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ON SOLUTIONS OF THE FIRST-ORDER PDE WITH A

MULTIDIMENSIONAL SYMMETRIC INTEGRAL AND THEIR

MODELLING

F.S. NASYROV, E.V. YUREVA

Abstract. The deterministic analog of the multidimensional Stratonovich integral is con-
structed. Method of solution of a system of equations with a multidimensional symmetric
integral is elaborated. The method of characteristics for solving the Cauchy problem for
the first-order partial differential equations with a multidimensional symmetric integral is
developed. This method reduces solving the initial-value problem of the above equations
to solving a system of equations with a multidimensional symmetric integral.

Keywords: multidimensional symmetric integral, differential equations system with mul-
tidimensional symmetric integral, partial differential equations with multidimensional sym-
metric integral, the method of characteristics

1. Introduction

Let (Ω,F , (Ft), P ) is a probabilistic space with filtration (Ft), where a standard d-
dimensional Wiener process is given W (t, ω) = (W1(t, ω), . . . ,Wd(t, ω)). Further, as a rule,
the variable ω ∈ Ω is omitted.

Let η(t, x̄) = (η1(t, x̄), . . . , ηn(t, x̄)) be a diffusion process which is the solution of Ito’s system
of equations:



















































ηi(t, x̄) = xi +

∫ t

0

[

Bi(s, η(s, x̄))+

+
1

2

n
∑

k=1

d
∑

j=1

σkj(s, η(s, x̄))
(

σij
)′
xk
(s, η(s, x̄))

]

ds+

+

d
∑

j=1

∫ t

0

σij(s, η(s, x̄))dWj(s), i = 1, 2, . . . , n,

(1)

where the latest d integrals in every equation of the system (1) are stochastic Ito’s integrals by
multi-dimensional Wiener process W (t), and the variable x̄ ∈ Rn points out the dependence of
the process η(t, x̄) on the initial conditions ηi(0, x̄) = xi, i = 1, 2, . . . , n.

It is known, that there is a close relationship (see, for instance, [6, 12, 14]) between ordinary
stochastic differential Ito’s equations and differential Ito’s equations in partial derivatives. Let
the function u = u(t, x̄) : [0, T ]×Rn → R with every t belong to the class of functions Cm(Rn),
continuous by totality of variables and having continuous (relative to x̄) variables by x̄ up to
some order m. The function which is with every t reciprocal by x̄ to the diffusion process η(t, x̄)
is denoted by η −1(t, x̄). Let us fix the value K > 0 and the whole m ≥ 3.
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Theorem ([6, 12]). Let with every x̄ coefficients Bi(s, x̄), σij(s, x̄), i = 1, 2, . . . , n, j =
1, 2, . . . , d are measurable by (t, ω) and are compatible with the family of σ-algebras {Ft},
t ∈ [0, T ], the functions themselves Bi(s, x̄), σij(s, x̄), i = 1, 2, . . . , n, j = 1, 2, . . . , d and their
derivatives by x̄ up to the order m by the absolute value do not accede K. Then with all ω from
some subset of the probability 1 and every t ∈ [0, T ] the mapping η(t, ·) : x̄ ∈ Rn → η(t, x̄) ∈ Rn

is a diffeomorphism of class Cm−1(Rn), moreover every coordinate of the inverse mapping
η −1(t, x̄), i = 1, 2, . . . , n is the solution of the corresponding Cauchy problem

dtu(t, x̄) = −
n
∑

i=1

[

1

2

n
∑

k=1

d
∑

j=1

σij(t, x̄)σkj(t, x̄)u′′xixk
(t, x̄)+

+

(

1

2

n
∑

k=1

d
∑

j=1

σkj(t, x̄)
(

σij
)′
xk
(t, x̄) +Bi(t, x̄)

)

u′xi
(t, x̄)

]

dt− (2)

−

n
∑

i=1

d
∑

j=1

σij(t, x̄)u′xi
(t, x̄)dWj(t)

with the initial condition u(0, x̄) = xi, where i is the number of the coordinate of the vector
x̄ ∈ Rn.

Here and below the symbol dtu(t, x̄) denotes the differential by the variable t unlike the total
differential du(t, x̄).

Let us note, that stochastic differential Ito’s equation (2) is an equation of the second order
of the parabolic type, but if we write this equation with the integral of Stratonovich we obtain
a first-order equation in partial derivatives.

Let us provide all the necessary symbols and definitions which are used in the paper. Let
X(s), s ∈ [0, T ] be an arbitrary continuous function, f(s, v), s ∈ [0, T ], v ∈ R be a determined
function, measurable by s and v. Let us consider the segmentations Tn, n ∈ N , of the section

[0, T ]: Tn = {t
(n)
k }, 0 = t

(n)
0 ≤ t

(n)
1 ≤ ... ≤ t

(n)
k ≤ ... ≤ t

(n)
mn = T , n ∈ N , such that Tn ⊂

Tn+1, n ∈ N and λn = max
k

∣

∣

∣
t
(n)
k − t

(n)
k−1

∣

∣

∣
→ 0 with n → ∞. Let us denote the broken line

constructed by the function X(s) and satisfying the segmentation Tn by X(n)(s), s ∈ [0, t].

