NEW SOLUTIONS OF YANG-BAXTER EQUATION WITH SQUARE

R.A. ATNAGULOVA, I.Z. GOLUBCHIK

Abstract

The paper is devoted to Yang-Baxter equation with the square, that is, to the equation $$
R([R(a), b]-[R(b), a])=R^{2}([a, b])+[R(a), R(b)],
$$ where $a, b \in g, g$ is a Lie algebra, and R is a linear operator on the vector space g. We construct two series of the operators R satisfying this equation. For constructing we employ the Lie subalgebras in the matrix algebra complement to the subspace of matrices with zero last row.

Keywords: Yang-Baxter equation with square, integrable differential equations, complementary subalgebras in the algebra of Laurent series.

1. Introduction

The main question studied in this paper is Yang-Baxter equation with square

$$
\begin{equation*}
R([R(a), b]-[R(b), a])=R^{2}([a, b])+[R(a), R(b)], \tag{1}
\end{equation*}
$$

where $a, b \in g, g$ is a Lie algebra, and R is a linear operator on the vector space g. Equation (1) plays an important role in the theory of integrable systems $[1-4]$. The main aim of the present paper is to construct new series of the solutions to Yang-Baxter equation with square (1).

In $\S 3$ we shall construct two examples of Lie subalgebras in the matrix algebra complement to the subspace of matrices with zero last row. Then in $\S 4$, employing subalgebras from $\S 3$, we construct two series of solutions to Yang-Baxter equation. The series 2 rests upon the method based on the proposition 3 in the work [1]. This series of the solutions to equation (1) is related to 3 -graded Lie algebras. The series 1 is essentially new. The corresponding construction rests upon Theorem 1 in $\S 2$.

2. Homogenuous complement subalgebras in the algebra of polynomials OVER MATRICES

In the present work equation (1) is studied under the assumption that g is the Lie algebra of the matrices $g=C_{m} \oplus \ldots \oplus C_{m}$ being the direct sum of several copies of Lie alegbras C_{m}. The Lie algebra of matrices g is the direct sum of Lie algebras of $m \times m$ matrices over field C. We introduce the notations,

1) we call a subalgebra g_{+}of the algebra g diagonal if it consists of the elements $\left\{(a, a, \ldots, a) \mid a \in C_{m}\right\}$;

[^0]2) we call a subalgebra g_{-}of the algebra g complement to g_{+}if the direct sum of the subspaces g_{-}and g_{+}coincides with the Lie algebra g or, in other words, the following two conditions
$$
g_{+} \oplus g_{-}=g, \quad g_{+} \cap g_{-}=\{0\}
$$
hold true;
3) we call subalgebra h of the algebra of polynomials $C_{m}[x]$ homogenous if the subalgebra satisfies the condition $x h \subset h$.

We define the operator $R: C_{m} \rightarrow C_{m}$ by the formula

$$
\begin{equation*}
\left(\alpha_{1} p, \alpha_{2} p, \ldots, \alpha_{m} p\right)_{+}=-(R(p), \ldots, R(p)) \tag{2}
\end{equation*}
$$

Here

$$
q=(p, p, \ldots, p) \in g_{+}, \quad \lambda=\left(\alpha_{1}, \ldots, \alpha_{m}\right)
$$

where α_{i} are different and by $(\lambda q)_{+}$we denote the projection of the element λq on g_{+}parallel to g_{-}.

Theorem 1. Let g_{+}be a diagonal subalgebra of the algebra g, g_{-}be a homogenous subalgebra complement to g_{+}. Then the operator R defined by formula (2) satisfies equation (1) on g_{+}.

Proof. We consider Lie algebra $C_{m}[x]$ of the polynomials of the form $\sum a_{i} x^{i}$, where the coefficients a_{i} belong to the ring of $m \times m$ complex matrices, x is a scalar variable.

Let φ be a linear operator acting from $C_{m}[x]$ into the direct sum of k copies of the algebra C_{m} by the formula

$$
\begin{equation*}
\varphi\left(\sum\left(a_{i} x^{i}\right)=\sum_{i} \lambda^{i}\left(a_{i}, \ldots, a_{i}\right)=\sum_{i}\left(\alpha_{1}^{i} a_{i}, \alpha_{2}^{i} a_{i}, \ldots, \alpha_{m}^{i} a_{i}\right) .\right. \tag{3}
\end{equation*}
$$

It is easy to check that φ is a homomorphism of Lie algebras, i.e., it preserves the commutator. The full image $\varphi^{-1}\left(g_{-}\right)=G_{-}$of subalgebra g_{-}under the homomorphism φ is a subalgebra of the algebra $C_{m}[x]$. By G_{+}we denote the subalgebra in $C_{m}[x]$ formed by the polynomials independent of x.

