖𝛼(𝑐1𝑢+ 𝑠(𝑢𝑥))

)︀
.

It yields

𝑐1𝐴
√︀
𝛽 − 𝛼2𝑢2𝑥 + 𝑖𝑐1𝛼𝑢𝑥𝐴 = 𝐶 exp(𝑖𝛼),

𝑐1𝐵
√︀
𝛽 − 𝛼2𝑢2𝑥 − 𝑖𝑐1𝛼𝑢𝑥𝐵 = 0.

Since 𝛽 ̸= 0, then 𝐵 = 0, and therefore

𝑢𝑥𝑦 = 𝐴 exp(𝑖𝑐1𝛼𝑢)
√︀
𝛽 − 𝛼2𝑢2𝑥,

𝑣 = 𝑐1𝑢+
1

𝑖𝛼
ln
(︁
𝛼𝑖𝑢𝑥 +

√︀
𝛽 − 𝛼2𝑢2𝑥

)︁
,

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝛼𝑣).

It is reduced to the previous case.
Let us consider the case 𝛽 = 0. By formula (3.51) we get that

𝑠(𝑢𝑥) =
1

𝑖𝛼
ln(𝑐2𝑢𝑥).

We substitute the function 𝑠 into system (3.53) — (3.55)

𝑢𝑥𝑦 =
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀
𝑖𝛼𝑢𝑥, (3.63)

𝑣 = 𝑐1𝑢+
1

𝑖𝛼
ln(𝑐2𝑢𝑥), (3.64)

𝑣𝑥𝑦 = 𝐶 exp(𝑖𝛼𝑣) +𝐷 exp(−𝑖𝛼𝑣). (3.65)

We substitute function (3.64) into (3.65), taking into consideration (3.63),

𝑐1
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀
𝑖𝛼𝑢𝑥+

+𝑖𝑐1𝛼𝑢𝑥
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) −𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀
= 𝐶𝑐2𝑢𝑥 exp(𝑖𝛼𝑐1𝑢) +

𝐷

𝑐2𝑢𝑥
exp(−𝑖𝛼𝑐1𝑢).

It follows that 𝐷 = 0, 𝐶𝑐2 = 2𝑐1𝛼𝐴𝑖, and equations (3.63)–(3.65) can be represented as

𝑢𝑥𝑦 =
(︀
𝐴 exp(𝑖𝑐1𝛼𝑢) +𝐵 exp(−𝑖𝑐1𝛼𝑢)

)︀
𝑖𝛼𝑢𝑥,

𝑣 = 𝑐1𝑢+
1

𝑖𝛼
ln(𝑐2𝑢𝑥),

𝑣𝑥𝑦 =
2𝑐1𝛼𝐴𝑖

𝑐2
exp(𝑖𝛼𝑣).

We apply the change of the variables 𝑖𝛼𝑣 → 𝑣, 𝑢𝑐1𝑖𝛼 → 𝑢 and after the shift
𝑣 − ln(𝑐2) + ln(𝑐1𝑖𝛼) → 𝑣 we arrive at the equations like (3.20),

𝑢𝑥𝑦 =
(︀
𝐴 exp(𝑢) +𝐵 exp(−𝑢)

)︀
𝑢𝑥, 𝑣 = 𝑢+ ln𝑢𝑥, 𝑣𝑥𝑦 = 2𝐴 exp(𝑣).
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Suppose now that 𝑔(𝑢) = 𝑐1, where 𝑐1 is an arbitrary constant. In this case, recalling (3.32),
we rewrite (3.27),

𝑝′(𝑢𝑦)
(︀
𝑐𝑢𝑦 − 𝑐1 − 𝑝(𝑢𝑦)

)︀
= 𝜆(𝑢), −𝑠′(𝑢𝑥)𝐹

(︀
𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝜆(𝑢). (3.66)

Since the variables 𝑢, 𝑢𝑥, 𝑢𝑦 are independent, by (3.66) we conclude that 𝜆(𝑢) = −𝑐2 and
rewriting (3.66),

𝑝′(𝑢𝑦)
(︀
𝑐𝑢𝑦 − 𝑐1 − 𝑝(𝑢𝑦)

)︀
= −𝑐2, −𝑠′(𝑢𝑥)𝐹

(︀
𝑐𝑢+ 𝑠(𝑢𝑥)

)︀
= 𝑐2. (3.67)

We differentiate the second identity in (3.67) w.r.t. the variable 𝑢,

𝑠′(𝑢𝑥)𝑐𝐹 ′(︀𝑐𝑢+ 𝑠(𝑢𝑥)
)︀

= 0.

