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NEW SOLUTIONS OF YANG-BAXTER EQUATION WITH

SQUARE

R.A. ATNAGULOVA, I.Z. GOLUBCHIK

Abstract. The paper is devoted to Yang-Baxter equation with the square, that is,
to the equation

𝑅([𝑅(𝑎), 𝑏] − [𝑅(𝑏), 𝑎]) = 𝑅2([𝑎, 𝑏]) + [𝑅(𝑎), 𝑅(𝑏)],

where 𝑎, 𝑏 ∈ 𝑔, 𝑔 is a Lie algebra, and 𝑅 is a linear operator on the vector space 𝑔.
We construct two series of the operators 𝑅 satisfying this equation. For constructing
we employ the Lie subalgebras in the matrix algebra complement to the subspace of
matrices with zero last row.

Keywords: Yang-Baxter equation with square, integrable differential equations,
complementary subalgebras in the algebra of Laurent series.

1. Introduction

The main question studied in this paper is Yang-Baxter equation with square

𝑅([𝑅(𝑎), 𝑏] − [𝑅(𝑏), 𝑎]) = 𝑅2([𝑎, 𝑏]) + [𝑅(𝑎), 𝑅(𝑏)], (1)

where 𝑎, 𝑏 ∈ 𝑔, 𝑔 is a Lie algebra, and 𝑅 is a linear operator on the vector space 𝑔. Equation (1)
plays an important role in the theory of integrable systems [1–4]. The main aim of the present
paper is to construct new series of the solutions to Yang-Baxter equation with square (1).

In S3 we shall construct two examples of Lie subalgebras in the matrix algebra complement
to the subspace of matrices with zero last row. Then in S4, employing subalgebras from S3, we
construct two series of solutions to Yang-Baxter equation. The series 2 rests upon the method
based on the proposition 3 in the work [1]. This series of the solutions to equation (1) is related
to 3-graded Lie algebras. The series 1 is essentially new. The corresponding construction rests
upon Theorem 1 in S2.

2. Homogenuous complement subalgebras in the algebra of polynomials
over matrices

In the present work equation (1) is studied under the assumption that 𝑔 is the Lie algebra
of the matrices 𝑔 = 𝐶𝑚 ⊕ . . . ⊕ 𝐶𝑚 being the direct sum of several copies of Lie alegbras 𝐶𝑚.
The Lie algebra of matrices 𝑔 is the direct sum of Lie algebras of 𝑚×𝑚 matrices over field 𝐶.
We introduce the notations,

1) we call a subalgebra 𝑔+ of the algebra 𝑔 diagonal if it consists of the elements
{(𝑎, 𝑎, . . . , 𝑎)|𝑎 ∈ 𝐶𝑚};
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2) we call a subalgebra 𝑔− of the algebra 𝑔 complement to 𝑔+ if the direct sum of the subspaces
𝑔− and 𝑔+ coincides with the Lie algebra 𝑔 or, in other words, the following two conditions

𝑔+ ⊕ 𝑔− = 𝑔, 𝑔+ ∩ 𝑔− = {0}
hold true;

3) we call subalgebra ℎ of the algebra of polynomials 𝐶𝑚[𝑥] homogenous if the subalgebra
satisfies the condition 𝑥ℎ ⊂ ℎ.

We define the operator 𝑅 : 𝐶𝑚 → 𝐶𝑚 by the formula

(𝛼1𝑝, 𝛼2𝑝, . . . , 𝛼𝑚𝑝)+ = −(𝑅(𝑝), . . . , 𝑅(𝑝)). (2)

Here
𝑞 = (𝑝, 𝑝, . . . , 𝑝) ∈ 𝑔+, 𝜆 = (𝛼1, . . . , 𝛼𝑚),

where 𝛼𝑖 are different and by (𝜆𝑞)+ we denote the projection of the element 𝜆𝑞 on 𝑔+ parallel
to 𝑔−.

Theorem 1. Let 𝑔+ be a diagonal subalgebra of the algebra 𝑔, 𝑔− be a homogenous subalgebra
complement to 𝑔+. Then the operator 𝑅 defined by formula (2) satisfies equation (1) on 𝑔+.

Proof. We consider Lie algebra 𝐶𝑚[𝑥] of the polynomials of the form
∑︀

𝑎𝑖𝑥
𝑖, where the

coefficients 𝑎𝑖 belong to the ring of 𝑚×𝑚 complex matrices, 𝑥 is a scalar variable.
Let 𝜙 be a linear operator acting from 𝐶𝑚[𝑥] into the direct sum of 𝑘 copies of the algebra

𝐶𝑚 by the formula

𝜙(
∑︁

(𝑎𝑖𝑥
𝑖) =

∑︁
𝑖

𝜆𝑖(𝑎𝑖, . . . , 𝑎𝑖) =
∑︁
𝑖

(𝛼𝑖
1𝑎𝑖, 𝛼

𝑖
2𝑎𝑖, . . . , 𝛼

𝑖
𝑚𝑎𝑖). (3)

It is easy to check that 𝜙 is a homomorphism of Lie algebras, i.e., it preserves the commutator.
The full image 𝜙−1(𝑔−) = 𝐺− of subalgebra 𝑔− under the homomorphism 𝜙 is a subalgebra
of the algebra 𝐶𝑚[𝑥]. By 𝐺+ we denote the subalgebra in 𝐶𝑚[𝑥] formed by the polynomials
independent of 𝑥.