Let us prove that the following three conditions similar to the assumptions for Lie algebra g in Theorem 1

$$
\text { a) } x G_{-} \subseteq G_{-} ; \quad \text { b) } G_{+}+G_{-}=C_{m}[x] ; \quad \text { c) } G_{+} \cap G_{-}=\{0\}
$$

hold true.
The inclusion $x G_{-} \subseteq G_{-}$is valid since by the assumption of Theorem $1 \lambda g_{-} \subseteq g_{-}$and $\varphi^{-1}\left(\lambda g_{-}\right)=x G_{-} \subseteq G_{-}$.

Let $a=b+c, b \in G_{+}, c \in G_{-}$. Then $\varphi(a)=\varphi(b)+\varphi(c)$, where $\varphi(b) \in g_{+}, \varphi(c) \in g_{-}$. Thus, $\varphi\left(G_{+}+G_{-}\right)=g_{+}+g_{-}=C_{m}[x]$. Therefore, $G_{+}+G_{-}+\operatorname{Ker} \varphi=C_{m}[x]$. Since $\operatorname{Ker} \varphi \subseteq G_{-}$, then $G_{+}+G_{-}=C_{m}[x]$. Thus, the condition b) holds true as well.

Next, let a belong to $G_{+} \cap G_{-}$. Then $\varphi(a) \in g_{+} \cap g_{-}=0$, i.e., $\operatorname{Ker} \varphi \in G_{-}$. Hence, $a \in \operatorname{Ker} \varphi \cap G_{+}=0$. Therefore, $\varphi(a)=(a, \ldots, a)=0$ and the condition c) is satisfied.

In order R to satisfy equation (1), it is sufficient to show that G_{-}can be represented as

$$
\begin{equation*}
G_{-}=\sum_{i} x^{i}\left(x a_{i}+R\left(a_{i}\right)\right) . \tag{4}
\end{equation*}
$$

Since by definition (3) of the function φ we have

$$
\varphi(x p+R(p))=\lambda(p, p, \ldots, p)+(R(p), R(p), \ldots, R(p)) \in g_{-},
$$

$x p+R(p) \in G_{-}$. Denote $G^{-}=\sum_{i} x^{i}\left(x a_{i}+R\left(a_{i}\right)\right)$. The condition $\lambda g_{-} \subseteq g_{-}$follows that $x^{i}\left(x a_{i}+R\left(a_{i}\right)\right) \subseteq G_{-}$. We get that $G^{-} \subseteq G_{-}, G^{-}+G_{+}=C_{m}[x]$, and since $G_{-} \cap G_{+}=\{0\}$, then $G_{-} \subseteq G^{-}$. Hence, $G^{-}=G_{-}$, and identity (4) is proven. Let us deduce the equation for the operator R. In order to do it, we consider the commutator

$$
[x a+R(a), x b+R(b)] \in G_{-} .
$$

Denote $d=[a, b]$, then $[x a+R(a), x b+R(b)]=x(x d+R(d))+x(c)+R(c)$,

$$
x^{2}[a, b]+x[a, R(b)]+x[R(a), b]+[R(a), R(b)]=x(x d+R(d))+x(c)+R(c) .
$$

Equating the coefficients at like powers of x in the left and right hand sides of the last identity, we obtain the relations

$$
\begin{gathered}
{[a, R(b)]+[R(a), b]=R(d)+c, \quad R(c)=[R(a), R(b)],} \\
c=[a, R(b)]+[R(a), b]-R(d), \quad R(c)=R([a, R(b)]+[R(a), b]-R(d)) .
\end{gathered}
$$

It follows that $R([R(a), b]-[R(b), a])=R^{2}([a, b])+[R(a), R(b)]$. Theorem 1 is proven.
In the work [1] it was shown that the following theorem holds.
Theorem 2. Let the operator $R: G \rightarrow G$ be diagonalizable, $\lambda_{1}, \ldots, \lambda_{k}$ be its spectrum, and G_{i} be the associated eigensubspaces. Then R satisfies equation (1) if and only if the subspaces G_{i} and $G_{i}+G_{j}$ are Lie sublagebras in G for all different i and j from 1 to k.

