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PHASE SHIFT FOR THE COMMON SOLUTION OF THE

KDV AND THE FIFTH ORDER DIFFERENTIAL EQUATION

R.N. GARIFULLIN

Abstract. We investigate the special solution of Korteweg–de Vries equation. This
solution describes the influence of small dispersion on the process of transformation from
weak to strong discontinuities in inviscid fluid dynamics. This solution also satisfies the fifth
order ordinary differential equation. We construct the asymptotic solution in the Witham
zone up to a phase shift. We obtain an equation for phase shift and, using the numerical
experiments, we choose the concrete solution of this equation. This solution is a constant
function.
Keywords: phase shift, Korteweg–de Vries equation, nondissipative shock waves.

1. Introduction

In their papers [1–3] A.M. Ilyin and S.V. Zaharov started to research the problem of influence
of small dissipation on processes of transformation of weak discontinuities to strong ones. It
is shown in these papers, that this process is in general described by special solution of the
Burgers’ equation. It is shown in the paper [4], that in problems with small the analogous role
is played by two special solutions of the Korteweg–de Vries equation (KdV)

ut + uux + uxxx = 0. (1.1)

In this paper we are intended to research one of them with the present asymptotic forms:

u
∣

∣

x→−∞
= 0, u

∣

∣

x→∞
= (−t−

√
t2 + 4x)/2. (1.2)

The solution u(x, t) plays a universal role [4] in problems about generation of nondissipative
shock waves [4–6]. In the paper [4] to solve the problem (1.1,1.2) there is an asymptotic
solution when x2 + t2 → ∞, that is given by quasiprime solutions of the Whitham equations in
the domain of continuous oscillation. However, there still was an indefinite phase shift in this
solution. In this paper this phase shift is defined by the method, described in [7].

It is shown in [4], that the solution u(x, t) satisfies an fifth-order ordinary differential equation
by the variable x :

(

uxxxx +
5uxxu

3
+

5u2
x

6
+

5u3

18

)

′

x

− 2u+ xux − 3t(uxxx + uux)

6
= 0. (1.3)

The equation (1.3) corresponds to a combination of stationary parts of symmetries of KdV
equations. One of them is the highest (generalized) symmetry of the fifth order:

uτ5 =

(

uxxxx +
5uxxu

3
+

5u2
x

6
+

5u3

18

)

′

x

, (1.4)

the second one is a classical symmetry of extension:

uτr = 2u+ xux − 3t(uxxx + uux). (1.5)
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The equations (1.3) can be called the first highest analogue of the Painleve equation I, see
6.2 [4].

The article consists of two parts. In part one it is shown how the problem (1.1,1.2) generates
during description of nondissipative shock waves. For this purpose we consider the Cauchy
problem for perturbed generalized Hopf equation with initial data, experiencing a weak discon-
tinuity. It is shown, that in the neighbourhood of the point of the gradient catastrophe for the
general term of asymptotic there occurs the problem under study. In part two we construct an
asymptotic solution of the problem (1.1,1.2) by method, applying presence of two equations,
for which the equation u(x, t) holds. For the indefinite phase shift we obtain an ordinary linear
equation fo the third order. The certain solution of this equation is chosen with the help of
numerical experiments: modelling of the solution u(x, t) and constructed asymptotic solution.

2. Origin of the problem (1.1,1.2)

In the paper [4] the origin of the problem (1.1,1.2) is shown on the example of perturbed
generalized Hopf equation, equations of shallow water and dispersion non-linear Schrodinger
equation. The present paper describes the origin of this problem in more details.

Let us consider the Cauchy problem for the function U(X, T ):

UT + g(U)UX + ε3UXXX = 0,

U(X, 0) = F (x) =

{

F−(x), x < 0,
F+(x), x ≥ 0.

, F−(0) = F+(0).
(2.1)

By means of substitution of variables and transformations ε wa can obtain:

F−(0) = F+(0) = 0, g(0) = 0, g′(0) = 1. (2.2)

We impose conditions

g′(U) > 0, F ′

−
(0) > F ′

+(0), F ′

+(0) < 0,

F ′(X)g′(F (X)) 6∈ [F ′

+(0), 0], ∀x 6= 0,
(2.3)

on the initial data, which ensures existence of a weak discontinuity of the initial data and
occurrence of the gradient catastrophe (strong discontinuity) for the characteristic X = 0 in
some moment of time T ∗ in the unperturbed equation (ε = 0).