Hence, 𝑐 = 0 or 𝐹 ′ = 0.
Let 𝑐 = 0, then the second identity in (3.67) gives

𝑠′(𝑢𝑥)𝐹
(︀
𝑠(𝑢𝑥)

)︀
= 𝑐2.

And we arrive at the equations

𝑢𝑥𝑦 =
𝑐1 + 𝑝(𝑢𝑦)

𝑠′(𝑢𝑥)
, (3.68)

𝑣 = 𝑠(𝑢𝑥), (3.69)

𝑣𝑥𝑦 = 𝐹 (𝑣). (3.70)

We substitute (3.69) into (3.70), bearing in mind (3.68),

𝑝′(𝑢𝑦)(𝑐1 + 𝑝(𝑢𝑦))

𝑠′(𝑢𝑥)
=

𝑐2
𝑠′(𝑢𝑥)

.

Thus, we have

𝑢𝑥𝑦 =
𝑐1 + 𝑝(𝑢𝑦)

𝑠′(𝑢𝑥)
, 𝑣 = 𝑠(𝑢𝑥), 𝑣𝑥𝑦 = 𝐹 (𝑣),

𝑠′(𝑢𝑥)𝐹
(︀
𝑠(𝑢𝑥)

)︀
= 𝑐2, 𝑝′(𝑢𝑦)

(︀
𝑐1 + 𝑝(𝑢𝑦)

)︀
= 𝑐2.

(3.71)

The change 𝑝(𝑢𝑦) + 𝑐1 → 𝑝(𝑢𝑦) leads us to the equation 𝑝′(𝑢𝑦)𝑝(𝑢𝑦) = 𝑐2, whose solution is

𝑝(𝑢𝑦) =
√︀

2𝑐2𝑢𝑦 + 𝑐3.

The change 𝑢→ 𝑢− 𝑐3𝑦/(2𝑐2) transforms system (3.71) to

𝑢𝑥𝑦 =

√︀
2𝑐2𝑢𝑦

𝑠′(𝑢𝑥)
, 𝑣 = 𝑠(𝑢𝑥), 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑠′(𝑢𝑥)𝐹

(︀
𝑠(𝑢𝑥)

)︀
= 𝑐2.

Applying the scaling of the variable 𝑦 → 𝑐2𝑦, and then, having made the changes
𝑠(𝑢𝑥) → 𝑐2𝑠(𝑢𝑥) and 𝐹 (𝑐2𝑆) → 𝐹 (𝑆), we arrive at equations (3.22).

Let 𝑐 ̸= 0, then 𝐹 = 𝑐3, where 𝑐3 is an arbitrary constant. The second relation in (3.67)
yields

𝑠′(𝑢𝑥)𝑐3 = 𝑐2.

If here 𝑐2 = 0, then 𝑐3 = 0 and it follows from the first relation in (3.67) that

𝑝′(𝑢𝑦)
(︀
𝑐𝑢𝑦 − 𝑐1 − 𝑝(𝑢𝑦)

)︀
= 0.

It implies 𝑝(𝑢𝑦) = 𝑐𝑢𝑦 − 𝑐1. We get

𝑢𝑥𝑦 = 0, 𝑣 = 𝑐𝑢+ 𝑠(𝑢𝑥), 𝑣𝑥𝑦 = 0.

