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PERIODIC SOLUTIONS OF THE TELEGRAPH EQUATION

WITH A DISCONTINUOUS NONLINEARITY

I.F. GALIKHANOV, V.N. PAVLENKO

Abstract. We consider telegraph equations with a variable inner energy, discontinuous
by phase, and the homogeneous Dirichlet boundary condition. Question of existence of
general periodic solutions in the resonant case, when the operator created by a linear part
of the equation with the homogeneous Dirichlet boundary condition and the condition of
periodicity has a non zero kernel, and nonlinearity appearing in the equation is limited. We
obtained an existence theorem for the general periodic solution by means of the topological
method. The proof is based on the Leray-Schauder principle for convex compact mappings.
The main difference from similar results of other authors is an assumption that there are
breaks in the phase variable of the inner energy of the telegraph equation.

Keywords: nonlinear telegraph equation, discontinuous nonlinearity ,periodic solutions,
resonance problem

1. Introduction

Let Ω be a bounded domain in R𝑛 with the boundary 𝜕Ω of class 𝐶2,

𝐿𝑢(𝑥) = −
𝑛∑︁

𝑖,𝑗=1

(𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖
)𝑥𝑗

+ 𝑎(𝑥)𝑢(𝑥)

be a uniformly elliptic differential operator in the domain Ω [1] with coefficients 𝑎𝑖𝑗 ∈
𝐶1,𝛼(Ω), 𝑎𝑖𝑗(𝑥) = 𝑎𝑗𝑖(𝑥), 𝑎 ∈ 𝐶𝛼(Ω), 0 < 𝛼 < 1.

We consider the problem of existence of the solution of telegraph equation with discontinuous
nonlinearity

𝑢𝑡𝑡 + 𝐿𝑢(𝑥, 𝑡) + 𝜇𝑢𝑡 + 𝑔(𝑥, 𝑡, 𝑢) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄, (1)

satisfying homogeneous Dirichlet boundary condition

𝑢(𝑥, 𝑡) = 0 (2)

on 𝑆 = 𝜕Ω × (0, 2𝜋), and the condition of periodicity

𝑢(𝑥, 0) = 𝑢(𝑥, 2𝜋) (3)

for 𝑥 ∈ Ω, where 𝑄 = Ω × (0, 2𝜋), 𝜇 ̸= 0 (considering dissipation of energy), 𝑓 ∈ 𝐿2(𝑄).
It is assumed, that nonlinearity 𝑔(𝑥, 𝑡, 𝑢) satisfies the 𝑖-condition:
𝑖1 is the function 𝑔 : 𝑄 × R → R of Borel (mod 0) [2], that denotes existence of the set

𝑙 ⊂ 𝑄×R, which projection on 𝑄 has a zero measure, and Borel on 𝑄×R function, coinciding
with 𝑔(𝑥, 𝑡, 𝑢) on (𝑄× R) ∖ 𝑙;
𝑖2 — for almost all (𝑥, 𝑡) ∈ 𝑄 the section 𝑔(𝑥, 𝑡, ∙) has on R discontinuities just of the first

kind and for the arbitrary 𝑢 ∈ R the following inclusion holds 𝑔(𝑥, 𝑡, 𝑢) ∈ [𝑔−(𝑥, 𝑡, 𝑢), 𝑔+(𝑥, 𝑡, 𝑢)],
where 𝑔−(𝑥, 𝑡, 𝑢) = lim inf𝜂→𝑢 𝑔(𝑥, 𝑡, 𝜂), 𝑔+(𝑥, 𝑡, 𝑢) = lim sup𝜂→𝑢 𝑔(𝑥, 𝑡, 𝜂);
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𝑖3 — (boundedness of nonlinearity) there is the function 𝑏(𝑥, 𝑡) from 𝐿2(𝑄) such that for
almost all (𝑥, 𝑡) ∈ 𝑄

|𝑔(𝑥, 𝑡, 𝑢)| 6 𝑏(𝑥, 𝑡) ∀𝑢 ∈ R. (4)

Let us note, that the condition 𝑖1 ensures superposition measurability 𝑔(𝑥, 𝑡, 𝑢) on 𝑄, that is
measurability on 𝑄 of the composition 𝑔(𝑥, 𝑡, 𝑢(𝑥, 𝑡)) for any function 𝑢(𝑥, 𝑡) measurable on 𝑄.