Let us prove that the following three conditions similar to the assumptions for Lie algebra 𝑔
in Theorem 1

𝑎)𝑥𝐺− ⊆ 𝐺−; 𝑏)𝐺+ + 𝐺− = 𝐶𝑚[𝑥]; 𝑐)𝐺+ ∩𝐺− = {0}
hold true.

The inclusion 𝑥𝐺− ⊆ 𝐺− is valid since by the assumption of Theorem 1 𝜆𝑔− ⊆ 𝑔− and
𝜙−1(𝜆𝑔−) = 𝑥𝐺− ⊆ 𝐺−.

Let 𝑎 = 𝑏 + 𝑐, 𝑏 ∈ 𝐺+, 𝑐 ∈ 𝐺−. Then 𝜙(𝑎) = 𝜙(𝑏) + 𝜙(𝑐), where 𝜙(𝑏) ∈ 𝑔+, 𝜙(𝑐) ∈ 𝑔−. Thus,
𝜙(𝐺+ + 𝐺−) = 𝑔+ + 𝑔− = 𝐶𝑚[𝑥]. Therefore, 𝐺+ + 𝐺− + 𝐾𝑒𝑟𝜙 = 𝐶𝑚[𝑥]. Since 𝐾𝑒𝑟𝜙 ⊆ 𝐺−,
then 𝐺+ + 𝐺− = 𝐶𝑚[𝑥]. Thus, the condition b) holds true as well.

Next, let 𝑎 belong to 𝐺+ ∩ 𝐺−. Then 𝜙(𝑎) ∈ 𝑔+ ∩ 𝑔− = 0, i.e., 𝐾𝑒𝑟𝜙 ∈ 𝐺−. Hence,
𝑎 ∈ 𝐾𝑒𝑟𝜙 ∩𝐺+ = 0. Therefore, 𝜙(𝑎) = (𝑎, . . . , 𝑎) = 0 and the condition c) is satisfied.

In order 𝑅 to satisfy equation (1), it is sufficient to show that 𝐺− can be represented as

𝐺− =
∑︁
𝑖

𝑥𝑖(𝑥𝑎𝑖 + 𝑅(𝑎𝑖)). (4)

Since by definition (3) of the function 𝜙 we have

𝜙(𝑥𝑝 + 𝑅(𝑝)) = 𝜆(𝑝, 𝑝, . . . , 𝑝) + (𝑅(𝑝), 𝑅(𝑝), . . . , 𝑅(𝑝)) ∈ 𝑔−,

𝑥𝑝 + 𝑅(𝑝) ∈ 𝐺−. Denote 𝐺− =
∑︀

𝑖 𝑥
𝑖(𝑥𝑎𝑖 + 𝑅(𝑎𝑖)). The condition 𝜆𝑔− ⊆ 𝑔− follows that

𝑥𝑖(𝑥𝑎𝑖 + 𝑅(𝑎𝑖)) ⊆ 𝐺−. We get that 𝐺− ⊆ 𝐺−, 𝐺− + 𝐺+ = 𝐶𝑚[𝑥], and since 𝐺− ∩ 𝐺+ = {0},
then 𝐺− ⊆ 𝐺−. Hence, 𝐺− = 𝐺−, and identity (4) is proven. Let us deduce the equation for
the operator 𝑅. In order to do it, we consider the commutator

[𝑥𝑎 + 𝑅(𝑎), 𝑥𝑏 + 𝑅(𝑏)] ∈ 𝐺−.



8 R.A. ATNAGULOVA, I.Z. GOLUBCHIK

Denote 𝑑 = [𝑎, 𝑏], then [𝑥𝑎 + 𝑅(𝑎), 𝑥𝑏 + 𝑅(𝑏)] = 𝑥(𝑥𝑑 + 𝑅(𝑑)) + 𝑥(𝑐) + 𝑅(𝑐),

𝑥2[𝑎, 𝑏] + 𝑥[𝑎,𝑅(𝑏)] + 𝑥[𝑅(𝑎), 𝑏] + [𝑅(𝑎), 𝑅(𝑏)] = 𝑥(𝑥𝑑 + 𝑅(𝑑)) + 𝑥(𝑐) + 𝑅(𝑐).