The scaling of the variable 𝑐𝑢 → 𝑢 and the change 𝑠(𝑢𝑥/𝑐) → 𝑠(𝑢𝑥) leads us to the equations
(3.23). If 𝑐2 ̸= 0, then 𝐹 = 𝑐3 ̸= 0, and we obtain

𝑢𝑥𝑦 =
𝑐1 + 𝑝(𝑢𝑦) − 𝑐𝑢𝑦

𝑠′(𝑢𝑥)
, 𝑣 = 𝑐𝑢+ 𝑠(𝑢𝑥), 𝑣𝑥𝑦 = 𝑐3,

𝑠′(𝑢𝑥) = 𝑐2
𝑐3
, 𝑝′(𝑢𝑦)

(︀
𝑐𝑢𝑦 − 𝑐1 − 𝑝(𝑢𝑦)

)︀
= −𝑐2.
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Or

𝑢𝑥𝑦 =

(︀
𝑐1 + 𝑝(𝑢𝑦) − 𝑐𝑢𝑦

)︀
𝑐3

𝑐2
, 𝑣 = 𝑐𝑢+

𝑐2
𝑐3
𝑢𝑥 + 𝑐4, 𝑣𝑥𝑦 = 𝑐3,

𝑝′(𝑢𝑦)
(︀
𝑐𝑢𝑦 − 𝑐1 − 𝑝(𝑢𝑦)

)︀
= −𝑐2.

The shift 𝑝+ 𝑐1 → 𝑝, 𝑣 − 𝑐4 → 𝑣 lead us to equations (3.24). Lemma is proven.
Thus, case (3.7) is studied completely. Let us consider condition (3.8). The following state-

ment holds true.

Lemma 2. Suppose condition (3.8) and 𝜙𝑢𝑢𝑥 ̸= 0. Then equations (1.1), (1.2), (1.9) become

𝑢𝑥𝑦 =
𝛼(𝑢)𝐹 ′

(︁
𝐹−1

(︀
𝑢𝑥𝛼

′(𝑢)
)︀)︁

− 𝛼′′(𝑢)𝑢𝑥𝑢𝑦

𝛼′(𝑢)
, 𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑣 =

(︀
𝐹−1(𝑢𝑥𝛼

′(𝑢))
)︀
. (3.72)

𝑢𝑥𝑦 =
𝑐− 𝑢𝑦𝜙𝑢(𝑢, 𝑢𝑥)

𝜙𝑢𝑥(𝑢, 𝑢𝑥)
, 𝑣𝑥𝑦 = 0, 𝑣 = 𝜙(𝑢, 𝑢𝑥). (3.73)

Proof. Assume (3.8). Then it is easy to see that

𝜓 = 𝛼(𝑢) + 𝑐 ln𝑢𝑦. (3.74)

After the substitution of function (3.74) into relation (3.5), the latter can be represented as

𝑢𝑥𝜙𝑢𝑥𝛼
′(𝑢) +

(︀
𝛼(𝑢) + 𝑐 ln𝑢𝑦

)︀ 𝑐
𝑢𝑦

− 𝑐𝜙𝑢 = 𝜙𝑢𝑥𝐹 (𝜙).

Since the functions appearing in the obtained identity are independent of the variable 𝑢𝑦, the
coefficient at the expression ln𝑢𝑦 should vanish, i.e., 𝑐 = 0, and therefore,

𝑢𝑥𝛼
′(𝑢) = 𝐹

(︀
𝜙(𝑢, 𝑢𝑥)

)︀
.

From this relation we determine the function 𝜙, defining the required differential substitution

𝜙 = 𝐹−1
(︀
𝑢𝑥𝛼

′(𝑢)
)︀
.

As 𝛼′ ̸= 0, we arrive at equations (3.72). If 𝛼′ = 0, then 𝐹 = 0, and we obtain equations (3.73).
The lemma is proven.

And finally, to complete the classification, it is required to study case (3.9). The following
statement is valid.

Lemma 3. Suppose condition (3.9) and 𝜓𝑢𝑢𝑦 ̸= 0. Then by the point change 𝑣 → 𝜅(𝑣)
equations (1.1), (1.2), (1.9) are reduced to the equations

𝑢𝑥𝑦 = 𝑢𝑥
(︀
𝜓(𝑢, 𝑢𝑦) − 𝑢𝑦𝛼

′(𝑢)
)︀
, 𝑣𝑥𝑦 = 𝑐1 exp 𝑣, 𝑣 = 𝛼(𝑢) + ln𝑢𝑥, (3.75)

respectively. Here 𝑐1 is an arbitrary constant, and the functions 𝜓 are 𝛼 are related by the
identity 𝜓𝑢 + 𝜓𝜓𝑢𝑦 − 𝛼′𝑢𝑦𝜓𝑢𝑦 = 𝑐1 exp𝛼.