Assume ∆t
(n)
k = t

(n)
k − t

(n)
k−1,

[

∆t
(n)
k

]

=
[

t
(n)
k−1, t

(n)
k

]

, ∆X
(n)
k = X(t

(n)
k )−X(t

(n)
k−1).

A symmetrical integral by a continuous function X(s) is

∫ t

0

f(s,X(s)) ∗ dX(s)
def
= lim

n→∞

∑

k

1

∆t
(n)
k

∫

[∆t
(n)
k

]

f(s,X(n)(s))ds∆X
(n)
k ,

if the limit in the first side of the equality does exist and does not depend on the choice of the
succession of segmentations Tn, n ∈ N. A sufficient condition for the existence of a symmetrical
integral is a so called condition (S) (see [7, 8]). In the case when X(t) is a trajectory of
the standard Wiener process, a symmetrical integral with the probability 1 coincides with the
stochastic integral of Stratonovich.

In papers [7, 8] there were studied determined analogues of stochastic differential equations
with symmetrical integral, and there was obtained the method of their solution by means
of reducing to the solution of finite chains of ordinary differential equations. In her paper
Zaharova O.V. [5] obtained a method of solution of a definite class of systems of stochastic
differential equations with symmetrical integrals by means of reducing solutions of the latter to
the solution of systems of equations in total differentials. In the paper [15] there are considered
mathematical models, containing a transformation from ordinary Ito’s equations to equations
in partial derivatives, and in papers [3, 4] there was found a relationship between solutions
of determined analogues of stochastic differential equations with one-dimensional symmetrical
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integral and equations in partial derivatives with one-dimensional symmetrical integral. in the
monograph [9]there are considered the general notions of the theory of symmetrical integrals.

The present paper continues study of this approach. Firstly, there are constructed multi-
dimensional symmetrical integrals by arbitrary continuous functions, which generalise stochas-
tic integrals of Stratonovich by multi-dimensional Wiener process. Secondly, the method of
solution of equations with one-dimensional symmetrical integral and corresponding stochastic
differential equations, found in papers [7, 8], was developed for the solution of systems of equa-
tions with multi-dimensional symmetrical integrals. Finally, there was constructed the method
of characteristics for the solution of differential equations in partial derivatives with multi-
dimensional symmetrical integrals, which, in particular, generalises the presented above result
of Krylov N.V., Rozovsky B. L. (see [6, 12]), therewith: (a) instead of multi-dimensional Wiener
processW (t) we take an arbitrary continuous vector-function X(t), all the components of which
possess an unbounded variation on any section; (b) the function η(t, x̄) where the solution of
the system of ordinary differential equations with multi-dimensional symmetrical integrals is
not already a diffusion process, and multi-dimensional symmetrical integrals themselves are
generalisation of the stochastic integral of Stratonovich (see [7, 8]).

Therefore, it is shown in the paper, that some results which were earlier valid within the
frames of stochastic analysis, possess a more general character and can be formulated for some
classes of equations with symmetrical integrals.

2. General results

2.1. Let X(s) = (X1(s), . . . , Xd(s)), s ∈ [0, T ], be an arbitrary continuous vector-function and
there are also functions σ1(s,X(s)), ..., σd(s,X(s)). Let us consider segmentations Tn, n ∈ N

of the section [0, T ]: Tn = {t
(n)
k }, 0 = t

(n)
0 ≤ t

(n)
1 ≤ ... ≤ t

(n)
k ≤ ... ≤ t

(n)
mn = T , n ∈ N , such that

Tn ⊂ Tn+1, n ∈ N and λn = maxk

∣

∣

∣
t
(n)
k − t

(n)
k−1

∣

∣

∣
→ 0 when n → ∞. Let us denote broken lines

constructed by the functions Xk(s) according to the sequence of concentrating segmentations

Tn by X
(n)
k (s), s ∈ [0, T ], k = 1, 2, . . . , d.

A symmetrical integral by the function σ(s,X(s)) = (σ1(s,X(s)), . . . , σd(s,X(s))) relative to
the continuous function X(s) is

∫ t

0

σ(s,X(s)) ∗ dX(s) = lim
n→∞

d
∑

k=1

∫ t

0

σk(s,X
(n)
1 (s), . . . , X

(n)
d (s))

(

X
(n)
k

)′
(s)ds, (3)

if the limit in the right side does exist and does not depend on the choice of succession of
segmentations Tn, n ∈ N .
Alongside with the denotation (3) we apply the following:

∫ t

0

σ(s,X(s)) ∗ dX(s) ≡

d
∑

k=1

∫ t

0

σk(s,X1(s), . . . , Xd(s)) ∗ dXk(s). (4)

Let f(s, v̄) = f(s, v1, . . . , vd) be a continuous differentiated function, then its differential with
symmetrical integrals is named

f(t, X(t))− f(0, X(0)) =

∫ t

0

gradv̄f(s,X(s)) ∗ dX(s) +

∫ t

0

∂

∂s
f(s,X(s))ds, (5)

where gradv̄f(s, v̄) = (f ′
v1
, . . . , f ′

vd
).