Equating the coefficients at like powers of 𝑥 in the left and right hand sides of the last identity,
we obtain the relations

[𝑎,𝑅(𝑏)] + [𝑅(𝑎), 𝑏] = 𝑅(𝑑) + 𝑐, 𝑅(𝑐) = [𝑅(𝑎), 𝑅(𝑏)],

𝑐 = [𝑎,𝑅(𝑏)] + [𝑅(𝑎), 𝑏] −𝑅(𝑑), 𝑅(𝑐) = 𝑅([𝑎,𝑅(𝑏)] + [𝑅(𝑎), 𝑏] −𝑅(𝑑)).

It follows that 𝑅([𝑅(𝑎), 𝑏] − [𝑅(𝑏), 𝑎]) = 𝑅2([𝑎, 𝑏]) + [𝑅(𝑎), 𝑅(𝑏)]. Theorem 1 is proven.
In the work [1] it was shown that the following theorem holds.

Theorem 2. Let the operator 𝑅 : 𝐺 → 𝐺 be diagonalizable, 𝜆1, . . . , 𝜆𝑘 be its spectrum, and
𝐺𝑖 be the associated eigensubspaces. Then 𝑅 satisfies equation (1) if and only if the subspaces
𝐺𝑖 and 𝐺𝑖 + 𝐺𝑗 are Lie sublagebras in 𝐺 for all different 𝑖 and 𝑗 from 1 to 𝑘.

3. Frobenius subspace

Definition 1. We call a subspace in the space of matrices 𝐶𝑛×𝑛 a Frobenius subspace if all
the space of matrices is the direct sum of its subspace and the space of the matrices with zero
last row.

For constructing a series of the examples of the operators 𝑅 satisfying Yang-Baxter equation
with square in the work we consider Frobenius subspaces being Lie subalgebras.

Example 1. Consider the block matrices

ℎ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
0 𝜇1, . . . , 𝜇𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ |𝜆𝑠, 𝜇𝑠 ∈ 𝐶

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (5)

These matrices consist of the blocks of size 𝑚𝑖×𝑚𝑗, where 𝑖 = {1, 2, 3}, 𝑗 = {1, 2, 3}, the index
𝑠 ∈ {1, . . . ,𝑚1}, 𝑚3=1, 𝑚 = 𝑚1 +𝑚2 +𝑚3. The matrices 𝐷𝑠 in formula (5) are fixed diagonal
matrices of size 𝑚2 × 𝑚2, 𝜆𝑠, 𝜇𝑡 are arbitrary parameters. At that the parameters 𝜆𝑠 in the
block (2,2) are the same as in the block (1, 1).

Let us show that the set 𝐻 of such matrices ℎ form a Lie algebra. Indeed, for the commutators
of block matrices the identities

[

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
0 𝜇1, . . . , 𝜇𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆′
1 0 . . . 0

0 𝜆′
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 𝜆′

𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆′
𝑡𝐷

′
𝑡 0

0 𝜇′
1, . . . , 𝜇

′
𝑚2

𝜇′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎠] =

=

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
0 𝜇1, . . . , 𝜇𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠×

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆′
1 0 . . . 0

0 𝜆′
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 𝜆′

𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆′
𝑡𝐷

′
𝑡 0

0 𝜇′
1, . . . , 𝜇

′
𝑚2

𝜇′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎠−
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−

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆′
1 0 . . . 0

0 𝜆′
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 𝜆′

𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆′
𝑡𝐷

′
𝑡 0

0 𝜇′
1, . . . , 𝜇

′
𝑚2

𝜇′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎠×

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
0 𝜇1, . . . , 𝜇𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1𝜆

′
1 0 . . . 0

0 𝜆2𝜆
′
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1𝜆

′
𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝜆
′
𝑡𝐷𝑠𝐷

′
𝑡 0

0 (𝜇1 . . . 𝜇𝑚2)
∑︀

𝜆′
𝑡𝐷

′
𝑡 𝜇𝑚𝜇

′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎠−

−

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆′
1𝜆1 0 . . . 0
0 𝜆′

2𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆′

𝑚1
𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆′
𝑡𝐷

′
𝑡𝐷𝑠𝜆𝑠 0

0 (𝜇′
1 . . . 𝜇

′
𝑚2

)
∑︀

𝜆𝑠𝐷𝑠 𝜇′
𝑚𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎝0 0 0
0 0 0
0 (𝜇′′

1 . . . 𝜇
′′
𝑚2

) 0

⎞⎠

hold. This is why such commutator is the matric of the form (5) why 𝜆𝑖 = 0; we obtain that
𝐻 is a Lie algebra.

Consider the matrix

𝑇 =

⎛⎝ 𝐸𝑚1 0 0
0 𝐸𝑚2 0

1 . . . 1 0 1

⎞⎠ ,

where 𝐸𝑚𝑖
is the unit 𝑚𝑖 ×𝑚𝑖 matrix. It is easy its inverse is given by the formula

𝑇−1 =

⎛⎝ 𝐸𝑚1 0 0
0 𝐸𝑚2 0

−1 . . .− 1 0 1

⎞⎠ .

Since 𝐻 is a Lie sublagebra, the subspace 𝑇𝐻𝑇−1 is also a Lie sublagebra.

