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OPTIMAL BOUNDARY CONTROL IN A SMALL

CONCAVE DOMAIN

A.R. DANILIN

Abstract. The paper is devoted to investigation of an asymptotics of a solution of the
problem of optimal boundary control [1] in a small concave domain. Construction of an
asymptotics of a boundary value problem for an elliptic operator in a small concave domain
is considered in [2], and an asymptotics of the distributed control in a small concave domain
in [3]. The Asymptotics of boundary control for an operator with a small factor at the higher
derivative was considered in [4], [5]. Other problems of control by solutions of boundary
value problems of the optimal control containing a small parameter are considered in [6],
[7].

Keywords: asymptotic, boundary control, matching method, boundary value problems,
systems of equations in partial derivatives.

1. Formulation of the problem

In the biconnected bounded domain Ω𝜀 := Ω ∖ 𝜀𝜔 ⊂ R3 (𝑂 ∈ ∘
𝜔, 𝜔 ⊂

∘
Ω) with the smooth

boundary Γ𝜀 = Γ ∪ 𝜀𝛾 := 𝜕Ω ∪ 𝜀𝜕𝜔 (Ω𝜀 is smooth variety with boundary) we consider the
following problem of optimum control [1, chapter 2, correlations (2.41), (2.9)]⎧⎨⎩

𝐴𝑧𝜀 = 𝑓(𝑥), 𝑥 ∈ Ω𝜀, 𝑧𝜀 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝜀
𝜕𝑛𝐴

= 𝑔(𝑥) + 𝑢𝜀(𝑥), 𝑥 ∈ Γ𝜀,
(1.1)

𝑢 ∈ 𝒰𝜀 is convex closed set in 𝐿2(Ω𝜀), (1.2)

𝐽(𝑢) := ||𝑧𝜀 − 𝑧𝑑||2𝜀 + 𝜈−1|||𝑢𝜀|||2𝜀 → inf, (1.3)

where 𝐴 = −∇ ·
(︀
𝐴3×3(𝑥) · ∇

)︀
+ 𝑎0(𝑥), 𝐴3×3(𝑥) = (𝑎𝑖𝑗(𝑥)), notably

𝐴𝑧 :=−
3∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︁
𝑎𝑖𝑗(𝑥)

𝜕𝑧

𝜕𝑥𝑗

)︁
+ 𝑎0(𝑥)𝑧,

𝑓, 𝑎0, 𝑎𝑖𝑗 ∈ 𝐶∞(Ω), 𝑔 ∈ 𝐶∞(Γ𝜀), (1.4)

𝜕𝑧

𝜕𝑛𝐴

:=
3∑︁

𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑧

𝜕𝑥𝑖
cos(𝑛, 𝑥𝑖) = ∇𝑧 ·

(︀
𝐴𝑇

3×3𝑛
)︀

is (1.5)
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88 A.R. DANILIN

conormal derivative, denoted by the operator 𝐴, cos(𝑛, 𝑥𝑖) is 𝑖-direction cosine of the outer
normal 𝑛 to the boundary Γ𝜀 domain Ω𝜀, 𝐴

𝑇
3×3 is transposed matrix 𝐴3×3, 𝜈 is a positive

constant, and || · ||𝜀 and ||| · |||𝜀 are norms in the space 𝐿2(Ω𝜀) and 𝐿2(Γ𝜀) correspondingly.
Relative to coefficients of the operator 𝐴 we also assume the following:

∃𝛼 > 0 ∀𝑥 ∈ Ω ∀𝜉 ∈ R3

3∑︁
𝑖,𝑗=1

𝑎(𝑥)𝑖𝑗𝜉𝑖𝜉𝑗 > 𝛼

3∑︁
𝑖=1

𝜉2𝑖 , 𝑎0(𝑥) > 𝛼 > 0

𝑎𝑖𝑖(0) = 1, 𝑎𝑖𝑗(0) = 0 (𝑖 ̸= 𝑗).

(1.6)

In the sequel scalar products in 𝐿2(Ω𝜀) and 𝐿2(Γ𝜀) we denote by (·, ·)𝜀 and ⟨·, ·⟩𝜀, the norm
in 𝐻1(Ω𝜀) by || · ||𝜀,1, and norms and scalar products in 𝐿2(Ω) and 𝐿2(Γ) we denote by || · ||0,
(·, ·)0 and ||| · |||0, ⟨·, ·⟩0 correspondingly.

It was proved in [1, chapter 2, s. 2.4], that the problem (1.1) — (1.3) has only one solution.
We are intended to consider this problem with the following suppositions:

𝑔
⃒⃒⃒
𝜀𝛾

≡ 0,

𝒰𝜀 = 𝒰𝜀(1), where 𝒰𝜀(𝑟) :={𝑢 ∈ 𝐿2(Γ𝜀) : 𝑢
⃒⃒⃒
𝜀𝛾

≡ 0, |||𝑢|||0 6 𝑟},
(1.7)

i.e. the process control is carried out only by the exterior boundary.
We are mainly interested in asymptotic expansion 𝑧𝜀 and 𝑢𝜀 when 𝜀→ 0.

2. Determinative correlations

As it is shown in [1, chapter 2, s. 2.4], the only solution of the problem (1.1) — (1.3) is the
pair 𝑧𝜀 and 𝑢𝜀, which is characterized by the following conditions: there is 𝑝𝜀 ∈ 𝐻1(Ω𝜀) such
that ⎧⎨⎩

𝐴𝑧𝜀 = 𝑓(𝑥), 𝐴*𝑝𝜀 = 𝑧𝜀 − 𝑧𝑑, 𝑥 ∈ Ω𝜀,

𝜕𝑧𝜀
𝜕𝑛𝐴

= 𝑔(𝑥) + 𝑢𝜀(𝑥),
𝜕𝑝𝜀
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ𝜀

(2.1)

and
∀ 𝑣 ∈ 𝒰 ⟨𝑝𝜀 + 𝜈−1𝑢𝜀, 𝑣 − 𝑢𝜀⟩ > 0, (2.2)

where the operator 𝐴* is formally conjugated to 𝐴, i.e.

𝐴* :=−∇ ·
(︀
𝐴𝑇

3×3(𝑥) · ∇
)︀

+ 𝑎0(𝑥).

Lemma 1. The condition (2.2) for 𝒰𝜀 = 𝒰𝜀(𝑟) is equivalent to the following

∃𝜆 ∈ (0; 𝜈] :
(︁
𝑢𝜀(·) = −𝜆𝑝𝜀(·)

⃒⃒⃒
Γ

)︁
∧

∧
(︁
𝜆|||𝑝𝜀|||0 6 𝑟

)︁
∧
(︁

(𝜈 − 𝜆) · (𝑟 − 𝜆𝜀|||𝑝𝜀|||0) = 0
)︁
.

(2.3)

Proof is carried out by analogy to the proof of Lemma 1 from [4].
Subject to (2.3) the system (2.1) takes the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐴𝑧𝜀 = 𝑓(𝑥), 𝐴*𝑝𝜀 = 𝑧𝜀 − 𝑧𝑑, 𝑥 ∈ Ω𝜀, 𝑧𝜀, 𝑝𝜀 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝜀
𝜕𝑛𝐴

+ 𝜆𝜀𝑝𝜀 = 𝑔(𝑥),
𝜕𝑝𝜀
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ

𝜕𝑧𝜀
𝜕𝑛𝐴

= 0,
𝜕𝑝𝜀
𝜕𝑛𝐴*

= 0, 𝑥 ∈ 𝜀𝛾

(2.4)

(︀
𝜆𝜀 ∈ (0; 𝜈]

)︀
∧
(︁
𝜆𝜀|||𝑝𝜀|||0 6 1

)︁
∧
(︁

(𝜈 − 𝜆𝜀) ·
(︀
1 − 𝜆𝜀|||𝑝𝜀|||0

)︀
= 0

)︁
. (2.5)
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Let us note, that subject to the conditions (1.6) the boundary operator 𝜕/𝜕𝑛𝐴 (𝜕/𝜕𝑛𝐴*) is
normal, it covers the operator 𝐴 (𝐴*) [8, Chapter 2. s. 1.4.], and the mapping of the trace

𝐻𝑚(Ω𝜀) ∋ 𝑤 ↦→
(︁
𝑤
⃒⃒⃒
Γ𝜀

,
𝜕𝑤

𝜕𝑛𝐴

)︁
∈ 𝐻𝑚−1/2(Γ𝜀) ×𝐻𝑚−3/2(Γ𝜀)

is surjective.
Indeed, if 𝑛 is a unit vector of a normal to Γ𝜀, subject to (1.5)

𝑛 ·
(︀
𝐴𝑇

3×3 · 𝑛
)︀

= 𝑛 ·
(︀
𝐴3×3 · 𝑛

)︀
> 𝛼 > 0,

that denotes normality of this boundary operator.
Let now 0 ̸= 𝜏 be a tangent vector to Γ𝜀 in the point 𝑥 ∈ Γ𝜀, 𝑛 be a unit vector of the normal

to Γ𝜀 in the point 𝑥 ∈ Γ𝜀, 𝛽 ̸= 0, 𝐴𝑇
3×3 · 𝑛 = 𝜏1 + 𝛽1𝑛, where 𝜏1 is a tangent vector to Γ𝜀 in the

point 𝑥 ∈ Γ𝜀. Then the polynomial

(𝜏 + 𝛽𝑡 · 𝑛) ·
(︀
𝐴𝑇

3×3𝑛
)︀

= 𝜏 · 𝜏1 + 𝛽 · 𝛽1𝑡

from 𝑡 possesses a different from zero coefficient with 𝑡, whereas 𝛽1 = 𝑛 ·
(︀
𝐴𝑇

3×3𝑛
)︀
. Therefore

this root is real. Hence, this polynomial is not equal to zero by module of the polynomial
(𝑡 − 𝑡1), where 𝑡1 is a complex root of the second-order polynomial, generated by the symbol
of the operator 𝐴 and the vector 𝜏 + 𝛽𝑡 · 𝑛.

