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OPTIMAL BOUNDARY CONTROL IN A SMALL
CONCAVE DOMAIN

A.R. DANILIN

Abstract. The paper is devoted to investigation of an asymptotics of a solution of the
problem of optimal boundary control [1] in a small concave domain. Construction of an
asymptotics of a boundary value problem for an elliptic operator in a small concave domain
is considered in [2], and an asymptotics of the distributed control in a small concave domain
in [3]. The Asymptotics of boundary control for an operator with a small factor at the higher
derivative was considered in [4], [5]. Other problems of control by solutions of boundary
value problems of the optimal control containing a small parameter are considered in [6],
[7].

Keywords: asymptotic, boundary control, matching method, boundary value problems,

systems of equations in partial derivatives.

1. FORMULATION OF THE PROBLEM

In the biconnected bounded domain Q.:=Q\ ew € R? (0 € w,w C 502) with the smooth
boundary I = I'U ey:=900Q U e0w (£, is smooth variety with boundary) we consider the
following problem of optimum control [I], chapter 2, correlations (2.41), (2.9)]

Az, = f(x), x €, 2. € H(Q),
1.1
38:; =g(x) +u(x), xely, (11
u € U. is convex closed set in Ly(€2.), (1.2)
J(u) = |2 — zal[2 + v ||uel |2 — inf, (1.3)

where A = =V - (A3x3(2) - V) + ao(z), Asxs(z) = (a;j(z)), notably
3
0

0z
Az =— 1]221 8—% (al](x)a—> + ao(:zc)z,
frag,a;; € C=(Q),g € C=(T.), (1.4)
9 S
GTZA = Z aija—; cos(n,z;) = Vz - (A, 4n) is (1.5)
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88 A.R. DANILIN

conormal derivative, denoted by the operator A, cos(n,z;) is i-direction cosine of the outer

normal n to the boundary I'. domain (2., A3TX3 is transposed matrix Asys, v is a positive

constant, and || - ||. and ||| - ||| are norms in the space Lo(2.) and Ly(T'.) correspondingly.
Relative to coefficients of the operator A we also assume the following:

Ja>0Vz e QVeE e R

3 3
Z a(r)ij&i&; = 04263, ag(x) =2 a >0 (1.6)
1,j=1 i=1

a;;(0) = 1,a;5(0) = 0 (i # j).

In the sequel scalar products in Ly(€2.) and Lo(I'c) we denote by (-,-). and (-, )., the norm
in H'(2) by || - ||c.1, and norms and scalar products in Ly(Q2) and Lo(T") we denote by || - ||o,
(s-)o and [[[ - [[[o, (-, -)o correspondingly.

It was proved in [I, chapter 2, s. 2.4], that the problem — has only one solution.

We are intended to consider this problem with the following suppositions:

g =0,
= (1.7)
U. = U.(1), where U.(r):={u € Ly(T.):u| =0, |||ulllo <},

ey

i.e. the process control is carried out only by the exterior boundary.
We are mainly interested in asymptotic expansion z. and u. when € — 0.

2. DETERMINATIVE CORRELATIONS

As it is shown in [I, chapter 2, s. 2.4], the only solution of the problem ((1.1)) — (1.3)) is the
pair z. and u., which is characterized by the following conditions: there is p. € H'(€.) such

that

AZ(E:f(ZE), A*pSZZS_Zd7 erE)
0z, Op. (2.1)
= € 9 = Oa FE
B g(z) + us(x) Bna x €
and
Voel (p. + v ug, v —u.) =0, (2.2)

where the operator A* is formally conjugated to A, i.e.
A* ==V (A 5(2) - V) + ao(x).
Lemma 1. The condition (2.2)) for U. = U.(r) is equivalent to the following
Ixe (0;v]: <u5() = —/\pe(-))r>/\

(2.3)
A(MIpelllo < 7) A (= X) - (= Aclllp-lllo) = 0).
Proof is carried out by analogy to the proof of Lemma 1 from [4]. =
Subject to (2.3)) the system ([2.1)) takes the form
Azng($), A'pe = 2. — 29, € Q% 2,p EHI(Qs)y
82’8 8]98 o
Ty T Ape = g9(@), I = zel (2.4)
0z, op.
-0 -0
anA ’ anA* ’ re &

(A € O:0) A (Aelllplllo < 1) A (= 2) - (1= Alllpelllo) =0). (2.5)
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Let us note, that subject to the conditions (1.6 the boundary operator 9/0ns (0/0na-) is
normal, it covers the operator A (A*) [8, Chapter 2. s. 1.4.], and the mapping of the trace

H™(Q.) 32 ww— <w Ow

— ) € Hm—l/Z ) x Hm—3/2 r
) (r.) (r.)
is surjective.