3. Frobenius subspace

Definition 1. We call a subspace in the space of matrices $C_{n \times n}$ a Frobenius subspace if all the space of matrices is the direct sum of its subspace and the space of the matrices with zero last row.

For constructing a series of the examples of the operators R satisfying Yang-Baxter equation with square in the work we consider Frobenius subspaces being Lie subalgebras.

Example 1. Consider the block matrices

$$
h=\left\{\left.\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) & 0 & 0 \tag{5}\\
00 & & \\
& \sum \lambda_{s} D_{s} & 0 \\
\mu_{1}, \ldots, \mu_{m_{2}} & \mu_{m}
\end{array}\right) \right\rvert\, \lambda_{s}, \mu_{s} \in C\right\} .
$$

These matrices consist of the blocks of size $m_{i} \times m_{j}$, where $i=\{1,2,3\}, j=\{1,2,3\}$, the index $s \in\left\{1, \ldots, m_{1}\right\}, m_{3}=1, m=m_{1}+m_{2}+m_{3}$. The matrices D_{s} in formula (5) are fixed diagonal matrices of size $m_{2} \times m_{2}, \lambda_{s}, \mu_{t}$ are arbitrary parameters. At that the parameters λ_{s} in the block $(2,2)$ are the same as in the block $(1,1)$.

Let us show that the set H of such matrices h form a Lie algebra. Indeed, for the commutators of block matrices the identities

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) & 0 & 0 \\
0 & & & \\
0 & & \lambda_{s} D_{s} & 0 \\
\mu_{1}, \ldots, \mu_{m_{2}} & \mu_{m}
\end{array}\right) \times\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1}^{\prime} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{\prime} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}^{\prime}
\end{array}\right) & 0 & 0 \\
0 & & & \\
& 0 & & \mu_{1}^{\prime}, \ldots, \mu_{m_{2}}^{\prime} D_{t}^{\prime} \\
& \mu_{m}^{\prime}
\end{array}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1}^{\prime} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{\prime} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}^{\prime}
\end{array}\right) & 0 & 0 \\
0 & & & \sum \lambda_{t}^{\prime} D_{t}^{\prime} \\
\mu_{1}^{\prime}, \ldots, \mu_{m_{2}}^{\prime} & 0 \\
\mu_{m}^{\prime}
\end{array}\right) \times\left(\begin{array}{cccc}
\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
0 & 0 \\
\ldots & \ldots & \ldots \\
\ldots \\
0 & 0 & \ldots
\end{array} \lambda_{m_{1}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} \lambda_{1}^{\prime} & 0 & \ldots & 0 \\
0 & \lambda_{2} \lambda_{2}^{\prime} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}} \lambda_{m_{1}}^{\prime}
\end{array}\right) & 0 & 0 \\
& 0 & & \\
& 0 & & \left(\lambda_{s} \lambda_{t}^{\prime} D_{s} D_{t}^{\prime}\right.
\end{array} c\right. \\
& -\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1}^{\prime} \lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{\prime} \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}^{\prime} \lambda_{m_{1}}
\end{array}\right) & 0 & 0 \\
& 0 & & \\
& 0 & & \left(\mu_{1}^{\prime} \ldots \mu_{m_{2}}^{\prime}\right) D_{t}^{\prime} D_{s} \lambda_{s} \\
\lambda_{s} D_{s} & \mu_{m}^{\prime} \mu_{m}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \left(\mu_{1}^{\prime \prime} \ldots \mu_{m_{2}}^{\prime \prime}\right) & 0
\end{array}\right)
\end{aligned}
$$

hold. This is why such commutator is the matric of the form (5) why $\lambda_{i}=0$; we obtain that H is a Lie algebra.

Consider the matrix

$$
T=\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
1 \ldots 1 & 0 & 1
\end{array}\right)
$$

where $E_{m_{i}}$ is the unit $m_{i} \times m_{i}$ matrix. It is easy its inverse is given by the formula

$$
T^{-1}=\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
-1 \ldots-1 & 0 & 1
\end{array}\right) .
$$

Since H is a Lie sublagebra, the subspace $T H T^{-1}$ is also a Lie sublagebra.
Proposition 1. The subspace $T H T^{-1}$ is a Frobenius one (see Definition 1).
Proof: The relations

$$
\left.\begin{array}{rl}
T h T^{-1}=\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
1 \ldots 1 & 0 & 1
\end{array}\right) & \times\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) & 0 & 0 \\
& 0 & & \sum_{\mu_{1} \ldots \mu_{m_{2}}} \lambda_{s} D_{s}
\end{array}\right) \\
& 0 \\
& 0
\end{array}\right) \times
$$

$$
\times\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \tag{6}\\
0 & E_{m_{2}} & 0 \\
1 \ldots 1 & 0 & 1
\end{array}\right)=\left(\right)
$$

hold. We denote by I the space of the matrices with zero leas row, i.e., the space of the matrices

$$
I=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 0
\end{array}\right)
$$