The differential operator 𝐿 with homogeneous Dirichlet boundary condition generates in
𝐿2(Ω) a self-adjoint linear operator𝐵 with the definitional domain𝐷(𝐵) = 𝐻2(Ω) ∩𝐻1

0 (Ω) : 𝐵𝑢 = 𝐿𝑢 ∀𝑢 ∈ 𝐷(𝐵),
where all the derivatives of the function 𝑢(𝑥) are the Sobolev ones. By 𝐻𝑚(Ω) (𝑚 ∈ N) we
denote Sobolev space 𝑊𝑚

2 (Ω)[1], and by 𝐻𝑚
0 (Ω) we denote closure of the set of continuously

differentiated finite in Ω functions in the metric 𝐻𝑚(Ω). The spectre 𝜎 of the operator 𝐵
consists of characteristic constants of the finite order

𝜆0 6 𝜆1 6 𝜆2 6 . . . ; 𝜆𝑗 → ∞.

[3]. Here every characteristic constant is repeated the number of times its order demands.
There is the orthonormalized basis (𝑣𝑗) in 𝐿2(Ω) from the characteristic constants of the op-

erator 𝐵 (𝐵𝑣𝑗 = 𝜆𝑗𝑣𝑗). In the complex space 𝐿2(𝑄) the sequence {𝜓𝑗𝑘(𝑥, 𝑡) =
1√
2𝜋
𝑣𝑗(𝑥)𝑒𝑖𝑘𝑡,

𝑗 = 0, 1, 2, . . . ; 𝑘 ∈ Z} is an orthonormalized basis. For any real-value function 𝑢 ∈ 𝐿2(𝑄)

𝑢(𝑥, 𝑡) =
∑︁
𝑘∈Z

∞∑︁
𝑗=0

𝑎𝑗𝑘𝜓𝑗𝑘(𝑥, 𝑡), 𝑎𝑗,−𝑘 = 𝑎𝑗,𝑘.

Assume 𝐷(𝐴0) = {𝑢(𝑥, 𝑡) =
∑︀𝑚

𝑘=−𝑚

∑︀𝑛
𝑗=0 𝑎𝑗𝑘𝜓𝑗𝑘(𝑥, 𝑡)| 𝑎𝑗,−𝑘 = 𝑎𝑗,𝑘, 𝑚, 𝑛 ∈ N ∪ {0}} and

define the operator 𝐴0 : 𝐷(𝐴0) ⊂ 𝐿2(𝑄) → 𝐿2(𝑄) in the real 𝐿2(𝑄) by the equality 𝐴0𝑢 =
𝑢𝑡𝑡 + 𝜇𝑢𝑡 + 𝐿𝑢(𝑥, 𝑡) for any 𝑢 ∈ 𝐷(𝐴0). Let us note, that the formula, which defines 𝐴0,
can set the extension 𝐴0 for the linear shell of the sequence (𝜓𝑗𝑘(𝑥, 𝑡)) in complex 𝐿2(𝑄),
and for this expansion 𝜓𝑗𝑘(𝑥, 𝑡) are eigenfunctions which satisfy the characteristic constants
𝜇𝑗𝑘 = −𝑘2 + 𝜆𝑗 + 𝑖𝜇𝑘. In particular, this implies, that the kernel of the operator 𝐴0 (𝐾𝑒𝑟𝐴0)
coincides with 𝐾𝑒𝑟𝐵.

Definition 1. The generalized solution of the problem (1)-(3) is the function
𝑢(𝑥, 𝑡) ∈ 𝐿2(𝑄) with values in R such that there is the function 𝑧(𝑥, 𝑡) ∈ [𝑔−(𝑥, 𝑡, 𝑢(𝑥, 𝑡)), 𝑔+(𝑥, 𝑡, 𝑢(𝑥, 𝑡))],
measurable almost everywhere on 𝑄, for which the following integral identity holds:∫︁

𝑄

𝑢(𝑥, 𝑡)(𝜙𝑡𝑡 + 𝐿𝜙− 𝜇𝜙𝑡)𝑑𝑥𝑑𝑡 =

∫︁
𝑄

𝜙(𝑥, 𝑡)(𝑓(𝑥, 𝑡) − 𝑧(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ∀𝜙 ∈ 𝐷(𝐴0). (5)