Proposition 1. The subspace 𝑇𝐻𝑇−1 is a Frobenius one (see Definition 1).

Proof: The relations

𝑇ℎ𝑇−1 =

⎛⎝ 𝐸𝑚1 0 0
0 𝐸𝑚2 0

1 . . . 1 0 1

⎞⎠×

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
0 𝜇1 . . . 𝜇𝑚2

𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠×

×

⎛⎝ 𝐸𝑚1 0 0
0 𝐸𝑚2 0

−1 . . .− 1 0 1

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
𝜆1 . . . 𝜆𝑚1 𝜇1 . . . 𝜇𝑚1 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠×
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×

⎛⎝ 𝐸𝑚1 0 0
0 𝐸𝑚2 0

1 . . . 1 0 1

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0

0
∑︀

𝜆𝑠𝐷𝑠 0
𝜆1 − 𝜇𝑚 . . . 𝜆𝑚1 − 𝜇𝑚 𝜇1 . . . 𝜇𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

hold. We denote by 𝐼 the space of the matrices with zero leas row, i.e., the space of the matrices

𝐼 =

⎛⎝* * *
* * *
0 0 0

⎞⎠ .

Let 𝑞 ∈ 𝐼 ∩ ℎ. We need to show that 𝑞 = 0. Relations (6) follow the identities 𝜇𝑛 = 0,
𝜆𝑗 − 𝜇𝑛 = 0 (𝑗 = 1, 𝑘). Since 𝑇𝐻𝑇−1 ∩ 𝐼 = 0, the sum of the dimensions of the spaces 𝑇ℎ𝑇−1

and 𝐼 equals 𝑛2 because 𝑇ℎ𝑇−1 contains 𝑛 parameters and the dimension of 𝐼 equals 𝑛2 − 𝑛.
The dimension of this sum of spaces 𝑑𝑖𝑚(𝑇ℎ𝑇−1 + 𝐼) coincides with the dimension of the space
of complex 𝑛× 𝑛 matrices. Hence, these spaces 𝑇ℎ𝑇−1 and 𝐼 are complement subspaces each
to the other. Thus, 𝑇ℎ𝑇−1 is a Frobenius subspace being Lie subalgebra. The lemma is proven.

Example 2. Consider the block matrices

ℎ = {

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆𝑠𝐴𝑠 0
0 0 0 0
0 𝜇1 . . . 𝜇𝑚2 𝜇𝑚2+1 . . . 𝜇𝑚3+𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
| (7)

𝜆𝑖, 𝜇𝑖 ∈ 𝐶}. These matrices consist of the blocks of size 𝑚𝑖 × 𝑚𝑗 where 𝑖 =
{1, 2, 3, 4},𝑗 = {1, 2, 3, 4}, the index 𝑠 ∈ {1, . . . ,𝑚1}, 𝑚4=1, 𝑚 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚4). The
matrices 𝐴𝑖 in formula (7) are constant matrices not necessary diagonal, 𝜆𝑠, 𝜇𝑡 are arbitrary
parameters. At that the parameters 𝜆𝑠 in the block (2,3) are the same as in the block (1, 1).

The calculations similar to those done in Example 1 show that

[

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆𝑠𝐴𝑠 0
0 0 0 0
0 𝜇1 . . . 𝜇𝑚2 𝜇𝑚2+1 . . . 𝜇𝑚3+𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆′
1 0 . . . 0

0 𝜆′
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 𝜆′

𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆′
𝑡𝐴

′
𝑡 0

0 0 0 0
0 𝜇′

1 . . . 𝜇
′
𝑚2

𝜇′
𝑚2+1 . . . 𝜇

′
𝑚3+𝑚2

𝜇′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
] =
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=

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 𝜇′′

1 . . . 𝜇
′′
𝑚2

𝜇′′
𝑚2+1 . . . 𝜇

′′
𝑚2+𝑚3

) 𝜇′′
𝑚

⎞⎟⎟⎠ .

The last matrix is the matrix of the form (7) with 𝜆𝑖 = 0, i.e., the set 𝐻 of matrices (7) is a
Lie algebra.

Next we consider the matrix

𝑇 =

⎛⎜⎜⎝
𝐸𝑚1 0 0 0

0 𝐸𝑚2 0 0
0 0 𝐸𝑚3 0

1 . . . 1 0 0 1

⎞⎟⎟⎠ .

Its inverse is given by the formula

𝑇−1 =

⎛⎜⎜⎝
𝐸𝑚1 0 0 0

0 𝐸𝑚2 0 0
0 0 𝐸𝑚3 0

−1 . . .− 1 0 0 1

⎞⎟⎟⎠ .