Let $q \in I \cap h$. We need to show that $q=0$. Relations (6) follow the identities $\mu_{n}=0$, $\lambda_{j}-\mu_{n}=0(j=\overline{1, k})$. Since $T H T^{-1} \cap I=0$, the sum of the dimensions of the spaces $T h T^{-1}$ and I equals n^{2} because $T h T^{-1}$ contains n parameters and the dimension of I equals $n^{2}-n$. The dimension of this sum of spaces $\operatorname{dim}\left(T h T^{-1}+I\right)$ coincides with the dimension of the space of complex $n \times n$ matrices. Hence, these spaces $T h T^{-1}$ and I are complement subspaces each to the other. Thus, $T h T^{-1}$ is a Frobenius subspace being Lie subalgebra. The lemma is proven.

Example 2. Consider the block matrices

$$
h=\left\{\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \tag{7}\\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right)\right.
$$

$\left.\lambda_{i}, \mu_{i} \in C\right\}$. These matrices consist of the blocks of size $m_{i} \times m_{j}$ where $i=$ $\{1,2,3,4\}, j=\{1,2,3,4\}$, the index $\left.s \in\left\{1, \ldots, m_{1}\right\}, m_{4}=1, m=m_{1}+m_{2}+m_{3}+m_{4}\right)$. The matrices A_{i} in formula (7) are constant matrices not necessary diagonal, λ_{s}, μ_{t} are arbitrary parameters. At that the parameters λ_{s} in the block $(2,3)$ are the same as in the block $(1,1)$.

The calculations similar to those done in Example 1 show that

$$
\begin{aligned}
& {\left[\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) \quad 0 \quad 0 \quad 0 \quad 0 \quad 0\right.} \\
& \left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1}^{\prime} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{\prime} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}^{\prime}
\end{array}\right) & 0 & 0 & 0 \\
& 0 & 0 & \sum \lambda_{t}^{\prime} A_{t}^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \mu_{1}^{\prime \prime} \ldots \mu_{m_{2}}^{\prime \prime} & \left.\mu_{m_{2}+1}^{\prime \prime} \ldots \mu_{m_{2}+m_{3}}^{\prime \prime}\right) & \mu_{m}^{\prime \prime}
\end{array}\right)
$$

The last matrix is the matrix of the form (7) with $\lambda_{i}=0$, i.e., the set H of matrices (7) is a Lie algebra.

Next we consider the matrix

$$
T=\left(\begin{array}{cccc}
E_{m_{1}} & 0 & 0 & 0 \\
0 & E_{m_{2}} & 0 & 0 \\
0 & 0 & E_{m_{3}} & 0 \\
1 \ldots 1 & 0 & 0 & 1
\end{array}\right)
$$

Its inverse is given by the formula

$$
T^{-1}=\left(\begin{array}{cccc}
E_{m_{1}} & 0 & 0 & 0 \\
0 & E_{m_{2}} & 0 & 0 \\
0 & 0 & E_{m_{3}} & 0 \\
-1 \ldots-1 & 0 & 0 & 1
\end{array}\right)
$$

Let us prove that the Lie subalgebra $T H T^{-1}$ is a Frobenius subspace. The identities

$$
\begin{aligned}
& T h T^{-1}=\left(\begin{array}{cccc}
E_{m_{1}} & 0 & 0 & 0 \\
0 & E_{m_{2}} & 0 & 0 \\
0 & 0 & E_{m_{3}} & 0 \\
1 \ldots 1 & 0 & 0 & 1
\end{array}\right) \times \\
& \times\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) & 0 & 0 & 0 \\
& 0 & & \\
0 & 0 & \sum \lambda_{s} A_{s} & 0 \\
& 0 & 0 & 0 \\
& & \mu_{1} \ldots \mu_{m_{2}} & \mu_{m_{2}+1} \ldots \mu_{m_{3}+m_{2}} \\
\mu_{m}
\end{array}\right) \times\left(\begin{array}{cccc}
E_{m_{1}} & 0 & 0 & 0 \\
0 & E_{m_{2}} & 0 & 0 \\
0 & 0 & E_{m_{3}} & 0 \\
-1 \ldots-1 & 0 & 0 & 1
\end{array}\right)=
\end{aligned}
$$