Remark 1. In case, when 𝑔(𝑥, 𝑡, 𝑢) is a caratheodory function, that is for almost all
(𝑥, 𝑡) ∈ 𝑄 the section 𝑔(𝑥, 𝑡, ∙) is continuous on R and for any 𝑢 ∈ R the function 𝑔(∙, ∙, 𝑢) is
measurable on 𝑄, in the definition 𝑧(𝑥, 𝑡) = 𝑔(𝑥, 𝑡, 𝑢(𝑥, 𝑡)), and we come to the accepted notion
of the generalized solution of the problem (1)–(3). It is shown in [4], that if 𝑢 ∈ 𝐿2(𝑄) satisfies
(5) with 𝑟(𝑥, 𝑡) = 𝑓(𝑥, 𝑡)−𝑧(𝑥, 𝑡) ∈ 𝐿2(𝑄), then 𝑢(𝑥, 𝑡) ∈ 𝐻1

0 (Ω) for 𝑡 ∈ [0, 2𝜋] (regularity of the
generalized solution) does hold (3). If we assume, that the generalized solution 𝑢(𝑥, 𝑡) ∈ 𝐻2(𝑄),
then with the help of part integrating in (5) we can obtain, that 𝑢𝑡𝑡 +𝐿𝑢(𝑥, 𝑡) +𝜇𝑢𝑡 + 𝑧(𝑥, 𝑡) =
𝑓(𝑥, 𝑡) almost everywhere on 𝑄.

The general result of the paper is the following theorem (it considers a resonance problem
when the equation 𝑢𝑡𝑡 + 𝐿𝑢(𝑥, 𝑡) + 𝜇𝑢𝑡 = 0 possesses in 𝑄 nontrivial solution, satisfying the
conditions (2) and (3), that is equivalent to null membership to the spectre 𝜎 of the operator
𝐵).
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Theorem 1. Let us assume, that 0 ∈ 𝜎, function 𝑔(𝑥, 𝑡, 𝑢) satisfies i - condition. Moreover,
for any function 𝑣(𝑥) from the kernel of the operator 𝐵 the Landesmann - Lazer condition holds∫︁

𝑣>0

𝑔
+

(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥𝑑𝑡+

∫︁
𝑣<0

𝑔−(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥𝑑𝑡 >

∫︁
Ω

𝑓(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥𝑑𝑡,

where 𝑔
+

(𝑥, 𝑡) = lim inf
𝑢→+∞

𝑔(𝑥, 𝑡, 𝑢), 𝑔−(𝑥, 𝑡) = lim sup
𝑢→−∞

𝑔(𝑥, 𝑡, 𝑢).

Then the problem (1)–(3) has a generalized solution 𝑢(𝑥, 𝑡) ∈ 𝐿2(𝑄).

The proof of Theorem 1 is reduced to the problem of existence of a fixed point in a convex
value compact mapping. The existence of a fixed point is set with the help of Leray-Schauder
principle for multivalued mappings [5].

The question of existence of periodic solutions of the telegraph equation with nonlinear in-
ternal energy has been studied by many authors. The problem (1)–(3) with caratheodory
nonlinearity 𝑔(𝑥, 𝑡, 𝑢) of the linear growth, symmetric elliptic part 𝐿 of the order 2m with inde-
pendent of the time coefficients was considered in the combined work of Brezis and Nirenberg
[4] (the condition (2) in this case is substituted by the membership 𝑢(𝑥, 𝑡) to 𝐻𝑚

0 (Ω) for any
𝑡 ∈ (0, 𝑇 )). In the resonance case, when the problem 𝐿𝑢 = 0, 𝑢 ∈ 𝐻𝑚

0 (Ω) has a non-nil solution,
we obtain the theorem of existence of a generalized solution under the harder constraint for
𝑓 , than the Landesmann - Lazer condition in Theorem 1. We research here regularity of the
generalized case 𝑚 = 2. In particular, it is shown, that if 𝑓 ∈ 𝐿2(𝑄), then 𝑢(𝑥, 𝑡) ∈ 𝐻1

0 (Ω) for
any 𝑡 ∈ (0, 𝑇 ).