Remark 1. The formula (5) is a determined analogous of the stochastic differential Ito’s
equation with the integral of Stratonovich. Alongside with the notation of the differential in
the form (5) we apply an abridged notation of the differential

df(t, X(t)) = gradv̄f(t, X(t)) ∗ dX(t) +
∂

∂t
f(t, X(t))dt.
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Let us show, that for the continuously differentiated function f(s, v̄) the differential with
symmetrical integrals does exist.

Lemma 1. Let X(s) = (X1(s), . . . , Xd(s)), s ∈ [0, T ] be an arbitrary continuous vector-
function, and the function f(s, v̄), s ∈ [0, T ], v̄ ∈ Rd possess continuous partial derivatives of
the first order for all their variables. Therefore with any t ∈ [0, T ] there is the symmetrical

integral
∫ t

0
gradv̄f(s,X(s)) ∗ dX(s) and the formula (5) is valid.

Proof. Let X
(n)
k (s), s ∈ [0, T ], k = 1, 2, . . . , d be broken lines, constructed by the functions

Xk(s), k = 1, 2, . . . , d by sequence of concentrating segmentations Tn, n ∈ N of the section
[0, T ]. Let us consider the expression

f(t, X
(n)
1 (t), . . . , X

(n)
d (t))− f(0, X

(n)
1 (0), . . . , X

(n)
d (0)) =

=
d
∑

k=1

∫ t

0

∂

∂vk
f(s,X

(n)
1 (s), . . . , X

(n)
d (s))

(

X
(n)
k

)′
(s)ds+

+

∫ t

0

∂

∂s
f(s,X

(n)
1 (s), . . . , X

(n)
d (s))ds,

(6)

obtained by means of differentiation and integration of the function f(s,X
(n)
1 (s), . . . , X

(n)
d (s))

by the variable s ∈ [0, t]. Let us note, that on the strength of the continuity of the function
f(s, v1, . . . , vd) the limit of the left side of the expression (6) where n → ∞ does exist and is
equivalent to

lim
n→∞

[f(t, X
(n)
1 (t), . . . , X

(n)
d (t))− f(0, X

(n)
1 (0), . . . , X

(n)
d (0))] =

= f(t, X1(t), . . . , Xd(t))− f(0, X1(0), . . . , Xd(0)).

Likewise, due to the continuity of the partial derivative of the function f(s, v1, . . . , vd) by s
there is a limit of the latter summand in the right side of the equality (6):

lim
n→∞

∫ t

0

∂

∂s
f(s,X

(n)
1 (s), . . . , X

(n)
d (s))ds =

∫ t

0

∂

∂s
f(s,X1(s), . . . , Xd(s))ds,

whence it appears, that there exists the limit (3).

Remark 2. Lemma 1 does not guarantee the existence of the limit of every summand in
the expression (4), but the notation in the right side of the expression (4) corresponds to the
accepted in the stochastic analysis system of symbols.

Remark 3. If X(s), s ∈ [0, T ] is a multi-dimensional Wiener process, then every summand in
the formula (3) from the definition of the symmetrical integral by the function X(s) is valid and
with the probability to 1 coincides with the corresponding stochastic integral of Stratonovich.

2.2. Let us introduce determined analogous of systems of stochastic differential equations in
the Stratonovich form by multi-dimensional continuous functions.

Let us consider Cauchy problem for the system of differential equations with multi-
dimensional symmetrical integrals:











ηi(t) = η0i +

∫ t

0

Bi(s, η(s), X(s))ds+
d
∑

j=1

∫ t

0

σij(s, η(s), X(s)) ∗ dXj(s),

i = 1, 2, . . . , n,

(7)

where X(s) = (X1(s), . . . , Xd(s)) is a continuous vector-function.
The solution of the system of equations (7) is a set of functions of the form ηi(t) = ϕi(t, X(t)),

t ∈ [0, T ], i = 1, 2, . . . , n, such that:

1. the functions ϕi(t, v̄) possess continuous partial derivatives for all their arguments;
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2. the right sides of the system (7) in the process of substitution of the functions ϕi(t, X(t)),
i = 1, 2, . . . , n form differentials with symmetrical integrals of some functions ψi(t, X(t));

3. differentials with symmetrical integrals dϕi(t, X(t)) and dψi(t, X(t)), t ∈ [0, T ], i =
1, 2, . . . , n of the right and the left sides of the system (7) coincide.

Let us denote X [k](t, vk) = (X1(t), . . . , Xk−1(t), vk, Xk+1(t), . . . , Xd(t)), where the index [k]

points out, that instead of k coordinate Xk(t) of the vector X(t) there is the variable vk. Let us
show, that the solution of the system of equations with multi-dimensional symmetrical integrals
is reduced to the solution of finite chains of systems of ordinary differential equations (further
ODE).