$$
\begin{align*}
& =\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{m_{1}}
\end{array}\right) & 0 & & \\
0 & 0 & 0 & 0 \\
0 & 0 & \sum \lambda_{s} A_{s} & 0 \\
\lambda_{1}-\mu_{m} \ldots \lambda_{m_{1}}-\mu_{m} & \mu_{1} \ldots \mu_{m_{2}} & \mu_{m_{2}+1} \ldots \mu_{m_{3}+m_{2}} & \mu_{m}
\end{array}\right) \tag{8}
\end{align*}
$$

hold true.

Denote I the space of the matrices with zero last row,

$$
I=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Let $q \in I \cap h$. Then $q=0$. Indeed, it follows from (8) that the identities $\mu_{n}=0, \lambda_{j}-\mu_{n}=0$ $(j=\overline{1, k})$ are valid. Since $T H T^{-1} \cap I=0$, the sum of the dimensions of $T H T^{-1}$ and I equals n^{2}, due to $\operatorname{dim}\left(T h T^{-1}\right)=n$ and $\operatorname{dim} I=n^{2}-n$. The dimension of the sum of the spaces $\operatorname{dim}\left(T h T^{-1}+I\right)$ coincides with the dimension of the space of complex $n \times n$ matrices. Hence, the spaces $T h T^{-1}$ and I are subspaces complement each to the other. Thus, $T h T^{-1}$ is a Frobenius subspace being a Lie subalgebra.

4. Series of equation to Yang-Baxter equation with Square

On the basis of the examples in the previous section we construct two series of solutions to Yang-Baxter equation with square (11).
4.1. Series 1. Consider the ring of $m \times m$ matrices C_{m} over the field of complex numbers. The elements of this ring will be written as block matrices with the blocks formed by the matrices of size $m_{i} \times m_{j}(i=\{1,2,3\}, j=\{1,2,3\})$, where the sum $m_{1}+m_{2}+m_{3}=m$.

Let H_{1}, H_{2}, H_{3} be Lie subalgebras in the algebras of matrices $C_{m_{1}}, C_{m_{2}}, C_{m_{3}}$, respectively, and H_{i} be Frobenius subspaces in the algebras of matrices (see Definition 1).

Denote by

$$
L_{1}=\left(\begin{array}{ccc}
H_{1} & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right), \quad L_{2}=\left(\begin{array}{ccc}
* & 0 & * \\
* & H_{2} & * \\
* & 0 & *
\end{array}\right), \quad L_{3}=\left(\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & H_{3}
\end{array}\right)
$$

the sets of matrices; by stars we indicate arbitrary block matrices of the corresponding sizes. It is clear that L_{i} are Lie subalgebras in the matrices C_{m} and $L=L_{1}+L_{2}+L_{3}=C_{m}$.

Note that

$$
L_{1} \cap L_{2} \cap L_{3}=\left(\begin{array}{ccc}
H_{1} & 0 & 0 \\
0 & H_{2} & 0 \\
0 & 0 & H_{3}
\end{array}\right) .
$$

Denote by L_{4}^{\prime} the space of matrices in G with zero last row,

$$
L_{4}=T^{-1} L_{4}^{\prime} T, \quad T=\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} & \binom{0 \ldots 0}{0 \ldots 1} & E_{m_{3}}
\end{array}\right) .
$$

Then L_{4} is Lie subalgebra.
Proposition 2. The intersection of the spaces L_{i} is zero,

$$
\begin{equation*}
L_{1} \cap L_{2} \cap L_{3} \cap L_{4}=\{0\} . \tag{9}
\end{equation*}
$$

Proof. We have

$$
T\left(\begin{array}{ccc}
H_{1} & 0 & 0 \\
0 & H_{2} & 0 \\
0 & 0 & H_{3}
\end{array}\right) T^{-1} \cap L_{4}^{\prime}=\{0\}
$$

$$
T^{-1}=\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
\binom{0 \ldots 0}{0 \ldots-1} & \binom{0 \ldots 0}{0 \ldots-1} & E_{m_{3}}
\end{array}\right)
$$

