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PERTURBATION OF AN ELLIPTIC OPERATOR BY A
NARROW POTENTIAL IN AN n-DIMENSIONAL DOMAIN

A.R. BIKMETOV, R.R. GADYL’SHIN

Abstract. We study a discrete spectrum of an elliptic operator of the second order in
an n-dimensional domain, n > 2, perturbed by a potential depending on two parameters,
one of the parameters describes the length of the support of the potential and the inverse
of the other corresponds to the magnitude of the potential. We give the relation between
these parameters, under which the generalized convergence of the perturbed operator to
the unperturbed one holds. Under this relation we construct the asymptotics w.r.t. small
parameters of the eigenvalues of the perturbed operators.
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1. INTRODUCTION

Let the domain 2 C R", n > 2, and,  can also coincide with R", a;;(x), a(x) be locally
integrated functions in {2 such that

/a(iv)lU(x)lZdiﬂ > c(a)llulzy),  cla) >0, (1.1)
Q
for any functions u from L,(€2), for which this integral exists, a;; = a;;,

n

041|§|2 < Z aij(x)@fj ap > 0, Vl’ c Q, V£ = (él; e ;fn) (12)
ij=1
Since
- ou Ov
bo(u, v) == Z (&ij%, %> + (au,v) 1, q) (1.3)
ij=1 i Ol ) Ly

is on the strength of (1.1) and (1.2)) are of sesquilinear positive symmetrical form, then we
consider it as a scalar product in the Hilbert space W3 (Q) of all functions for which

H“”ng) =/ bo(u,u) < oo.
Since WQ(Q) C Ly(€2) on the strength of 1' and 1’ then the quadric quantic

bo[u] := bo(u,u) (1.4)
is closed in Lo(f2) (see, for instance, [1, chapter VI, Theorem 1.1]). And though the subset of
the functions from C'*°(£2), equal to zero in the neighbourhood of the border 0X2 (if 2 # R™) and

with big 2 (if € is an unbounded domain), is apparently a subset Wi () and is dense in Ly(2),
then the quadric quantic by is densely determined in Lo(£2). Consequently (see, for instance,

A .R. BIKMETOV, R.R. GADYL’SHIN, PERTURBATION OF AN ELLIPTIC OPERATOR BY A NARROW POTEN-
TIAL IN AN N-DIMENSIONAL DOMAIN.

(© BikMETOV A.R., GADYL'SHIN R.R. 2012.

The work was suppotred by grants of RFFR (12-01-00445) and FTP (02.740.110612).

Submitted on May 10, 2012.

28



PERTURBATION OF AN ELLIPTIC OPERATOR BY A NARROW POTENTIAL... 29

[T, chapter VI, Theorems 2.1,2.6]), there is an associated with by selfconjugated operator Hg in
L5 (€2) with the domain of definition

D(Ho) C D(ho) = Wl(Q)

(i.e. such that (Hou,v)r,) = bo(u,v) for any u, v € D(H,)).
Everywhere below without limiting generality we consider, that the origin of coordinates lies
in €2. Let us denote

buelu] == bolu] + p~ (Vou,u) ) » (1.5)
where
0<ek, p(e) >0,

VL is a family of equally bounded by e functions from L., (2), which carriers lie in n-dimensional
sphere of the radius ye with the centre in the origin of coordinates for some v > 0.
Though the quadric quantic g~ (Vou,u) Lo(q) 15 apparently bounded on Ly(£2), then the

quadric quantic b, . is closed and densely determined in Ly(€2), moreover, D(h,.) = I/V2 (Q)
Let us denote the selfconjugated operator associated with the quadric quantic b, .[u] b

Remark 1.1. If Q # R", then we denote by W;O(Q) the closure by the norm WQI(Q) of the
subset of the functions from W}(Q), reducing to zero in the neighbourhood 9. It is easy to

see, that the quadric quantics by and b, . determined in W;O(Q) by the equalities ,
and , correspondingly, are symmetrical, closed and densely determined in Lo(S2). For the
selfconjugated operators associated with these forms, we retain the notation H.

In the first part of the paper we prove the convergence of characteristic constants of the
operator H, . to characteristic constants of the operator H, (when the latter ones exist), when

pBu(e) = o(1), (1.6)

where (35(¢) = €?|In¢|, B,(¢) = €% when n > 3.
It is clear, that if, for instance,

x (o)
V@) =V (), vecr,
a;, a € CP(R™), if Q =R", (1.7)

aij, a € C®(Q), 0Q€C™®, if Q4R

then the operators Hy and H, . are expanded by Friedrichs differential operators Hy and H,, .
in Ly(€2), determined correspondingly as

"9 ou _
%“:_2;5£C“<bx>+w> Hy. = Hyutp 'Va)u — (18)

on the functions, satisfying with € # R"™ to the supplementary bounded to the Neumann

conditions 3 3

a—z = (aw(a:)a—;]) cos(z;,n) =0, x €09,

where n is an outer normal to 02, if the operators H, and H, . are associated with quadric

quantics determined on W3 (Q) and to the boundary Dirichlet condition

u=0, x¢€df,

if the operators H, and H,, . are associated with quadric quantics determined on vago(Q)

In the general second part of the paper with the satisfied conditions we construct com-
plete asymptotic expansions of characteristic constants of the operator H,, ., converging to the
characteristic constants of the operator Hy as in the case of a simple limiting characteristic
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constant of the operator Hy, as in the case of the twofold one. Though for the rigorous sub-
stantiation of the constructed asymptotics we have to impose a stricter (unlike (1.6|)) restriction:

P Bule) = O (7)), (1.9)

where 7 > 0 is any number.

As it is seen from the further derivation of complete asymptotics of characteristic constants,
for their formal construction it would be sufficient to demand only an infinite differentiability
of the functions a;;(x), and a(z) in the neighbourhood of zero. Stricter conditions are
imposed only for the purpose to avoid insignificant but bulky detailing in notations and proofs.

Let us note, that boundary-value problems for the Laplace operator in bounded domains
with similar perturbations depending on one parameter, were considered in [2], [3]. In [2] for
the three-dimensional domain there was proved convergence of characteristic constants in the
case u = €7, 7 < 2 and there was constructed the asymptotics of the characteristic constant
of the perturbed boundary-value problem, reducing to a simple characteristic constant of the
boundary problem. In [3] for n-dimensional bounded domain there was proved the convergence
of the characteristic constant of the perturbed operator in the case when = €7, 7 < 1, and the
characteristic constant of the boundary operator is simple and we have constructed its binomial
asymptotics. In both papers during the proof of convergence compactness of the embedding
W} into Lo for the bounded domains was significant. As it has already been mentioned above,
the asymptotics were constructed only for the case of a simple characteristic constant of the
boundary problem. Moreover, for the problem in the three-dimensional domain, considered in
[2], it was supplementary assumed, that, firstly, the eigenfunction of the boundary problem
does not reduce to zero in the point of compression of the carrier of the perturbed potential,
and secondly, the average value (integral) of this potential is not equivalent to zero. In [3]
during construction of binomial asymptotics there removed two last restrictions, but there was
imposed a stricter (in comparison with [2]) condition on the growth of the perturbing potential
(r <1). As it is shown below (see remark [2.1]), the influence of the equivalence to zero of the
average value of the perturbing potential on the first term of the theory of perturbations is
significantly different for the cases 7 < 1 and 7 > 1. In the conclusion of the section we note,
that suchlike perturbations of a differential operator of the second order in the one-dimensional
case were considered in [4],[5],[6].

2. FORMULATION OF GENERAL STATEMENTS
In the next section we prove

Theorem 2.1. Let the condition @ hold.  Then there takes place the convergence
Hue — Ho when e — 0 in the general sense (resolvent convergence).

It results from this theorem and [1, chapter IV, Theorem 3.16]

Corollary 1. Let \g be a characteristic constant of the operator Hy of the order m and there
holds the equality (@ Then when & — 0 to \g converge characteristic constants N9 of the
operator H, ., the total order of which is also equal to m, and for the corresponding projector
Pue there is convergence by the norm to the projector Py, corresponding to the characteristic
constant Ag.

The general contents of the paper which is the rest of the article devoted to is the proof of the
method of matching of asymptotic decompositions [7], [8] of the formulated below Theorems
2.4 with the satisfying the supplementary conditions of smoothness , a stricter demand
to the relationship of the parameters € and p and not restricting the generality condition
a;;(0) = 67, where 67 is Kronecker delta.
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Before we proceed to formulation of general theorems, let us introduce some notations:

W= [a@ar. (o= [eg)tn )y = [

gg(m):ilnr when n = 2, Gn(z) = m

27

Here and further |S,,| is the area of a singular sphere in R”. Assume §(n) = 0 with odd n and
d(n) =1 with odd n.

r~"*2  when n > 3,

Theorem 2.2. Let the condition hold, then \g is a simple characteristic constant of the
operator Ho, g is the corresponding normalized in Lo(Q2) eigenfunction.

Therefore, if 1o(0) # 0, then the characteristic constant M= of the operator H, ., converging
to \g, possesses the asymptotics

M= N+t Z Z Anigar€ ™

§=0 i=2j

(2.1)
E ,u -2 IHSZ Z Z )\gn+,~7j+2,p+15"u_j In? g,
p=0 j=p i=2j+(n—2)p
where

n1 =t5(0) (V) (2.2)
Mszz = =0 O)|| V" (23)

If, therewith, a;;(x) = 0% (i.e. Hy= —A+a(x)), then

_ - o
Mot =1 = 200(0) S V), 20 0) nz s, 2.4)

m=1 Lm

2
9,

As.1 =tho(0 Z ), afo n=2. (2.5)

=1

Remark 2.1. [t results from the Theorem, that if (V) =0, then

MNE = \g 4+ eyt (Ang1a+0o(1)), ife=o(n),
N9 =X 4+ ™27 (Myan +0(1)),  if = o(e).