Finally, let us show the solution of the problem 𝐻𝑚(Ω𝜀) ∋ 𝑤 𝑤 = 𝜙
⃒⃒⃒
Γ𝜀

and
𝜕𝑤

𝜕𝑛𝐴

= 𝜓 for the

variables 𝜙 ∈ 𝐻𝑚−1/2(Γ𝜀) and 𝜓 ∈ 𝐻𝑚−3/2(Γ𝜀).
Subject to the definition (1.5) and presentation 𝐴𝑇

3×3(𝑥) ·𝑛(𝑥) = 𝜏1(𝑥)+𝛽1(𝑥)𝑛(𝑥) we obtain,
that 𝜕𝑤/𝑛𝐴 = ∇𝑤 · 𝜏1(𝑥) + 𝛽1(𝑥)𝜕𝑤/𝑛. But ∇𝑤 · 𝜏1 is a derivative by the tangent vector
𝜏1, therefore, it is expressed by 𝜙: ∇𝑤 · 𝜏1 = 𝐵(𝜙). Hence, 𝜕𝑤/𝑛 = 𝛽−1

1

(︀
𝜕𝑤/𝑛𝐴 − 𝐵(𝜙)

)︀
=

𝛽−1
1

(︀
𝜓−𝐵(𝜙)

)︀
. But subject to the theorem on traces [8, Chapter 1, theorem 8.3] the mapping

𝐻𝑚(Ω𝜀) ∋ 𝑤 ↦→
(︁
𝑤
⃒⃒⃒
Γ𝜀

,
𝜕𝑤

𝜕𝑛

)︁
∈ 𝐻𝑚−1/2(Γ𝜀) ×𝐻𝑚−3/2(Γ𝜀)

is surjection.
Subject to the properties of elliptical equations from the condition (1.6) it results, that

∀𝑚 ∈ N 𝑧𝜀, 𝑝𝜀 ∈ 𝐻𝑚(Ω𝜀),

and, consequently, 𝑧𝜀, 𝑝𝜀 ∈ 𝐶∞(Ω𝜀).
Let us note, that the boundary value problem (2.4) with every fixed 𝜆𝜀 is by definition

equivalent to the correlations⎧⎪⎪⎨⎪⎪⎩
∀𝜙, 𝜓 ∈ 𝐻1(Ω𝜀)

(𝑓, 𝜙) = 𝜋𝜀(∇𝑧𝜀,∇𝜙) + (𝑎0𝑧𝜀, 𝜙)𝜀 − ⟨𝑔 − 𝜆𝜀𝑝𝜀, 𝜙⟩0,
(𝑧𝜀 − 𝑧𝑑, 𝜓) = 𝜋𝜀(∇𝜓,∇𝑝𝜀) + (𝑎0𝑝𝜀, 𝜓)𝜀,

(2.6)

where

𝜋𝜀(𝜙, 𝜓) :=
3∑︁

𝑖,𝑗=1

(︁
𝑎𝑖𝑗

𝜕𝜙

𝜕𝑥𝑗
,
𝜕𝜓

𝜕𝑥𝑖

)︁
𝜀
.

In the sequel we are intended to use the fact that if
Ω1 ⊃ Ω2, then the following continuous embedding is defined 𝐻𝑚(Ω1) →˓ 𝐻𝑚(Ω2) — ”nar-
rowing on Ω2”. We do not distinguish between elements from 𝐻𝑚(Ω1) and its narrowing on
Ω2. Let us also note, that the norm of this embedding operator is equal to 1.
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Lemma 2. Let 𝑧𝜀, 𝑝𝜀 and 𝜆𝜀, be the solution of the problem (2.4), (2.5). Then

||𝑧𝜀||2𝜀 + 𝜆𝜀|||𝑝𝜀|||20 = (𝑓, 𝑝𝜀)𝜀 + (𝑧𝑑, 𝑧𝜀)𝜀 + ⟨𝑔, 𝑝𝜀⟩0 (2.7)

and

||𝑧𝜀||𝜀,1, ||𝑝𝜀||𝜀,1 = 𝒪
(︀
||𝑓 ||𝜀 + ||𝑧𝑑||𝜀 + |||𝑔|||0

)︀
, 𝜀→ 0. (2.8)

Proof. Let
∘
𝑧𝜀 be the solution of the problem (1.1) when 𝑢 ≡ 0. Then by definition

∘
𝑧𝜀 we

obtain, that ||𝑧𝜀 − 𝑧𝑑||𝜀 6 ||∘𝑧𝜀 − 𝑧𝑑||𝜀, which results in

||𝑧𝜀||𝜀 6 ||∘𝑧𝜀||𝜀 + 2||𝑧𝑑||𝜀. (2.9)

Whereas
∘
𝑧𝜀 satisfies (1.1) when 𝑢 ≡ 0, then

(𝑓,
∘
𝑧𝜀)𝜀 = (𝐴

∘
𝑧𝜀,

∘
𝑧𝜀)𝜀 = 𝜋𝜀(∇

∘
𝑧𝜀,

∘
𝑧𝜀) + (𝑎0

∘
𝑧𝜀,

∘
𝑧𝜀)𝜀 − ⟨𝑔, ∘𝑧𝜀⟩0,

subject to (1.6) provides

𝛼||∘𝑧𝜀||2𝜀,1 6 ||𝑓 ||𝜀 · ||
∘
𝑧𝜀||𝜀 + |||𝑔|||0 · |||

∘
𝑧𝜀|||0. (2.10)

Whereas 𝐻𝑠(Γ) when 𝑠 > 0 is embedded into 𝐿2(Γ) tightly and continuously, then subject
to the theorem on traces (see [8, Chapter 1, theorem 8.3]) operator of sampling of the trace is
continuous like an operator from 𝐻𝑚(Ω) in 𝐿2(Γ) when 𝑚 > 1, i.e.

∃𝐾 > 0∀ 𝑧 ∈ 𝐻1(Ω) |||𝑧|||0 6 𝐾||𝑧||𝐻1(Ω), (2.11)

therefore, subject to (2.10)

||∘𝑧𝜀||𝜀,1 = 𝒪
(︀
||𝑓 ||𝜀 + |||𝑔|||0

)︀
. (2.12)

Subject to (2.12) and (2.9) we obtain, that

||𝑧𝜀||𝜀 = 𝒪
(︀
||𝑓 ||𝜀 + ||𝑧𝑑||𝜀 + |||𝑔|||0

)︀
. (2.13)

Now, after embedding into (2.6) 𝜙 = 𝑧𝜀 and 𝜓 = 𝑝𝜀, we obtain

𝛼|||𝑧𝜀|||2𝜀,1 6 (𝑓, 𝑧𝜀)𝜀 + ⟨𝑔, 𝑧𝜀⟩0 − ⟨𝜆𝜀𝑝𝜀, 𝑧𝜀⟩0,

𝛼|||𝑝𝜀|||2𝜀,1 6 (𝑝𝜀, 𝑧𝜀)𝜀 − (𝑧𝑑, 𝑝𝜀)𝜀.
(2.14)

Taking into account (2.13) we obtain from the latest inequality, that

||𝑝𝜀||𝜀,1 = 𝒪
(︀
||𝑓 ||𝜀 + ||𝑧𝑑||𝜀 + |||𝑔|||0

)︀
. (2.15)

Now, from the first correlation in (2.14) and the correlation (2.15) with the application of
the inequality (2.11) and boundedness of 𝜆𝜀 we obtain, that

||𝑧𝜀||𝜀,1 = 𝒪
(︀
||𝑓 ||𝜀 + ||𝑧𝑑||𝜀 + |||𝑔|||0

)︀
.

Finally, after taking in (2.6) 𝜙 = 𝑝𝜀 and 𝜓 = 𝑧𝜀 and after subtracting of the second equality
from the first obtained, we obtain the correlation (2.7).

Now, applying a priori estimates (2.8), we obtain analogous estimates for the following bound-
ary value problem of more general form in comparison with (2.4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐴𝑧 = 𝑓1(𝑥), 𝐴*𝑝− 𝑧 = 𝑓2(𝑥), 𝑥 ∈ Ω𝜀, 𝑧, 𝑝 ∈ 𝐻1(Ω𝜀),

𝜕𝑧

𝜕𝑛𝐴

+ 𝜆𝑝 = 𝑔1,Γ(𝑥),
𝜕𝑝

𝜕𝑛𝐴*
= 𝑔2,Γ(𝑥), 𝑥 ∈ Γ

𝜕𝑧

𝜕𝑛𝐴

= 𝑔1,𝛾(𝑥),
𝜕𝑝

𝜕𝑛𝐴*
= 𝑔2,𝛾(𝑥), 𝑥 ∈ 𝜀𝛾,

(2.16)

where 𝜆 is some positive constant, 𝑓𝑖 ∈ 𝐿2(Ω𝜀), 𝑔𝑖,Γ ∈ 𝐻1/2(Γ) and 𝑔𝑖,𝛾(𝑥) ∈ 𝐻1/2(𝜀𝛾).
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Lemma 3. Let 𝑧 and 𝑝 be the solution of the problem (2.16). Then

||𝑧||𝜀,1, ||𝑝||𝜀,1 = 𝒪
(︀
||𝑓1||𝜀 + ||𝑓2||𝜀 + |||𝑔1,Γ|||0 + |||𝑔1,Γ|||0+

+ |||𝑔1,Γ|||𝜀𝛾 + |||𝑔1,Γ|||𝜀𝛾
)︀
, 𝜀→ 0,

(2.17)

where ||| · |||𝜀𝛾 is the norm in the space 𝐿2(𝜀𝛾).