For $q_{i} \in H_{i}$ the identity

$$
\begin{align*}
& \left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} & \binom{0 \ldots 0}{0 \ldots 1} & E_{m_{3}}
\end{array}\right)\left(\begin{array}{ccc}
q_{1} & 0 & 0 \\
0 & q_{2} & 0 \\
0 & 0 & q_{3}
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
q_{1} & 0 & 0 \\
0 & q_{2} & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} q_{1} & \binom{0 \ldots 0}{0 \ldots 1} q_{2} & q_{3}
\end{array}\right) ; \\
& \left(\begin{array}{ccc}
q_{1} & 0 & 0 \\
0 & q_{2} & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} q_{1} & \binom{0 \ldots 0}{0 \ldots 1} q_{2} & q_{3}
\end{array}\right) \cdot\left(\begin{array}{ccc}
E_{m_{1}} & 0 & 0 \\
0 & E_{m_{2}} & 0 \\
\binom{0 \ldots 0}{0 \ldots-1} & \binom{0 \ldots 0}{0 \ldots-1} & E_{m_{3}}
\end{array}\right)= \\
& =\left(\begin{array}{c}
q_{1} \\
0 \\
\binom{0 \ldots 0}{0 \ldots 1} q_{1}+\binom{0 \ldots 0}{0 \ldots-1} q_{3}
\end{array} \begin{array}{c}
0 \\
q_{2} \\
\binom{0 \ldots 0}{0 \ldots 1}
\end{array} q_{2}+\binom{0 \ldots 0}{0 \ldots-1} q_{3} \begin{array}{l}
q_{3}
\end{array}\right) \tag{10}
\end{align*}
$$

holds. Therefore, if

$$
q \in T\left(\begin{array}{ccc}
H_{1} & 0 & 0 \\
0 & H_{2} & 0 \\
0 & 0 & H_{3}
\end{array}\right) T^{-1} \cap L_{4}^{\prime}
$$

then the last row of the matrix q is zero.
It follows from identity (10) that the last rows from the elements q_{1}, q_{2}, q_{3} lying in the algebras H_{1}, H_{2}, H_{3}, are zero. Since the subalgebras H_{i} are Frobenius, then the elements q_{i} are zero. Hence, the desired intersection is also zero.

In what follows we employ the results of Theorem 1.
Proposition 3. Let

$$
g=C_{m} \oplus \ldots \oplus C_{m} ; \quad g_{+}=\left\{(a, a, \ldots, a) \mid a \in C_{m}\right\} ; \quad g_{-}=\left(L_{1}, L_{2}, L_{3}, L_{4}\right) .
$$

Then the operator defined by formula (2), satisfies Yang-Baxter equation with square (1) on g_{+}.

Proof. Let us check that g_{-}is a homogenous subalgebra complement to $g_{+} . L_{i}$ are Lie subalgebras. The validity of the condition $g_{+} \cap g_{-}=\{0\}$ is implied by the fact that according to Proposition 2, $L_{1} \cap L_{2} \cap L_{3} \cap L_{4}=\{0\}$.

If $(a, a, \ldots, a) \in\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$, then $a \in L_{1} \cap L_{2} \cap L_{3} \cap L_{4}=\{0\}$. This is the homogeneity condition $x h \subset h\left(h \in C_{m}[x]\right)$ for g_{-}is followed by $\alpha_{i} L_{i} \subseteq L_{i}$ (L_{i} is a subspace). It remains to check the condition $g_{+} \oplus g_{-}=g$. It is sufficient to show that the dimensions of the space $g_{-}+g_{+}$and g coincide. The identities $\operatorname{dimg}=4 m^{2}, d i m g_{+}=m^{2}$,

$$
\begin{gathered}
\operatorname{dim} g_{-}=\operatorname{dim} L_{1}+\operatorname{dim} L_{2}+\operatorname{dim} L_{3}+\operatorname{dim} L_{4} \\
\left(m_{2}+m_{3}\right) m+m_{1}=\operatorname{dim} L_{1} \\
\operatorname{dim} L_{2}=\left(m_{1}+m_{3}\right) m+m_{2}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{dimL_{3}}=\left(m_{1}+m_{2}\right) m+m_{3} \\
\operatorname{dimL_{4}}=m^{2}-m \\
\operatorname{dimg} g_{-}=m\left(m_{2}+m_{3}+m_{1}+m_{3}+m_{1}+m_{2}\right)+m_{1}+m_{2}+m_{3}+m^{2}-m=\left|m_{1}+m_{2}+m_{3}=m\right|= \\
=2 m^{2}+m+m^{2}-m=3 m^{2}
\end{gathered}
$$

hold. The identity

$$
\operatorname{dim} g_{+}+\operatorname{dim} g_{-}=\operatorname{dim}\left(g_{+}+g_{-}\right)
$$

is valid since the intersection $g_{+} \cap g_{-}=\{0\}$. This is why

$$
\operatorname{dimg}=\operatorname{dim}\left(g_{+}+g_{-}\right)=4 m^{2} .
$$

Thus, the condition $g_{+} \oplus g_{-}=g$ holds. By Theorem 1 the operator $R(q)$ defined by formula (2) satisfies Yang-Baxter equation with square (1).