Hence, when (V) = 0 the order of the infinitesimality of the first term of the theory of pertur-
bations for N notably differs for the cases € = o(p) and p = o(e).

Theorem 2.3. Let the conditions of the Theorem [2.9 hold.
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Then, if 1(0) = 0, then the characteristic constant \** of the operator H, . converging to
Ao possesses the asymptotics

M€ =)\ + "2t Z Z Antopigi€ ™’

=0 i=2j

(2.6)
+ d(n)e?"+? 21n522 Z e InP eXantivajr2pts
p=0 j=p i=2j+(n—2)p
where
Ant21 = Vo(0)VV(0), (2.7)

and V is a symmetrical n x n-matriz with the components (V'),, .

Let Ao be a twofold characteristic constant of the operator Hy. It results from the corollary ]
that for the converging to Ao characteristic constants of the operator H, . the following cases
are possible: either it is two simple characteristic constants, or it is one twofold characteristic
constant, or for different £ one of these variants takes place. And even, if two simple character-
istic constants A% and A\*2 converge to ), it is impossible to state, that the corresponding
normalized in Ly(Q) eigenfunctions "7 have the limit. The corollary (1| only guarantees,
that from any sequence ¢, — 0 we can single out the subsequence ¢, — 0 such that there
takes place the convergence 17 — w(()j ) in Ly(2), where w(()j ) are orthonormalized in Ly(92)
eigenfunctions of the operator Hg, corresponding to Ag. Though, these limits can change in
dependence of the choice of the subsequence ¢, — 0.

In the paper we consider the case of the most general statement:

57 (0)] + |57 (0)] # 0. (28)
Then, obviously, these eigenfunctions can be chosen so, that
e’ (0) £0,  wP0)=0. (2.9)

We plan to prove the following

Theorem 2.4. Let the following condztzon hold (1.9 (-) ) # 0, Ao is a twofold characteristic
constant of the operator Hy, (1) and % are the corresponding orthonormalized in Lo(§2)
eigenfunctions, which satisfy the conditz’on (@ and which are chosen in compliance with (@)

Hence, there exist two simple characteristic constants N=' and N“=* of the operator H,, .,
converging to Ao, and they possess the asymptotics

R D D) PP

§=0 i=2j

o . (2.10)
n, — i, = 1
+d(n)e”" " Ine Z Z Z e'p ™’ In? 5/\gn)+i,j+2,p+1=
p=0 j=p i=25+(n—2)p
AE2 =Xg + "2y Z Z /\512422+i,j+15iﬂ_j
=0 i=2;
7=0 =2 (2.11)

nt2 - i, 2
+d(n)e*?pu QIHEZZ Z g'u’ In? 5>‘§n)+z'+2,j+2,p+17

p=0 j=p i=25+(n—2)p
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where
2
M= () (), (2.12)
N =V (VY (0), (2.13)
Visa symmetrical n X n-matriz with the components
(V) (V) (V) (V).
V) .—(n—2)—2—"  n>=3, V)i — — e, n=2,
V)i = (n =2 s V)= 220

and the corresponding eigenfunctions y*=*° converge to 1/)(()8) in Ly(Q).

It results from the theorem, in particular, that if the condition and (V') # 0 is satisfied
then the twofold characteristic constant )y with the considered perturbation splits into two
simple characteristic constants, and the corresponding eigenfunctions converge to the eigen-
functions of the operator Hg, chosen in relation to .

In the paper there were also constructed complete asymptotic expansions of the corresponding
eigenfunctions.

3. PROOF OF THEOREM [2.1]

It results from the definition of quadric quantics by and b, . and the function V, that firstly,
these forms are bounded below, and secondly, the following estimation holds:

[(Bye — bo)[ul]| = p /Vs(x)|u(a:)|2d:r < COp™! / |u(x)|?de, (3.1)
Q |x|<~e
where C' > 0 is a constant independent of ¢.

Let B be a n-dimensional sphere with the centre in the origin of coordinates and the radius
equal to three. Without limiting generality, we consider, that B C (). It correspondingly results
from ([9, Ch. 3, Lemma 5.1]) and [I0] for n > 3 and n = 2, that for any function v € C§°(B)
the following inequality holds:

/ jo(@)2dz < Cy(7)Bale) / Vo) Pdz. (3.2)

lz|<ve B

where the constant C; does not depend on €. Let x(t) be an infinitely differentiated patch

function, identically equal to the unit when ¢ < 1 and to the zero when ¢ > 2. s
Since W2(Q) € WL(Q) in the strength of (L.1), (1.2), then for any function u € W1(€)

according to (3.2)), (1.1), (1.2) we sequentially obtain, that

/ ula) P = / fu(w)x([2]) Pz < CiBae) / IV () x|z P

|| <ve |z|<ve

<Co8,(2) [ (V)P + [u(@)?) do < Ca(©)al

where Cy, (5 are some constants independent of u. It results from this inequality and the
inequality (3.1]), that
(e = Bo)[u]] < CsCp" Bu(e)holu]

for any function u € W;(Q) = D(ho) = D(b,.). Since the quadric quantics by and b, . are
densely defined in Ly(R), bounded below and closed, and p~'f,(¢) — 0 when € — 0 on the
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strength of ([1.6]), then it results from the latter estimate and [I, Chapter VI, Theorem 3.6],
that the statement of the theorem under consideration holds.

4. AUXILIARY STATEMENTS

It is considered in the text below, that the conditions on the function V, hold and that
the coefficients of the differential expression Hy determined in , and there exists a not
limiting generality supposition, that a;;(0) = 55 , where 55 is the Kronecker delta.

Also below r = |z|, we denote homogeneous polynomials of the degree k by Py(x), Qx(x) and
Ry (), homogeneous harmonic polynomials of the degree k by Yi(x), Zx(z), and homogeneous
polynomials of the degree j relative to the differentiating symbol D = (Dy,...,D,), D, =
0/0x,, which coeflicients are homogeneous polynomials of the degree i by @, ;(z, D). For the
whole j by T;(z) we consider homogeneous functions of the degree k, presented in the form
Rj1(x)r~" at least for some whole k.

In these notations for the differential expression Hy when » — 0 the following presentation
holds

Hy=-A+ Z Qiz(z, D) + Z Qiq(z, D) + Z Qio(z, D). (4.1)
i=1 i=0 i=0
Let us denote by Ay the set of series of the form

E(x) = Bo(x) + Z D, (), (4.2)

where
Oo(x) =blnr + ¢, ®i(x) =r ¥ Pyj(z) +InrR;(r) whenn=2j>1,
o(z) =br*™ when n > 3,
®;(r) =r*"""%Py(r) whenn>4, 1<j<n—3,
©j(w) =r* """ Py(x) + 6(n) I Rjsap(2) + (1 = 6(n))Qjr2—n(2)

whenn >3, j >n— 2,

and b, ¢ are arbitrary numbers. Let us remind, that d(n) = 0 with odd n and 6(n) = 1 with
even n. B
For the whole m > 1 we denote by A,, the set of series of the form (4.2)), where
Oo(2) =Zp(x)r *™2™"  when n > 2,

2j—1

(I)](l’) _ Z Zm+3j,25($)7°_2m+2_n_2j+25
s=0

whenn >3, m=>1, 1< +m —

and whenn =2, m2>2, 1<j<m-—

D (2) =Py (2)r ™™ whenn =2, j=m,

©;(w) =Ppya;(x)r™>" 27 4 5(n) In 7 R ppnya()
+ (1 =6(n))Qj-m-n+2()

whenn >3, 7>2n+m—2 and whenn=2, j7>m+1.

Let us denote the set of series presented in the form of the sum of series from A/j when 7 < m
by A™.
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Lemma 4.1. Assume F € A*. Then there is a series € € .Zk, possessing the dominant term
Oo(1) = Zp(x)r=2kt7=2 when k > 1, where Z, is an arbitrary harmonic polynomial, and the
dominant terms ®o(z) = blnr + c when n =2, k = 0 and ®o(x) = br>™" whenn > 3, k = 0,
where b, ¢ are arbitrary constants, such that the following equalities hold:

Ady =0, A®y = (Q12(7, D) + Qo (w, D)) o,

J
ACD]. = Z (Qi,Z(wa D) + Qifl,l(l'; D) + Qi72,0<x7 D)) (I)]'*i

=2

+ (Qr2(7, D) + Qoi(x, D)) P51 — NP2 — P forj =2,
where ®, &DQ are members of the series £ and F correspondingly.

Validity of this statement is shown in the proof of Therem 1.1 from [11].

Let us denote by Aj; the set of functions u € C*°(R™\{0}) when Q = R"” and the set of
functions u € C*®(Q\{0}) when Q # R™, possessing in the zero the differentiating asymptotics
from .Zkand such that us belongs to the domain of the definition of the operator H, for any
patch function » € C°({), identically equal to zero in the neighbourhood of the origin of
coordinates,and such that supp(l — s) C Q. We denote by A™ the set of functions presented
in the form of sums of functions from A; when j < m.