Indeed, if n is a unit vector of a normal to I, subject to (|1.5))

n-(A3TX3-n):n-(A3X3-n)2a>0,

that denotes normality of this boundary operator.

Let now 0 # 7 be a tangent vector to I'. in the point x € I'., n be a unit vector of the normal
to I, in the point x € T, 8 # 0, AL ;- n =71 + Bin, where 71 is a tangent vector to I, in the
point x € I'.. Then the polynomial

(T+Bt'”>'(A3Tx3n) =T7-11+ 8- bit

from ¢ possesses a different from zero coefficient with ¢, whereas 81 = n - (A%, 4n). Therefore
this root is real. Hence, this polynomial is not equal to zero by module of the polynomial
(t — t1), where t; is a complex root of the second-order polynomial, generated by the symbol
of the operator A and the vector 7 + 3t - n.

0
and = — Y for the

Finally, let us show the solution of the problem H™(€.) > w w = ¢ 5
e A

variables ¢ € H™ V2(T,) and v € H™3/2(T,).

Subject to the definition and presentation AL (x)-n(z) = 71 (z)+ B1(x)n(z) we obtain,
that Ow/na = Vw - 7(x) + fi(x)0w/n. But Vw - 7y is a derivative by the tangent vector
71, therefore, it is expressed by ¢: Vw - 71 = B(p). Hence, dw/n = B (0w/na — B(p)) =
Bt (@Z) — B(cp)). But subject to the theorem on traces [8, Chapter 1, theorem 8.3] the mapping

8_w> € H™V2(T.) x H™%2(T.)

H™(2) 5w~ (w " on

is surjection.
Subject to the properties of elliptical equations from the condition (|1.6) it results, that

VmeN Ze,De € H™(Q),

and, consequently, z., p. € C*(€2.).
Let us note, that the boundary value problem (2.4)) with every fixed A. is by definition
equivalent to the correlations

Vo, € H'()
(f7 90) = 775<sz7 VSO) + (aOzEa 90)5 - <9 — Aepe, 90>0a (2'6)
(Za — Zd, 77/}) = 7T8(V’¢, Vpe) + (aopa, @Z))m

where
3
- dp 0O
WE(SD, w) T Z (al] aﬂlj ’ a.’l?l )5'
3,0=1
In the sequel we are intended to use the fact that if

Q; D o, then the following continuous embedding is defined H™(€;) < H™(Qy) — "nar-
rowing on €2,”. We do not distinguish between elements from H™();) and its narrowing on
Q9. Let us also note, that the norm of this embedding operator is equal to 1.
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Lemma 2. Let z., p. and A\, be the solution of the problem (2.4)), (2.5)). Then
12212+ AcllIpellls = (fspe)e + (24, 22)e + {9, De)o (2.7)

and
zelles pellea = O (11l + I zalle + [llglllo), e = 0. (2.8)

Proof. Let z. be the solution of the problem 1’ when v = 0. Then by definition . we

obtain, that ||z. — zq||c < ||2c — 24]|-, which results in
[lzelle < [zl + 2]zl (2.9)
Whereas 2. satisfies |D when u = 0, then
(f7 %8)8 = (Azm ga)e = Wa(vgaa ;5) + (aoze, 25)5 - <g7 2/5>07
subject to ([1.6)) provides

allzllZy < [1£1le - [lzelle + lglllo - [11zelo- (2.10)

Whereas H*(I') when s > 0 is embedded into Ly(T") tightly and continuously, then subject
to the theorem on traces (see [8, Chapter 1, theorem 8.3]) operator of sampling of the trace is
continuous like an operator from H™(Q)) in Ly(T') when m > 1, i.e.

1K >0Vze€ H(Q) 12[llo < K|2||m1 (@) (2.11)
therefore, subject to ([2.10))

[12lle = O(If1] + [llglllo)- (2.12)
Subject to (2.12) and (2.9) we obtain, that
||zl = O(I ] + [lzalle +1llglllo)- (2.13)

Now, after embedding into (2.6) ¢ = z. and ¥ = p., we obtain

O‘|||Za|||§,1 < (fv ZE)E + <g: Za>0 - <)\Ep€a ZS)O;
(2.14)

O‘H|p€H|§,1 < (Pes 2e)e — (24, Pe)e-
Taking into account (2.13) we obtain from the latest inequality, that

1Pellex = O(II£ 1l + llzall- + lllglllo)- (2.15)

Now, from the first correlation in (2.14)) and the correlation (2.15)) with the application of
the inequality (2.11) and boundedness of A\, we obtain, that