Proof. Let ̃︀𝑧 and ̃︀𝑝 be the solutions of the boundary value problems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴̃︀𝑧 = 0, 𝐴*̃︀𝑝 = 0, 𝑥 ∈ Ω𝜀,

𝜕̃︀𝑧
𝜕𝑛𝐴

= 0,
𝜕̃︀𝑝
𝜕𝑛𝐴*

= 𝑔2,Γ(𝑥), 𝑥 ∈ Γ,

𝜕̃︀𝑧
𝜕𝑛𝐴

= 𝑔1,𝛾(𝑥),
𝜕̃︀𝑝
𝜕𝑛𝐴*

= 𝑔2,𝛾(𝑥), 𝑥 ∈ 𝜀𝛾.

Let us note, that they have only one solution and the following estimates hold for them: [9],
[8]

||̃︀𝑧||𝜀 = 𝒪
(︀
|||𝑔1,𝛾|||𝜀𝛾

)︀
, |̃︀𝑝||𝜀,1 = 𝒪

(︀
|||𝑔2,Γ|||0 + |||𝑔2,𝛾|||𝜀𝛾

)︀
. (2.18)

Therefore, the function ̂︀𝑧 := 𝑧 − ̃︀𝑧 and ̂︀𝑝 := 𝑧 − ̃︀𝑝 satisfy the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴̂︀𝑧 = 𝑓1(𝑥), 𝐴*̂︀𝑝− ̂︀𝑧 = 𝑓2(𝑥) + ̃︀𝑧(𝑥), 𝑥 ∈ Ω𝜀,

𝜕̂︀𝑧
𝜕𝑛𝐴

+ 𝜆̂︀𝑝 = 𝑔1,Γ(𝑥) − 𝜆̃︀𝑝(𝑥),
𝜕̂︀𝑝
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ

𝜕̂︀𝑧
𝜕𝑛𝐴

= 0,
𝜕̂︀𝑝
𝜕𝑛𝐴*

= 0, 𝑥 ∈ 𝜀𝛾,

Whereas this problem coincides with the problem (2.4), (2.5) when 𝑧𝑑 = 𝑓2 + ̃︀𝑧,
𝑔 = 𝑔1,Γ − 𝜆̃︀𝑝, 𝜈 > 𝜆 and 𝑟 = 𝜆|||̂︀𝑝|||0, then due to (2.8) we obtain

||̂︀𝑧||𝜀,1, ||̂︀𝑝||𝜀,1 = 𝒪
(︀
||𝑓1||𝜀 + ||𝑓2 + ̃︀𝑧||𝜀 + |||𝑔1,𝛾 − 𝜆̃︀𝑝|||0)︀, 𝜀→ 0.

Now we should apply inequality of the triangle for the norms and the correlation (2.18).

Theorem 1. . The problem (2.16) has only one solution for any 𝑓𝑖 ∈ 𝐿2(Ω𝜀),
𝑔𝑖,Γ ∈ 𝐻1/2(Γ) and 𝑔𝑖,𝛾 ∈ 𝐻1/2(𝜀𝛾) (𝑖 = 1, 2) and its solution 𝑧, 𝑝 ∈ 𝐻2(Ω𝜀).

Hence, if 𝑓𝑖 ∈ 𝐶∞(Ω)), 𝑔𝑖,Γ ∈ 𝐶∞(Γ) and 𝑔𝑖,𝛾 ∈ 𝐶∞(𝜀𝛾) (𝑖 = 1, 2), then for all 𝑚 ∈ N
𝑧, 𝑝 ∈ 𝐻𝑚(Ω𝜀).

Proof. Let us consider mapping of the Hilbert space
𝐸 :=𝐻2(Ω𝜀)

2 in Hilbert space 𝐺 :=𝐿2(Ω𝜀)
2 ×𝐻1/2(Γ𝜀)

2, denoted by the problem (2.16),

𝒜(𝑧, 𝑝) :=
(︁
𝐴𝑧,𝐴*𝑝− 𝑧,

(︁ 𝜕𝑧

𝜕𝑛𝐴

+ 𝜆𝑝
)︁⃒⃒⃒

Γ
,
𝜕𝑝

𝜕𝑛𝐴*

⃒⃒⃒
Γ
,
𝜕𝑧

𝜕𝑛𝐴

⃒⃒⃒
𝜀𝛾
,
𝜕𝑝

𝜕𝑛𝐴*

⃒⃒⃒
𝜀𝛾

)︁
.

Assume 𝐹 :=𝐻1(Ω𝜀)
2. Hence 𝐸 is compactly embedded into 𝐹 . Let us show, that

∃𝐶 > 0 ∀ 𝑧, 𝑝 ∈ 𝐻2(Ω𝜀) ||(𝑧, 𝑝)||𝐸 6 𝐶 ·
(︁
||𝒜(𝑧, 𝑝)||𝐺 + ||(𝑧, 𝑝)||𝐹

)︁
. (2.19)

On the strength of Theorem 5.1 from [8, Chapter 2, s. 5] ∃ 𝐶1 > 0:

||(𝑧, 𝑝)||𝐸 6 ||𝑧||𝐻2(Ω𝜀) + ||𝑝||𝐻2(Ω𝜀) 6 𝐶1

(︁
||𝐴𝑧||𝜀 + ||𝐴*𝑝− 𝑧||𝜀 + ||𝑧||𝜀+

+
⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑧
𝜕𝑛𝐴

+ 𝜆𝑝
⃒⃒⃒⃒⃒⃒⃒⃒⃒

𝐻1/2(Γ𝜀)
+ 𝜆|||𝑝|||𝐻1/2(Γ𝜀) +

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑝

𝜕𝑛𝐴*

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐻1/2(Γ𝜀)

+ ||𝑧||1,𝜀 + ||𝑝||1,𝜀
)︁
.

But on the strength of the theorem on traces ∃ 𝐶2 > 0:

|||𝑧|||𝐻1/2(Γ𝜀) 6 𝐶2|||𝑧|||𝜀,1, |||𝑝|||𝐻1/2(Γ𝜀) 6 𝐶2|||𝑝|||𝜀,1,
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that completes proof of the inequality (2.19).
Hence, with respect to Peetre lemma [10], [8, Chapter 2, lemma 5.1] the image of the operator

𝒜 is closed, and its kernel is finite dimensional.
As for the kernel of the operator 𝒜, on the strength of a priori estimates (2.17) it consists of

one zero, that is the operator 𝒜 is injective.
Let us show, that the operator is surjective.
Let 𝑓 *

𝑖 ∈ 𝐿2(Ω𝜀), 𝑔
*
𝑖,Γ ∈ 𝐻−1/2(Γ) and 𝑔*𝑖,𝛾 ∈ 𝐻−1/2(𝜀𝛾) (𝑖 = 1, 2) be such that ∀𝑢, 𝑣 ∈ 𝐻2(Ω𝜀)

0 = (𝐴𝑢, 𝑓 *
1 )𝜀 + (𝐴*𝑣 − 𝑢, 𝑓 *

2 )𝜀 +
⟨ 𝜕𝑢

𝜕𝑛𝐴

+ 𝜆𝑣, 𝑔*1,Γ

⟩
0
+

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,Γ

⟩
0

+
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,𝛾

⟩
𝜀𝛾

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,𝛾

⟩
𝜀𝛾
.

(2.20)

To prove this theorem by ⟨·⟩0 and ⟨·⟩𝜀𝛾 we denote bilinear forms, setting duality between
spaces 𝐻1/2(Γ) and 𝐻−1/2(Γ), 𝐻1/2(𝜀𝛾) and 𝐻−1/2(𝜀𝛾) correspondingly.

Let us note, that if 𝑔*𝑖,Γ ∈ 𝐿2(Γ) and 𝑔*𝑖,𝛾 ∈ 𝐿2(𝜀𝛾), then these bilinear forms coincide with
scalar product in 𝐿2(Γ) and 𝐿2(𝜀𝛾) correspondingly, and, by this they do not contradict the
previous application of the symbols.

Our target is to prove the equalities 𝑓 *
𝑖 = 0, 𝑔*𝑖,Γ = 0 and 𝑔*𝑖,𝛾 = 0 (𝑖 = 1, 2), which on the

strength of the closure of the image of the operator 𝒜 give surjectiveness of this operator.
On the strength of independence of 𝑢 and 𝑣 the correlation (2.20) is divided into two

∀𝑢 ∈ 𝐻2(Ω𝜀) 0 = (𝐴𝑢, 𝑓 *
1 )𝜀 − (𝑢, 𝑓 *

2 )𝜀 +
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,Γ

⟩
0

+
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,𝛾

⟩
𝜀𝛾
, (2.21)

∀ 𝑣 ∈ 𝐻2(Ω𝜀) 0 = (𝐴*𝑣, 𝑓 *
2 )𝜀 + ⟨𝜆𝑣, 𝑔*1,Γ⟩0 +

⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,Γ

⟩
0
+

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,𝛾

⟩
𝜀𝛾
.