Remark 1. Series 1 follows from Propositions 2 and 3 in the case if H_{1}, H_{2}, H_{3} are block matrices of the form (5) and (7), respectively.

Remakr 2. All aforementioned in Series 1 remains true if the number of blocks is k, and Lie subalgebra H_{1}, \ldots, H_{k} lying in the algebras of matrices $C_{m_{1}}, \ldots, C_{m_{k}}$ are Frobenius subspaces in these algebras of matrices.
4.2. Series 2. The work [1] contains the following propositions.

Proposition 4. Let G be an arbitrary 3-graded Lie algebra, p_{1} be Lie subalgebra in g_{0} and e be an element in g_{1} such that $\operatorname{dim} p_{1}=\operatorname{dimg}_{1}$ and $\left[p_{1}, e\right]=g_{1}$. Then $p_{2}=\exp \left(a d_{e}\right)\left(p_{1} \oplus g_{-1}\right)$ is a complement subalgebra to g_{0}.

Proposition 5. Suppose $R: G \longrightarrow G$ is diagonalizable, $\lambda_{1}, \ldots, \lambda_{k}$ is its spectrum, and G_{i} are the associated eigensubspaces. Then R satisfies Yang-Baxter equation with square (1) if and only if the subspaces G_{i} and $G_{i}+G_{j}$ are Lie subalgebras G for all different i and j from 1 to k.

We shall also make use of the following remark made in the work [1].
Remark 3. Proposition 4 allows one to construct k-parametric family of the solutions $R=\sum_{i=1}^{k} \lambda_{i} \prod_{i}$ (where \prod_{i} is the projector on G_{i}) to equation (1) if one knows the expansion of the Lie algebra G in a direct sum of the subspaces G_{i} such that G_{i} and $G_{i}+G_{j}$ are Lie subalgebras in G. The numbers λ_{i} serving as the parameters can be chosen arbitrarily.

Let us construct the series of the solutions to Yang-Baxter equation with square for certain 3 -graded Lie algebras. Let G be the algebra of $(2 m+n) \times(2 m+n)$ matrices over the field of complex number. We shall write the elements of G as block matrices. The block are formed by the matrices of size $m_{i} \times m_{j}\left(i=\{1,2,3\}, j=\{1,2,3\}, m_{1}=n, m_{2}=m_{3}=m\right.$.

We indicate by G_{0}, G_{1}, G_{-1} the following subspaces determining grade

$$
g_{0}=\left(\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right) \in G_{0}, \quad g_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
* & * & 0
\end{array}\right) \in G_{1}, \quad g_{-1}=\left(\begin{array}{ccc}
0 & 0 & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) \in G_{-1}
$$

It is easy to check that $G=G_{0} \oplus G_{1} \oplus G_{-1}$ is 3-graded Lie algebra.
Denote by P_{1} the subalgebra in G_{0} formed by the matrices

$$
P_{1}=\left(\begin{array}{ccc}
H_{1} & 0 & 0 \\
I_{1} & I_{2} & 0 \\
0 & 0 & H_{2}
\end{array}\right),
$$

where H_{1}, H_{2} are Lie subalgebras in the algebras of matrices C_{n} and C_{m} being Frobenius subspaces (the examples in §3). I_{1}, I_{2} consist of block matrices having zero last row. It is clear that P_{1} is a Lie subalgebra.

We note that $\operatorname{dimp}_{1}=\operatorname{dim} H_{1}+\operatorname{dim} H_{2}+\operatorname{dim} I_{1}+\operatorname{dim} I_{2}=n+m+(n m-n)+\left(m^{2}-m\right)=$ $=n+m+n m-n+m^{2}-m=m^{2}+m n=m(m+n)=\operatorname{dimg}_{1}$.