We are intended to construct an asymptotic solution of the Cauchy problem (2.1) in the form
of the series:

U(X, T ) = U0(X, T ) + ε3U1(X, T ) + . . . (2.4)

The dominant term and the first correction satisfy the problems:

∂TU0 + g(U0)∂XU0 = 0, U0(X, 0) = F (X), (2.5)

∂TU1 + g(U0)∂XU1 + g′(U0)∂XU0U1 + ∂3

XU0 = 0, U1(X, 0) = 0. (2.6)

The solution of the problem (2.5) is written in the implicit form by the method of characteristics:

U0 = F (X − g(U0)T ), X 6= 0. (2.7)

The solution of the problem (2.6) can be also obtained by the method of characteristics and
it can be written explicitly in terms of the function U0(X, T ).

The point of the gradient of catastrophe X∗, T ∗, U∗ is defined by the correlations:

T ∗ = − 1

F ′

+(0)
, U∗ = 0, X∗ = 0 (2.8)
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Let us define behaviour of the solution U0(X, T ), U1(X, T ) in the neighbourhood of the line
X = 0, subject to limits for the initial data we have:

U0(X, T ) =















F ′

+(0)

1 + TF ′

+(0)
X +

F ′′

+(0)− TF ′

+(0)g
′′(0)

2(1 + TF ′

+(0))
3

X2 +O(X3), X > 0,

F ′

−
(0)

1 + TF ′

−
(0)

X +
F ′′

−
(0)− TF ′

−
(0)g′′(0)

2(1 + TF ′

−
(0))3

X2 +O(X3), X < 0

U1(X, T ) =















U+

10(T )

(1 + TF ′

+(0))
4
+ U+

11(T )X +O(X2), X > 0,

U−

10(T )

(1 + TF ′

−
(0))4

+ U−

11(T )X +O(X2), X < 0

Is is seen, that the first derivative is not a discontinuous function, moreover, the first correction
U1(X, T ) experiences a disconnection in the point X = 0 when T > 0. Therefore, in the neigh-
bourhood of the line X = 0 it is necessary to asymptotic another way. In the neighbourhood
of this line it is needed to make an extension of the variables:

U(X, T, ε) = εV (y, T, ε), x = εy. (2.9)

After this the problem (2.1) in new variables takes the form:

VT + V Vy + Vyyy + (U(εV )/ε− V )Vy = 0,

V (y, 0) = F (εy)/ε =

{

F ′

−
(0)y + εF ′′

−
(0)y2 + . . . , y < 0,

F ′

+(0)y + εF ′′

+(0)y
2 + . . . , y > 0.

(2.10)

Formal asymptotic of the function V can be constructed in the form of the series:

V (y, T, ε) = V0(y, T ) + εV1(y, t) + . . . . (2.11)

The problem for the dominant term of the asymptotic is as follows:

V 0

T + V 0V 0

y + V 0

yyy = 0,

V 0(y, 0) =

{

F ′

−
(0)y, y < 0,

F ′

+(0)y, y > 0.

(2.12)

In case F ′

−
(0) = 0 existence of solution of this problem on the section T ∈ (0, T ∗) was proved by

Faminsky [8]. To solve this problem (2.12) the asymptotic, resulting from necessity of matching
with the decomposition for the function U(X, T )

V (y, T ) → F ′

+(0)

1 + TF ′

+(0)
y, y → +∞, V (y, T ) → 0, y → −∞

holds. Though, in the neighbourhood of the point of the gradient catastrophe X∗, T ∗ decom-
positions for U(X, T ) and for V (y, T ) do not hold. In the neighbourhood of this point there is
another decomposition needed.

We study the neighbourhood of the point (0, T ∗) with the help of the external decomposition
(2.4). Let us write the behaviour of the solution U0(X, T ) in the neighbourhood of the point
of the gradient catastrophe in the left and in the right from the line X = 0:

X −
(

g′′(0) + F ′′

+(0)(T
∗)2

)

U2/2− U(T − T ∗) + . . . = 0, X > 0 (2.13)

X −
(

1

F ′

−
(0)

+ T

)

U + . . . = 0, X < 0. (2.14)

Here and below the constant

δ = (g′′(0) + F ′′

+(0)(T
∗)2)/2 > 0 (2.15)

is considered to be positive, due to the condition (2.3) it is not negative, and it is positive in
general position.
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With respect to the method of matching of asymptotic decompositions [?] we are intended to
carry out expansion of variables in the neighbourhood of the point of the gradient catastrophe:

U(X, T ) = aεαu, T − T ∗ = bεβt, X = cεγx. (2.16)

The equation (2.1) and formulae (2.14) with new variables take the form:

a

b
εα−βut +

a2

c
ε2α−γuut +

a

c3
ε3+α−3γuxxx +

a3

c
ε3α−γg′′(0)u2ux + . . . = 0,

cεγx− δa2ε2αu2 − abεα+βut+ . . . = 0, x ≫ 1,

cεγx−
(

1

F ′

−
(0)

+ T ∗

)

aεαu+ . . . = 0, x ≪ −1.