Proof. Suppose condition (3.9) holds, then

𝜙 = 𝛼(𝑢) + 𝑐 ln𝑢𝑥. (3.76)

Here 𝑐 ̸= 0, since we consider only the substitutions so that 𝜙𝑢𝑥 ̸= 0. We substitute function
(3.76) into relation (3.5), then the latter can be written as

𝑐𝜓𝑢(𝑢, 𝑢𝑦) + 𝜓(𝑢, 𝑢𝑦)𝜓𝑢𝑦(𝑢, 𝑢𝑦) − 𝑢𝑦𝛼
′(𝑢)𝜓𝑢𝑦(𝑢, 𝑢𝑦) =

𝑐

𝑢𝑥
𝐹
(︀
𝛼(𝑢) + 𝑐 ln𝑢𝑥

)︀
. (3.77)

Due to the independence of the variables 𝑢𝑥 and 𝑢𝑦, (3.77) is equivalent to the system

𝐹
(︀
𝛼(𝑢) + 𝑐 ln𝑢𝑥

)︀
=

1

𝑐
𝑢𝑥𝛾(𝑢),

𝑐𝜓𝑢(𝑢, 𝑢𝑦) + 𝜓(𝑢, 𝑢𝑦)𝜓𝑢𝑦(𝑢, 𝑢𝑦) − 𝛼′(𝑢)𝑢𝑦𝜓𝑢𝑦(𝑢, 𝑢𝑦) = 𝛾(𝑢).
(3.78)
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We apply the operator 𝜕
𝜕𝑢𝑥

to both sides of relation (3.78),

𝐹 ′(︀𝛼(𝑢) + 𝑐 ln𝑢𝑥
)︀
· 𝑐
𝑢𝑥

=
𝛾(𝑢)

𝑐
. (3.79)

Now bearing in mind the first equation in (3.78), we rewrite (3.79) as

𝐹 ′(︀𝛼(𝑢) + 𝑐 ln𝑢𝑥
)︀

=
1

𝑐
𝐹
(︀
𝛼(𝑢) + 𝑐 ln𝑢𝑥

)︀
. (3.80)

Employing relation (3.80), we conclude that 𝑐𝐹 ′(𝑣) − 𝐹 (𝑣) = 0. Integrating the last equation,
we determine the function 𝐹 defining the right hand side of Klein-Gordon equation (1.2),

𝐹 (𝑣) = 𝑐2 exp(𝑣/𝑐).

Substituting the function 𝐹 into relation (3.78), we obtain that 𝛾(𝑢) = 𝑐𝑐2 exp
(︀
𝛼(𝑢)/𝑐

)︀
.

Thus, we arrive at the equations

𝑢𝑥𝑦 =
𝑢𝑥
𝑐

(︀
𝜓(𝑢, 𝑢𝑦) − 𝑢𝑦𝛼

′(𝑢)
)︀
, 𝑣 = 𝛼(𝑢) + 𝑐 ln𝑢𝑥, 𝑣𝑥𝑦 = 𝑐2 exp(𝑣/𝑐),

𝑐𝜓𝑢 + 𝜓𝜓𝑢𝑦 − 𝛼′𝑢𝑦𝜓𝑢𝑦 = 𝑐𝑐2 exp
(︀
𝛼/𝑐

)︀
.

The change 𝜓/𝑐→ 𝜓, 𝛼/𝑐→ 𝛼, 𝑣/𝑐→ 𝑣, and then 𝑐2/𝑐→ 𝑐1 transform the obtained equations
to (3.75). The lemma is proven.

The proof of Theorem 1 follows from Lemmas 1–3.

4. Differential substitutions 𝑢 = 𝜓(𝑣, 𝑣𝑦)

As it was said above, in this section we deal with a problem “inverse” in a sense to that in
the first part of the work. Our aim to find all the equations (1.2) being reduced to equation
(1.1) by differential substitutions (1.10). The following statement holds true.