Lemma 4.2. Assumen+k >3, F € A*. Hence there exists the function E € A;, possessing
the dominant term of the asymptotics in the zero ®qg(x) = Zy(x)r=2**"=2 when k > 1, where
Z 1is any required harmonic polynomaial, and the dominant term of the asymptotics in the zero
Do(z) = br>=™ when k = 0, where b is any required constant, such that

with some number A, if Ao is a simple characteristic constant of the operator Hy, and the
equations

HoE =)\E + F + AV 4 A@yPin 0\ {0} (4.4)

with some numbers A¥) | if Xy is a twofold characteristic constant of the operator H,.

Proof. Let us denote by F € A¥ the asymptotic expansion in the zero of the function F(z), by
E € Ay - the series satisfying the statement of Lemma , and by Ey(x) - a partial sum of the
series £(z) up to the terms O (r™Inr) inclusive, N > 4. We search for the function E(z) in
the form
Ey(z) = (1 = »(z))En(z) + En(2), (4.5)

where Ey € D(Hy).

Let us consider the case when )\ is a simple characteristic constant. From (4.3]) and (4.4) on
the strength of Lemma we obtain the equation on Fy:

HoExn = MEy 4+ Fy + AN, (4.6)
where Fiy € Ly(R") N CV3(R™), if @ = R", and Fy € Ly(Q) N CN=1(Q), if Q £ R™. It results

from the needed and sufficient condition of the resolvability of this equation, that when

AWN) = = (Fy.to) |

2(R2)

the equation (4.6) has the solution Ey € D(Hyp), and it results from the theorems of increas-
ing smoothness for the solutions of elliptical boundary-value problems, that 1y € C*(R"),

Ey € CN"YR™), if @ = R, and 1 € C=(Q), Ey € CN71(Q), if Q # R™.
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Let us show, that A(N) does not depend on N. Let us denote
Enu(z) = En(z) — En(2), N < M.
Then by the construction, firstly, Ey s € D(Ho), and secondly,
HoEny = MoEnum + (AN) = A(M)) tho.

Whence it implies, that, firstly, A(N) = A(M) (i.e. A(N) does not depend on N), and secondly,
Enm(x) = by mtbo(x). It is easy to see, that if when N > 5 of the function Ey is normalized
by the condition (En.4,%0)r,) = 0, then they also do not depend on N. Therefore it results
from and the arbitrary choice of N, that £ € Aj.

Validity of the statement of the lemma for the case when )\ is a simple characteristic constant
of the operator Hg, has been proved.

By analogy we show the validity of lemma for the case when ) is a twofold characteristic
constant of the operator H,. O

Lemma 4.3. Let n = 2, F' € Ay, b be any constant. then there is the function E € Ay
possessing the dominant term of the asymptotics in the zero ®o(x) = blnr + d, satisfying the
equation with some number A\, if Ao is a simple characteristic constant of the operator
Ho, meanwhile, if 1o(0) # 0, then the constant d can be chosen whatever and satisfying the
equation with some numbers A®) | if Ny is a twofold characteristic constant of the operator
Ho, meanwhile, in the nonsingular case @ the constant d can be chosen whatever.

Proof. The proof of this statement is completely analogous to that of Lemma[4.2] An opportu-
nity of choice of the constant d arbitrary (under the conditions ¢,(0) # 0 and (2.8)) apparently
results from the fact that the functions E are defined with precision to the summand Cy(z)
for any C' in the case when )\ is a simple characteristic constant of the operator Hy, and with
precision to the arbitrary linear combination of the eigenfunctions wés) (x) in case when )\ is a
twofold characteristic constant of the operator H,. O

Lemma 4.4. there exist functions Ey € Ay whenn > 3 and Fy, ... E, € A when n > 2,
possessing with r — O the asymptotics

Eo(z) =r""+ 0 (r™"*%)  whenn >3,

En(x) =x,r "+ 0 (T_”+2) whenn>2,7=1,...m

and satisfying in Q\{0} the equations

H()Eq = )\oEq + Aqw(] m Q\{O}, (47)
where
Ao = — |Su|(n — 2)100(0)  when n > 3, (4.8)
Ay =— |Sn|§ﬂ(0) whenn>2, m=1,..,n, (4.9)
T

if Mo is a simple characteristic constant of the operator Ho, and satisfying in Q\{0} the equations
HoE, =DoBy + AU + AP0,
where the eigenfunctions w(()s)(a:) are orthonormalized in compliance with ,
A(()l) =—|Su|(n — Q)w(()l)(()), A(()2) =0 whenn >3,

e (4.10)

A® =18, (0) whenn>2, m=1,...n,s=12

0%,
if Ao s a twofold characteristic constant of the operator H,.
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Proof. The statements of the Lemma being proved except for the explicit formulae (4.8)—(4.10))
are a partial case of Lemma Therefore we should only show the validity of the equalities
Let us ﬁrst obtain the equality (4.8). For positive s we denote x,(t) := x(tg™"), Xq(t) :=

1 — x,(%), E(z) := Ey(x )Xq(7), where x(t) is an infinitely differentiating patch function which
is identically equal to the unit when ¢ < land to the zero When t > 2. It is apparent, that
Ee€ D(H,) for any sufficiently small ¢, and on the strength of 7)) the following equality holds:

Oxq 0Ey "9 ox.
E—XE=A 2 ~—q——E — | a;==2 ).
Ho 0 0toXq — Z . oijz:: oz, ( i 9,

4,7=1
On the strength of the condition of resolvability of this equation (orthogonality in Lo(€2) the
right side of the eigenfunction 1) and the definition X, we obtain:

~ an aE . 8 an
Ao(XzﬂﬁoMﬁo) =-2 (Z az’ja—xj 890?’%) - (Eo Z a—% ( Z] ) >¢o) .

i,j=1 1,j=1

Considering the asymptotics in the zero of the functions a; j(x), Ey(z) and ¢y(x), passing in
the integrals in the right side of the latter equality to the expanded in ¢! times variable and
rushing ¢ to the zero, we obtain, that

Ko = — to(0 t/vﬂ"vn>mwb/2"An>d
r< r<2 (4.11)
= —1o(0) / VrE "V (r)dx.

Integrating in parts with small ¢ > 0 we have:

/ Vr "V (r)dz = (n — 2)|S,).

t<r<2

Passing in the latter equality to the limit when ¢ — 0 on the strength of (4.11)) we obtain the
validity of the equality .
By analogy we prove the equalities (4.9) and - O]

Lemma 4.5. Assume n = 2. Then there is the function Eqg € Ay, possessing with r — 0 the
asymptotics

Eo(z) =—Inr+ O(rlnr), if 1o (0) # 0, (4.12)
Eo(z) =—Inr+¢(Q) +O(rlnr), if ¢o(0) =
and satisfying in Q\{0} the equation
HoEq = MoEy + Aoy,  where Ay = —2m1)0(0),
if Xo is a simple characteristic constant of the operator Hy, and possessing with v — 0 the
asymptotics and satisfying in Q\{0} the equation
HoEo =Xo By + ALy + APy
where the eigenfunctions w(()m)(x) are orthonormalized in compliance with ,
Ay =—2mg(0), A =0,

if Ao s a twofold characteristic constant of the operator H,.
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Proof. Subject to Lemma the proof of this statement is completely analogous to the proof
of Lemma . The absence of the constant ¢(€2) in apparently results from the fact that
the function Ej is defined with precision to the summand Cvy(z) for any C' in case when \g
is a characteristic constant of the operator Hy, and with the precision to the arbitrary linear

combination of the eigenfunctions @/J((]S) (x) in case when A is a twofold characteristic constant
of the operator H,. n

It results from Lemmas [4.2] [4.4] [4.5] that

Corollary 2. Let \y be a twofold characteristic constant of the operator Hy and the eigen-
functions w(()s)(x) be orthonormalized in compliance with Then for any Zy(x), k > 1,
F € AF there is the solution E € A* of the equation

HoE =\oE + F + Ay?,

in Q\{0} with some constant, possessing the dominant term of the asymptotics in the zero
Po(x) = Zp(x)r—2H+n=2,

Let us denote

2D (z /g mV (y)dy when m =1,.
It results from the definition of the functionsz[()l), e ,27(11), that

Lemma 4.6. The functions z((]l), e ,z,(ql) € C(R™) satisfy the equations
Az(()l):V, Az,(ﬁ):xm‘/, m=1,...,n

in R™ and possess with r — oo differentiating asymptotics

zél)(x) ——cgl())lnr—i- ( ((1) +c J ot 2) —I—ZY(l’q r~%  whenn =2,
2(51)( ) _C((Il())rQ n Z ol ml‘mT ng ZY ,q po2i-n+2 when n > 3,
where
1 (V) 1 (V)
c&% = _ o when n = 2, 0873 = —m when n > 3,
C&L:Cfi?o:— Si| ) Cg)n:— |S:| when p,m=1,...,n,

and Yi(l’q) (x) are homogeneous harmonic polynomials of the order i.

When k > 2 we recurrently define the following functions:

z/gn(fc —y)V ()25 (y)dy, whenq=0,1,...,n

Lemma 4.7. The functions z((]k), ce zék) € C°(R"), k > 2 satisfy in R™ the equations

Azék) :Vzék’l)
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and possess with r — oo differentiating asymptotics

z}gk)( = po7”2 "+ Z Cpm T " 4 Zy(k’p )772%%2 when n > 3,
=2
where
cég HV (1)’ , when n = 2,
Lo (R2)

@__ 1 3 W/ (4.13)

2 1
c — ||Vz when n > 3.

%0 (0= 2)|8u 177 Mlia@m

Proof. The validity of the Lemma statement except for the equalities (4.13|) results directly

from the definition of the functions zé,k) (x).