Let us prove that the Lie subalgebra 𝑇𝐻𝑇−1 is a Frobenius subspace. The identities

𝑇ℎ𝑇−1 =

⎛⎜⎜⎝
𝐸𝑚1 0 0 0

0 𝐸𝑚2 0 0
0 0 𝐸𝑚3 0

1 . . . 1 0 0 1

⎞⎟⎟⎠×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆𝑠𝐴𝑠 0
0 0 0 0
0 𝜇1 . . . 𝜇𝑚2 𝜇𝑚2+1 . . . 𝜇𝑚3+𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎝
𝐸𝑚1 0 0 0

0 𝐸𝑚2 0 0
0 0 𝐸𝑚3 0

−1 . . .− 1 0 0 1

⎞⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆𝑠𝐴𝑠 0
0 0 0 0

𝜆1 . . . 𝜆𝑚1 𝜇1 . . . 𝜇𝑚2 𝜇𝑚2+1 . . . 𝜇𝑚3+𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎝
𝐸𝑚1 0 0 0

0 𝐸𝑚2 0 0
0 0 𝐸𝑚3 0

−1 . . .− 1 0 0 1

⎞⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝜆1 0 . . . 0
0 𝜆2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑚1

⎞⎟⎟⎠ 0 0 0

0 0
∑︀

𝜆𝑠𝐴𝑠 0
0 0 0 0

𝜆1 − 𝜇𝑚 . . . 𝜆𝑚1 − 𝜇𝑚 𝜇1 . . . 𝜇𝑚2 𝜇𝑚2+1 . . . 𝜇𝑚3+𝑚2 𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

hold true.
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Denote 𝐼 the space of the matrices with zero last row,

𝐼 =

⎛⎝* * * *
* * * *
0 0 0 0

⎞⎠ .

Let 𝑞 ∈ 𝐼 ∩ ℎ. Then 𝑞 = 0. Indeed, it follows from (8) that the identities 𝜇𝑛 = 0, 𝜆𝑗 − 𝜇𝑛 = 0

(𝑗 = 1, 𝑘) are valid. Since 𝑇𝐻𝑇−1 ∩ 𝐼 = 0, the sum of the dimensions of 𝑇𝐻𝑇−1 and 𝐼
equals 𝑛2, due to 𝑑𝑖𝑚(𝑇ℎ𝑇−1) = 𝑛 and 𝑑𝑖𝑚𝐼 = 𝑛2 − 𝑛. The dimension of the sum of the
spaces 𝑑𝑖𝑚(𝑇ℎ𝑇−1 + 𝐼) coincides with the dimension of the space of complex 𝑛× 𝑛 matrices.
Hence, the spaces 𝑇ℎ𝑇−1 and 𝐼 are subspaces complement each to the other. Thus, 𝑇ℎ𝑇−1 is
a Frobenius subspace being a Lie subalgebra.

4. Series of equation to Yang-Baxter equation with square

On the basis of the examples in the previous section we construct two series of solutions to
Yang-Baxter equation with square (1).

4.1. Series 1. Consider the ring of 𝑚 ×𝑚 matrices 𝐶𝑚 over the field of complex numbers.
The elements of this ring will be written as block matrices with the blocks formed by the
matrices of size 𝑚𝑖 ×𝑚𝑗 (𝑖 = {1, 2, 3}, 𝑗 = {1, 2, 3}), where the sum 𝑚1 + 𝑚2 + 𝑚3 = 𝑚.

Let 𝐻1, 𝐻2, 𝐻3 be Lie subalgebras in the algebras of matrices 𝐶𝑚1 , 𝐶𝑚2 , 𝐶𝑚3 , respectively,
and 𝐻𝑖 be Frobenius subspaces in the algebras of matrices (see Definition 1).

Denote by

𝐿1 =

⎛⎝𝐻1 * *
0 * *
0 * *

⎞⎠ , 𝐿2 =

⎛⎝* 0 *
* 𝐻2 *
* 0 *

⎞⎠ , 𝐿3 =

⎛⎝* * 0
* * 0
* * 𝐻3

⎞⎠
the sets of matrices; by stars we indicate arbitrary block matrices of the corresponding sizes.
It is clear that 𝐿𝑖 are Lie subalgebras in the matrices 𝐶𝑚 and 𝐿 = 𝐿1 + 𝐿2 + 𝐿3 = 𝐶𝑚.

Note that

𝐿1 ∩ 𝐿2 ∩ 𝐿3 =

⎛⎝𝐻1 0 0
0 𝐻2 0
0 0 𝐻3

⎞⎠ .

Denote by 𝐿′
4 the space of matrices in 𝐺 with zero last row,

𝐿4 = 𝑇−1𝐿′
4𝑇, 𝑇 =

⎛⎜⎜⎝
𝐸𝑚1 0 0

0 𝐸𝑚2 0(︂
0 . . . 0
0 . . . 1

)︂ (︂
0 . . . 0
0 . . . 1

)︂
𝐸𝑚3

⎞⎟⎟⎠ .

Then 𝐿4 is Lie subalgebra.