[1zelleq = O£l + llzalle + Illglllo)-

Finally, after taking in ¢ = p. and ¥ = z. and after subtracting of the second equality
from the first obtained, we obtain the correlation (2.7). =

Now, applying a priori estimates , we obtain analogous estimates for the following bound-
ary value problem of more general form in comparison with

Az:fl(a:), A*p—Z:f2<l’), xEQE,Z,pGHl(QE),

0z dp

o, TP = gir(z), e = gor(z), xeTl (2.16)
0z dp

8_71,4 - gl,’Y(‘r)7 8nA* - 9277(‘%)7 T € ey,

where A is some positive constant, f; € Ly(Q.), gir € HY(T') and g;.,(z) € HY?(e7).
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Lemma 3. Let z and p be the solution of the problem (2.16|). Then
l2lleas Ipllea = O(IAlle + 1f2lls + lgrrlllo + [llgrrlllo+

+llgrrllley + [llgrrllley),e = 0,

where ||| - |||ey is the norm in the space La(e7).

(2.17)

Proof. Let z and p be the solutions of the boundary value problems

AZ =0, A5 =0, v e,
0z op

= — = r
anA ) 8nA* g2,F($)7 ',L‘ e ?
o o

— , — = , T € en.
S = 0@, 5= = gy (@), ey

Let us note, that they have only one solution and the following estimates hold for them: [9],

8]

121l = O(lllgialller)s  [Bllex = O(lllgarlllo + g2 1lle)- (2.18)
Therefore, the function z:=z — Z and p:= z — p satisfy the following problem

AZ = fi(x), A'p—Z = fo(x) + 2(x), =€,

0z - op

— 4+ A\p= - =0 r

ons TP gir(z) — Ap(), I =0 x €

0z op
= =0 =0

8nA Y anA* Y x 6 677

Whereas this problem coincides with the problem (2.4), (2.5) when z; = fo + Z,
g=aqir — Ap, v > X and r = \|||pl||o, then due to (2.8)) we obtain
21l 1[B1]en = O(ILAille + [1f2 + Z1le +[llg1, = APlllo), € — 0.
Now we should apply inequality of the triangle for the norms and the correlation (2.18)). =

Theorem 1. .  The problem (2.16) has only one solution for any f; € La(),
gir € HY2(T) and g;., € H/*(e7) (i = 1,2) and its solution z,p € H*(Q.).

Hence, if fi € C(Q)), gir € C*() and ¢;, € C>®(ev) (i = 1,2), then for all m € N
z,p € H™(£),).

Proof. Let us consider mapping of the Hilbert space
E:= H?(Q.)? in Hilbert space G := Ly(€2.)? x H'?(I',)?, denoted by the problem (2.16]),

A(z,p) = (Az, A*p — z, (;TZA + )\p) ‘ i 0z P EV).

' Ong« v’ Ongley’ Ong-
Assume F:= H'(€.)?. Hence E is compactly embedded into F. Let us show, that

3C>0vzpe HAQ) Il <O (MG +IGpIe).  (219)
On the strength of Theorem 5.1 from [§, Chapter 2, s. 5] 3 C; > 0:

Gz p)lle < l2lla2@0) + lIplla2e.) < Ch (I|A2||s + 1A% — 2| + [[2]l+

g+l

Ip
H/2(T.) + MHpmHl/Q(Ff) + H’@nm H

But on the strength of the theorem on traces 3 Cy > 0:

H1/2(F€) + ||ZH175 + ||p‘|17€)

Hzlllzrzw.y < Calllzlllens Pl e, < Colllpllles,
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that completes proof of the inequality .

Hence, with respect to Peetre lemma [10], [8, Chapter 2, lemma 5.1] the image of the operator
A is closed, and its kernel is finite dimensional.

As for the kernel of the operator A, on the strength of a priori estimates it consists of
one zero, that is the operator A is injective.

Let us show, that the operator is surjective.
Let f7 € Ly(Q), gip € HV*(T') and g}, € H/?(e7) (i = 1,2) be such that Vu,v € H*({,)

0 = (Au7f1)€+(A U_u7f2)€+ <%+/\0791,F>0+

v, du v,
G 50)y (G 8., + (o0

To prove this theorem by (-)¢ and (-)., we denote bilinear forms, setting duality between
spaces HY/2(I') and H~'/%(T"), H'/?(ev) and H~'/?(e7) correspondingly.

Let us note, that if gip € La(T') and g;, € La(e7), then these bilinear forms coincide with
scalar product in Lo(T") and Ls(e7) correspondingly, and, by this they do not contradict the
previous application of the symbols.