(2.17)

Having demanded the equality of coefficients relative to the first three summands in the first
two equations, we obtain the system:

α− β = 2α− γ = 3 + α− 3γ, γ = 2α = α + β,

a/b = a2/c = a/c3, c = δa2 = ab.

This system has the following solution:

α = β =
3

5
, γ =

6

5
, a = δ−2/5, b = δ3/5, c = δ1/5.

After the expansion (2.16) with the given parameters, the equations (2.17) take the form:

ut + uux + uxxx +O(ε3/5) = 0,

x− u2 − ut+O(ε3/5) = 0, x ≫ 1, u+O(ε3/5) = 0, x ≪ −1.

This form in general coincides with the problem (1.1,1.2).

3. Defining the phase shift

The asymptotic solution of the problem (1.1,1.2,1.3) when t → ∞ consists of several parts [4].
The zone of continuous oscillations is of special interest. Let us make a natural substitution of
the variables

u = t U(t, s), s =
x

t2
.

After it the equations (1.1,1.3) take the form:

t−5Usss + tUt − 2sUs + UUs + U = 0, (3.1)

t−10Usssss +
1

6
t−5(20UsUss + (10U + 3)Usss) +

1

6
(5U2 − s+ 3U)Us −

1

3
U = 0. (3.2)

In the equation (3.2) all derivatives by the variable x of the third and higher order can be
substituted due to the equation (3.1):

2t−5((Us + 9)Uss + 6sUsss)− 6t−4Usst + (5s+ U2 + 8sU)Us − (4U + 3)tUt − (5 + 4U)U = 0.
(3.3)

The asymptotic solution U of this system (3.1,3.3) is constructed in the form of the series by
inverse power series t

U = U0(ϕ, s) + t−5/4U1(ϕ, s) + t−5/2U2(ϕ, s) + . . . , t → ∞. (3.4)

Here U0, U1 and U2 are 2π periodic functions of the fast variable ϕ. This variable has the form

ϕ = t5/2f(s) + n(s),

where n(s) is the required phase shift.
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We obtain the following non-linear system of equations by the fast variable ϕ for the function
U0:

(f ′)2∂3

ϕU0 + (a(s) + U0) ∂ϕU0 = 0,

6a(s)(f ′)2∂3

ϕU0 − 2(f ′)2∂2

ϕU0∂ϕU0 + ∂ϕU0

(

s− U2

0 + 4a(s)U0 + 3a(s)
)

= 0.
(3.5)

For the function U1, U2 there are linear nonuniform systems of equations. The first from the
equations on U1 has the form:

(f ′)2∂3

ϕU1 + (a(s) + U0) ∂ϕU1 + ∂ϕU0U1 = −3f ′n′∂3

ϕU0

+ (2s− U0)
∂ϕU0n

′ + ∂sU0

f ′
− 3∂s(f

′∂2

ϕU0)−
U0

f ′
.

(3.6)

It is denoted here:

a(s) =
5f

2f ′
− 2s.

If we exclude the expression ∂3
ϕU0 from (3.5), we obtain an equation of the second order for

the function U0:

(f ′)2∂2

ϕU0 +
1

2
U2

0 + a(s)U0 + 3a(s)2 − s+ 3a(s)

2
= 0. (3.7)

The equation (3.7) can be once integrated:

(f ′∂ϕU0)
2 +

1

3
U3

0 + a(s)U2

0 + (6a2 − 3a− s)U0 + b(s) = 0. (3.8)

Here b(s) is an arbitrary function (constant of integration).
Further it is suggested not to explicitly write the solution U0, but simply consider, that it is

some 2π periodic function, satisfying the equation (3.8). Subject to this equation, we can write
all derivatives from U0 as rational-fractional expressions in terms:

U0, ∂ϕU0, ∂sU0, ∂
2

sU0, . . . .

The equations on U1 take the form:

(f ′)2∂3

ϕU1 + (a(s) + U0) ∂ϕU1 + ∂ϕU0U1 =
F1(U0, ∂ϕU0, ∂sU0, a, a

′, n′, s)

f

6a(s)(f ′)2∂3

ϕU1 − 2(f ′)2(∂2

ϕU1∂ϕU0 + ∂2

ϕU0∂ϕU1) + ∂ϕU1(s− U2

0 + 4aU0 + 3a)

+2∂ϕU0(2a− U0)U1 =
F2(U0, ∂ϕU0, ∂sU0, a, b, a

′, b′, n′, s)

f∂ϕU0

.