Theorem 2. Assume Klein-Gordon equation (1.2) is reduced to equation (1.1) by differ-
ential substitutions (1.10). Then equations (1.2), (1.1) and substitution (1.10) up to point
transformation 𝑣 → 𝜅(𝑣), 𝑢 → 𝜃(𝑢), 𝑥 → 𝜉𝑥, 𝑦 → 𝜂𝑦, where 𝜉 and 𝜂 are constant, are of the
form

𝑣𝑥𝑦 = 𝐹 (𝑣), 𝑢𝑥𝑦 = 𝐹 ′(︀𝐹−1(𝑢𝑥)
)︀
𝑢, 𝑢 = 𝑣𝑦; (4.1)

𝑣𝑥𝑦 = 1, 𝑢𝑥𝑦 =
𝜓′′(︀𝜓−1(𝑢)

)︀
𝑢𝑦

𝜓′
(︀
𝜓−1(𝑢)

)︀ , 𝑢 = 𝜓(𝑣𝑦); (4.2)

𝑣𝑥𝑦 = 0, 𝑢𝑥𝑦 = 0, 𝑢 = 𝑐𝑣 + 𝜇(𝑣𝑦); (4.3)

𝑣𝑥𝑦 = 0, 𝑢𝑥𝑦 = −𝑢𝑥 exp𝑢, 𝑢 = ln 𝑣𝑦 − ln 𝑣; (4.4)

𝑣𝑥𝑦 = 𝑣, 𝑢𝑥𝑦 = 𝑢, 𝑢 = 𝑐1𝑣 + 𝑐2𝑣𝑦; (4.5)

𝑣𝑥𝑦 = 1, 𝑢𝑥𝑦 = 1, 𝑢 = 𝑣 + 𝑐𝑣𝑦. (4.6)

Here 𝑐 is an arbitrary constant, 𝑐1 and 𝑐2 are so that (𝑐1, 𝑐2) ̸= (0, 0).

The scheme of the proof. We substitute function (1.10) into relation (1.1), bearing in mind
(1.2), (︀

𝜓𝑣𝑣𝑣𝑦 + 𝜓𝑣𝑣𝑦𝑣𝑦𝑦
)︀
𝑣𝑥 + 𝜓𝑣𝐹 +

(︀
𝜓𝑣𝑦𝑣𝑣𝑦 + 𝜓𝑣𝑦𝑣𝑦𝑣𝑦𝑦

)︀
𝐹 + 𝜓𝑣𝑦𝐹

′𝑣𝑦 =

= 𝑓
(︀
𝜓, 𝜓𝑣𝑣𝑥 + 𝜓𝑣𝑦𝐹, 𝜓𝑣𝑣𝑦 + 𝜓𝑣𝑦𝑣𝑦𝑦

)︀
.

(4.7)

We denote the first, second, and third argument of the function 𝑓 by 𝑎, 𝑏, and 𝑐, respectively.
We apply the operator 𝜕

𝜕𝑣𝑦𝑦
to both sides of identity (4.7),

𝜓𝑣𝑣𝑦𝑣𝑥 + 𝜓𝑣𝑦𝑣𝑦𝐹 = 𝑓𝑐𝜓𝑣𝑦 . (4.8)
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We apply the operator 𝜕
𝜕𝑣𝑦𝑦

to both sides of identity (4.8), 𝑓𝑐𝑐𝜓
2
𝑣𝑦 = 0. If 𝜓𝑣𝑦 = 0, then instead

of a differential substitution we obtain a point change 𝑢 = 𝜓(𝑣). Thus,

𝑓(𝑎, 𝑏, 𝑐) = 𝛼(𝑎, 𝑏)𝑐+ 𝛽(𝑎, 𝑏). (4.9)

We substitute function (4.9) into relation (4.8),

𝜓𝑣𝑣𝑦𝑣𝑥 + 𝜓𝑣𝑦𝑣𝑦𝐹 = 𝛼
(︀
𝜓, 𝜓𝑣𝑣𝑥 + 𝜓𝑣𝑦𝐹 (𝑣)

)︀
𝜓𝑣𝑦 . (4.10)

By (4.9) identity (4.7) becomes (︀
𝜓𝑣𝑣𝑣𝑥 + 𝜓𝑣𝑣𝑦𝐹

)︀
𝑣𝑦 + 𝜓𝑣𝐹 + 𝜓𝑣𝑦𝐹

′𝑣𝑦

= 𝛼
(︀
𝜓, 𝜓𝑣𝑣𝑥 + 𝜓𝑣𝑦𝐹

)︀
𝜓𝑣𝑣𝑦 + 𝛽

(︀
𝜓, 𝜓𝑣𝑣𝑥 + 𝜓𝑣𝑦𝐹

)︀
.