In the paper of I.A. Rudakov [6] the problem (1)–(3) with caratheodory nonlinearity 𝑔(𝑥, 𝑡, 𝑢)
of the degree growth is considered for 𝑛 = 1, 𝐿𝑢 = −𝑢𝑥𝑥 with the supplementary term 𝜈𝑢𝑥 in
the nonresonance case. We also prove the existence of the generalized solution and research its
regularity. Let us also note the papers [7],[8], in which the problem of existence of periodic solu-
tions of the nonlinear telegraph equation is studied in resonance case when 𝑛 = 1, 𝐿𝑢 = −𝑢𝑥𝑥.
The general difference of the present research from the works of other authors is assumption of
discontinuities in 𝑔(𝑥, 𝑡, 𝑢) by the phase variable 𝑢.

2. The operator formulation of the problem(1)–(3)

Let us denote 𝐴 : 𝐷(𝐴) ⊂ 𝐿2(𝑄) → 𝐿2(𝑄) the closure of the operator 𝐴0. As it is shown in
[4],

𝐷(𝐴) = {𝑢(𝑥, 𝑡) =
∑︁
𝑘∈Z

∞∑︁
𝑗=0

𝑎𝑗𝑘𝜓𝑗𝑘(𝑥, 𝑡)| 𝑎𝑗,−𝑘 = 𝑎𝑗,𝑘,

∞∑︁
𝑘=0

∞∑︁
𝑗=0

|𝑎𝑗,𝑘|2((𝜆𝑗 − 𝑘2)2 + 𝜇2𝑘2) < +∞},

and for any 𝑢 ∈ 𝐷(𝐴) the value 𝐴𝑢 =
∑︀

𝑘∈Z
∑︀∞

𝑗=0 𝜇𝑗𝑘𝑎𝑗𝑘𝜓𝑗,𝑘(𝑥, 𝑡). The real spectre of the

operator 𝐴 coincides with 𝜎(the spectre of the operator 𝐵), 𝐷(𝐴*) = 𝐷(𝐴) and 𝐾𝑒𝑟𝐴* = 𝐾𝑒𝑟𝐴
(𝐴* - operator conjugated with 𝐴),

𝐴*𝑢 = 𝑢𝑡𝑡 + 𝐿𝑢𝑡 − 𝜇𝑢𝑡,

for any 𝑢 ∈ 𝐷(𝐴0).
For 𝜆 /∈ 𝜎, 𝜆 ∈ R the resolvent of the operator 𝐴

(𝐴− 𝜆𝐼)−1𝑢 =
∑︁
𝑘∈Z

∞∑︁
𝑗=0

𝑎𝑗𝑘
𝜇𝑗𝑘 − 𝜆

𝜓𝑗,𝑘(𝑥, 𝑡),

Since 1
𝜇𝑗𝑘−𝜆

→ 0, when 𝑗 + 𝑘 → +∞, then the operator (𝐴− 𝜆𝐼)−1 compact in 𝐿2(𝑄).



PERIODIC SOLUTIONS OF THE TELEGRAPH EQUATION. . . 77

Let us denote the Nemytsky operator 𝐺 by the equality

𝐺𝑢 = 𝑔(𝑥, 𝑡, 𝑢(𝑥, 𝑡)), ∀𝑢 ∈ 𝐿2(𝑄).

Whereas 𝑔(𝑥, 𝑡, 𝑢) satisfies 𝑖1 and 𝑖3 conditions, then the operator 𝐺 functions from 𝐿2(𝑄) to
𝐿2(𝑄), and the following estimate holds for it:

‖𝐺𝑢‖ 6 ‖𝑏‖, ∀𝑢 ∈ 𝐿2(𝑄), (6)

here and further ‖‖ is the norm in 𝐿2(𝑄). Let us denote convexity of the operator 𝐺 by 𝐺�:

𝐺�𝑢 =
⋂︁
𝜀<0

𝑐𝑙𝑐𝑜{𝑦 = 𝐺𝑧 | ‖𝑧 − 𝑢‖ < 𝜀},

where 𝑐𝑙𝑐𝑜Λ is a closed convex hull of the set Λ ⊂ 𝐿2(𝑄).
Let us consider the inclusion

𝑓 − 𝐴𝑢 ∈ 𝐺�𝑢. (7)

Its validity denotes existence of 𝑧 ∈ 𝐺�𝑢 such that

𝑓 − 𝐴𝑢 = 𝑧. (8)