(2.22)

The correlation (2.21) shows, that

(𝐴𝑢, 𝑓 *
1 )𝜀 +

⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,Γ

⟩
0

+
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,𝛾

⟩
𝜀𝛾

= (𝑢, 𝑓 *
2 )𝜀

Thereby, according to s. 2 of Theorem 5.1 from [8, Chapter 2, s. 5], applied to the operator

𝑢 ↦→
(︁
𝐴𝑢, 𝜕𝑢

𝜕𝑛𝐴

)︁
, we obtain, that

𝑓 *
1 ∈ 𝐻2(Ω𝜀), 𝑔

*
1,Γ ∈ 𝐻3/2(Γ), 𝑔*1,𝛾 ∈ 𝐻1/2(𝜀𝛾).

Now, let us apply the fact, that 𝑔*1,Γ ∈ 𝐻3/2(Γ). Whereas mapping of the trace

𝐻𝑚(Ω𝜀) ∋ 𝑤 ↦→
(︁
𝑤
⃒⃒⃒
Γ𝜀

,
𝜕𝑤

𝜕𝑛𝐴

)︁
∈ 𝐻𝑚−1/2(Γ𝜀) ×𝐻𝑚−3/2(Γ𝜀)

is continuous and surjective, there is 𝑔*1 ∈ 𝐻3(Ω𝜀):
𝜕𝑔*1
𝜕𝑛𝐴

= 𝑔*1,Γ on Γ and
𝜕𝑔*1
𝜕𝑛𝐴

= 0 on 𝜀𝛾. Then,

on the strength of Green formula [1, Chapter 1, s.3.4]

𝑢, 𝑣 ∈ 𝐻1(Ω𝜀) =⇒(𝐴𝑢, 𝑣)𝜀 = (𝑢,𝐴*𝑣)𝜀 −
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑣
⟩
𝜀

+
⟨
𝑢,

𝜕𝑣

𝜕𝑛𝐴*

⟩
𝜀

(2.23)

we obtain

⟨𝑔*1,Γ, 𝑣⟩0 =
⟨ 𝜕𝑔*1
𝜕𝑛𝐴

, 𝑣
⟩
𝜀

= −(𝐴𝑔*1, 𝑣)𝜀 +
⟨
𝑔*1,

𝜕𝑣

𝜕𝑛𝐴*

⟩
𝜀
.
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Hence, the correlation (2.22) can be written in the form

(𝐴*𝑣, 𝑓 *
2 + 𝜆𝑔*1) +

⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,Γ + 𝜆𝑔*1

⟩
0

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,𝛾 + 𝜆𝑔*1

⟩
𝜀𝛾

= (𝑣, 𝜆𝐴𝑔*1)𝜀.

Whereas 𝜆𝐴𝑔*1 ∈ 𝐻1(Ω𝜀), then again, applying s. 2 of Theorem 5.1 from [8, Chapter 2, s. 5]
we obtain, that

𝑓 *
2 + 𝜆𝑔*1 ∈ 𝐻3(Ω𝜀), 𝑔

*
2,Γ + 𝜆𝑔*1 ∈ 𝐻5/2(Γ), 𝑔*2,𝛾 + 𝜆𝑔*1 ∈ 𝐻1/2(𝜀𝛾).

Subject to the theorem on traces this provides:

𝑓 *
2 ∈ 𝐻3(Ω𝜀), 𝑔

*
2,Γ ∈ 𝐻5/2(Γ), 𝑔*2,𝛾 ∈ 𝐻1/2(𝜀𝛾).

Now, if we take in (2.21), (2.22) 𝑢, 𝑣 ∈
∘
𝐻2(Ω𝜀), we obtain, that 0 = (𝑢,𝐴*𝑓 *

1 − 𝑓 *
2 )𝜀 and

0 = (𝑣,𝐴𝑓 *
2 ), where from on the strength of the density

∘
𝐻2(Ω𝜀) in 𝐿2(Ω𝜀) the following equalities

result

𝐴*𝑓 *
1 = 0, 𝐴𝑓 *

2 = 0, 𝑥 ∈ Ω𝜀. (2.24)

If we apply in (2.21) and (2.22) Green formula (2.23) and if we consider equalities (2.24), we
obtain, that

∀𝑢 ∈ 𝐻2(Ω𝜀) 0 =
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,Γ − 𝑓 *
1

⟩
0

+
⟨ 𝜕𝑢

𝜕𝑛𝐴

, 𝑔*1,𝛾 − 𝑓 *
1

⟩
𝜀𝛾

+

+
⟨
𝑢,

𝜕𝑓 *
1

𝜕𝑛𝐴*

⟩
0
,

∀ 𝑣 ∈ 𝐻2(Ω𝜀) 0 =
⟨
𝑣, 𝜆𝑔*1,Γ +

𝜕𝑓 *
2

𝜕𝑛𝐴

⟩
0

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,Γ − 𝑓 *

2

⟩
0
+

+
⟨
𝑣,
𝜕𝑓 *

2

𝜕𝑛𝐴

⟩
𝜀𝛾

+
⟨ 𝜕𝑣

𝜕𝑛𝐴*
, 𝑔*2,𝛾 − 𝑓 *

2

⟩
𝜀𝛾
,

where from on the strength of surjectiveness of the mapping of the trace we obtain

𝑔*1,Γ − 𝑓 *
1 = 0,

𝜕𝑓 *
1

𝜕𝑛𝐴*
on Γ, 𝑔*1,𝛾 − 𝑓 *

1 on 𝜀𝛾,

𝜆𝑔*1,Γ +
𝜕𝑓 *

2

𝜕𝑛𝐴

, 𝑔*2,Γ − 𝑓 *
2 on Γ,

𝜕𝑓 *
2

𝜕𝑛𝐴

, 𝑔*2,𝛾 − 𝑓 *
2 on 𝜀𝛾,

(2.25)

which subject to the equalities (2.24) provides⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴𝑓 *

2 = 0, 𝐴*𝑓 *
1 − 𝑓 *

2 = 0, 𝑥 ∈ Ω𝜀,

𝜕𝑓 *
2

𝜕𝑛𝐴

+ 𝜆𝑓 *
1 = 0,

𝜕𝑓 *
1

𝜕𝑛𝐴*
= 0, 𝑥 ∈ Γ,

𝜕𝑓 *
2

𝜕𝑛𝐴

= 0,
𝜕𝑓 *

1

𝜕𝑛𝐴*
= 0, 𝑥 ∈ 𝜀𝛾.

Let us note, that (𝑓 *
2 , 𝑓

*
1 ) satisfies the homogeneous problem (2.16), and thereby, as it has

already been shown, 𝑓 *
2 = 𝑓 *

1 = 0. Therefore, on the strength of (2.25) all the remaining
elements are also equal to zero.

The last statement of the theorem is the result of the property of elliptical boundary value
problems for one unknown function.
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3. A boundary value problem and a priori estimates of approximation error

Now we are intended to show, that ultimate for the problem (2.4), (2.5) will be the following
problem ⎧⎨⎩

𝐴𝑧0 = 𝑓(𝑥), 𝐴*𝑝0 − 𝑧0 = 𝑧𝑑, 𝑥 ∈ Ω𝜀, 𝑧0, 𝑝0 ∈ 𝐻1(Ω),

𝜕𝑧0
𝜕𝑛𝐴

+ 𝜆0𝑝0 = 𝑔(𝑥),
𝜕𝑝0
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ
(3.1)

(︀
𝜆0 ∈ (0, 𝜈]

)︀
∧
(︁
𝜆0|||𝑝0|||0 6 1

)︁
∧
(︁

(𝜈 − 𝜆0) · (1 − 𝜆0|||𝑝0|||0) = 0
)︁
. (3.2)

This problem coincides with the system of optimality for the problem (1.1) — (1.3) in the
domain with ”glued” cavity, that is with substitution Ω𝜀 on Ω and 𝒰𝜀(𝑟) on 𝒰(𝑟) :={𝑢 ∈ 𝐿2(Γ) :
|||𝑢|||0 6 𝑟}.

Theorem 2. Assume 𝜆𝜀, 𝑧𝜀 and the solution of the problem (2.4), (2.5). Then when 𝜀→ 0

𝜆𝜀 −→𝜆0, ||𝑧𝜀 − 𝑧0||𝜀,1−→ 0, ||𝑝𝜀 − 𝑝0||𝜀,1−→ 0.