Proposition 2. The intersection of the spaces 𝐿𝑖 is zero,

𝐿1 ∩ 𝐿2 ∩ 𝐿3 ∩ 𝐿4 = {0}. (9)

Proof. We have

𝑇

⎛⎝𝐻1 0 0
0 𝐻2 0
0 0 𝐻3

⎞⎠𝑇−1 ∩ 𝐿′
4 = {0},
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𝑇−1 =

⎛⎜⎜⎝
𝐸𝑚1 0 0

0 𝐸𝑚2 0(︂
0 . . . 0

0 . . .− 1

)︂ (︂
0 . . . 0

0 . . .− 1

)︂
𝐸𝑚3

⎞⎟⎟⎠ .

For 𝑞𝑖 ∈ 𝐻𝑖 the identity⎛⎜⎜⎝
𝐸𝑚1 0 0

0 𝐸𝑚2 0(︂
0 . . . 0
0 . . . 1

)︂ (︂
0 . . . 0
0 . . . 1

)︂
𝐸𝑚3

⎞⎟⎟⎠
⎛⎝𝑞1 0 0

0 𝑞2 0
0 0 𝑞3

⎞⎠ =

=

⎛⎜⎜⎝
𝑞1 0 0
0 𝑞2 0(︂

0 . . . 0
0 . . . 1

)︂
𝑞1

(︂
0 . . . 0
0 . . . 1

)︂
𝑞2 𝑞3

⎞⎟⎟⎠ ;

⎛⎜⎜⎝
𝑞1 0 0
0 𝑞2 0(︂

0 . . . 0
0 . . . 1

)︂
𝑞1

(︂
0 . . . 0
0 . . . 1

)︂
𝑞2 𝑞3

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝐸𝑚1 0 0

0 𝐸𝑚2 0(︂
0 . . . 0

0 . . .− 1

)︂ (︂
0 . . . 0

0 . . .− 1

)︂
𝐸𝑚3

⎞⎟⎟⎠ =

=

⎛⎜⎜⎝
𝑞1 0 0
0 𝑞2 0(︂

0 . . . 0
0 . . . 1

)︂
𝑞1 +

(︂
0 . . . 0

0 . . .− 1

)︂
𝑞3

(︂
0 . . . 0
0 . . . 1

)︂
𝑞2 +

(︂
0 . . . 0

0 . . .− 1

)︂
𝑞3 𝑞3

⎞⎟⎟⎠ (10)

holds. Therefore, if

𝑞 ∈ 𝑇

⎛⎝𝐻1 0 0
0 𝐻2 0
0 0 𝐻3

⎞⎠𝑇−1 ∩ 𝐿′
4,

then the last row of the matrix 𝑞 is zero.
It follows from identity (10) that the last rows from the elements 𝑞1, 𝑞2, 𝑞3 lying in the algebras

𝐻1, 𝐻2, 𝐻3, are zero. Since the subalgebras 𝐻𝑖 are Frobenius, then the elements 𝑞𝑖 are zero.
Hence, the desired intersection is also zero.

In what follows we employ the results of Theorem 1.

Proposition 3. Let

𝑔 = 𝐶𝑚 ⊕ . . .⊕ 𝐶𝑚; 𝑔+ = {(𝑎, 𝑎, . . . , 𝑎)|𝑎 ∈ 𝐶𝑚}; 𝑔− = (𝐿1, 𝐿2, 𝐿3, 𝐿4).

Then the operator defined by formula (2), satisfies Yang-Baxter equation with square (1) on
𝑔+.

Proof. Let us check that 𝑔− is a homogenous subalgebra complement to 𝑔+. 𝐿𝑖 are Lie
subalgebras. The validity of the condition 𝑔+ ∩ 𝑔− = {0} is implied by the fact that according
to Proposition 2, 𝐿1 ∩ 𝐿2 ∩ 𝐿3 ∩ 𝐿4 = {0}.

If (𝑎, 𝑎, . . . , 𝑎) ∈ (𝐿1, 𝐿2, 𝐿3, 𝐿4), then 𝑎 ∈ 𝐿1 ∩ 𝐿2 ∩ 𝐿3 ∩ 𝐿4 = {0}. This is the homogeneity
condition 𝑥ℎ ⊂ ℎ (ℎ ∈ 𝐶𝑚[𝑥]) for 𝑔− is followed by 𝛼𝑖𝐿𝑖 ⊆ 𝐿𝑖 (𝐿𝑖 is a subspace). It remains
to check the condition 𝑔+ ⊕ 𝑔− = 𝑔. It is sufficient to show that the dimensions of the space
𝑔− + 𝑔+ and 𝑔 coincide. The identities 𝑑𝑖𝑚𝑔 = 4𝑚2, 𝑑𝑖𝑚𝑔+ = 𝑚2,

𝑑𝑖𝑚𝑔− = 𝑑𝑖𝑚𝐿1 + 𝑑𝑖𝑚𝐿2 + 𝑑𝑖𝑚𝐿3 + 𝑑𝑖𝑚𝐿4

(𝑚2 + 𝑚3)𝑚 + 𝑚1 = 𝑑𝑖𝑚𝐿1,

𝑑𝑖𝑚𝐿2 = (𝑚1 + 𝑚3)𝑚 + 𝑚2,
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𝑑𝑖𝑚𝐿3 = (𝑚1 + 𝑚2)𝑚 + 𝑚3,