Our target is to prove the equalities f = 0, g = 0 and g;, = 0 (i = 1,2), which on the
strength of the closure of the image of the operator A give surjectiveness of this operator.

On the strength of independence of u and v the correlation is divided into two

ou

* * * du *
Vue H2(QE) 0= (Au7 fl )6 - ('LL, f2 )6 + <a_nA)gl,F>0 + <%7gl,7>577 (221)

(2.20)

VU€H2(QE) 0 = (A U>f2)a+<)\Ua91,r>0+<M792,r>0+

+< ov >
8nA* 7g2,’y E’y‘
The correlation ([2.21]) shows, that
. ou ou .
(Au, fi)e + <_8nA’gl’F>0 + <_ 91,y>w = (u, f3)e

8n,4’

(2.22)

Thereby, according to s. 2 of Theorem 5.1 from [8, Chapter 2, s. 5], applied to the operator
u > (Au, %), we obtain, that

fr e H*(Q.), gip € HYA(T), gi., € H'?(ev).

Now, let us apply the fact, that g7 € H32(T"). Whereas mapping of the trace

0
H™Q) 3 w s <w —w) e H™ V(L) x H™32(T,)
r. Ony
: : o oy, 991 991 _
is continuous and surjective, there is g € H*(2.): . gironl and . 0 on gv. Then,
n A ’ na
on the strength of Green formula [1, Chapter 1, s.3.4]
ou ov
v e HY(Q) = (Au, v). = (u, A* —<—> <—> 2.93
U, v () (Au,v). = (u, A*v) 8TZAU5+ uanm6 (2.23)

we obtain
9y

8nA’

(9ir v)o = < U>s = —(Agy,v)e + <g’1“, 6i—i*>e'



OPTIMAL BOUNDARY CONTROL IN A SMALL ... 93

Hence, the correlation (2.22) can be written in the form

ov ov

(A%, f5 + Ag7) + <0n—A*’g;’F + A9T>0 + <8n—A*’g;’” + A9T>m = (v, Mg7)-.

Whereas NAg; € H'(€).), then again, applying s. 2 of Theorem 5.1 from [8, Chapter 2, s. 5]
we obtain, that

5+ gt € HY (), gsp + Mgy € H(T), g5, + Agi € H'*(e7).
Subject to the theorem on traces this provides:

fs € H(Q), g5p € HX(D), g5, € H'?(e7).

Now, if we take in (2.21)), (2.22) u,v € H?*(€.), we obtain, that 0 = (u, A*f; — f5). and

0 = (v, Afy), where from on the strength of the density H?((2.) in Ly(€.) the following equalities
result

A fr =0, Af; =0, z€Q. (2.24)

If we apply in (2.21) and (2.22]) Green formula (2.23)) and if we consider equalities ([2.24)), we
obtain, that

Vue H*(Q.) 0 = <59_7Z7gi1"_ff>0+<8871:’gi7_f1*>57+
+<u, 687{;*>0’

Voe i) 0 = (ndgir+ o) + (oo g i)+

(0 G i )

where from on the strength of surjectiveness of the mapping of the trace we obtain

oft

a’l’LA*

gil—‘ - ff = O? on F) gify - fik on &7,

Agl,l—‘ + %a gQ,F - f2 on F’ anAa gQ,fy - f2 on g7,

(2.25)

which subject to the equalities (2.24) provides

Afy =0, A ff —f5=0, xe€Q,
of; . off _

anA—I—)\fl =0, Drre =0, rel,

afs _ off _

Bna 0, Brae 0, T € €Y.

Let us note, that (f3, f{) satisfies the homogeneous problem , and thereby, as it has
already been shown, f5 = f; = 0. Therefore, on the strength of all the remaining
elements are also equal to zero.

The last statement of the theorem is the result of the property of elliptical boundary value
problems for one unknown function. =
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3. A BOUNDARY VALUE PROBLEM AND A PRIORI ESTIMATES OF APPROXIMATION ERROR

Now we are intended to show, that ultimate for the problem (2.4)), (2.5)) will be the following
problem

A20:f<£€), A*po—Z[):Zd, $€Q£7z07p0 €H1(9)7
@ZO 8]90 (31)
_ = == F
O + Aopo = g(z), - 0, x €
(R € (0,2]) A (Molllplllo < 1) A (= Xo) - (1 = Xol [polllo) = 0). (3:2)

This problem coincides with the system of optimality for the problem (1.1)) — (1.3]) in the
domain with "glued” cavity, that is with substitution Q. on Q and U.(r) on U(r) :={u € Ly(T') :