Let us show the validity of (4.13). From the definition 282) () and zél)(:z) we sequentially

obtain
1 1
0823 =— M when n = 2, 6823 = —<VZ—(())> when n > 3,
7 2 ’ (n —2)[S,]
@) <Zél)Az‘gl)> @) <Z‘gl)AZéU>
Cop = — T — when n = 2, Coo = m when n > 3.
Integrating in parts the right sides of two equalities we obtain the validity . O]

When j > 0 we denote by B a set, of series of the form

ZTJ_Z(ZL‘) +d(n)lnr Z P

We denote by B; a set of functions from C"X’(R”) possessmg at infinity differentiated asymptotics
from B It results from this definition, that z ) e Bo.

Lemma 4.8. Assume S € B,, and the series Ve gq+2 i1s the asymptotic solution of the
equation
AV =5 in R" (4.14)

when r — 00. Then there is the solution V € Byio of this equation possessing at infinity the
asymptotics

r) + Z Zy(x)r— 22 when n > 3,

V(z) =V(z)+blnr + Z Zi(x)r™*  whenn = 2.
i=1
Proof. Let us denote by Vi a partial sum of the series 1% up to the terms of the order r=N—"
inclusive. The solution of the equation (4.14)) we search for in the form

V(@) = V(@) (1 = x(r)) + wn (). (4.15)

Substituting (4.15)) into (4.14) we obtain the equation for wy:
Awy = Sy, xz€R", (4.16)
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where
n

_ > X IV
Sy=S8-(1 —X)AVNHZZ:;% Pa

when r — oco. Then the function

Consequently, Sy(z) = O(r=N="73)

wn(@) = [ Gule = »)Sw(u)dy
R
is the solution of the equation (4.16)) and when r — oo possesses the asymptotics

N+1
wy(x) =blnr + Z Zi(x)r~* +o(r "% when n =2,
i=1

N+1
wy(x) = Z Zi(x)r AN o(p N when n > 3.
1=0

It results from here and from (4.15)), that when r — oo
N N+1
Vn(z) =Vn(z) + blnr + Z Zi(x)r * +o(r V"% when n =2,
=t (4.17)

N+1

Vi (z) =V () + Z Zi(z)r A poo(rm N when n > 3.
i=0

The difference Vy, — Vy, is a harmonic in R" function reducing at infinity. Consequently,
VN, — VN, = 0, i.e. Viy does not depend on N. Therefore the validity of the statement of
the Lemma under consideration results from (4.17) on the strength of the arbitrary choice of
N. O

5. DERIVATION OF THE STRUCTURE OF THE EIGENFUNCTION INTERNAL EXPANSION
IN CASE OF AN ODD-DIMENSIONAL DOMAIN

Below in this and three more sections A is a simple characteristic constant of the operator
Ho. In this case it results from the corollary [I that for the normalized in L,(£2) eigenfunction
Y,., corresponding to the characteristic constant A, . —0> Ao, the convergence " — 1)y in

E—

Ly(92) takes place. Therefore outside the neighbourhood of the origin of coordinates (where
the perturbation of the operator #,, . is concentrated) the approximation ¢ (x, u,e) (outer
expansion) of the function ¥*° is natural to be searched in the form ¥ (z, u,e) ~ o(x).
In the neighbourhood of the origin of coordinates the approximation ™ (internal expansion)
of the function 1, . is also natural to search in the form of the expansion by the functions
depending on the variable £ = xe™!, corresponding to the argument of the perturbing potential
V().

13
The Taylor series of the function vy in the zero has the form:

Yo(z) =Y Pilx), r—0, (5.1)
k=0
where n
R = (0), Al =Y S0, 5:2)

and, on the strength of the equation

Hopo = Aotbo (5.3)
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and the equality (4.1 the following equalities hold

AP, =0, AP, = (Q12(x, D)+ Qo1(z,D)) Py =0,
k
AP, = Z (Qia(x, D) + Qi—11(x, D) + Qi—20(x, D)) Pr—; (5.4)

=2

-+ (QLQ(Q?, D) + Qo,l(l’, D)) Pk,1 — >\0Pk72 when k 2 2

Remark 5.1. Everywhere below we denote by Py(x) only members of the Taylor series in
the zero of the function 1o(x), and by P,is)(x) - those of the functions w(()s)(x).

Let us denote p = [£|. Rewriting the right side (5.1)) in the variable £ subject to (5.2)) we
obtain:

ex 8w —
V() = o(x) = o(0) + € = £m+zekpk pet =1 —0.
j=1
Therefore, following the method of matching of asymptotic expansions [7] we obtain, that the
internal expansion should be searched in the form

(€, ) = g (€ €) = vo0(€) + v o(€) + Zé? Ok0(§ (5.5)

where

0
00(€) ~o(0),  vio(é Z 8;/’0 )em: P — 00, (56)

Uko(§) ~Pe(§), k=2, p— o0
Substituting A" = Xg, (4.1)) and (5.5) into the equation

H s = NS, (5.7)

changing to the variable ¢ and equalling the coefficients with similar degrees € and pu, we obtain
a recurrent system of equations for vy o:

572 . Ag’l)o’o = 0,

el Acvig = (Q12(6, D) + Qo (€, De)) voo,

k (5.8)
weo  Devgo = Z (Qi2(&, De) + Qi—11(&, De) + Qi—2,0(&, De)) vi—io
: i—2

+ (Q1,2(&§, De) + Qoa(§, De)) vp—1,0 — AoUr—2,0, k=2

and supplementary demands for these functions:
et V(Ouio(€) =0, i>0. (5.9)

Remark 5.2. Here A¢ denotes the Laplace operator by the variable §. Similarly, the symbol
of differentiation D¢ denotes, that differentiation is made by the variable . Though below in
the equations for the coefficients of internal expansions the Laplace operator and the symbol of
differentiation are applied only in this sense, for simplicity of the notations in A¢ and De we
omit this index &.

On the strength of (5.4)), (5.2) and (5.8)) the functions

vo,0 = Y0(0), v1,0(€ Z 3¢0 0)&m, vko(§) = Pe(§), k=2, (5.10)

éhcm
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are, apparently, solutions of the equations , satisfying the condition ([5.6|) (the condition of
matching of asymptotic expansions).

Though, it is also apparent, that the conditions are not satisfied. therefore, following
the method of matching of asymptotic expansions we should supplement new terms into the
internal expansion:

¢in(f7u7g) ~ in(§“u7€) = (Z)n(57€> + :U“_l <€2U2,1(€) + ngvk,1(§)> : (511)
k=3

Substituting M = X, (4.1) and (5.11)) (instead of (5.5))) into the equation (5.7)), changing
to the variable ¢ and equalling the coefficients with similar degrees € and p, we obtain a new

recurrent system of equations (5.8), a new recurrent system of equations for the functions
Vatr.1(§), the first two of which possess the form:

p Tt Avgy = Vg, (5.12)
et Avgy = (Q12(&, D) + Qoa(€, D)) vaq + Vi (5.13)

and supplementary demands for these functions (instead of the conditions ):
e V(Eua(6)=0, ix=2. (5.14)

It is apparent, that the equalities are not satisfied. And to substitute these equalities for
the equations of the type (5.12)), (5.13]) in the internal expansion (5.11f), we should supplement
the summands 12" 2v; 9 5 (similarly to that with the equalities (5.10])). These new summands
in their turn result in demands of the form ([5.9) . - 5.14]) when p=3¢%, i > 4, for which eliminating
we should introduce the summands ;13" 2v; 5 3 and etc. Therefore the internal expansion in
natural to be searched in the form

édd(é u, e ) wZZdl 5 u, e ZE sz
(5.15)

+efu! Z Z ' v i1 (), if 10(0) # 0

§=0 i=2j

Substituting A€ = Ao, (4.1) and (5.15) (instead of (5.11])) into the equation ([5.7]), changing

to the variable ¢ and equalling the coefficients with £¥,~!, we obtain with [ = 0 the system
of equations (5.8)), and when [ = j + 1 > 1 we obtain a recurrent system of equations for the
functions vy j+1(§), the first two of which (with the fixed j > 0) have the form

52j,u_j_1 . Av2j+2,j+1 = V’UQJ'J', (516)
Qjﬂlfjfl : AU2j+3,j+1 = (Q1,2(f, D) + Qo,l(f> D)) Vojt2,5+1 + V02j+1,j, (5-17)

including, in particular, when j = 0 the equations ([5.12)), (5.13)).
In the strength of th the equalities (5.10) and the Lemmas [4.6] the functions

vsjs2501(6) = o(0)2€),  j =0, (5.18)
are the solutions of the equations (5.16)).
Remark 5.3 (the case 1y(0) = 0). If1o(0) = 0, then again on the strength of the equalities

and the Lemmas the functions

0
Uaj+2,j+1(§) =0, 253,41 (8 Z a;ﬂo 230, §=0, (5.19)
if 1o(0) =

are the solutions of the equations , .

€
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It results from , and (5.15), in particular, that

ti)?:ld(f H, & ) QZ}ZZdQ 5 M, € Ze Uz()
(5.20)

+elut Z Z e vspign(€), i o(0) =0

j=0 i=2j

Remark 5.4 (on evenness n). Let us emphasize, that the described above algorithm does
not depend on oddness n. The further matching of the internal and the external asymptotic
expansions of the eigenfunctions of the operator H, ., presented below, shows, that the internal
asymptotic expansion really possesses the form (5.15), (f5 20), (5.10), (5.18), (5.19) for odd n,
but possesses a more bulky structure for even n, unlike , (5.20). The case of an even n
is studied below in the section [10.