𝑑𝑖𝑚𝐿4 = 𝑚2 −𝑚,

𝑑𝑖𝑚𝑔− = 𝑚(𝑚2 +𝑚3 +𝑚1 +𝑚3 +𝑚1 +𝑚2)+𝑚1 +𝑚2 +𝑚3 +𝑚2−𝑚 = |𝑚1 +𝑚2 +𝑚3 = 𝑚| =

= 2𝑚2 + 𝑚 + 𝑚2 −𝑚 = 3𝑚2

hold. The identity
𝑑𝑖𝑚𝑔+ + 𝑑𝑖𝑚𝑔− = 𝑑𝑖𝑚(𝑔+ + 𝑔−)

is valid since the intersection 𝑔+ ∩ 𝑔− = {0}. This is why

𝑑𝑖𝑚𝑔 = 𝑑𝑖𝑚(𝑔+ + 𝑔−) = 4𝑚2.

Thus, the condition 𝑔+ ⊕ 𝑔− = 𝑔 holds. By Theorem 1 the operator 𝑅(𝑞) defined by formula
(2) satisfies Yang-Baxter equation with square (1).

Remark 1. Series 1 follows from Propositions 2 and 3 in the case if 𝐻1, 𝐻2, 𝐻3 are block
matrices of the form (5) and (7), respectively.

Remakr 2. All aforementioned in Series 1 remains true if the number of blocks is 𝑘, and Lie
subalgebra 𝐻1, . . . , 𝐻𝑘 lying in the algebras of matrices 𝐶𝑚1 ,. . . , 𝐶𝑚𝑘

are Frobenius subspaces
in these algebras of matrices.

4.2. Series 2. The work [1] contains the following propositions.

Proposition 4. Let 𝐺 be an arbitrary 3-graded Lie algebra, 𝑝1be Lie subalgebra in 𝑔0 and 𝑒
be an element in 𝑔1 such that 𝑑𝑖𝑚𝑝1 = 𝑑𝑖𝑚𝑔1 and [𝑝1, 𝑒] = 𝑔1. Then 𝑝2 = 𝑒𝑥𝑝(𝑎𝑑𝑒)(𝑝1 ⊕ 𝑔−1) is
a complement subalgebra to 𝑔0.

Proposition 5. Suppose 𝑅 : 𝐺 −→ 𝐺 is diagonalizable, 𝜆1, . . . , 𝜆𝑘 is its spectrum, and 𝐺𝑖

are the associated eigensubspaces. Then 𝑅 satisfies Yang-Baxter equation with square (1) if and
only if the subspaces 𝐺𝑖 and 𝐺𝑖 +𝐺𝑗 are Lie subalgebras 𝐺 for all different 𝑖 and 𝑗 from 1 to 𝑘.

We shall also make use of the following remark made in the work [1].
Remark 3. Proposition 4 allows one to construct 𝑘-parametric family of the solutions

𝑅 =
∑︀𝑘

𝑖=1 𝜆𝑖

∏︀
𝑖 (where

∏︀
𝑖 is the projector on 𝐺𝑖) to equation (1) if one knows the expansion

of the Lie algebra 𝐺 in a direct sum of the subspaces 𝐺𝑖 such that 𝐺𝑖 and 𝐺𝑖 + 𝐺𝑗 are Lie
subalgebras in 𝐺. The numbers 𝜆𝑖 serving as the parameters can be chosen arbitrarily.

Let us construct the series of the solutions to Yang-Baxter equation with square for certain
3-graded Lie algebras. Let 𝐺 be the algebra of (2𝑚 + 𝑛) × (2𝑚 + 𝑛) matrices over the field of
complex number. We shall write the elements of 𝐺 as block matrices. The block are formed
by the matrices of size 𝑚𝑖 ×𝑚𝑗 (𝑖 = {1, 2, 3}, 𝑗 = {1, 2, 3}, 𝑚1 = 𝑛, 𝑚2 = 𝑚3 = 𝑚.

We indicate by 𝐺0, 𝐺1, 𝐺−1 the following subspaces determining grade

𝑔0 =

⎛⎝* * 0
* * 0
0 0 *

⎞⎠ ∈ 𝐺0, 𝑔1 =

⎛⎝0 0 0
0 0 0
* * 0

⎞⎠ ∈ 𝐺1, 𝑔−1 =

⎛⎝0 0 *
0 0 *
0 0 0

⎞⎠ ∈ 𝐺−1.