Hulllo < 7}
Theorem 2. Assume A\, z. and the solution of the problem , . Then when e — 0
Ae — Ao, [|2e = 20llen — 0, [|pe — pollcn — 0.
Proof. Let us assume the contrary. Then we obtain n > 0, and sequence ¢,, such that

[ Am — Aol +||Z771_ZO||m,1+ ||pm_p0||m,l =1, (3.3)

where A\, =M., Zm i=2c,., Pm i=De,,, and || - ||;n1 is the norm in H'(€,,).
Whereas 0 < A, < v and Ayl|[pmlllo < 1, then we can consider without bounding of
generality, that
A == A All[pmlllo — 7, (v = A) - (1 —71) = 0. (3.4)
If X = 0, then 77 = 1 and, it denotes, |||pm|||Jo — oo, that contradicts correlations (2.8) and

. Hence, v > > 0.

Let Z, p be the solution of the problem

Azzf(x)7 A*]_?_E:ZLL Q]EQE,E7PO EHl(Q>7
0z — op

41\ = =0 I.

gn, TAP=0@), 57-=0 =€

Let us note, that solubility of this problem with all right parts with the needed degree of
smoothness is obtained by analogy with the proof of the Theorem I Therewith on the strength
of the conditions on f and g the following embeddings hold z,p € C*°(Q).

Therefore z,, := 2z, — Z, Dm := Pm — P, satisfy the following system

Az, =0, A*Dr —Em =0, z€Q.,
Zm | ~~ o~ D

= N = O = A )P =0, er,
anA + P ( )p aTLA* v

% oz OPom op c.
_— = — i .
OnA 8nA anA* 87114* ’ v

On the strength of (2.17) we obtain

p
AE I & )\ )\ m )H H’ ’H
2] le,n1s [1D]]e1 = (! |- llpmlllo + ona O ae

H’m)e 0, (3.5)

where ||| - ||| is the norm in La(g,7).
But in [A — Ap| - [|[pm]|lo — 0 due to boundedness { |||pm||[o } and (3.4).
Whereas Z,p € C*°(2), then

| = 0w

Izl Il
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On the strength of this and the correlations [||pm|lo — |||BI|l0 and, thereby, X, Z, p
there is the solution of the problem , , having only one solution. Therefore A = A,
Z = zg and D = pyg, that contradicts to . .

In the sequel we are intended to assume, that

)‘0 <v, anda therebY7 A0|||pU|||0 = 17 (36)

therefore, in the maximum problem bounds are in essence.
Then, on the strength of theorem [2[ with all sufficiently low € > 0 the condition ({2.5)) takes
the form

Acllpelllo = 1. (3.7)

Theorem 3. Let u., be the solution of the problem (L.1) — (1.3) with U = U.(r),
r € [r;1), satisfying the condition |||ue.||lo = r. Therefore

JK >03e9 > 0Vr, 1" € (r;;r) Ve € (0;e0)  |||tey — ter]llo < K - |r =7

Proof. Let z. be the solution of the problem 1’ when v = 0, and the operator F. :
Ly(T) — Lo(€2.) sets the solution of the problem in the correspondence of the function
u € Ly(I") as a function from Ly(2). Hence in the point u., we obtain the minimum function
of the function ||z, + Fou — z4||?> + v~ 1| |u|||? on U.(r) which is a closed sphere with the radius
r in Ly(I"). Then on the strength of Lagrange principle u., is a point of the local minimum
and for

12 + Feu = zal 2+ v [[ull[§ + pllull5, > 0.

Thereby there is ., such that F (Z’E + Fetle p — zd) + (V’l + ,uw)ug,r =0or

ey = (FFe+ (v 4 pe ) 1) 7 F (20— 22), (3.8)
where F : Ly(9Q.) — Lo(T") is an operator, conjugated to F., and [ is an identical operator in
Lo(T).

Applying spectral presentation of the selfconjugated operator F*F. (see, for example, [11]
ch. 4, § 4]) and introducing symbols w, := F7 (24 — 25), from we obtain

M.