(3.9)

Here F1, F2 are polynomial functions of their arguments. Excluding from the system (3.9)
sequentially higher derivatives U1 by the variable ϕ, we obtain the correlation, which does not
contain the function U1 which is the condition of compatibility of this system:

(

3(2s+ a)(−2s− 24a+ 3 + 36a2)a′ + (4s+ 2a)b′ + 6sa− 4s− 27a+ 108a2 − 6b

−108a3
)

U0 + 3(2s+ a)(−72a3 + 54a2 − 9a+ 12sa+ 4b− 3s)a′ + 3(4a− 1)(2s+ a)b′

+45a2 − 36sa2 + 216a4 + 15b− 198a3 + 15sa− 48ab = 0.

(3.10)

Whereas the equality (3.10) should hold identically, the coefficients with different degrees of U0

are equal to 0, consequently, we obtain an equation for a(s), b(s) :

a′ =
(2a− 1)(−288a3 + 192a2 + 24sa− 27a− 4s+ 4b)

(2s+ a)(−576a3 + 504a2 − 126a+ 48sa+ 8b− 12s+ 9)
,

b′ = (3s− 54a2 + 36a− 9/2)a′ +
−6sa + 4s− 108a2 + 27a+ 6b+ 108a3

4s+ 2a
.

(3.11)
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The system (3.9) is compatible if and only if a(s) and b(s) are defined from the equations
(3.11). If this condition holds, then all derivatives by ϕ from U1 which are higher than the
second order, can be expressed by lower derivatives, for example:

(f ′)2∂2

ϕU1 = −(U0 + a)U1 + (n′ + ∂sU0/∂ϕU0)G1(U0, a, s)/s+G2(U0, a, b, s)/f/∂ϕU0,

where G1, G2 are some functions.
The equations on U2 take the form :

(f ′)2∂3

ϕU2 + (a(s) + U0) ∂ϕU2 + ∂ϕU0U2 =
F3

f

6a(s)(f ′)2∂3

ϕU2 − 2(f ′)2(∂2

ϕU2∂ϕU0 + ∂2

ϕU0∂ϕU2) + ∂ϕU2(s− U2

0 + 4aU0 + 3a)

+2∂ϕU0(2a− U0)U2 =
F4

f∂ϕU0

.

(3.12)

Here F3, F4 are functions, depending on previous corrections.
Excluding from these equations consequently derivatives of the function U2, we obtain cor-

relation of the form:

∂ϕsU1 −
∂2
ϕU0

∂ϕU0

∂sU1 +

(

∂2
ϕU0∂sU0

(∂ϕU0)2
+

G3(U0, a, b)

(f∂ϕU0)2(12a+ 2U0 − 3)

)

∂ϕU1

−
(

∂3
ϕU0∂sU0

(∂ϕU0)2
− G4(U0, a, b)

(f∂ϕU0)2(12a+ 2U0 − 3)

)

U1 = G5(U0, a, b, n
′, n′′).

(3.13)

Differentiating this equation by ϕ, we obtain correlation of the same form, excluding from these
two equations ∂ϕsU1, we obtain:

∂ϕU1 =
∂2
ϕU0

∂ϕU0

U1 +
n′′G6(s, a, b, f) + n′G7(s, a, b, f)

∂ϕU0

+G8(∂
3

sU0, ∂
2

sU0, ∂sU0, ∂ϕU0, U0, a, b, f, s).

(3.14)

Substituting it into the equation (3.13), we obtain the correlation of the form:

∂ϕU0(n
′′′ + A1n

′′ + A2n
′) + ∂3

sU0 +B1∂
2
sU0∂sU0 +B2∂

2
sU0 +

B3(∂sU0)
3 +B4(∂sU0)

2 +B5∂sU0 +B6 = 0,
(3.15)

where

Ai = Ai(s, f, a, b), Bi = Bi(U0, s, f, a, b)

are some functions.
If we do not limit generality, we can consider the function U0 even by ϕ. Then, in (3.15) the

first part is odd, the second in even by ϕ. Consequently, we immediately obtain from (3.15)
two equations:

n′′′ + A1n
′′ + A2n

′ = 0. (3.16)

∂3

sU0 +B1∂
2

sU0∂sU0 +B2∂
2

sU0 +B3(∂sU0)
3 +B4(∂sU0)

2 +B5∂sU0 +B6 = 0. (3.17)

The general solution (3.16) takes the form:

n(s) = C1 + C2n1(s) + C2n2(s). (3.18)

Here n1, n2 are different from constant linearly independent solutions (3.16). If we apply nu-
merical methods, we obtain:

n(s) = π.

It is numerically demonstrated, that the difference between numerical and asymptotic solution
reduces as t−5/2 for this solution n(s). The Figure 1 presents a numerical modelling of the
solution U(t, z) where t = 19 and the dominant term of the asymptotic U0(ϕ, s).
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Figure 1. Numerical modelling of the function U(t, z) where t = 19
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