Proof. Let us assume the contrary. Then we obtain 𝜂 > 0, and sequence 𝜀𝑚 such that

|𝜆𝑚 − 𝜆0| + ||𝑧𝑚 − 𝑧0||𝑚,1 + ||𝑝𝑚 − 𝑝0||𝑚,1 > 𝜂, (3.3)

where 𝜆𝑚 :=𝜆𝜀𝑚 , 𝑧𝑚 := 𝑧𝜀𝑚 , 𝑝𝑚 := 𝑝𝜀𝑚 , and || · ||𝑚,1 is the norm in 𝐻1(Ω𝜀𝑚).
Whereas 0 < 𝜆𝑚 6 𝜈 and 𝜆𝑚|||𝑝𝑚|||0 6 1, then we can consider without bounding of

generality, that

𝜆𝑚 −→𝜆, 𝜆𝑚|||𝑝𝑚|||0−→𝜇, (𝜈 − 𝜆) · (1 − 𝜇) = 0. (3.4)

If 𝜆 = 0, then 𝜇 = 1 and, it denotes, |||𝑝𝑚|||0−→∞, that contradicts correlations (2.8) and
(2.11). Hence, 𝜈 > 𝜆 > 0.

Let 𝑧, 𝑝 be the solution of the problem⎧⎨⎩
𝐴𝑧 = 𝑓(𝑥), 𝐴*𝑝− 𝑧 = 𝑧𝑑, 𝑥 ∈ Ω𝜀, 𝑧, 𝑝0 ∈ 𝐻1(Ω),

𝜕𝑧

𝜕𝑛𝐴

+ 𝜆𝑝 = 𝑔(𝑥),
𝜕𝑝

𝜕𝑛𝐴*
= 0, 𝑥 ∈ Γ.

Let us note, that solubility of this problem with all right parts with the needed degree of
smoothness is obtained by analogy with the proof of the Theorem 1. Therewith on the strength
of the conditions on 𝑓 and 𝑔 the following embeddings hold 𝑧, 𝑝 ∈ 𝐶∞(Ω).

Therefore ̂︀𝑧𝑚 := 𝑧𝑚 − 𝑧, ̂︀𝑝𝑚 := 𝑝𝑚 − 𝑝, satisfy the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴̂︀𝑧𝑚 = 0, 𝐴*̂︀𝑝𝑚 − ̂︀𝑧𝑚 = 0, 𝑥 ∈ Ω𝜀,

𝜕̂︀𝑧𝑚
𝜕𝑛𝐴

+ 𝜆̂︀𝑝𝑚 = (𝜆− 𝜆𝑚)𝑝𝑚,
𝜕̂︀𝑝𝑚
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ,

𝜕̂︀𝑧𝑚
𝜕𝑛𝐴

= − 𝜕𝑧

𝜕𝑛𝐴

,
𝜕̂︀𝑝𝑚
𝜕𝑛𝐴*

= − 𝜕𝑝

𝜕𝑛𝐴*
, 𝑥 ∈ 𝜀𝛾.

On the strength of (2.17) we obtain

||̂︀𝑧||𝜀𝑚,1, ||̂︀𝑝||𝜀𝑚,1 = 𝒪
(︁
|𝜆− 𝜆𝑚| · |||𝑝𝑚|||0 +

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑧
𝜕𝑛𝐴

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑚

+
⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑝

𝜕𝑛𝐴*

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑚

)︁
, 𝜀→ 0, (3.5)

where ||| · |||𝑚 is the norm in 𝐿2(𝜀𝑚𝛾).
But in |𝜆− 𝜆𝑚| · |||𝑝𝑚|||0 → 0 due to boundedness { |||𝑝𝑚|||0 } and (3.4).
Whereas 𝑧, 𝑝 ∈ 𝐶∞(Ω), then⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑧

𝜕𝑛𝐴

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑚
,

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝜕𝑝

𝜕𝑛𝐴*

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑚

= 𝒪(𝜀𝑚).
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On the strength of this and the correlations (3.5) |||𝑝𝑚|||0−→|||𝑝|||0 and, thereby, 𝜆, 𝑧, 𝑝
there is the solution of the problem (3.1), (3.2), having only one solution. Therefore 𝜆 = 𝜆0,
𝑧 = 𝑧0 and 𝑝 = 𝑝0, that contradicts to (3.3).

In the sequel we are intended to assume, that

𝜆0 < 𝜈, and, thereby, 𝜆0|||𝑝0|||0 = 1, (3.6)

therefore, in the maximum problem bounds are in essence.
Then, on the strength of theorem 2 with all sufficiently low 𝜀 > 0 the condition (2.5) takes

the form

𝜆𝜀|||𝑝𝜀|||0 = 1. (3.7)

Theorem 3. Let 𝑢𝜀,𝑟 be the solution of the problem (1.1) — (1.3) with 𝒰 = 𝒰𝜀(𝑟),
𝑟 ∈ [𝑟1; 𝑟2], satisfying the condition |||𝑢𝜀,𝑟|||0 = 𝑟. Therefore

∃𝐾 > 0∃ 𝜀0 > 0∀ 𝑟, 𝑟′ ∈ (𝑟1; 𝑟2)∀ 𝜀 ∈ (0; 𝜀0) |||𝑢𝜀,𝑟 − 𝑢𝜀,𝑟′ |||0 6 𝐾 · |𝑟 − 𝑟′|.

Proof. Let
∘
𝑧𝜀 be the solution of the problem (1.1) when 𝑢 ≡ 0, and the operator ℱ𝜀 :

𝐿2(Γ) → 𝐿2(Ω𝜀) sets the solution of the problem (1.1) in the correspondence of the function
𝑢 ∈ 𝐿2(Γ) as a function from 𝐿2(Ω). Hence in the point 𝑢𝜀,𝑟 we obtain the minimum function

of the function ||∘𝑧𝜀 + ℱ𝜀𝑢− 𝑧𝑑||2𝜀 + 𝜈−1|||𝑢|||20 on 𝒰𝜀(𝑟) which is a closed sphere with the radius
𝑟 in 𝐿2(Γ). Then on the strength of Lagrange principle 𝑢𝜀,𝑟 is a point of the local minimum
and for

||∘𝑧𝜀 + ℱ𝜀𝑢− 𝑧𝑑||2𝜀 + 𝜈−1|||𝑢|||20 + 𝜇|||𝑢|||20, 𝜇 > 0.

Thereby there is 𝜇𝜀,𝑟 such that ℱ*
𝜀

(︀∘
𝑧𝜀 + ℱ𝜀𝑢𝜀,𝑟 − 𝑧𝑑

)︀
+
(︀
𝜈−1 + 𝜇𝜀,𝑟

)︀
𝑢𝜀,𝑟 = 0 or

𝑢𝜀,𝑟 =
(︀
ℱ*

𝜀ℱ𝜀 +
(︀
𝜈−1 + 𝜇𝜀,𝑟

)︀
𝐼
)︀−1ℱ*

𝜀

(︀
𝑧𝑑 −

∘
𝑧𝜀
)︀
, (3.8)

where ℱ*
𝜀 : 𝐿2(Ω𝜀) → 𝐿2(Γ) is an operator, conjugated to ℱ𝜀, and 𝐼 is an identical operator in

𝐿2(Γ).
Applying spectral presentation of the selfconjugated operator ℱ*

𝜀ℱ𝜀 (see, for example, [11,

ch. 4, S 4]) and introducing symbols 𝑤𝜀 :=ℱ*
𝜀

(︀
𝑧𝑑 −

∘
𝑧𝜀
)︀
, from (3.8) we obtain

𝑢𝜀,𝑟 =

𝑀𝜀∫︁
0

(︀
𝜎 + 𝜈−1 + 𝜇𝜀,𝑟

)︀−1
𝑑 𝐼𝜎𝑤𝜀,

|||𝑢𝜀,𝑟|||0 =

𝑀𝜀∫︁
0

(︀
𝜎 + 𝜈−1 + 𝜇𝜀,𝑟

)︀−2
𝑑 |||𝐼𝜎𝑤𝜀|||0,

(3.9)

|||𝑢𝜀,𝑟 − 𝑢𝜀,𝑟′ |||20 =

𝑀𝜀∫︁
0

(︀
𝜇𝜀,𝑟 − 𝜇𝜀,𝑟′

)︀2
𝑑 |||𝐼𝜎𝑤𝜀|||20(︀

𝜎 + 𝜈−1 + 𝜇𝜀,𝑟

)︀2(︀
𝜎 + 𝜈−1 + 𝜇𝜀,𝑟′

)︀2 (3.10)

(here {𝐼𝜎} are ortoprojectors, generated by operators ℱ*
𝜀ℱ𝜀 : 𝐿2(Γ) → 𝐿2(Γ), and 𝑀𝜀 =

||ℱ*
𝜀ℱ𝜀|| + 𝜀 = ||ℱ𝜀||2 + 𝜀).

Let us consider the function

𝐹 (𝜇) :=

𝑀𝜀∫︁
0

(︀
𝜎 + 𝜈−1 + 𝜇

)︀−2
𝑑 |||𝐼𝜎𝑤𝜀|||20.

Hence 𝑟2 = |||𝑢𝜀,𝑟|||20
(3.9)
= 𝐹 (𝜇𝜀,𝑟) 6 𝜈2|||𝑤𝜀|||20, i.e.