Theorem 1. Let the vector-function X(t) = (X1(t), . . . , Xd(t)) be fixed and its elements are
continuous functions, and the functions σik(t, η, v̄), k = 1, 2, . . . , d, i = 1, 2, . . . , n and Bi(t, η, v̄),
i = 1, 2, . . . , n are continuously differentiated. Assume, that continuously differentiated by all
their arguments functions ϕ(t, v), t ∈ [0, T ], v ∈ Rd satisfy the finite chain of the ODE:

{

(ϕi)
′
v1
(t, X [1](t, v1)) = σi1(t, ϕ(t, X [1](t, v1)), X [1](t, v1)), i = 1, 2, . . . , n, (8)

· · ·
{

(ϕi)
′
vk
(t, X [k](t, vk)) = σik(t, ϕ(t, X [k](t, vk)), X [k](t, vk)), i = 1, 2, . . . , n, (9)

· · ·
{

(ϕi)
′
vd
(t, X [d](t, vd)) = σid(t, ϕ(t, X [d](t, vd)), X [d](t, vd)), i = 1, 2, . . . , n, (10)

{

(ϕi)
′
t (t, v̄)

∣

∣

{vj=Xj(t),j=1,2,...,d} = Bi(t, ϕ(t, X(t)), X(t)),

ϕi(0, X(0)) = η0i , i = 1, 2, . . . , n.
(11)

Then the function ϕ(t, X(t)), t ∈ [0, T ], X(t) ∈ Rd is the solution of Cauchy problem (7).

Proof. The fact, that the solution ϕ(t, X(t)) of the chain of the systems of the ODE (8)–(11)
provides us the solution of the initial system of equations (7) is verified by substitution of
the function ϕ(t, X(t)) into the system (7) and by applying the formula of differential with
symmetrical integrals (5).

Remark 4. Let us show how by means of the chain of the system of the ODE (8)–(11) we
can construct the solution of the system of equations (7). Herewith we suppose, that every
from the considered below systems of ODE, constructed with the help of the chain (8)–(11),
possesses some general solution.

Let rX(t) = (Xr(t), Xr+1(t), . . . , Xd(t)) be a vector-function, constructed from
X(t) = (X1(t), X2(t), . . . , Xd(t)) by omitting the first r − 1 coordinates, r = 1, 2, . . . , d.

Solving the system of the ODE (8) relative to the variable v1 and considering other variables
as parameters we obtain the functions ϕi(t, X(t)) in the form

ϕi(t, X(t)) = ϕ∗1
i (t, X1(t), C

1
(t, 2X(t))) , i = 1, 2, . . . , n, (12)

depending on the arbitrary vector-function C
1
(t, 2X(t)) = (C1

1(t,
2X(t)) , . . . , C1

n(t,
2X(t))).

This vector-function in its turn occurs during substitution of the functions ϕ∗1
i , i = 1, 2, . . . , n

into the following system of ODE on the variable v2 with the precision to the unknown vector-

function C
2
(t, 3X(t)) = (C2

1(t,
3X(t)), . . . , C2

n(t,
3X(t))). Proceeding this process at the k−

step (k < d) we obtain the solution in the form

ϕi(t, X(t)) = ϕ∗k
i (t, X1(t), . . . , Xk(t), C

k
(t, k+1X(t))), (13)

i = 1, 2, . . . , n with the precision to the arbitrary vector-function

C
k
(t, k+1X(t)) = (Ck

1 (t,
k+1X(t)), . . . , Ck

n(t,
k+1X(t))),
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which in its turn occurs during substitution of the obtained at this step functions ϕ∗k
i into

(k + 1) system of ODE. After we solve the first d systems of the given chain we obtain:

ϕi(t, X(t)) = ϕ∗d
i (t, X(t), C

d
(t)), i = 1, 2, . . . , n,

where the unknown vector-function C
d
(t) = (Cd

1 (t), . . . , C
d
n(t)) can be found by means of sub-

stitution of the obtained ϕ∗d
i into the system (11) with the initial conditions

ϕi(0, X(0)) = η0i , i = 1, 2, . . . , n.

In the process of solving systems of ODE of the above chain in a succession different from
the one presented here, it is possible to obtain a solution on other forms. In case when the
system of equations with symmetrical integrals possesses an only solution, then all the solutions
constructed should coincide. The method of solution of the systems of differential equations
with a multi-dimensional symmetrical integrals remains valid even for the solving systems of
stochastic differential equations with multi-dimensional Wiener process.

Remark 5. A sufficient condition of compatibility of the system of equations (7) in the
suppositions of Theorem 1 is compatibility of every system from the from the system of ODE
(8)–(11).