Uep = / (a +v 4 ,uw)_1 d I,w,,
i (3.9)

_ -2
Hmmmz/@+uhﬂm)dmmmm
0
M,

(Her — pregr) ||| Ly ]| |2

Uy — Ug p 2:/
||| €, g, |||0 / (0__{_V71+M€’r)2(0+1/71+,u£,r’)2

(here {I,} are ortoprojectors, generated by operators F*F. : Lo(I') — Lo(I'), and M. =
| F2Fell + & = || Fel|* + ).
Let us consider the function

(3.10)

M.
_ —2
Fwi= [ (o + v+ ) d L
0

B9)
2 & g

prer) < V2| wel[[3, L.

r < vl (3.11)

Hence 72 = |||u,,
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Let us note, that whereas (O’ +v 4 u) - strongly decreases as a function from g, then F'(-)
also strongly decreases. Therefore F'(-) possesses a reverse function. Moreover,

M
_ -3 2|||lwe|||?
Pl =2| [ o+ + ) dliLul] > 2wl (312
(M. +v='+ p)
0 €
Then
.
e = el S 92 ter = tie] - Wlelllo = w2 laello - |F~16) = F10%)] =
B B12)
= Pl [ @ 1 o) = el [P - = S
M, 3- 39 — M,
Pl - |y v - e+ 2 ML LAY 6 Rl b

2||fewe 113 s 2 |
(here py:=F~1(r?)).

Let us estimate ||F.|[, and, consequently, M.. Assume |||u||lp < 1 and z:=F.u. Then,
according to the definition F.

Az =0, x € ., ﬂ:u,xel“ ﬂ:0,:1765%
ona ona
therefore ||z]|. = O((|[ulllo) = O(1). =

Now let us prove the general approximation theorem

Theorem 4. The  functions  f;n € C*(Q),  girm € C>(I),

Giym € C®(e7) (1 = 1,2), but \y,(e) and hy,(c) be some functions from € and N, € (0;V]
with all sufficiently low e > 0. If

| fizmlles lgirmlllo giqamllley [hm(e)| = O(e™), € =0, (3.13)
and Zy,, pm 18 the solution of the problem
( Az = f(2) + frem(z), x € (L,
AP = Zm = foem(), Zmy Pm € H' (L),
%+)\mpm=g(x)+g1rm(x), pm = gorm(z), €T
On o On 4 o
\ g% = g14.m(T), gnL:* = gom(T), T € e,
Anlllpmlllo = 1+ hin, (3.14)

Then for zsmz—zE Zms Desm ‘=De — Pms Aem i=Ae — A, Where 2, De, Ac, is the solution of
the problem (2.4 . the following asymptotic estimates hold:

HZE,MHHQ(QE)a Hpe,mHHQ(QE)a |)‘€,m| = O(gm)7 e — 0,
(3.15)
||Z€,m||C(STE)a ||p6,m||C(STE) = O(gm)v e —0.
Proof. Let us take z,,; and p,,; that is the solution of the boundary value problem
( Azmlzflem(x) erEa
Apml_zml f2<—:m< ) Zm,lapm,l EHI(QE)7
8zm 1 8pm 1
: /\m m,1 — m 5 — = m ; € F,

O + AmPm1 = G1.0,m(T) D a- Gorm(T), T

asz 8pm,l

| o, = g1.4.m(2), = gom(T), x€e7.

6TLA*
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Then on the strength of the estimates (2.17)), (3.13)) and the inequality 0 < \,, < v we obtain,

that

Hzm,l ’ ‘5,17 | ’pm,l

1 =0(™), e = 0. (3.16)

Now the pair of functions 2, 2 := 2, — 2,1 and pp, 2 1= Py, — D1 satisfies the following bound-

ary value problem

( Az = f(x), x € Q.
A*pm,Q — Zm,2 = 07 Zm,2y Pm,2 € H1(98)7
aZWL 2 apm 2
: )\m m,2 — > — = 07 S F?
o, AmPm. 9(x) Dria. x
aZWL 2 apm 2
— = m\&¥ ), = =0, cey.
| o0, =9 (x) Dria. T € ey

It denotes, that the function z,,2(-) is the solution of the problem of the optimal control ([1.1))
— (L.3) with U = U.(rm), where 7, = Ap]|[Pm.2]|o with optimal control u,, = —)\mpm,2|r.
But on the strength of (3.14]) and (3.16))

Alllpm2llls = Nnllpm = pmallls = A (1Pmll15 = 2(Pms Pma)o + [pmallls) =
=1+0("),

therefore and A, |||p2m||] =1 + O(sm) when € — 0. Hereof with respect to the theorem (3| for
U = —/\5105|F and u,, = —)\mpgmlp with consideration of the equality 1' we obtain

[[[te = tml[lo = O(e™), e = 0. (3.17)

Let us now consider the functions z.,,2:=2. —
boundary value problem

Zm2, Zem2:i=7% — Zmp2 They satisfy the

( Az o =0, x € (.,
A*ps,mg — Zm,2 = 0, Zem,2s De;m,2 € H* (96)’
azst apst
— = =u.(r) —uplr), ——==0, zel
s -(z) (z) Ona
azst apm2
—= =0, — " = 0’ T € ey,
\ 8nA 8n,4* i