𝑟 6 𝜈|||𝑤𝜀|||0. (3.11)
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Let us note, that whereas
(︀
𝜎+ 𝜈−1 +𝜇

)︀−2
strongly decreases as a function from 𝜇, then 𝐹 (·)

also strongly decreases. Therefore 𝐹 (·) possesses a reverse function. Moreover,

|𝐹 ′(𝜇)| = 2

⃒⃒⃒⃒
⃒⃒
𝑀𝜀∫︁
0

(︀
𝜎 + 𝜈−1 + 𝜇

)︀−3
𝑑 |||𝐼𝜎𝑤𝜀|||20

⃒⃒⃒⃒
⃒⃒ > 2|||𝑤𝜀|||20(︀

𝑀𝜀 + 𝜈−1 + 𝜇
)︀3 . (3.12)

Then

|||𝑢𝜀,𝑟 − 𝑢𝜀,𝑟′ |||0
(3.10)

6 𝜈2
⃒⃒
𝜇𝜀,𝑟 − 𝜇𝜀,𝑟′

⃒⃒
· |||𝑤𝜀|||0 = 𝜈2|||𝑤𝜀|||0 ·

⃒⃒
𝐹−1(𝑟2) − 𝐹−1(𝑟′2)

⃒⃒
=

= 𝜈2|||𝑤𝜀|||0 ·
⃒⃒
(𝐹−1)′(̃︀𝑟)⃒⃒ · |𝑟2 − 𝑟′2| = 𝜈2|||𝑤𝜀|||0 ·

⃒⃒
𝐹 ′(̃︀𝜇)

⃒⃒−1 · |𝑟2 − 𝑟′2|
(3.12)

6

6 𝜈2|||𝑤𝜀|||0 · |𝑟 − 𝑟′| · |𝑟 + 𝑟′|(𝑀𝜀 + 𝜈−1 + ̃︀𝜇)3

2|||𝑤𝜀|||20

(3.11)

6
𝜈32𝑟2|𝑟 − 𝑟′|(𝑀𝜀 + 𝜈−1 + 𝜇1)

3

2𝑟1
,

(here 𝜇1 :=𝐹−1(𝑟21)).
Let us estimate ||ℱ𝜀||, and, consequently, 𝑀𝜀. Assume |||𝑢|||0 6 1 and 𝑧 :=ℱ𝜀𝑢. Then,

according to the definition ℱ𝜀

𝐴𝑧 = 0, 𝑥 ∈ Ω𝜀,
𝜕𝑧

𝜕𝑛𝐴

= 𝑢, 𝑥 ∈ Γ
𝜕̃︀𝑧
𝜕𝑛𝐴

= 0, 𝑥 ∈ 𝜀𝛾,

therefore ||𝑧||𝜀 = 𝒪
(︀
|||𝑢|||0

)︀
= 𝒪(1).

Now let us prove the general approximation theorem

Theorem 4. The functions 𝑓𝑖,𝑚 ∈ 𝐶∞(Ω), 𝑔𝑖,Γ,𝑚 ∈ 𝐶∞(Γ),
𝑔𝑖,𝛾,𝑚 ∈ 𝐶∞(𝜀𝛾) (𝑖 = 1, 2), but 𝜆𝑚(𝜀) and ℎ𝑚(𝜀) be some functions from 𝜀 and 𝜆𝑚 ∈ (0; 𝜈]
with all sufficiently low 𝜀 > 0. If

||𝑓𝑖,𝜀,𝑚||𝜀, |||𝑔𝑖,Γ,𝑚|||0, |||𝑔𝑖,𝛾,𝑚|||𝜀𝛾, |ℎ𝑚(𝜀)| = 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0, (3.13)

and 𝑧𝑚, 𝑝𝑚 is the solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝑧𝑚 = 𝑓(𝑥) + 𝑓1,𝜀,𝑚(𝑥), 𝑥 ∈ Ω𝜀,

𝐴*𝑝𝑚 − 𝑧𝑚 = 𝑓2,𝜀,𝑚(𝑥), 𝑧𝑚, 𝑝𝑚 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝑚
𝜕𝑛𝐴

+ 𝜆𝑚𝑝𝑚 = 𝑔(𝑥) + 𝑔1,Γ,𝑚(𝑥),
𝜕𝑝𝑚
𝜕𝑛𝐴*

= 𝑔2,Γ,𝑚(𝑥), 𝑥 ∈ Γ

𝜕𝑧𝑚
𝜕𝑛𝐴

= 𝑔1,𝛾,𝑚(𝑥),
𝜕𝑝𝑚
𝜕𝑛𝐴*

= 𝑔2,𝛾,𝑚(𝑥), 𝑥 ∈ 𝜀𝛾,

𝜆𝑚|||𝑝𝑚|||0 = 1 + ℎ𝑚, (3.14)

Then for 𝑧𝜀,𝑚 := 𝑧𝜀 − 𝑧𝑚, 𝑝𝜀,𝑚 := 𝑝𝜀 − 𝑝𝑚, 𝜆𝜀,𝑚 :=𝜆𝜀 − 𝜆𝑚, where 𝑧𝜀, 𝑝𝜀, 𝜆𝜀, is the solution of
the problem (2.4), (3.7), the following asymptotic estimates hold:

||𝑧𝜀,𝑚||𝐻2(Ω𝜀), ||𝑝𝜀,𝑚||𝐻2(Ω𝜀), |𝜆𝜀,𝑚| = 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0,

||𝑧𝜀,𝑚||𝐶(Ω𝜀)
, ||𝑝𝜀,𝑚||𝐶(Ω𝜀)

= 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0.

(3.15)

Proof. Let us take 𝑧𝑚,1 and 𝑝𝑚,1 that is the solution of the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝑧𝑚,1 = 𝑓1,𝜀,𝑚(𝑥), 𝑥 ∈ Ω𝜀,

𝐴*𝑝𝑚,1 − 𝑧𝑚,1 = 𝑓2,𝜀,𝑚(𝑥), 𝑧𝑚,1, 𝑝𝑚,1 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝑚,1

𝜕𝑛𝐴

+ 𝜆𝑚𝑝𝑚,1 = 𝑔1,Γ,𝑚(𝑥),
𝜕𝑝𝑚,1

𝜕𝑛𝐴*
= 𝑔2,Γ,𝑚(𝑥), 𝑥 ∈ Γ,

𝜕𝑧𝑚,1

𝜕𝑛𝐴

= 𝑔1,𝛾,𝑚(𝑥),
𝜕𝑝𝑚,1

𝜕𝑛𝐴*
= 𝑔2,𝛾,𝑚(𝑥), 𝑥 ∈ 𝜀𝛾.
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Then on the strength of the estimates (2.17), (3.13) and the inequality 0 < 𝜆𝑚 6 𝜈 we obtain,
that

||𝑧𝑚,1||𝜀,1, ||𝑝𝑚,1||𝜀,1 = 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0. (3.16)

Now the pair of functions 𝑧𝑚,2 := 𝑧𝑚−𝑧𝑚,1 and 𝑝𝑚,2 := 𝑝𝑚−𝑝𝑚,1 satisfies the following bound-
ary value problem ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝑧𝑚,2 = 𝑓(𝑥), 𝑥 ∈ Ω𝜀,

𝐴*𝑝𝑚,2 − 𝑧𝑚,2 = 0, 𝑧𝑚,2, 𝑝𝑚,2 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝑚,2

𝜕𝑛𝐴

+ 𝜆𝑚𝑝𝑚,2 = 𝑔(𝑥),
𝜕𝑝𝑚,2

𝜕𝑛𝐴*
= 0, 𝑥 ∈ Γ,

𝜕𝑧𝑚,2

𝜕𝑛𝐴

= 𝑔1,𝛾,𝑚(𝑥),
𝜕𝑝𝑚,2

𝜕𝑛𝐴*
= 0, 𝑥 ∈ 𝜀𝛾.

It denotes, that the function 𝑧𝑚,2(·) is the solution of the problem of the optimal control (1.1)
— (1.3) with 𝒰 = 𝒰𝜀(𝑟𝑚), where 𝑟𝑚 = 𝜆𝑚|||𝑝𝑚,2|||0 with optimal control 𝑢𝑚 = −𝜆𝑚𝑝𝑚,2

⃒⃒
Γ
.

But on the strength of (3.14) and (3.16)

𝜆2𝑚|||𝑝𝑚,2|||20 = 𝜆2𝑚|||𝑝𝑚 − 𝑝𝑚,1|||20 = 𝜆2𝑚
(︀
|||𝑝𝑚|||20 − 2⟨𝑝𝑚, 𝑝𝑚,1⟩0 + |||𝑝𝑚,1|||20

)︀
=

= 1 + 𝒪
(︀
𝜀𝑚

)︀
,

therefore and 𝜆𝑚|||𝑝2,𝑚||| = 1 + 𝒪
(︀
𝜀𝑚

)︀
when 𝜀 → 0. Hereof with respect to the theorem 3 for

𝑢𝜀 = −𝜆𝜀𝑝𝜀
⃒⃒
Γ

and 𝑢𝑚 = −𝜆𝑚𝑝2,𝑚
⃒⃒
Γ

with consideration of the equality (3.7) we obtain

|||𝑢𝜀 − 𝑢𝑚|||0 = 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0. (3.17)

Let us now consider the functions 𝑧𝜀,𝑚,2 := 𝑧𝜀 − 𝑧𝑚,2, 𝑧𝜀,𝑚,2 := 𝑧𝜀 − 𝑧𝑚,2 They satisfy the
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝑧𝜀,𝑚,2 = 0, 𝑥 ∈ Ω𝜀,

𝐴*𝑝𝜀,𝑚,2 − 𝑧𝑚,2 = 0, 𝑧𝜀,𝑚,2, 𝑝𝜀,𝑚,2 ∈ 𝐻1(Ω𝜀),

𝜕𝑧𝜀,𝑚,2

𝜕𝑛𝐴

= 𝑢𝜀(𝑥) − 𝑢𝑚(𝑥),
𝜕𝑝𝜀,𝑚,2

𝜕𝑛𝐴*
= 0, 𝑥 ∈ Γ

𝜕𝑧𝜀,𝑚,2

𝜕𝑛𝐴

= 0,
𝜕𝑝𝑚,2

𝜕𝑛𝐴*
= 0, 𝑥 ∈ 𝜀𝛾,

Thereby for any 𝜙, 𝜓 ∈ 𝐻1(Ω𝜀) the following correlations hold

0 = 𝜋𝜀(∇𝑧𝜀,𝑚,2,∇𝜙) + (𝑎0𝑧𝜀,𝑚,2, 𝜙)𝜀 − ⟨𝑢𝜀 − 𝑢𝑚, 𝜙⟩0,
(𝑧𝜀,𝑚,2, 𝜓) = 𝜋𝜀(∇𝜓,∇𝑝𝜀,𝑚,2) + (𝑎0𝑝𝜀,𝑚,2, 𝜓)𝜀.