Let us assume, that continuous functions X1(s), . . . , Xd(s), s ∈ [t1, t2] possessing unbounded
variation on any finite interval, are locally independent on the section [t1, t2], if there exists
a continuously differentiated by all its variables function Φ(s, v̄) = Φ(s, v1, ..., vd), such that
gradv̄Φ(s, v̄) 6= 0 for v̄ from the “rectangle” [X(s1), X(s2)] and Φ(s,X(s)) ≡ 0 on some section
[s1, s2] ⊂ [t1, t2], otherwise the functions X1(s), . . . , Xd(s) are functionally independent of the
section [t1, t2].

Remark 6. Let the continuous functions X1(s), . . . , Xd(s), s ∈ [0, T ] possess unbounded varia-
tion at any finite interval and be functionally independent on [0, T ]. Then for any continuously
differentiated function Φ(s, v) from the fact that Φ(s,X(s)) = 0, s ∈ [0, T ] results, that with
every s ∈ [0, T ] for all v ∈ [X(0), X(s)] the following holds: gradv̄Φ(s, v) = 0.

The following statement reveals conditions allowing to transform Theorem 1.

Theorem 2. Let us have a continuous vector-function X(t) = (X1(t), . . . , Xd(t)) which
components possess unbounded variation on any section from [0, T ] and are functionally in-
dependent on the section [0, T ], and the functions σik(t, η, v̄), k = 1, 2, . . . , d, i = 1, 2, . . . , n
and Bi(t, η, v̄), i = 1, 2, . . . , n are continuously differentiated. If the vector-function ϕ(t, X(t)),
t ∈ [0, T ] is the solution of Cauchy problem (7), then the function ϕ(t, v) satisfies the chain of
systems of the ODE (8)–(11).

Proof. Let us advance the proof of the theorem 2 in case d = 2 and n = 1, the general case is
proved by analogy.

Let the function η(t) = ϕ(t, X1(t), X2(t)) be the solution of Cauchy problem (7). According
to the definition of the solution of the equation with a symmetrical integral, there is the func-
tion F (t, v1, v2) such that F (t, X1(t), X2(t)) ≡ 0 and

F ′
t (t, X1(t), X2(t)) = B(t, ϕ(t, X1(t), X2(t)), X1(t), X2(t))− ϕ′

t(t, X1(t), X2(t)),

F ′
v1
(t, X1(t), X2(t)) = σ1(t, ϕ(t, X1(t), X2(t)), X1(t), X2(t))− ϕ′

v1
(t, X1(t), X2(t)),

F ′
v2
(t, X1(t), X2(t)) = σ2(t, ϕ(t, X1(t), X2(t)), X1(t), X2(t))− ϕ′

v2
(t, X1(t), X2(t)).

Hence the functions X1(t), X2(t) are functionally independent, then gradvF (t, v1, v2) ≡ 0 on
[X(0), X(t)], the the function ϕ(t, v1, v2) satisfies the chain of equations (8)–(11).
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2.3. Let us consider Cauchy problem for the equation in partial derivatives of the first order
with multi-dimensional symmetrical integrals:

dtu(t, x̄, X(t)) = −
n
∑

i=1

Bi(t, x̄, X(t))u′xi
(t, x̄, X(t))dt−

−
n
∑

i=1

d
∑

j=1

σij(t, x̄, X(t))u′xi
(t, x̄, X(t)) ∗ dXj(t),

(14)

u(0, x̄, X(0)) = xk, (15)

where xk in the initial condition (15) is k coordinate of the variable x̄ ∈ Rn.
The solution of the equation (14) is the function u(t, x̄, X(t)), such that during substitu-

tion of the function u(t, x̄, X(t)) into the equation (14) all the integrals in the right side
are valid, and the equation itself transforms into an identity. For any vector of the ini-
tial conditions x̄ = (x1, ..., xn) we denote the solution of Cauchy problem (14)-(15) by
U(t, x̄) = (u1(t, x̄), . . . , un(t, x̄)) assuming uk(t, x̄) = uk(t, x̄, X(t)).

Alongside with the problem (14)–(15) we consider the corresponding system of equations
with multi-dimensional symmetrical integrals:















dηi(t, x̄) = Bi(t, η(t, x̄), X(t))dt +

d
∑

j=1

σij(t, η(t, x̄), X(t)) ∗ dXj(t),

ηi(0, x̄) = xi, i = 1, 2, . . . , n.

(16)

Let us consider the following conditions:
(A) The functions Bi(t, η,X(t)), σij(t, η,X(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , d are continuous
on (t, η) in some closed domain Q, which is the neighbouring of initial values of the systems of
the equations (16).
(B) The functions Bi(t, η,X(t)), σij(t, η,X(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , d satisfy in Q the
Lipschitz condition relative to the variable η: there exists such N > 0, that for any value t and
any values η

′

, η
′′

of the variable η from the domain Q for all i = 1, 2, . . . , n, j = 1, 2, . . . , d the
following inequalities hold:

∣

∣

∣
Bi(t, η

′

, X(t))− Bi(t, η
′′

, X(t))
∣

∣

∣
6 N

∣

∣

∣
η

′

− η
′′

∣

∣

∣
,

∣

∣

∣
σij(t, η

′

, X(t))− σij(t, η
′′

, X(t))
∣

∣

∣
6 N

∣

∣

∣
η

′

− η
′′

∣

∣

∣
.