Thereby for any ¢, 1 € H'(€.) the following correlations hold
0 = m(Vama, Vo) + (@0zemz, ©)e — (Ue — Um, P)o,
(2e;m,2, %) (V) Ve m2) + (@oPem,2, V)e-
If we add into these correlations ¢ = 2., 2 and ¥ = p. », 2 subject to and , we obtain
[zem2llets |[Pemelleq = O(e™), € = 0. (3.18)

Whereas 2., = Zem2 + Zm,1, and Pem = Pem2 + Pm,1, then to obtain final estimates
for these functions, we should apply the inequality of the triangle for the corresponding norms
and the obtained already estimates (3.16]) and (3.18)), Theorem 5.1 from [8, Chapter 2, s. 5]
and the embedding theorem [12].

Let us prove the last remaining estimate for the value | . ,,|.

It follows from the theorem [2]and the correlation that Ao|||pol|lo = 1. Whereas |||p:|||o —
l|lpol|lo when e — 0, then

llpelllot = O(1), ¢ = 0. (3.19)



98 A.R. DANILIN

Finally, [Aeom|-|11pelllo = [11Aepe = Anpelllo < 11AePe = Ambanlllot [ Amprn — Ampel[lo B2 O (em),

that subject to 1) finally provides |\, | = ( m) .

4. CONSTRUCTION OF AN ASYMPTOTIC EXPANSION

We are intended to search for an external expansion in the form of asymptotic series

0o k—2 oo k—2
= Z "N z(r)Int e, P(z) = Z "N g y(r) In' e,
k=0  1=0 o k=0 1=0 (4.1)
= Zak Al In! e, €—0,
k=0  1=0

and an internal expansion for the function v(§) := z(€) and w(§) :=p(gf), where £ is an internal
variable (x = ¢£), we search in the form

1—2 1—2

— Zgi Vim(§) In™ e, W(E) = Ze?i Wi m (&) In" e (4.2)

i=0 m=0 =0  m=0

As usual, we consider, that z,; =0, pr; =0, A\yy =0 when [ > k — 3 and v;,, = 0, w;,n, =0
when m > i — 2.

The functions zy(z ) poﬁo(x) and the number Aoy are the solution of the boundary value

problem (3.1)), . ) 20(z ) and Ag. Thereby, as it has already been noted, zy(z), po(x) €
C*(Q).
For the series (4.1)) and (4.2) the following condition of matching holds true [2]:

Ynom €N ApednoZ = ApalneV,  AmeAnaP = ApoAmeW, (4.3)

where A, , (A;,¢) is the sampling operator of minor total of the asymptotic expansion of the
function from e, z (e, £) with the precision to 0(5”) (o(em)), thereby asymptotic expansions of
the function of the form b(z/¢) are applied when £ = z/¢ — oo (and the function of the form
b(e€) when x = &£ — 0).

The functions zj;(x), pug,(z) and the numbers \;; are the solutions of the problems

Asz(l‘) =0, xz€Q \ 0,
Apry — 200 =0, zpg,pey € C(Q\ {O)),

(4.4)
0211 Opr,
- A et —A — = O aQ
Ins + Aopr,() kaPo(2) + gri (), D1, x € 08,
where gy (2 Z Z As,oPk—s,—o(z) and they are completely denoted by the solutions of

the previous equatlons (here 0:§5—3>0>0,k—1-3>s—o0,1l>0).
To obtain analogous equations for v;,,(§) and w;,,(§) it is necessary to expand operators A,
A*, 0/na and J/na- in the neighbourhood of the point O in the series when  — 0. On the
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strength of ([1.6) when z — 0 we obtain

A:—A—ZQZ'72(IIZ',D ZQzlxD ZQ@O
=1
A = _A—ZQ;2<:C,D Z ZQN
O =0

0 0

— ; D D),
ona 8n+ZQIx ) anA* +Zq21x
where Q; (v, D), Q; ;(v, D), qij(z, D) and ¢} ;(z, D) are polynomlals from = = (21, z9, x3) and
o 0 0
= (—, ——) are homogeneous degree of i on = and the degree of j on D (thereby the
8$1 8232 8ZE3

(o]

operator D comes before multiplication). Let us note, that > @Q; () is Maclaurin series of the
i=0

function ag(z).