If we add into these correlations 𝜙 = 𝑧𝜀,𝑚,2 and 𝜓 = 𝑝𝜀,𝑚,2 subject to (1.6) and (3.17), we obtain

||𝑧𝜀,𝑚,2||𝜀,1, ||𝑝𝜀,𝑚,2||𝜀,1 = 𝒪
(︀
𝜀𝑚

)︀
, 𝜀→ 0. (3.18)

Whereas 𝑧𝜀,𝑚 = 𝑧𝜀,𝑚,2 + 𝑧𝑚,1, and 𝑝𝜀,𝑚 = 𝑝𝜀,𝑚,2 + 𝑝𝑚,1, then to obtain final estimates (3.15)
for these functions, we should apply the inequality of the triangle for the corresponding norms
and the obtained already estimates (3.16) and (3.18), Theorem 5.1 from [8, Chapter 2, s. 5]
and the embedding theorem [12].

Let us prove the last remaining estimate for the value |𝜆𝜀,𝑚|.
It follows from the theorem 2 and the correlation (3.7) that 𝜆0|||𝑝0|||0 = 1. Whereas |||𝑝𝜀|||0 →

|||𝑝0|||0 when 𝜀→ 0, then

|||𝑝𝜀|||−1
0 = 𝒪(1), 𝜀→ 0. (3.19)
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Finally, |𝜆𝜀,𝑚| · |||𝑝𝜀|||0 = |||𝜆𝜀𝑝𝜀−𝜆𝑚𝑝𝜀|||0 6 |||𝜆𝜀𝑝𝜀−𝜆𝑚𝑝𝑚|||0+ |||𝜆𝑚𝑝𝑚−𝜆𝑚𝑝𝜀|||0
(3.17)
= 𝒪

(︀
𝜀𝑚

)︀
,

that subject to (3.19) finally provides |𝜆𝜀,𝑚| = 𝒪
(︀
𝜀𝑚

)︀
.

4. Construction of an asymptotic expansion

We are intended to search for an external expansion in the form of asymptotic series

𝒵(𝑥) =
∞∑︁
𝑘=0

𝜀𝑘
𝑘−2∑︁
𝑙=0

𝑧𝑘,𝑙(𝑥) ln𝑙 𝜀, 𝒫(𝑥) =
∞∑︁
𝑘=0

𝜀𝑘
𝑘−2∑︁
𝑙=0

𝑢𝑘,𝑙(𝑥) ln𝑙 𝜀,

Λ(𝜀) =
∞∑︁
𝑘=0

𝜀𝑘
𝑘−2∑︁
𝑙=0

𝜆𝑘,𝑙 ln𝑙 𝜀, 𝜀→ 0,

(4.1)

and an internal expansion for the function 𝑣(𝜉) := 𝑧(𝜀𝜉) and 𝑤(𝜉) := 𝑝(𝜀𝜉), where 𝜉 is an internal
variable (𝑥 = 𝜀𝜉), we search in the form

𝒱(𝜉) =
∞∑︁
𝑖=0

𝜀𝑖
𝑖−2∑︁
𝑚=0

𝑣𝑖,𝑚(𝜉) ln𝑚 𝜀, 𝒲(𝜉) =
∞∑︁
𝑖=0

𝜀𝑖
𝑖−2∑︁
𝑚=0

𝑤𝑖,𝑚(𝜉) ln𝑚 𝜀. (4.2)

As usual, we consider, that 𝑧𝑘,𝑖 = 0, 𝑝𝑘,𝑙 = 0, 𝜆𝑘,𝑙 = 0 when 𝑙 > 𝑘 − 3 and 𝑣𝑖,𝑚 = 0, 𝑤𝑖,𝑚 = 0
when 𝑚 > 𝑖− 2.

The functions 𝑧0,0(𝑥), 𝑝0,0(𝑥) and the number 𝜆0,0 are the solution of the boundary value
problem (3.1), (3.6) 𝑧0(𝑥), 𝑝0(𝑥) and 𝜆0. Thereby, as it has already been noted, 𝑧0(𝑥), 𝑝0(𝑥) ∈
𝐶∞(Ω).

For the series (4.1) and (4.2) the following condition of matching holds true [2]:

∀𝑛,𝑚 ∈ N 𝒜𝑚,𝜉𝒜𝑛,𝑥𝒵 = 𝒜𝑛,𝑥𝒜𝑚,𝜉𝒱 , 𝒜𝑚,𝜉𝒜𝑛,𝑥𝒫 = 𝒜𝑛,𝑥𝒜𝑚,𝜉𝒲 , (4.3)

where 𝒜𝑛,𝑥 (𝒜𝑚,𝜉) is the sampling operator of minor total of the asymptotic expansion of the
function from 𝜀, 𝑥 (𝜀, 𝜉) with the precision to 𝑜

(︀
𝜀𝑛
)︀

(𝑜
(︀
𝜀𝑚

)︀
), thereby asymptotic expansions of

the function of the form 𝑏(𝑥/𝜀) are applied when 𝜉 = 𝑥/𝜀 → ∞ (and the function of the form
𝑏(𝜀𝜉) when 𝑥 = 𝜀𝜉 → 0).

The functions 𝑧𝑘,𝑙(𝑥), 𝑝𝑢𝑘,𝑙(𝑥) and the numbers 𝜆𝑘,𝑙 are the solutions of the problems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴𝑧𝑘,𝑙(𝑥) = 0, 𝑥 ∈ Ω ∖𝑂,

𝐴*𝑝𝑘,𝑙 − 𝑧𝑘,𝑙 = 0, 𝑧𝑘,𝑙, 𝑝𝑘,𝑙 ∈ 𝐶∞(Ω ∖ {𝑂}),

𝜕𝑧𝑘,𝑙
𝜕𝑛𝐴

+ 𝜆0𝑝𝑘,𝑙(𝑥) = −𝜆𝑘,𝑙𝑝0(𝑥) + 𝑔𝑘,𝑙(𝑥),
𝜕𝑝𝑘,𝑙
𝜕𝑛𝐴*

= 0 𝑥 ∈ 𝜕Ω,

(4.4)

where 𝑔𝑘,𝑙(𝑥) = −
𝑘−1∑︁
𝑠=1

∑︁
𝜎

𝜆𝑠,𝜎𝑝𝑘−𝑠,𝑙−𝜎(𝑥) and they are completely denoted by the solutions of

the previous equations (here 𝜎 : 𝑠− 3 ≥ 𝜎 ≥ 0, 𝑘 − 𝑙 − 3 ≥ 𝑠− 𝜎, 𝑙 ≥ 𝜎).
To obtain analogous equations for 𝑣𝑖,𝑚(𝜉) and 𝑤𝑖,𝑚(𝜉) it is necessary to expand operators 𝐴,

𝐴*, 𝜕/𝑛𝐴 and 𝜕/𝑛𝐴* in the neighbourhood of the point 𝑂 in the series when 𝑥 → 0. On the
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strength of (1.6) when 𝑥−→ 0 we obtain

𝐴 = −∆ −
∞∑︁
𝑖=1

𝑄𝑖,2(𝑥,𝐷) −
∞∑︁
𝑖=0

𝑄𝑖,1(𝑥,𝐷) −
∞∑︁
𝑖=0

𝑄𝑖,0(𝑥),

𝐴* = −∆ −
∞∑︁
𝑖=1

𝑄*
𝑖,2(𝑥,𝐷) −

∞∑︁
𝑖=0

𝑄*
𝑖,1(𝑥,𝐷) −

∞∑︁
𝑖=0

𝑄𝑖,0(𝑥),

𝜕

𝜕𝑛𝐴

=
𝜕

𝜕𝑛
+

∞∑︁
𝑖=1

𝑞𝑖,1(𝑥,𝐷),
𝜕

𝜕𝑛𝐴*
=

𝜕

𝜕𝑛
+

∞∑︁
𝑖=1

𝑞*𝑖,1(𝑥,𝐷),

where 𝑄𝑖,𝑗(𝑥,𝐷), 𝑄*
𝑖,𝑗(𝑥,𝐷), 𝑞𝑖,𝑗(𝑥,𝐷) and 𝑞*𝑖,𝑗(𝑥,𝐷) are polynomials from 𝑥 = (𝑥1, 𝑥2, 𝑥3) and