6. DERIVATION OF THE STRUCTURE OF THE EXTERNAL ASYMPTOTIC EXPANSION OF
THE EIGENFUNCTION AND THE ASYMPTOTICS OF THE CHARACTERISTIC CONSTANT IN
CASE OF AN ODD-DIMENSIONAL DOMAIN

Temporarily we consider unidentified coefficients in ((5.15) and (5.20]) equal to zero, i.e. we
suppose, that

ml

Vody (&, 11 € Z e'vio(§) + Z e 9500 511 (8), 1o(0) # 0,
N (6.1)

zn2

Voan (&5 1, € Z e'vip(€) + Z €2j+3 U2y+3 i+1(8), Yo(0) = 0.

Then, substituting coefficients in ( . ) the coefficients v; g, V942,41 and vgj43 541 into their
asymptotics when p — oo and rewriting the obtained sum in variables x, subject to the equal-
ities (5.10), (5.18)), (5.19) and statements of Lemmas [4.6} [4.7] we obtain, that

Yo (& 11, €) ZPk +eu Zza‘u Tt e ()

7=0 =235
+52d ,€)Ine, 0) # 0,
1(m,€) Uo(0) # (6.2)
Voaa (€ 11, Z Py(w) + & p! Z Z 51M_]90n+z+1,g+1( z)
7=0 i=2j5
+ 5nd2(u, e)lne, ¥o(0) =0
where (we should remind) ¢ is the Kronecker delta,
d(,€) =€*p1~ o (0 Z Huiedy ),
- Mo\
da(p,€) =<*u” Zﬁ”u 7> G O
QOélJZQj,jJrl(x) =— %( )céjo“ Inr, j=20, n=2,
(6.3)

@) Z 3% ]+1

Poraji1,j+1(@ I Inr, 720, n=2,
m
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1 1) o .
Prlagg (@) =Yo(0)cly i 20, 23,
% (6.4)
2 0 +1 o .
9024?2%1 PERLC Z oy (J 2520, n=3,

and gpﬁfli +q-1j+1(7) with the remaining low indexes are finite sums of homogeneous functions
of the order not less than (—n — i + 2j + 2).

Remark 6.1 (on the case n = 2). As for the summands d,(p,€)Ine in when n = 2,
we plan to consider them below in the Remark[7.3 Until then we ignore them.

Following the method of matching of asymptotic expansions and considering the equalities
(6.2), (6.3), (6.4) and Remark , the external expansions is searched in the form

Vs (2, pye) =y (z, . €)

=o(x) + "> Y e g (), wo(0) #0

§=0 i=2;

" o (6.5)
77zjodd(l‘7:u7 ) 77000ld (’I 2253 )
=thp(x) + "t Z 25 B it g+1(x),  Yo(0) =
7=0 =235
where, in particular,
¢2+2j,j+1( ) ~ = ¢0( ) lnr j > 07 n= 27 Zb0(0> 7& O?
2 aw '
Ysyaj i (T) ~— ) &co ) I, 520, n=2, (0)=0,
m=1 m
(6.6)
VUnt2j4+1(T) N%(O)C(()J(J)FI) AR 720, n=3, (0)#0,
’g[)n+2j+17j+1(l’) ~ Z axﬂ(())cxjgl)r_n-&-a 7= 0, n=> 3, ’Qb()(O) =0

when r — 0.

Since the external expansion should describe behaviour of the eigenfunction almost in all the
domain Q (except fort he small neighbourhood of the zero), then by analogy with (and
subject to Remark the asymptotics of the characteristic constant is natural to be searched
in the form

Noda (1> €) = Nogat:€) = Xo +€"p ™" Z Zgiﬂ_jAn—i-i,j—i-la ¥o(0) # 0, (6.7)

=0 i=2j

)‘odd(/% 5) :)\idd(,u; 6)

=Xo +e" ! Z Z e Angivrgrt,  tho(0) =

§=0 i=2j

(6.8)

Remark 6.2 (on the structure of the asymptotics of the characteristic constant). For the odd
n the series has the form , but in the critical case 1y(0) = 0 the form of the series
differs from the form of the series (@ For the series to possess the form (@) we

need only the equalities Mni2j11j+1 = 0. Consideration of this equality satisfying are presented

below in Remark[7.1]
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7. DERIVATION OF EQUATIONS FOR THE COEFFICIENTS OF ASYMPTOTIC EXPANSIONS
IN CASE OF AN ODD-DIMENSIONAL DOMAIN

Since the external expansion is considered outside the neighbourhood of the origin of coordi-
nates and Hy = H, . outside the neighbourhood of the origin of coordinates, then substituting
into the equation

Hyyphs = Neqphs (7.1)
the series (6.5)), (6.7), and equalling the coefficients with similar degrees € and u, we

obtain a fortiori satisfying equation ([5.3]) and a recurrent system of equations in Q\{0} for the
remaining coefficients of the external expansion (/6.5)):

et (Ho — Xo) Yngin = Angin®o, 20,

eI (Ho — Xo) Yninajnt = Angiszjjrito, 0<i<n—3,
(Ho — Ao)¥ntit2jje1 = Antit2sj+1%0

4 . (7.2)
i—n+2 j—1

+ Z Z Antkit2s,541 Vi k42(j—s),j—s
k=0 s=0

[ 2 n— 27 ] > 17

where
¢n+2j,j+1(f’5) = Ant2jj+1 = 0, if 1o(0) = 0, (7.3)

on the strength of (6.5) and (6.8).

Remark 7.1 (on the structure of asymptotics of the characteristic constant in the case 1(0) = 0).
From , we obtain the following equality:

Hotnt2j41,541 =A0Wnt2i41,j+1 + Ant2it1,j+1%0, 1p(0) =0, (7.4)
when j > 0. On the strength of Lemmas[{.4, [{-5 the functions

9, ; ,
Ynsasna (@ Zaij VB, 320 w(0) =0, (7.5

possess the asymptotics (6.0) and are solutions of the equations when

Ant2j41,541 =0, Jj =0, if 10(0) = 0. (7.6)

Subject to the equalities (@, firstly, the series already takes the form @ for the odd
n, and secondly, in the equations the condition 18 substituted by the following:

Voy2;jr1(T) = Aayzjjr1 = A3y25541 = 0 when 1y(0) = 0 (7.7)

for the coefficients of the external expansion.

Certainly, even from the position of construction of complete formal asymptotic expansions
of characteristic constants and the corresponding eigenfunctions the equalities still remain
expected and reliable. The verification of validity of the equality in this sense is presented
i the next section @ with the construction of complete formal asymptotic expansions (see, for
instance, the conclusion of the equality )

Remark 7.2 (on evenness n). Let us again emphasize, that the presented above algorithm
still does not depend on evenness-oddness n > 3. The further matching of the internal and
the external asymptotic expansions of the eigenfunctions of the operator H, ., presented below,
demonstrates, that the external asymptotic expansion really possesses the form for odd n.
Though for even n the situations complicates. For instance, to match in the summands,
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containing Ine when n = 2, in the internal expansions for wiﬁl’;(f,u,s) and for

wi@f(i L, €) it is necessary to supplement summands containing Ine:

Inedi(pu,e), Ineds(u,e)
correspondingly. A similar situation occurs at the following stages of matching of asymptotic
expansions and for even n > 4, as, for instance, the asymptotics in the zero of the function
Ey(x) from the equalities contains with even n logarithmic terms. The derivation of the
structure of complete asymptotic expansions of characteristic constant is presented below in
section [10

In the conclusion of the section let us derive equations for the coefficients of the internal

expansion. Substituting series (5.15)), ([5.20)), and into the equation
Hy s = NS,
changing in it to the internal variables £ and writing the equalities with similar degrees € and g,

we obtain for the coefficients of internal expansions equations ([5.8)), satisfied for the functions
defined by the equalities ([5.10)) and the equations

Avgjiojr1 =V,
szj+3,j+1 = (Qw(f, D) + Q0,1(5, D)) Vojt2,j+1 T V'U2j+1,j7

)

Aviygiojji1 = Z (Qq,Z(fa D)+ Qq-1,:(£, D)

q=2
+ Qq72,0 (57 D))Ui+47q+2j,j+1
+ (Q12(&, D) + Qo,1(&, D)) vitsyajjr1 + VUigajta,

— AoVig2j+2,j4+1, & <M,

i (7.8)
AVitat2jj41 = Z (Qq,2(§a D)+ Q4-1.1(§, D)
=2
+ Qy20(&, D)) Vigaqr2jj11
+ (Ql,Q(fa D) + QO,I(ga D)) Vig342j+1 T VU,‘+2]‘+27]‘
—-n ]
— Z Z Up 21 Ni2(j—1)—p+2,j—1+1
p=0 1=0
— AoVig2j42,44+1, t=mn, j=0,
where
Voj2,541(€) = Angajrage1 = Antisojeo 1 = 0, if ¢ (0) = 0. (7.9)

on the strength of (5.19)), (7.7)).

8. CONSTRUCTION OF COMPLETE FORMAL ASYMPTOTIC EXPANSIONS
IN CASE OF ODD-DIMENSIONAL DOMAIN

We determine operators C,,, and K in the series U(z,¢, i) of the form the following
way. We decompose coefficients of the series U(z, e, i) into the series when r — 0 and change
to the variables £. In the series obtained we save only terms of the form 9~ ®(£). We denote
this series by ICy.m(U(x, €, 1)) and assume

K=Y Kem
q,m
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We construct the coefficients of the asymptotics of the characteristic constant and the external
expansion of the eigenfunction in the following form

n+z+2g Jj+1 — Z An+z+2] 41> .] > 07 (81)
¢’I’L+Z+2j7j+1 Z \Pn+z+2],]+1 ) ] > 0. (82)
Let us denote
- min{s,N}
(I)n+z+2j,1+1 ) Z \Dn+1+2373+1( )

In these notations CI)7(1+)1+2”+1( ) = ¢n+i+2jﬁj+1(x) when N > i on the strength of 1} We
denote by ®5q; v (z, 1, €) series of the form (6.5), where the coefficients 1, 1i12541(7) are sub-

stituted for q)n+)z+2”+1(x)
The Vahdlty of the following statement results from the definition A™, A,,, gm, K, K,

et n (T, 11, €) and. .