As it is shown in [2], 𝑧 ∈ 𝐺�𝑢 is equivalent to the fact, that the function 𝑧(𝑥, 𝑡) measurable on
𝑄 and for almost all (𝑥, 𝑡) ∈ 𝑄 𝑧(𝑥, 𝑡) ∈ [𝑔−(𝑥, 𝑡, 𝑢), 𝑔+(𝑥, 𝑡, 𝑢)]. It results from the equality (8),
that 𝑢 is a generalized solution of the problem (1)–(3). Let us prove it. Let us denote (·, ·) to be
a scalar product in 𝐿2(𝑄). For any 𝜙 ∈ 𝐷(𝐴0) we have the equality (𝐴𝑢, 𝜙) + (𝑧, 𝜙) = (𝑓, 𝜙),
that is equivalent (𝑢,𝐴*𝜙) + (𝑧, 𝜙) = (𝑓, 𝜙) ∀𝜙 ∈ 𝐷(𝐴0) (by definition of the adjoint operator),
and it is equivalent to the integral identity∫︁

𝑄

𝑢(𝑥, 𝑡)(𝜙𝑡𝑡 + 𝐿𝑢− 𝜇𝑢𝑡)𝑑𝑥𝑑𝑡+

∫︁
𝑄

𝑧(𝑥, 𝑡)𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡 =

∫︁
𝑄

𝑓𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡,

for all 𝜙 ∈ 𝐷(𝐴0). Assume 𝜀 > 0 and [−𝜀, 0)∩ 𝜎 = ∅ (such 𝜀 exists whereas the eigenvalues of
the operator 𝐵 are isolated). Let us transform the inclusion (7):

𝑓 − 𝐴𝑢− 𝜀𝑢 ∈ 𝐺�𝑢− 𝜀𝑢

or
(𝐴+ 𝜀𝐼)𝑢 ∈ 𝑓 −𝐺�𝑢+ 𝜀𝑢,

the latter is equivalent to the inclusion

𝑢 ∈ (𝐴+ 𝜀𝐼)−1(𝑓 −𝐺�𝑢+ 𝜀𝑢) ≡ 𝑇.

Let us consider the properties of the mapping 𝑇 . Let us prove, that the values 𝑇 are convex
compact sets in 𝐿2(𝑄). The values 𝐺� are bounded and closed in 𝐿2(𝑄), and the operator
(𝐴 + 𝜀𝐼)−1 : 𝐿2(𝑄) → 𝐿2(𝑄) is linear and compact. Therefore the values 𝑇 are convex and
precompact sets. To prove the compactness of 𝑇𝑢 for 𝑢 ∈ 𝐿2(𝑄), it is sufficient to set the closure
𝑇𝑢 in 𝐿2(𝑄). Assume the sequence (𝑧𝑚) ⊂ 𝑇𝑢 and 𝑧𝑚 → 𝑧 in 𝐿2(𝑄). Then there is (𝑦𝑚) ⊂ 𝐺�𝑢
such that 𝑧𝑚 = (𝐴+𝜀𝐼)−1(𝑓−𝑦𝑚+𝜀𝑢). This results in the equality 𝑦𝑚 = −(𝐴+𝜀𝐼)𝑧𝑚+𝑓+𝜀𝑢.
From the boundedness of the set 𝐺�𝑢 ⊂ 𝐿2(𝑄) we derive existence of the subsequence (𝑦𝑚𝑘

),
weakly converging to some 𝑦 in 𝐿2(𝑄). Since (𝑦𝑚𝑘

) ⊂ 𝐺�𝑢, and 𝐺�𝑢 is a closed convex set,
then 𝑦 ∈ 𝐺�𝑢. On the strength of the closure of the linear operator (𝐴 + 𝜀𝐼) its graph in
𝐿2(𝑄) × 𝐿2(𝑄) is weakly closed, therefore 𝑧 ∈ 𝐷(𝐴 + 𝜀𝐼) and 𝑦 = −(𝐴 + 𝜀𝐼)𝑧 + 𝑓 + 𝜀𝑢, and,
then, 𝑧 = (𝐴+ 𝜀𝐼)−1(𝑓 − 𝑦 + 𝜀𝑢) ∈ 𝑇𝑢. The closure of the set 𝑇𝑢 in 𝐿2(𝑄) has been set.