Theorem 3. Let all the suppositions of Theorem 2 hold and for the coefficients
Bi(t, η(t, x̄), X(t)), σij(t, η(t, x̄), X(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , d the following conditions
hold: (A)and (B). Then with every t ∈ [0, T ] the mapping U(t, ·) : x̄ ∈ Rn → U(t, x̄) ∈ Rn is a

diffeomorphism of the class C1(Rn), though the reverse mapping U
−1
(t, x̄) is the solution of

the system of equations with multi-dimensional symmetrical integrals (16).

Proof. According to the theorems 1 and 2 the solution of the system of equations (16) is simul-
taneously the solution of the chains of the systems of ODE, therewith the variable x̄ is a param-
eter. When imposing conditions (A) and (B) on the coefficients Bi(t, x̄, X(t)), σij(t, x̄, X(t)),
i = 1, 2, . . . , n, j = 1, 2, . . . , d the solutions of the systems of ODE are continuously differenti-
ated by the parameter x̄ (see, for example, [1, Theorem 5.2.1]). Consequently, the solution of
the system of equations (16) is continuously differentiated by the parameter x̄.

Let u(t, x̄, X(t)) be the solution of the problem (14)-(15). Applying the method of proving of
the theorems 1,2 and applying the corresponding considerations to the equation (14), we come
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to the chain of correlations:


















u′vj (t, x̄, X [j](t, vj)) = −
∑n

i=1 σ
ij(t, x̄, X [j](t, vj))u

′
xi
(t, x̄, X [j](t, vj)),

u′t(t, x̄, X(t)) = −

n
∑

i=1

Bi(t, x̄, X(t))u′xi
(t, x̄, X(t)),

j = 1, ..., d.

(17)

Let us denote by (ηi)
′
vj
(t, x̄, X(t)) = ∂

∂vj
ηi(t, x̄, X [j](t, vj)) |vj=Xj(t)

and find the differential with

the symmetrical integral of the function u(t, η(t, x̄, X(t)), X(t)):

dtu(t, η(t, x̄, X(t)), X(t)) =

[

u′t(t, η(t, x̄, X(t)), X(t))+

+
n
∑

i=1

u′xi
(t, η(t, x̄, X(t)), X(t)) (ηi)

′
t (t, x̄, X(t))

]

dt+

+

d
∑

j=1

[

u′vj(t, η(t, x̄, X(t)), X(t))+

+
n
∑

i=1

u′xi
(t, η(t, x̄, X(t)), X(t)) (ηi)

′
vj
(t, x̄, X(t))

]

∗ dXj(t).

(18)

Let us write, according to the theorems 1,2, the chain of equations of the type (8)-(11) for the
equation (16):







(ηi)
′
vj
(t, x̄, X [j](t, vj)) = σij(t, x̄, X [j](t, vj)),

(ηi)
′
t (t, x̄, X(t)) = Bi(t, x̄, X(t)),

i = 1, 2, . . . , n, j = 1, 2, . . . , d.

Let us substitute these correlations into (18) and, omitting arguments of the functions in the
right side, on the strength of (17) we obtain:

dtu(t, η̄(t, x̄, X(t)), X(t)) =

=

[

u′t +
n
∑

i=1

Biu′xi

]

dt+
d
∑

j=1

[

u′vj +
n
∑

i=1

σiju′xi

]

∗ dXj(t) ≡ 0.

Therefore, we have made sure, that dtu(t, η̄(t, x̄, X(t)), X(t)) ≡ 0, therefore,
u(t, η̄(t, x̄, X(t)), X(t)) = xi with all t for every i = 1, 2, . . . , n. Theorem 3 has been proved.

Let us consider all the suppositions from Theorem 3 valid. Let us return to the equation
in partial derivatives of the first order with a multi-dimensional symmetrical integral (14) and
consider the system of equations with a multi-dimensional symmetrical integral and coefficients
from the equation (14):











xi(t, z̄) = zi +

∫ t

0

Bi(t, x̄(s, z̄), X(s))ds+
d
∑

j=1

∫ t

0

σij(t, x̄(s, z̄), X(s)) ∗ dXj(s),

i = 1, 2, . . . , n.

(19)

Under the imposed conditions this system possesses n integrals










ξ1(t, X(t), x̄) = C1,

. . .

ξn(t, X(t), x̄) = Cn.

(20)
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The general solution of the equation (14) is the function u = Φ(ξ1, ξ2, . . . , ξn), where Φ is an
arbitrary function and ξ1, ξ2, . . . , ξn are left sides of the expressions (20).

Let u = θ(t, x̄) = θ(t, X(t), x̄) be the solution of the equation (14). this equation is a
hypersurface in the space u, t, x1, . . . , xn. The equations (20) together with u = θ(t, x̄) denote
the family (of one-parameter) lines in this space. The lines of intersection of the cylinders (20)
with the surface ξn+1 ≡ z = C, where C is an arbitrary parameter, are named as characteristic
lines of the equation (14), and the equations (19) are equations of characteristics.