(4.11)

Therefore, problem (1.2), (1.1), (1.10) is reduced to studying relations (4.10), (4.11). We apply

the operator 𝜕2

𝜕𝑣2𝑥
to identities (4.10), (4.11),

𝛼𝑏𝑏𝜓
2
𝑣𝜓𝑣𝑦 = 0, 𝛼𝑏𝑏𝜓

3
𝑣𝑣𝑦 + 𝛽𝑏𝑏𝜓

2
𝑣 = 0. (4.12)

Identities (4.12) are satisfied if one of the conditions

𝜓𝑣 = 0, (4.13)

𝜓𝑣 ̸= 0, 𝛼𝑏𝑏 = 0, 𝛽𝑏𝑏 = 0. (4.14)

holds true. The study of conditions (4.13), (4.14) leads us to equations (4.1) – (4.6).
Employing the Theorem 1 and 2 for certain pair of equations, it is possible to construct

Bäcklund transformations. For instance, the equations 𝑢𝑥𝑦 = −𝑢𝑥 exp𝑢, 𝑣𝑥𝑦 = 0 are related by
the Bäcklund transformation 𝑣 = ln𝑢𝑥 − 𝑢, 𝑢 = ln(𝑣𝑦/𝑣). Next, the equations

𝑢𝑥𝑦 = 𝐹 ′(︀𝐹−1(𝑢𝑥)
)︀
𝑢, 𝑣𝑥𝑦 = 𝐹 (𝑣) (4.15)

are related by the Bäcklund transformation

𝑣 = 𝐹−1(𝑢𝑥), 𝑢 = 𝑣𝑦.

In accordance with the work [10], the linearization of equations (4.15) are related by the first
order Laplace transformation. As an example, we adduce the equations

𝑢𝑥𝑦 =
(︀
𝜆− 𝛽𝑛𝑏𝑛−1(𝑢𝑥)

)︀
𝑢, 𝑣𝑥𝑦 = 𝜆𝑣 − 𝛽𝑣𝑛, 𝑛 > 0, (4.16)

where 𝜆 and 𝛽 are arbitrary constants, and the function 𝑏 satisfies the equation
𝜆𝑏(𝑢𝑥) − 𝛽𝑏𝑛(𝑢𝑥) = 𝑢𝑥. The Bäcklund transformation relating the solutions to equations (4.16)
reads as

𝑢 = 𝑣𝑦, 𝑣 = 𝑏(𝑢𝑥).

It should be noticed that the second of equations (4.16) is a version [12] of so-called 𝜙4 equation
in the elementary particles physics. The 𝜙4 equation and the corresponding Bäcklund trans-
formation are obtained for 𝑛 = 3. This model is important in the solid state physics and in the
high energy particles physics [13].

Next, we obtain the equations

𝑢𝑥𝑦 = ±
(︂

cos 𝑏(𝑢𝑥) +
1

4
cos

𝑏(𝑢𝑥)

2

)︂
𝑢, 𝑣𝑥𝑦 = ±

(︂
sin 𝑣 +

1

2
sin

𝑣

2

)︂
, (4.17)

where the function 𝑏 satisfies the relation ±
(︁

sin 𝑏(𝑢𝑥) + 1
2

sin 𝑏(𝑢𝑥)
2

)︁
= 𝑢𝑥. The Bäcklund trans-

formation is given by the formulas 𝑢 = 𝑣𝑦, 𝑣 = 𝑏(𝑢𝑥). The second of equations (4.17) is
the double Sine-Gordon equation, with the plus sign having application in nonlinear optics,
and with the minus sign being used in nonlinear optics and for studying 𝐵-phase of liquid
helium [13].

The author is grateful to her supervisor Zhiber A.V. for the formulation of the problem and
attention to the work.
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