Let us demonstrate semi-continuity from the top of the mapping 𝑇 on 𝐿2(𝑄). Assume the
contrary and then we obtain 𝑢 ∈ 𝐿2(𝑄) and the open set 𝐷 ⊃ 𝑇𝑢 in 𝐿2(𝑄) such that for
any 𝑚 ∈ N there is 𝑢𝑚 ∈ 𝐿2(𝑄) with ‖𝑢𝑚 − 𝑢‖ < 𝑚−1 and 𝑧𝑚 ∈ 𝑇𝑢𝑚∖𝐷. Every element
of (𝑧𝑚) is presented in the form 𝑧𝑚 = (𝐴 + 𝜀𝐼)−1(𝑓 − 𝑣𝑚 + 𝜀𝑢𝑚), 𝑣𝑚 ∈ 𝐺�(𝑢𝑚). Since the
sequence (𝑢𝑚) is limited in 𝐿2(𝑄), and the mapping 𝐺� turns bounded sets into bounded (on
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the strength of the estimate (6)), then the sequence (𝑣𝑚) is limited in 𝐿2(𝑄). This implies the
existence of the weakly converging subsequence (𝑣𝑚𝑘

) to some 𝑣 in 𝐿2(𝑄). Whereas 𝑢𝑚 → 𝑢
in 𝐿2(𝑄), then on the strength of the weak-strong closure 𝐺�[9] we derive 𝑣 ∈ 𝐺�(𝑢). Since
(𝐴 + 𝜀𝐼)−1 is a linear compact operator, then (𝐴 + 𝜀𝐼)−1𝑣𝑚𝑘

→ (𝐴 + 𝜀𝐼)−1𝑣. Therefore
𝑧𝑚𝑘

→ (𝐴+ 𝜀𝐼)−1(𝑓 − 𝑣 + 𝜀𝑢) ∈ 𝑇𝑢 ⊂ 𝐷. This implies, that since 𝐷 is an open set in 𝐿2(𝑄),
we conclude, that 𝑧𝑚𝑘

belongs to 𝐷 for sufficiently large 𝑘, that contradicts the choice 𝑧𝑚. The
semi-continuity on the top of the mapping 𝑇 on 𝐿2(𝑄) has been proved.

The multivalued operator 𝐺� turns bounded sets in 𝐿2(𝑄) into bounded, and the operator
(𝐴+ 𝜀𝐼)−1 is rather continuous, therefore for the arbitrary sphere 𝑈 from 𝐿2(𝑄) its image 𝑇𝑈
is the precompact set in 𝐿2(𝑄). Therefore, the values of the multi-mapping 𝑇 in 𝐿2(𝑄) are
convex compacts, 𝑇 is semi-continuous on the top, and any sphere 𝑈 from 𝐿2(𝑄) is turned into
precompact set by the mapping 𝑇 .

3. Proof of Theorem 1

Since the mapping 𝑇 is convex-valued and compact, then to prove the existence of its fixed
point it is sufficient to state an equivalent boundedness of the set of the solutions of the family
of inclusions 𝑢 ∈ 𝜏𝑇𝑢, 0 6 𝜏 < 1 ([5], p.107). Let us assume the contrary. Then there are the
sequences (𝑡𝑛) ⊂ [0, 1) and (𝑢𝑛) ⊂ 𝐿2(𝑄), ‖𝑢𝑛‖ > 𝑛 such that 𝑢𝑛 ∈ 𝑡𝑛𝑇𝑢𝑛 for any natural 𝑛.

Assume 𝑣𝑛 =
𝑢𝑛

‖𝑢𝑛‖
. There are 𝑧𝑛 ∈ 𝑇𝑢𝑛 such that

𝐴𝑢𝑛 + 𝜀𝑢𝑛 = −𝑡𝑛𝑧𝑛 + 𝑡𝑛𝜀𝑢𝑛 + 𝑡𝑛𝑓, (9)

let us divide both part into ‖𝑢𝑛‖, and we obtain:

𝐴𝑣𝑛 + 𝜀𝑣𝑛 = −𝑡𝑛
𝑧𝑛

‖𝑢𝑛‖
+ 𝑡𝑛𝜀𝑣𝑛 + 𝑡𝑛

𝑓

‖𝑢𝑛‖
,

There is the growing sequence (𝑛𝑘) of natural numbers such that 𝑣𝑛𝑘
⇀ 𝑣, and 𝑡𝑛𝑘

→ 𝑡, (𝑦𝑛 ⇀ 𝑦
denote the weak convergence (𝑦𝑛) to 𝑦 in 𝐿2(𝑄) ). But

𝑣𝑛𝑘
= (𝐴+ 𝜀𝐼)−1(

𝑡𝑛𝑘
𝑧𝑛𝑘

‖𝑢𝑛𝑘
‖

+
𝑡𝑛𝑘
𝑓

‖𝑢𝑛𝑘
‖

+ 𝑡𝑛𝑘
𝜀𝑣𝑛𝑘

),

𝑡𝑛𝑧𝑛
‖𝑢𝑛‖

→ 0,
𝑡𝑛𝑓

‖𝑢𝑛‖
→ 0, 𝑡𝑛𝑘

𝜀𝑣𝑛𝑘
⇀ 𝑡𝜀𝑣.

Therefore 𝑣𝑛𝑘
→ (𝐴+ 𝜀𝐼)−1𝑡𝜀𝑣 and 𝑣 ̸= 0. Then 𝐴𝑣 = (𝑡− 1)𝜀𝑣. Since 𝑣 is a non-nil function,

𝑡 − 1 6 0 and [−𝜀, 0) ∩ 𝜎 = ∅ then this implies, that 𝑡 = 1 and 𝐴𝑣 = 0. Therefore, 𝑣 belongs
to the kernel of the operator 𝐴, then 𝐾𝑒𝑟𝐵. Since 𝑣𝑛𝑘

→ 𝑣 in 𝐿2(𝑄), we can suppose, that
𝑣𝑛𝑘

→ 𝑣 almost everywhere on 𝑄, turning on the contrary into subsequences. Let us multiply
both parts (9) scalar by 𝑣(𝑥). We have for the arbitrary natural 𝑛

(𝐴𝑢𝑛, 𝑣) + 𝜀(𝑢𝑛, 𝑣) + (𝑡𝑛𝑧𝑛, 𝑣) − (𝑡𝑛𝑓, 𝑣) − 𝑡𝑛(𝜀𝑢𝑛, 𝑣) = 0. (10)

Since (𝐴𝑢𝑛, 𝑣) = (𝑢𝑛, 𝐴
*𝑣) = 0, then, if we divide both parts (10) into 𝑡𝑛, we obtain,

(
1 − 𝑡𝑛
𝑡𝑛

)𝜀(𝑢𝑛, 𝑣) + (𝑧𝑛, 𝑣) = (𝑓, 𝑣).

This results in validity of the inequality (𝑓, 𝑣) > (𝑧𝑛𝑘
, 𝑣) for sufficiently large 𝑘, since (𝑢𝑛𝑘

, 𝑣) =
‖𝑢𝑛𝑘

‖(𝑣𝑛𝑘
, 𝑣), (𝑣𝑛𝑘

, 𝑣) → ‖𝑣‖2 = 1 and ‖𝑢𝑛𝑘
‖ > 𝑛𝑘. This implies, that

(𝑓, 𝑣) ≥ lim inf
𝑘→∞

(𝑧𝑛𝑘
, 𝑣) ≥ lim inf

𝑘→∞
(

∫︁
𝑣>0

𝑔−(𝑥, 𝑡, 𝑢𝑛𝑘
(𝑥, 𝑡))𝑣(𝑥)𝑑𝑥𝑑𝑡+

+

∫︁
𝑣<0

𝑔+(𝑥, 𝑡, 𝑢𝑛𝑘
(𝑥, 𝑡))𝑣(𝑥)𝑑𝑥𝑑𝑡) ≥

∫︁
𝑣>0

𝑔
+

(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥𝑑𝑡+

∫︁
𝑣<0

𝑔−(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥𝑑𝑡.
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During the transition to the bound to the sign of the integral we applied the Fatou-Lebesgue
lemma [10] subject to the estimate (4) for 𝑔(𝑥, 𝑡, 𝑢) and that for almost all (𝑥, 𝑡) ∈ 𝑄 𝑢𝑛𝑘

→ +∞,
if 𝑣(𝑥) > 0, and 𝑢𝑛𝑘

→ −∞, if 𝑣(𝑥) < 0. The obtained inequality contradicts the Landesmann
- Lazer condition in Theorem 1. Theorem 1 has been proved.
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