Substituting these expansions in the system for the functions v and w, we obtain functions
V;m and w; ,, for the following problems

AUO,O(f) = 0, Avo,o(f) =0,
Avip(§) = (Q12(&, D)+ Qoa(& D))vop(§),
Awip(§) = (@12(€, D) + Qg 1(§, D))woo(§),

Av; o, = s2(&, D s—1,1(§, D
m(©) ;(@,@ )+ Qo 11(6, D)+ o w5

+Qs—2,0(§)>vi—s,m(§) - fl,i—Q,m(g)a

Bugn() = Y (Q1a(&: D)+ Qi (& D)+

s=1

+Q5—2,0(§)>wi—s,m (5) + Ui—Q,m - f2,i—2,m(§)a

\

with boundary conditions

6’0070 o 821)0,0 . 81)170 o 8w170 o
on =9 @n =9 on =0, 8n =0,

avm B 0wlm B
- qSZUZ 8,m» - qszwz EX %)

Here fi1,—2m and fy, 2, are generated by expansions when z — 0 of the functions f(z) and
zq(x), correspondingly.
The supplementary condition (3.7) takes the following form

Mo (Pos Peado + Aeal ol 15 = O, (4.7)

where the numbers d;; are denoted by the previous py; and Ay ;.

Uppermost, we note, that vgo = 2¢(0) and wpo = po(0), however, on the strength of
v1,0 and w; o are not constants, thereby these functions are not bounded when { — co. In its
turn this generates unboundedness of other functions 2x;, pr, Vim, Wim. Thereby the present
problem is bisingular. In [3] there are classes of functions unbounded when z — 0 and when
& — o0, correspondingly, in which the problem, analogous to the one considered here is solvable.
In these classes functions and problems — ) are solvable. The proof of this fact almost
word by word repeats the proofs from [3] § 3].

£ Ew. (4.6)
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Whereas the solution of the system (4.4)) can be presented in the form

260(2) = MaZo(2) + Zrgy  pea(z) = MeaDo(7) + Pry, (4.8)
where Zy, D, € C*°(Q) is the solution of the problem
AZg =0, Apy=0, x € Q,
;TOA + NPy = —Po, aii* =0, veT, (4.9)
and Zy,, P, € C*(Q\ {O}) is the solution of the heterogeneous system
AZM =0, A*Pyi— Zy =0, r €N\ O,
%i]zl + X Pri = gra(w), gij: =0, z €09,
Then the equations take the form
At (Mo (po, Bodo + [lpolll5) = Ok (4.10)
Lemma 4. The following correlation holds
Xo{Po, Bo)o + lIpol |5 # 0. (4.11)

Proof. If we multiply the first equality in the system (4.9)) by p, and apply Green formula
(2.23) for the domain €2, we obtain the equality

[1Zol13 + Aol l[Boll5 = —{po, Po)- (4.12)
Assume now, that the correlation (4.11)) is not valid. Then
— (po,Po) = Ao lIpoll[§ and (4.13)
po L (po+Ag'Py) in Lo(D). (4.14)
We obtain from the equalities (4.12)) and (4.13)) that
Aol [Zol 15 + gl ol llo = IHlpolll5- (4.15)
On the other hand, on the strength of the correlation (4.14) and Pythagorean theorem
N ll1Bol115 = 1ol 15 + [1po + AoBoll[5- (4.16)

It results from the equalities 1) and 1’ that zop = 0 and (po + A 1ﬁo)|F = 0. But
then, on the strength of 1) ﬁ0|r = 0 and, therefore, pg| . = 0, that contradicts the correlation

B0). =

Construction of the functions z (), pri(z), Vim(§), wim(€) and the numbers A is standard
for the method of matching of asymptotic expansions [2]. The functions zpo(¢€), poo(€)
determine dominant terms of asymptotic expansions of the functions v;,,(£), vim(§) (¢ > 0)
when £ — oo. If we denote the functions vy (§) and wy ¢(§) by them, then from the expansion
of the functions vyg(x/e) and wyo(x/e) when /e — oo we obtain dominant terms of the
asymptotic when z — 0 of the functions zj,(r), pri(z) (k > 0). Having obtained Zj,(x),
Py (z) with the given asymptotic, from the equation we obtain A o(z). Now 2 o(2)
and p; o(z) are determined together with the following terms of expansion v;,,(£) and v; ()
(i > 1), and etc.

The proof of the fact, that the constructed and matched series and in the sense
of are the asymptotic of the solution of the problem ([2.4]), , is conducted by analogy
with [3, § 2,§ 5]). Thereby, the following theorem holds.

I
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Theorem 5. Let the conditions (L.4)), (1.6), (1.7) and (3.6) hold. Then the solution of

the problem (2.4), (3.7) is expanded into asymptotic series of the form (4.1)), (4.2) equal in the
domain C*(Q\ {O}) (in the sense of norms || - a2,y and || - [|c@n)-
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