Remark 7. The system of equations (19) can be formally written in the classical form, accepted
in the theory of differential equations in partial derivatives of the first order for the equations
of characteristics:

dt

1
=

dx1

B1(t, x̄, X(t)) +
∑d

j=1 σ
1j(t, x̄, X(t)) ∗ (Xj(t))

′
t

= . . . =

=
dxn

Bn(t, x̄, X(t)) +
∑d

j=1 σ
nj(t, x̄, X(t)) ∗ (Xj(t))

′
t

.
(21)

Assuming σ = 0 in the equation (14), we proceed to the classical definition of characteristics
and ordinary differential equations of the form (21) without symmetrical integrals.

Due to the fact that the coefficients Bi, σij , i = 1, 2, . . . , n, j = 1, 2, . . . , d of the system of
equations (20) directly depend only on t, x̄, X(t), and do not depend on z̄, the solution of the
system (20) read:

x̄(t, z̄) = Ψ(t) + z̄, Ψ(0) = 0, (22)

where z̄ is the initial condition for the system of equations (20), Ψ(t) = Ψ(t, X(t)) is the solution
of the system of equations











Ψi(t) =

∫ t

0

Bi(s,Ψ(s), X(s))ds+
d
∑

j=1

∫ t

0

σij(s,Ψ(s), X(s)) ∗ dXj(s),

i = 1, 2, . . . , n.

(23)

Let us prove the formula (22). For all i = 1, 2, . . . , n we write out differentials with symmetrical
integrals for the functions xi(t, X(t)), Ψi(t, X(t)) by the formula (5), and then we apply the
systems of equations (19) and (23):

xi(t, X(t))−xi(0, X(0)) =

=

∫ t

0

Bi(s, x(s), X(s))ds+
d
∑

j=1

∫ t

0

σij(s, x(s), X(s)) ∗ dXj(s) =

= Ψi(t, X(t))−Ψi(0, X(0)),

(24)

whence we obtain the equality (22).

Following the classical theory of differential equations in partial derivatives of the first order,
the family of characteristics of the equation (14) is written in the form:

xi −Ψi(t) = ξi(t, x1, . . . , xn) = Ci, i = 1, 2, . . . , n, (25)

where Ci, i = 1, 2, . . . , n are some constants.
Let us show, that one of the general properties of characteristics holds (see, for instance,

[11]), namely, that an arbitrary sufficiently smooth function from the characteristics of the
differential equation in partial derivatives of the first order is its solution.

Theorem 4. In the suppositions of Theorem 3 the general solution of the equation (14)
can be written in the form u(t, x̄, X(t)) = Φ(x̄ −Ψ(t)) with the arbitrary continuous function
Φ ∈ C1(Rn), where xi −Ψi(t) = Ci, Ci are the right sides of the integrals (20), i = 1, 2, . . . , n.
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Proof. Assume u = Φ(ξ1, ξ2, . . . , ξn), where Φ is an arbitrary function, and ξ1, ξ2, . . . , ξn are
the left sides of the expressions (20). Let us show, that when ξi(t, x1, . . . , xn) = xi − Ψi(t),
i = 1, 2, . . . , n, where Ψi(t) = Ψi(t, X(t)) is the solution of the system (23), the function
Φ(ξ1, ξ2, . . . , ξn) provides general solution of the equation (14).

Let us find differential by t of the function Φ(ξ(t, x̄)):

dtΦ
(

ξ(t, x̄)
)

=
n
∑

i=1

Φ′
ξi
∗ dtξi(t, x̄) =

=
n
∑

i=1

Φ′
xi
∗ dt(xi −Ψi

(

t, X(t))
)

=−
n
∑

i=1

Φ′
xi
∗ dΨi

(

t, X(t)
)

.

(26)

On the strength of (23) we have:

dΨi(t, X(t)) = gradv̄Ψi(t, X(t)) ∗ dX(t) + (Ψi)
′
t (t, X(t))dt =

=
d
∑

j=1

(Ψi)
′
vj
(t, X(t)) ∗ dXj(t) + (Ψi)

′
t (t, X(t))dt =

=
d
∑

j=1

σij(s,Ψ(s), X(s)) ∗ dXj(s) +Bi(s,Ψ(s), X(s))ds.

Consequently, the right side (26) is equal to:

−

n
∑

i=1

Φ′
xi

(

d
∑

j=1

σij(t,Ψ(t), X(t)) ∗ dXj(t) +Bi(t,Ψ(t), X(t))dt

)

=

= −
n
∑

i=1

d
∑

j=1

σij(t,Ψ(t), X(t))Φ′
xi
∗ dXj(t)−

n
∑

i=1

Bi(t,Ψ(t), X(t))Φ′
xi
dt.