It is easy to check that 𝐺 = 𝐺0 ⊕𝐺1 ⊕𝐺−1 is 3-graded Lie algebra.
Denote by 𝑃1 the subalgebra in 𝐺0 formed by the matrices

𝑃1 =

⎛⎝𝐻1 0 0
𝐼1 𝐼2 0
0 0 𝐻2

⎞⎠ ,

where 𝐻1, 𝐻2 are Lie subalgebras in the algebras of matrices 𝐶𝑛 and 𝐶𝑚 being Frobenius
subspaces (the examples in S 3). 𝐼1, 𝐼2 consist of block matrices having zero last row. It is clear
that 𝑃1 is a Lie subalgebra.

We note that 𝑑𝑖𝑚𝑝1 = 𝑑𝑖𝑚𝐻1 + 𝑑𝑖𝑚𝐻2 + 𝑑𝑖𝑚𝐼1 + 𝑑𝑖𝑚𝐼2 = 𝑛+𝑚+ (𝑛𝑚− 𝑛) + (𝑚2 −𝑚) =
= 𝑛 + 𝑚 + 𝑛𝑚− 𝑛 + 𝑚2 −𝑚 = 𝑚2 + 𝑚𝑛 = 𝑚(𝑚 + 𝑛) = 𝑑𝑖𝑚𝑔1.
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Define the element 𝑒 in 𝐺1 by the formula

𝑒 =

⎛⎜⎜⎝
0 0 0
0 0 0(︂

0 . . . 0
0 . . . 1

)︂
𝐸𝑚 0

⎞⎟⎟⎠ .

Let us check the validity of the condition [𝑃1, 𝑒] = 𝐺1 from Proposition 1. As 𝑞1 ∈ 𝐻1, 𝑞2 ∈ 𝐻2,
𝑖1 ∈ 𝐼1, 𝑖2 ∈ 𝐼2 the identities

[𝑃1, 𝑒] =

⎛⎝𝑞1 0 0
𝑖1 𝑖2 0
0 0 𝑞2

⎞⎠
⎛⎜⎜⎝

0 0 0
0 0 0(︂

0 . . . 0
0 . . . 1

)︂
𝐸𝑚 0

⎞⎟⎟⎠−

−

⎛⎜⎜⎝
0 0 0
0 0 0(︂

0 . . . 0
0 . . . 1

)︂
𝐸𝑚 0

⎞⎟⎟⎠
⎛⎝𝑞1 0 0
𝑖1 𝑖2 0

0 𝑞2

⎞⎠ =

=

⎛⎜⎜⎝
0 0 0
0 0 0

𝑞2

(︂
0 . . . 0
0 . . . 1

)︂
𝑞2 0

⎞⎟⎟⎠−

⎛⎜⎜⎝
0 0 0
0 0 0(︂

0 . . . 0
0 . . . 1

)︂
𝑞1 + 𝑖1 𝑖2 0

⎞⎟⎟⎠ =

=

⎛⎜⎜⎝
0 0 0
0 0 0

𝑞2

(︂
0 . . . 0
0 . . . 1

)︂
−
(︂

0 . . . 0
0 . . . 1

)︂
𝑞1 − 𝑖1 𝑞2 − 𝑖2 0

⎞⎟⎟⎠ (11)

hold true. In order to check the condition [𝑃1, 𝑒] = 𝐺1, we need to show that there are arbitrary
elements on the positions of the block (3,1) and (3,2) of matrix (11). The subalgebras 𝐻2 and
𝐼2 are complement each to the other in the space of the 𝑚 × 𝑚 matrices, and moreover the

subspaces

(︂
0 . . . 0
0 . . . 1

)︂
𝐻1 and 𝐼1 are complement each to the other in the space of the matrices

of size 𝑚 × 𝑛. On the positions of the block (3,1) and (3,2) of matrix (11) there are arbitrary

elements, since 𝑞2 − 𝑖2 is an arbitrary element of size 𝑚 × 𝑚 and

(︂
0 . . . 0
0 . . . 1

)︂
𝑞1 + 𝑖1 — is an

arbitrary element of size 𝑚× 𝑛, 𝑞1 ∈ 𝐻1, 𝑞2 ∈ 𝐻2, 𝑖1 ∈ 𝐼1, 𝑖2 ∈ 𝐼2.
We let

𝑃2 = 𝑒𝑥𝑝(𝑎𝑑𝑒)(𝑃1 ⊕𝐺−1)

and

𝐺1 = 𝐺0, 𝐺2 = 𝑃2 ∩ (𝐺0 ⊕𝐺1), 𝐺3 = 𝑃2 ∩ (𝐺0 ⊕𝐺−1).

It is easy to see that 𝑃𝑖 are Lie subalgebras in 𝐺 and

𝐺1 + 𝐺2 = 𝐺0 + 𝐺1, 𝐺1 + 𝐺3 = 𝐺0 + 𝐺−1, 𝐺2 + 𝐺3 = 𝑃2

are also Lie subalgebras. According to the remark to Proposition 5 in [1], we have obtained the
operators satisfying Yang-Baxter equation with square.

The authors are grateful to V.V. Sokolov and B.I. Suleimanov for useful discussions.
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