Define the element e in G_{1} by the formula

$$
e=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} & E_{m} & 0
\end{array}\right) .
$$

Let us check the validity of the condition $\left[P_{1}, e\right]=G_{1}$ from Proposition 1. As $q_{1} \in H_{1}, q_{2} \in H_{2}$, $i_{1} \in I_{1}, i_{2} \in I_{2}$ the identities

$$
\begin{align*}
& {\left[P_{1}, e\right]=\left(\begin{array}{ccc}
q_{1} & 0 & 0 \\
i_{1} & i_{2} & 0 \\
0 & 0 & q_{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} & E_{m} & 0
\end{array}\right)-} \\
& -\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\binom{0 \ldots 0}{0 \ldots 1} & E_{m} & 0
\end{array}\right)\left(\begin{array}{ccc}
q_{1} & 0 & 0 \\
i_{1} & i_{2} & 0 \\
& 0 & q_{2}
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
q_{2}\binom{0 \ldots 0}{0 \ldots 1} & q_{2} & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\binom{0 \ldots 0}{0 \ldots} q_{1}+i_{1} & i_{2} & 0
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
q_{2}\binom{0 \ldots 0}{0 \ldots 1}-\binom{0 \ldots 0}{0 \ldots 1} q_{1}-i_{1} & q_{2}-i_{2} & 0
\end{array}\right) \tag{11}
\end{align*}
$$

hold true. In order to check the condition $\left[P_{1}, e\right]=G_{1}$, we need to show that there are arbitrary elements on the positions of the block $(3,1)$ and $(3,2)$ of matrix (11). The subalgebras H_{2} and I_{2} are complement each to the other in the space of the $m \times m$ matrices, and moreover the subspaces $\binom{0 \ldots}{0 \ldots 1} H_{1}$ and I_{1} are complement each to the other in the space of the matrices of size $m \times n$. On the positions of the block $(3,1)$ and $(3,2)$ of matrix (11) there are arbitrary elements, since $q_{2}-i_{2}$ is an arbitrary element of size $m \times m$ and $\binom{0 \ldots 0}{0 \ldots 1} q_{1}+i_{1}-$ is an arbitrary element of size $m \times n, q_{1} \in H_{1}, q_{2} \in H_{2}, i_{1} \in I_{1}, i_{2} \in I_{2}$.

We let

$$
P_{2}=\exp \left(a d_{e}\right)\left(P_{1} \oplus G_{-1}\right)
$$

and

$$
G^{1}=G_{0}, \quad G^{2}=P_{2} \cap\left(G_{0} \oplus G_{1}\right), \quad G^{3}=P_{2} \cap\left(G_{0} \oplus G_{-1}\right)
$$

It is easy to see that P_{i} are Lie subalgebras in G and

$$
G^{1}+G^{2}=G_{0}+G_{1}, \quad G^{1}+G^{3}=G_{0}+G_{-1}, \quad G^{2}+G^{3}=P_{2}
$$

are also Lie subalgebras. According to the remark to Proposition 5 in [1], we have obtained the operators satisfying Yang-Baxter equation with square.

The authors are grateful to V.V. Sokolov and B.I. Suleimanov for useful discussions.

BIBLIOGRAPHY

1. I.Z. Golubchik, V.V. Sokolov. One More Kind of the Classical Yang-Baxter Equation // Funkts. analiz i ego prilozh. V. 34, No. 4. 2000. P. 75-78. [Funct. Anal. Appl. V. 34, No. 4. 2000. P. 296-298]
2. I.Z. Golubchik, V.V.Sokolov. Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type // Funkts. analiz i ego prilozh. V. 36, No. 3. 2002. P. 9-19. [Funct. Anal. Appl. V. 36, No. 3. 2002. P. 172-181]
3. I.Z. Golubchik, V.V.Sokolov. Factorization of the Loop Algebra and Integrable Toplike Systems // Teoret. i matem. fizika. V. 141, No. 1. 2004. P. 3-23. [Theor. Math. Phys. V. 141, No. 1. 2004. P. 1329-1347]
4. R.A. Atnagulova. A kind of classical Yang-Baxter equation // VI Ufa international conference "Complex analysis and differential equaitons". Book of abstract, IMCS USC RAS. Ufa. 2011. P. 25. (in Russian)

Rushaniya Akh'yarovna Atnagulova,
Bashkir State
Pedagogical University,
October rev. st., 3a
450000, Ufa, Russia
E-mail: rushano4ka@mail.ru
Igor Zakharovich Golubchik,
Bashkir State
Pedagogical University,
October rev. st., 3a
450000, Ufa, Russia

[^0]: R.A. Atnagulova, I.Z. Golubchik, New solutions of the Yang-Baxter Equation with a SQUARE.
 © R.A. Atnagulova, I.Z. Golubchik 2012.
 Submitted December 19, 2011.