Therefore,

dtΦ
(

x̄−Ψ(t)
)

= −
n
∑

i=1

Bi(t,Ψ(t), X(t))Φ′
xi
dt−

−

n
∑

i=1

d
∑

j=1

σij(t,Ψ(t), X(t))Φ′
xi
∗ dXj(t),

hence, the function Φ
(

x̄−Ψ(t)
)

satisfies the equation (14). Consequently, general solution of

the equation (14) can be presented in the form Φ
(

x̄−Ψ(t)
)

, where Φ is an arbitrary smooth
function.

Corollary. Let η = ϕ(t, x̄) be the solution of the system of equations (16), ϕ −1(t, η) be the
function, with every t reciprocal by the variable x̄ to the process ϕ(t, x̄). Then the structure of
the process ϕ −1(t, η) takes the form:

ϕ −1(t, η) = η −Ψ(t),

where the function Ψ(t) is the solution of the system of equations (23).

Proof. From the supposition (22) we obtain, that ϕ(t, x̄) = η = Ψ(t)+ x̄, where x̄ is the initial
condition for the system of equations (16), Ψ(t) is the solution of the system of equations
(23). Then the reciprocal function to ϕ(t, x̄) can be obtained by the formula: ϕ −1(t, η) = x̄ =
η −Ψ(t).
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2.4. Example 1. Let X(t), t ∈ [0, T ] be an arbitrary continuous function of the unbounded
variation, x̄ = (x1, x2). Let us consider a differential equation in partial derivatives with the
symmetrical integral:

dtu(t, x̄, X(t)) =
(

−tu′x1
+ (1−X(t))u′x2

)

dt+

+
(

X(t)u′x1
− tu′x2

)

∗ dX(t).
(27)

Let us make the corresponding equations of characteristics:
{

dx1(t) = tdt−X(t) ∗ dX(t),

dx2(t) = (X(t)− 1)dt+ t ∗ dX(t).
(28)

After we solve the system (28) we obtain






x1(t) =
1

2
(t2 − (X(t))2) + C1,

x2(t) = (X(t)− 1)t+ C2,
(29)

whence we obtain, that the general solution of the equation (27) takes the form:

u(t, x) = Φ

(

x1 −
1

2
(t2 − (X(t))2), x2 − (X(t)− 1)t

)

, (30)

where Φ is an arbitrary continuous differential function.
Let us verify, whether the function obtained is actually the solution of the equation (27). We

have:

ξ1(t, x1, x2) = x1 −
1

2
(t2 − (X(t))2),

ξ2(t, x1, x2) = x2 − (X(t)− 1)t.

First we find derivatives by x1, x2 of the function (30):

u′x1
= Φ′

ξ1
· ξ1

′
x1

+ Φ′
ξ2
· ξ2

′
x1

= Φ′
ξ1
,

u′x2
= Φ′

ξ1
· ξ1

′
x2

+ Φ′
ξ2
· ξ2

′
x2

= Φ′
ξ2
,

(31)

then we find differential by t:

dtu = Φ′
ξ1
· dtξ1 + Φ′

ξ2
· dtξ2 =

= Φ′
ξ1
(−tdt +X(t) ∗ dX(t)) + Φ′

ξ2
((1−X(t))dt− t ∗ dX(t)) .

(32)

Substituting expressions (31) into the right side of the equation (27), and (32) into the left
side, we obtain an identity. Consequently, the function (30) is the solution of the equation (27).
Though the function Φ is arbitrary, we have obtained general solution of the equation (27).

Example 2. Let W (t) be a standard Wiener process. Let us consider Cauchy problem for the
differential equation in partial derivatives with the symmetrical integral:

dtu(t, x,W (t)) = −

(

t−
sinX2(t)

t2

)

u′xdt−

(

W (t) +
sin 2W (t)

t

)

u′x ∗ dW (t), (33)

with the initial conditions

u|Γ: x=
√
t = x+

cos 2X(t)

2t
−
X2(t) + t2

2
−

1

t
. (34)

Let us make an equation of characteristics:

dx(t, X(t)) =

(

t−
sinX2(t)

t2

)

dt+

(

W (t) +
sin 2W (t)

t

)

∗ dW (t), (35)

with which solution we obtain

x(t, X(t)) = −
cos 2X(t)

2t
+
X2(t) + t2

2
+

1

t
+ C. (36)
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Figure 1. Graph of the process W (t)

Consequently, the general solution of the equation (33) takes the form:

u(t, x) = Φ

(

x+
cos 2X(t)

2t
−
X2(t) + t2

2
−

1

t

)

, (37)

where Φ is an arbitrary continuously differentiated function. From the form of the initial
condition we obtain, that the solution of the problem (33)-(34) is set by the expression:

u(t, x) = x+
cos 2X(t)

2t
−
X2(t) + t2

2
−

1

t
. (38)

Let us model trajectory of Wiener process W (t) (Fig. 1),
and consider graphs of curves and the integral surface itself (38) (Fig. 2):

Figure 2. Integral surface of the equation (33)
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