Lemma 8.1. If the coefficients Yy 1it2;4+1(x) of the series belong to A*, then
K(W5as (2, 11,€)) = Wog (€, . €),
where @i@j(f,u, e) are series of the form (m, , in which the coefficients voy; j1+1(€) are

substituted for the series Vi j11(§) € Bi—a;.

If \I]n+z+2jj+1( x) € Ay, then the functions V¥niivajj+1(2), determined by the equality ,
belong to A* the following equalities take place:

Vajiarejr1(§) = Vajrarejri(§) + Z ZHBIHD (g mnt2=2k
k=0

where _
Vajra,i4+1(&) =0,
Vajaore i (€) = 227 1 Kyjporjur (Phiay 1 (2, p,€)) € By, t =1,
i.e. Vaiiosrio1 do not depend on U when m >t — 1), and ZETITD pna2=2k o gpe
J 5J pq k

dominant term of the asymptotics \Ifn+2] bkt
(t)

If, meanwhile, the functions W, o .1 (x) are in Q\{0} the solutions of the equations
(HO )\0) \Iln—&—z 1 _An+z lw()’ i = 07

t .
(HO >\0) \I[n+z+2],]+1 A7(’l-)‘ri+2j7j+11/}07 0 < ? < n — 37

1 n the zero.

(t) ()
(HO >‘0) \Ijn+l+2],]+1 An+i+2j,j+1¢0 (8 3)
i-n+2 j—1 ¢ .
(p) (t—p)
+ Z ZZAnp+k+25,s+1\I/z 154-2(] 8),j—s’
k=0 s=0 p=0
i > n— 2a j 2 17

then the functions y,1i1o0;i+1(x), determined by the equalities (8.2), are the solutions of the
equations where A\pyit2j+1, determined by the equalities , the series Vajioqy 41 are

formal asymptotic solutions of the equations (@ when p — oo, where in the first side of the
function vy, ,(§) are substituted by the series Vi, 4(§) when ¢ > 0.
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Theorem 8.1. Let n be odd, \y be a simple characteristic constant of the operator Hoy, 1o
be the corresponding normalz'zed in Ly(Q2) eigenfunction.

Therefore there exist series (@ , and such that:
1) the equalities (2.3), (2.9), (-) (-) hold;

2) the functions Vni94ij+1 € A* are the solutions of the equatwns (m '
3) the functions v;o are determined by the equalities , and the functions vejioyi i1 € B;

are the solutions of the equations @, ;
4) the following equality holds

Koy (@, p,2)) = dogs (&, p,8),  p— o0,

Proof. Subject to the statements of Lemma to prove the theorem it is sufficient to show,
that the correct choice at the t stage of the matching of the dominant terms of asymptotics in
the zero of the functions \Ifiiz itk +1(2), enables to achieve the existence of the series (5.15),
@ such that their coefficients vg;i0444+1(§) € B; are the solutions of the equations ([7.8]),
7

9) and possess with p — 0o the asymptotics Vaj4 94441 from the formulation of Lemma |S. 1-|

Let us start with the definition \Iln]r?] +rjt1(7). As is has been shown above (see, (5.10),
-, -, - ) the functions
Vo0 = ¥(0),  vaj12541(£) = vo(0)zg gy (€) € By, J =20, (8.4)

are the solutions of the equations (5.8)) and ([7.8] . in the first line) and due to Lemmas ,
they have with p — oo the following asumptotics

Vajra,41(§) = ¢o(0) (COJ(J)FI) 4 Zco”,f)émp + ZYk 2’“””) )

Whence on the strength of Lemma we obtaln the dominant terms of the asymptotics in the

zero for the functions \I/flJ)FQJjL,C ]H( x):

0 1) 2-n
‘I’;lm‘,jﬂ( ) ~1o(0 )Cojgr )
0 1 .
\Ijiz—i)-2j+1,j+l(x) ~1o(0) Z C(()J:; S, (8.5)

m=1
WSLﬁkﬁ4<>~wamexw*%ﬂwa k> 2.

On the strength of Lemma there are the functions \I!flJ)rQ] vqji1(T) € Ay, possessing the

required asymptotics in the zero and satisfying the equations |} when some Agg)ﬂj gl
Consequently, in particular, we verify the suppositions (2.1)) and (6.5]) for the case 1y(0) # 0.
Besides, firstly, the functions

wﬂ%ﬂw> =1(0)cy  Eo(x),

\I’1(10+)2j+1,j+1 Z R0 ]H)E &0
possess the required asymptotics and satisfy the equations (8.3)) when
A£LO+2J G+l = = (0 )COJ(J)FI Ao, A510422]+1,]+1 Z C(()j’r—:;,l Ap, (8.7)
on the strength of Lemma [£.4] and secondly, the following presentatlons are apparent
Willajn 1 () =Uo(O0 WL s (7). 5)

WV
[\

0 (0
A,(1+)2j+k7j+1 :¢0(0) 1(1+)2j+k,j+17 k
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Remark 8.1 (derivation of the formulae ) and . On the strength of , ,
8.6) and (8.7) we obtain, that

Mniaijir = Go(0)i Mo, Pnyasjia (x) = Go(0)cly U Eo(z) € A, (8.9)

Substituting into these equalities for A\,1 and A\ny22 values of the constants Ao, co()) and 6(2)

from Lemmas |/./) u . - we obtain the equalities (m and (2.9 (-)

Remark 8.2 (the case ¢o(0) = 0). On the strength of (8.5)—(8.8), and the presenta-
tions , we sequentially obtain, that

(0) —AO —
Vo1 (1) = Apiojip g =0, k21, (8.10)

)\n+2j7j+1 = ¢n+2j,j+1(95) =0 o wO(O) =

Consequently, in particular, the presentation is verified also for the case 1y(0) = 0, and
on the strength of Lemma the following equality holds

Vajas1(§) = 0.
The next stage is (¢ = 1). Due to Lemma we obtain, that the series

Vajea a1 (§) = €710 s o (P, p1,€)) € By

are asymptotic solutions when p — oo of the second equations in , where in the right
side the functions ve419 441 are substituted for their asymptotics Va494+1 When p — oo, and
v1,0 = Pi. Due to Lemma the are the functions vy;43 41 € By, which are the solutions of
the second equations in ([7.8)) and possess with p — oo the asymptotics V343 11, such that

Vajasje1(€) = Vajusjer(§) + > Zr(§)p 72, (8.11)
.

Whence due to Lemma we obtain the dominant terms of the asymptotics in the zero for

the functions \I/n+23+1+k]+1( T):

e

n+2]+1+]€,]+1( ) ~Zy(x)r " k> 0. (8.12)

On the strength of Lemma there exist the functions \11514223+1+kj+1( ) € Ayg, possessing the

required asymptotics in the zero and satisfying the equations 1} when some Afl 21kl

And since at the prev1ous stage there were \I/n Lojikji1(T) € A and An tojikj+1 determined,

then in compliance with (| , ) the coefficients A\, 21111 and ¥y4054111(z) € A are
finally determined.

Remark 8.3 (the case 1y(0) = 0). Let us note, that

1 )
A7(1—&)-2j+1,j+1 =0, if %(0) =

due to and Lemma . It results from this simple equality and , , that
Ang2j41+1 = Ang2jit1 = 0, if 1Pp(0) = 0. (8.13)

Therefore the presentation (@ has been verified.
To obtain at the next stage the equality for Ao in the critical case ¢(0) = 0, let us
note, that

3%

8xm

v00(§) = v21(§) =0, wie( Z ), if %0(0) =0
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(see, (5.10), (8-4])). Therefore the equation (7.8) for vs1(€) (the second when j = 0) takes the
form
3%

8a:m

A’U371 = VUl,O = Z

Due to Lemma 4.0 the function

(8.14)

’U3 1 Z 8¢0 ) (815)

8:Bm

18 the solution of this equation and when p — oo it possesses the following asymptotic expansion

Vz1(6):
‘/'31 2 n Z awo 1)

= (%m
o (8.16)
Y D+ 0. i () =0
m=1 k=1
It results from (8.11)), (8.12)and (18.16]) that
o .
n+2 1 Z Z 81:0 (l)kxkr . (817)

m=1 k=1
Due to Lemma[{.4) the function

0
W00 = 30 20 0, Bute)

m=1 k=1
possesses the asymptotics in the zero and is the solution of the equation when

o
A7(114)-2 1= Z Z (93:0 1 Ag. (8.18)

m=1 k=1

Let us proceed to the next stage (¢ = 2). Due to Lemma we obtain, that the series

Vajra a1 (§) = €7 0 o o (Do, 11,€)) € Be
are the asymptotic solutions when p — 0o of the equation ([7.8)), where the functions va;3 j41(€)
are substituted for their asymptotics Va;43,4+1(€), and when j > 0 and the functions and
Ug;+2.5(&) are substituted for their asymptotics Vajio;(£). Due to Lemma there exist the
functions vgj14,;+1(§) € By which are the solutions of the equations and possess when
p — oo the following asymptitics Vaji4 j11(€):

Vajrag+1(8) = Vajiagun (€) + Z ZBHIHD) () prnt 22k,
k=0

Whence on the strength of Lemma we obtain the dominant terms of the asymptotics in the

zero for the functions \I/nJ)rQ] vorkjn (D)

\11(2) ( )NZ(2j+47j+1)(x)T_n+2_2k7 L 0.

n+2j+2+k,j+1\T
On the strength of Lemma [4.2] there exist the functions \IJ§L+’2J vork i (T) € Ay, possessing the
required asymptotics in the zero and satisfying the equations l} when some An +2J +2 Iy
1
Since we have already determined \I/flJ)rQ ko1 \I/flJ)erHJrij € A; and An+21+k,1+1’
Afll—i)-2]+1+k‘]+1’ then in compliance with (8 , 2) the coefficients A\, 125412 j+1 and ¥y 4054241 €
A? are also finally determined.