𝐷 =
(︁ 𝜕

𝜕𝑥1
,
𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

)︁
are homogeneous degree of 𝑖 on 𝑥 and the degree of 𝑗 on 𝐷 (thereby the

operator 𝐷 comes before multiplication). Let us note, that
∞∑︀
𝑖=0

𝑄𝑖,0(𝑥) is Maclaurin series of the

function 𝑎0(𝑥).
Substituting these expansions in the system for the functions 𝑣 and 𝑤, we obtain functions

𝑣𝑖,𝑚 and 𝑤𝑖,𝑚 for the following problems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆𝑣0,0(𝜉) = 0, ∆𝑣0,0(𝜉) = 0,

∆𝑣1,0(𝜉) = (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷))𝑣0,0(𝜉),

∆𝑤1,0(𝜉) = (𝑄*
1,2(𝜉,𝐷) +𝑄*

0,1(𝜉,𝐷))𝑤0,0(𝜉),

∆𝑣𝑖,𝑚(𝜉) =
𝑖∑︁

𝑠=1

(︁
𝑄𝑠,2(𝜉,𝐷) +𝑄𝑠−1,1(𝜉,𝐷)+

+𝑄𝑠−2,0(𝜉)
)︁
𝑣𝑖−𝑠,𝑚(𝜉) − 𝑓1,𝑖−2,𝑚(𝜉),

∆𝑤𝑖,𝑚(𝜉) =
𝑖∑︁

𝑠=1

(︁
𝑄*

𝑠,2(𝜉,𝐷) +𝑄*
𝑠−1,1(𝜉,𝐷)+

+𝑄𝑠−2,0(𝜉)
)︁
𝑤𝑖−𝑠,𝑚(𝜉) + 𝑣𝑖−2,𝑚 − 𝑓2,𝑖−2,𝑚(𝜉),

𝜉 ̸∈ 𝜔 (4.5)

with boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑣0,0
𝜕𝑛

= 0,
𝜕𝑤0,0

𝜕𝑛
= 0,

𝜕𝑣1,0
𝜕𝑛

= 0,
𝜕𝑤1,0

𝜕𝑛
= 0,

𝜕𝑣𝑖,𝑚
𝜕𝑛

= −
𝑖∑︁

𝑠=1

𝑞𝑠,𝑖𝑣𝑖−𝑠,𝑚,
𝜕𝑤𝑖,𝑚

𝜕𝑛
= −

𝑖∑︁
𝑠=1

𝑞𝑠,𝑖𝑤𝑖−𝑠,𝑚,
𝜉 ∈ 𝜔. (4.6)

Here 𝑓1,𝑖−2,𝑚 and 𝑓2,𝑖−2,𝑚 are generated by expansions when 𝑥 → 0 of the functions 𝑓(𝑥) and
𝑧𝑑(𝑥), correspondingly.

The supplementary condition (3.7) takes the following form

𝜆0⟨𝑝0, 𝑝𝑘,𝑙⟩0 + 𝜆𝑘,𝑙|||𝑝0|||20 = 𝛿𝑘,𝑙, (4.7)

where the numbers 𝛿𝑘,𝑙 are denoted by the previous 𝑝𝑘,𝑙 and 𝜆𝑘,𝑙.
Uppermost, we note, that 𝑣0,0 = 𝑧0(0) and 𝑤0,0 = 𝑝0(0), however, on the strength of (4.3)

𝑣1,0 and 𝑤1,0 are not constants, thereby these functions are not bounded when 𝜉 → ∞. In its
turn this generates unboundedness of other functions 𝑧𝑘,𝑙, 𝑝𝑘,𝑙, 𝑣𝑖,𝑚, 𝑤𝑖,𝑚. Thereby the present
problem is bisingular. In [3] there are classes of functions unbounded when 𝑥 → 0 and when
𝜉 → ∞, correspondingly, in which the problem, analogous to the one considered here is solvable.
In these classes functions and problems (4.4) — (4.6 ) are solvable. The proof of this fact almost
word by word repeats the proofs from [3, S 3].
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Whereas the solution of the system (4.4) can be presented in the form

𝑧𝑘,𝑙(𝑥) = 𝜆𝑘,𝑙𝑧0(𝑥) + 𝑍𝑘,𝑙, 𝑝𝑘,𝑙(𝑥) = 𝜆𝑘,𝑙𝑝0(𝑥) + 𝑃 𝑘,𝑙, (4.8)

where 𝑧0, 𝑝0 ∈ 𝐶∞(Ω) is the solution of the problem⎧⎨⎩ 𝐴𝑧0 = 0, 𝐴*𝑝0 = 0, 𝑥 ∈ Ω,
𝑧0
𝜕𝑛𝐴

+ 𝜆0𝑝0 = −𝑝0,
𝑝0
𝜕𝑛𝐴*

= 0, 𝑥 ∈ Γ,
(4.9)

and 𝑍𝑘,𝑙, 𝑃 𝑘,𝑙 ∈ 𝐶∞(Ω ∖ {𝑂}) is the solution of the heterogeneous system⎧⎨⎩ 𝐴𝑍𝑘,𝑙 = 0, 𝐴*𝑃 𝑘,𝑙 − 𝑍𝑘,𝑙 = 0, 𝑥 ∈ Ω ∖𝑂,
𝜕𝑍𝑘,𝑙

𝜕𝑛𝐴

+ 𝜆0𝑃 𝑘,𝑙 = 𝑔𝑘,𝑙(𝑥),
𝜕𝑃 𝑘,𝑙

𝜕𝑛𝐴*
= 0, 𝑥 ∈ 𝜕Ω,

Then the equations (4.7) take the form

𝜆𝑘,𝑙
(︀
𝜆0⟨𝑝0, 𝑝0⟩0 + |||𝑝0|||20

)︀
= 𝛿𝑘,𝑙. (4.10)

Lemma 4. The following correlation holds

𝜆0⟨𝑝0, 𝑝0⟩0 + |||𝑝0|||20 ̸= 0. (4.11)

Proof. If we multiply the first equality in the system (4.9) by 𝑝0 and apply Green formula
(2.23) for the domain Ω, we obtain the equality

||𝑧0||20 + 𝜆0|||𝑝0|||20 = −⟨𝑝0, 𝑝0⟩. (4.12)

Assume now, that the correlation (4.11) is not valid. Then

− ⟨𝑝0, 𝑝0⟩ = 𝜆−1
0 |||𝑝0|||20 and (4.13)

𝑝0 ⊥
(︀
𝑝0 + 𝜆−1

0 𝑝0
)︀

in 𝐿2(Γ). (4.14)

We obtain from the equalities (4.12) and (4.13) that

𝜆0||𝑧0||20 + 𝜆20|||𝑝0|||20 = |||𝑝0|||20. (4.15)

On the other hand, on the strength of the correlation (4.14) and Pythagorean theorem

𝜆20|||𝑝0|||20 = |||𝑝0|||20 + |||𝑝0 + 𝜆0𝑝0|||20. (4.16)

It results from the equalities (4.15) and (4.16) that 𝑧0 = 0 and
(︀
𝑝0 + 𝜆−1

0 𝑝0
)︀⃒⃒

Γ
= 0. But

then, on the strength of (4.9) 𝑝0
⃒⃒
Γ

= 0 and, therefore, 𝑝0
⃒⃒
Γ

= 0, that contradicts the correlation
(3.6).

Construction of the functions 𝑧𝑘,𝑙(𝑥), 𝑝𝑘,𝑙(𝑥), 𝑣𝑖,𝑚(𝜉), 𝑤𝑖,𝑚(𝜉) and the numbers 𝜆𝑘,𝑙 is standard
for the method of matching of asymptotic expansions [2]. The functions 𝑧0,0(𝜀𝜉), 𝑝0,0(𝜀𝜉)
determine dominant terms of asymptotic expansions of the functions 𝑣𝑖,𝑚(𝜉), 𝑣𝑖,𝑚(𝜉) (𝑖 > 0)
when 𝜉 → ∞. If we denote the functions 𝑣1,0(𝜉) and 𝑤1,0(𝜉) by them, then from the expansion
of the functions 𝑣1,0(𝑥/𝜀) and 𝑤1,0(𝑥/𝜀) when 𝑥/𝜀 → ∞ we obtain dominant terms of the
asymptotic when 𝑥 → 0 of the functions 𝑧𝑘,𝑙(𝑥), 𝑝𝑘,𝑙(𝑥) (𝑘 > 0). Having obtained 𝑍𝑘,𝑙(𝑥),
𝑃 𝑘,𝑙(𝑥) with the given asymptotic, from the equation (4.10) we obtain 𝜆1,0(𝑥). Now 𝑧1,0(𝑥)
and 𝑝1,0(𝑥) are determined together with the following terms of expansion 𝑣𝑖,𝑚(𝜉) and 𝑣𝑖,𝑚(𝜉)
(𝑖 > 1), and etc.

The proof of the fact, that the constructed and matched series (4.1) and (4.2) in the sense
of (4.3) are the asymptotic of the solution of the problem (2.4), (3.7), is conducted by analogy
with [3, S 2,S 5]). Thereby, the following theorem holds.
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Theorem 5. Let the conditions (1.4), (1.6), (1.7) and (3.6) hold. Then the solution of
the problem (2.4), (3.7) is expanded into asymptotic series of the form (4.1), (4.2) equal in the
domain 𝐶∞(Ω ∖ {𝑂}) (in the sense of norms || · ||𝐻2(Ω𝜀) and || · ||𝐶(Ω𝜀)

).
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