WV
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And on the same lines.
Remark 8.4 (derivation of the formula (2.7). Let us note, that
A%, =0, ifo(0) =0 (8.19)
on the strength of and Lemma |4.4) ﬂ It results from (8.10), (8.18). (8-19) and (8.1]), that
0 .
hin = 3 O i (o) -
m=1 k=1

Substituting into the equality the values of the constants Ay and U k from Lemmasu h we
obtain the equality (2.7 (-)

Remark 8.5 (derivation of the formula (2.4)). If Hy = —A+a, then the equation (7.8) for

v31(€) once again takes the form ) ]ts solution is determined by the equality (S.15) and
possesses when p — oo the asymptotics (8.16). It results from (8.11), (8.19) and (8.1¢)), that

28@/1

ox €m0
m

Due to Lemma[].4 the function
(1) 5’% o)
\Ijn-i-l 1 Z axm
possesses in the zero the required asymptotics and s the solution of the equation when
1 0 1
A7(1-1)-1,1 =Ao Z _(O>C7(n7)0- (8:20)

It results from , and (8.1), that
0
Ang1,1 = Yo(0 ZCOmA +AOZ ¢0 1

6’xm

Substituting into this equality the values of the constants Ay and ! )k from Lemmasu we
obtain the equality (2.4 (-)

The Theorem has been completely proved. 0

Let us denote partial sums of the series Y (2, py ) and YIS (€, €) up to the degrees M
by e inclusive by o,boddM(a: i, €) and ¢OddM(§ i, €), correspondingly. And by Aidd’M(,u, e) and

Xodd7 1 (1, €) we denote analogous partial sums of the series 1) and 1} correspondingly. it
results from the items 2)—4) of the proved Theorem [8.1] that

Corollary 3. The following equalities hold
~ —~ N-1
<H0 - Af)dd,n+2N(M’5)> ¢Z§&Tn+m(m, p,e) =0 <gn(7’) (( ) + 52,“_1) )

when r — 0, er™t — 0,

(He = Moaaran (1:2)) Do (6 1:2) =0 ((ep) ™ ((20)” + 27 ™)
when p — 00, ep — 0,

7 — _n\N
77Z)s§dsn+2N(‘r M, € ) ¢07dl;2 N+1) (é- € ) =0 ((TQ + 52,“ ! + 1% 2) >
whenr — 0, p— o0,
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meanwhile, the latter equality is differentiated by x,, (subject to & =& 'x).

9. CONSTRUCTION OF COMPLETE FORMAL ASYMPTOTIC EXPANSIONS
IN CASE OF TWOFOLD CHARACTERISTIC CONSTANT Ay AND THE ODD-DIMENSIONAL
DOMAIN

In the above sections there was considered the case of the simple characteristic constant A\
under the construction of the asymptotic expansion of the characteristic constant when the
construction could be started not with the function ¢y(x), but for instance, with the function
Po(x) +e1Cv%o(x) = (1 4+ 2C)ho(x) for any ¢ > 0 and C, that, apparently, due to the linearity
of the considered operators could result in the same asymptotics of the characteristic constant.
Therefore it was useless to start construction of the asymptotics with the similar functions. In
the case considered in the present section, when \q is a twofold characteristic constant of the
operator Hy, the situation is different, as this characteristic constant is corresponded by the
two eigenfunctions w(()l) () and w(()Q) (). Therefore while constructing the asymptotic expansions
corresponding to the eigenfunctions of the operator H, . which converge to the eigenfunctions

w((]s) (x), we start the construction with the following asymptotic series:
0@+ e @) 303 ol (9.1)
7=0 i=2j5

where s* = 2, if s = 1 and, on the contrary, s* = 1, if s = 2, and o
constants.

i +1 ; are still arbitrary

Remark 9.1. The intuitive consideration of presence of the latter sums in (their va-
lidity is seen from the further matching of the asymptotic expansions of the eigenfunctions)
consists in the following observation: there is nothing restricting during the construction of
the internal expansion of the eigenfunction, converging to wél)(x) (to ¢52) (x)), to supplement

a function which is proportional to w((f)(x) (proportional to w(()l)(x)) at every other stage of
construction.

While starting the construction of the asymptotic expansions with (9.1)) and following the
method of matching of the asymptotic expansions (repeating the algorithm described in sec-

tion i we sequentially obtain first the functions 0y b0 and the dominant terms (at an increasing
rate of negative degrees 1) of the internal expansions:

1 1 1 1
v =00 0),  WE) = PO +alyPP(€), ¢>1,

n 3(2)
ﬁ%@=2}ﬂLm@ﬁﬂ%%%m o€ = POE) +aBPM (), k=2

Uik (©) =06 0@, i >0, (9.2)
@ o G
U2j+3,]+1(f) = Z W(O)zﬁff )(5)
m=1 m
(9.3)

(j+1—k 2 :
+ 5 (Z a2k+1 w25 ) + O‘gj)Jr3,j+1> , 120
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then of the internal asymptotic expansions:

in i (1) — i —q (1
oddl (& pe Zevfo ) +e%u 1225N jvéJr)i,j+1(€)a
ey (9.4)
in i — i —q5 (2
odd2 (& pe 25 Uz(()) )+ 1225 H jvé—gi,jﬂ(g)
j=0 i=2;j

(the analogue (5.15), m ); then the supposed structures of the external asymptotic expan-
sions:

w(ijl:;il (ZL', ,lL, wO + E H’ - Z Z El:u_]d}nJrz,j+1( )

7=0 =23
2 1
@) 303 all e,
o (9.5)
ex 2 n — i — 2
Vot (x,,) = g () + e 1ZZ€M T2 sy (@)
7=0 i= 2]
b 3 0
7=0 i=2j5

(the analogue (/6.5))) and the expected structures (2.10)), (2.11]) of the asymptotic expansions of
the characteristic constants (the analogue ({2.1)), (2.6)).

Substituting the series (2.10)), (2.11]), (9.5]) into the equation ([7.1]) we obtain a fortiori holding

equations
Hypl? = Al in Q

and recurrent systems of the equations in Q\{0} for the remaining coefficients of the external

expansions ((9.5)):
(Ho — Ao) 77&1(1-5-2] j+1 _Ans—i)r% J—i—lw((JS)7 720

(Ho— 2) )iy =ML w0 + 0803 " alal), 0 i> 1,

p=1

(HO /\0) ¢n+z+2j j+1 )\7(184)ri+2j7j+1¢(()8)

2 J
(s™) (s) (s)
p=1 q=0
1<i<n—3, j=1, (9.6)

( >\0) ¢n+z+2]]+1 )‘Sliﬂj,jﬂwo
i—n+2 j—1
(s)
+ Z Z )‘n+k+2q q+1¢z’7k+2(ij):ij
k=0 ¢=0
* : ]
+uf
p=1 ¢q=0
i=n—2, j>1,

a )\(3)
2q+p,9" n+i—p+2(j—q),j—q+1’

(the analogue ([7.2))), where

2
wr(LJZQj,jJrl( ) = )‘n+2j 1 T /\n+1+2j 1 T =0 (9-7)
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(the analogue (73). [B-I3)).

Substituting the series (2.10)), 2.11, (9.4) into the equation (7.1) we obtain for the coeffi-

cients of the internal expansions ((9.4]) the equations in which the coefficients v, ,, A;; are
9 p,q> )

substituted for v,g )\,(:l, and the equahty l} is substltuted for the following;:

U((J?(% (&)= U§§)+2,j+1 (&) = /\n+2g+2,g+1 = /\7(1+1+2g+2,g+1 = 0. (9.8)

Therefore below for the coefficients of the internal expansion we refer to the equations ,
implying, that the indexes mentioned above are supplemented into them.

By analogy with the previous section the coefficients of the asymptotic expansions of the char-

acteristic constants and external expansions of the eigenfunctions we construct in the following
form

n+z+2j Jj+1 Z An+z+2g,]+17 ja [ 2 Oa (99)
w""‘l""zj J+1 Z \Ijn+z+2] ]+1 ) j7 120, (910)
S t,s ..
aéJ)er - Zagﬂ)t,ja Jyi =20, (9.11)
t=0

and denote by ®707 \(, i1, €) the series of the form 1) where anHH“H( x) and aﬁ)ﬂj are
substituted for

min{s,N}
(N,s) . .
(I)n+z+2j,]+1( ) - Z \Ijn+z+2],]+l ) J =0,
mln{z N}

(st) J— .
Osjti1 = Z O‘2J+w+17 j =0

correspondingly.
For the further matching of the series ¥ (2, u, €) and /%% (x, u, €) from (9.5) and . we
need the following analogue of Lemma [8.1] which validity also results from the definition A™,

Ay Bu, K, K, @250 (2, ) and (9.9), (9.10), (9.11).
Lemma 9.1. If the coefficients 1/Jn+l+2“+1( x) of the series belong to A*, then
K(Woq (@, 1,8)) = Uoi (€, 1, 2),
where (€ 1, €) are the series of the form , in which the coefficients vé?i’jﬂ({) are

substituted for the series V2(_i)i,j+1(£) € Biy;.

If \Ijn+l+2] ]H( x) € A;_y, then the function ¢£3i+2j,j+1($); determined by the equality (9.10),
belongs to A* and the following equalities take place:

s 17(s 2j4+2+t,5+1,s —n42—
VQ(J'J)r2+t,j+1(§) = ‘/Q(J'J)rQ+t,j+1(€) + Z ZZEEIELS) () gt 22k
k=0

where ‘/Q(js—%-Q,j—l-l(f) =0,

Vol oisjur (8) = 20 oy n g (R, 1 (2, ,6)) € By, £ > 1,

(i.e. ‘72(]722“7%1 does not depend on U™ when m >t — 1), and Z 7 TH0IH10) pnt2-2k 4o yp

dominant term of the asymptotics \I]Sf%jft+k jH(x) in the zero.
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If, meanwhile, the functions \IISfZ.)Jer’jH(x) are in Q\{0} the solutions of the equations

t,s s .
(Ho — o) \IJ£L+%j 1 A£L+%j,j+1¢(() g j=0
(Ho — )‘O)qjgfi)l gfz)l Dl )Z gfz) p1 021

(HO—AOW“S) =A%) gy, P00,

n—+1,1 n+1,

n+1+2j J+1 n+1+2j,j+1¢0 (9 12)
i—n+2 j—1 ¢

- Z ZZAnpflqu g+1 1t k‘iZ)(J 9).3—4

kOquO

(s*) (t,s)
+¢0 Zza2q+pq n+i—p+2(j—q),j—q+1’

p=1 ¢=0
=21 j=21,

or the equations
t,s t,s s
(Ho — Ao) \I'£z+2j J+1 —An+%j,j+1w((] )’ 720

% t
(HO )‘0) \I]n—H 1 — n—H 12/)08) + ¢ Z Z () A7(’Lt+zl Sp 1 i 2 17

p=1 [=0
<H0 >\0) \I]n—‘rz 1 sz‘)1¢07 { = 0;
(t,s) (t,s)
(HO /\0) \Ij"""H‘Q] Jj+1 An+z+2j,]+11/}0 (913)

i—n+2 j—1 ¢

+ Z ZZAn+k+2q g+1 zt kZzFSZ)(J 7).J—a

k=0 q=0 p=0

7 J t
(S*) (Z,S) (t_lvs)
+ g Z O[2Q+p,qAn+i—p+2(j—q),j—q+17
p=1 ¢q=0 [=0
i1 j>1,

then the functions M(LSHHJ jr(2 ) determined by the equalities (9.10) are the solutions of the
equations , , when )\n+l+2jj+17 determined by the equalities , and the series

(s

Vojtarrjr1 are formal asymptotic solutions of the equatwns (n) when p — 00, where in the

right side v, 4 and N\, , are substituted for fol) and )\p,q when q > 0.

First we consider the matching of the series ¢! (x, 1, ¢) and %1 (&, 1,€). In this case we
search for the equations (9.13). Following the algorithm of the proof of Theorem , we see,
that the functions US')H,J' +1(§), 7 = 0, determined by the equalities , belong to By, are
the solutions of the equations (in the first line), and on the strength of Lemmas [4.6]

possess with p — oo the following asymptotics

%gll2g+1<f> §D(0)ct ]H) e ”+Zyk gkt s
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Whence due to Lemma we obtain the dominant terms of the asymptotics in the zero for

the functions W£0;2j+k7j+1($):
0,1 (J+1) 2-n
\I]£L+2)j,j+l(x) % ( )00]0 2 ) (9.14)
0,1 9k :
\Ij7(1+2)]+k,]+1(x) ~Y(z)r 2 k>1
The functions
0,1) 1
W, 5 () =67 (0)elly ) Eo () (9.15)

possess the required asymptotics in the zero and due to Lemma[4.4] they satisfy the correspond-
ing equations
(0,1 0,1) 1 4
(HO - )‘0) n+2)] Jj+1 A£L+2J,J+1w(() )’ j=0
from ((9.13) when
AP =0 (0)cs Y Ao (9.16)

n+2j5,j+1

Remark 9.2 (derivation of the formula (2.12)). On the strength of (9.9), , and
, in particular, we obtain, that

1) 1) 1 +1
)‘1(1—5-2] 1l = % ( )¢ H Aoy Ynyojjn(z) = (() )(O)C(()J,ar )EO(HU) e A%
Substituting into these equalities the values Ay, c&% from Lemmas we obtain the equality
2.14) for A

)

When k > 1 the equations ((9.13)) for \117(10:2)]%]“( ) take the form
0,1) (0,1)
(Ho — )‘O)qjgz+23+k1+1 _An+2j+ku+1w0

2) (0,1)
E :E : 2q+m,q n+2] q)+k—m,(j—q)+1"

m=1 ¢q=0

On the strength of Lemma[4.2] from the condition of solubility of these equations with the given

in (9.14)) features in the zero solutions, ﬁrstly, we determine A(+2)]+k ;11 and \I/n+2)]+k () €

Ay, and secondly, considering, that An(?ll = >\n,1 # 0 on the strength of (2.12)) and the condition

(V') # 0, we obtain ol . Let us note, that oz%)JrLj = ag‘jil] due to (9.11)).

2j+k,j+1
.. . 1,1 1,1) 1,1
At the next stage we similarly determine ‘I]£L+2)j+1+k;,]+17 A7(1+2]+1+k]+1 and ag#)ﬂzj when
k > 0, and consequently due to , 9.10) and (9.11)) we finally obtain ¢n+2g+1 e )\SJ)FQJ.HJH
and aglw. And so on.
As aresult we obtain the validity of the following analogue of Theorem [8.1]and its corollary 3]

Theorem 9.1. Let n be odd, (V) # 0, Ao be the twofold characteristic constant of the opera-
tor Ho, (()1) and @Z)(()Q) be the corresponding orthonormalized in Lo(Q2) eigenfunctions, satisfying

the condition (2.8) and chosen in compliance with .

Then there exist the series Yo' (x, u, ) of the for, the series Y (€, 1, €) of the form
and the series such that:

1) the equality holds;

2) 7pn-i-Qj—H J+1 S AZ U2]+2+z G+1 € Bi,'
3) for their partial sums the statements of the corollary @ hold.

Let us proceed to the matching of the series @Dz;;lQ(x, u, ) and wiZ’;(f,u,e). In this case it
is sufficient to apply the equations ((9.12). Following the described above algorithm we see,

that the functions véﬁrg,j 4+1(&), j = 0, determined by the equalities 1) belong to By C By,
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are the solutions of the equations ([7.8) (subject to the equalities (9.8)) and on the strength of
Lemmas [4.6], [4.7] possess when p — oo the following asymptotics

Y
(2)
‘/2j+3,j+1(€> - <7nz:1 ax(in

0
+Z (Zl g&?z (0)cy, H) + §y+1gw0 (0 )Céjjl ) &ip~

(j+1,0, 2 2 i+1,0,1 okm
+ Z ( )+ Oééj)Jrl,ij(J )(@) p kR,

Whence, firstly, on the strength of (9.9)), (9.10) sequentially results, that

1 1 —n
(0)e Y + ol s (0)ely >> P’

(0,2) (0,2)
\Ijn+2j+k ]+1( ) An+2]+k,]+1 Oa k 2 O? (9 17)
2 2 :
wr(LJZQj,jJrl(x) :>‘7(1+)2j j+1 =0,
2)
and secondly, on the strength of Lemma (9.1 we obtain, that \I!n Lojrkil ()
1,2 1 2 1 1 “n
\I/£L+2)j+1j+1 (Z 8xm (a+ ) + O‘éj)ﬂ,ﬂ/k() )( )C((]JO+ )> P2 (9.18)
(12) 5% +1)
Ve z (z 200yl
" (9.19)
2 1 1) “n
+ agg 26 (0)eg; )@p :
1,2 (j+1,0,2
U g (@) ~ (V) 00)

+ a2]+1 ]Y(j+1 o1 (g))p72k7n+27 k 2 27

when 7 — 0. The equations (9.12)) for these functions subject to the equalities (9.17)) take the
following form:

(1,2) 2
(HO - )‘0) n+2]+1,j+1 _An+2j+1,j+1w(() )a (921)
(HO )‘O)an+2]+2,]+1 _An+23+2,j+1w0 ) (922)
1,2)
(Ho — >\0>\I,7(’L+23+k+1,]+1 An+2j+k+1 g+1¢0 , k=2 (9.23)

On the strength of Lemma the equations (|9 possess the solutions with the asymptotics
(9.18) in the zero only if the multiplier in (9.18]) is equal to zero, i.e.

N 5% LD
Ay, = ¢ (J+1 mz: axm Cm,0 > (9.24)
that in its turn results in the equalities
(1,2) 4 (1,2)
An+2]+l J+1 T \Ijn+2]+1,j+l 0. (9'25)

Remark 9.3 (on the structure of the external expansion). The equalities result from ,
(9.17) and (9.9), (9.10):
2 2 2
¢£Ll2j,j+1($) = ¢£Ll2j+1,j+1($) = )‘51+)2] 1 = )‘n+1+2j J+1 =0,
which are more detailed than the equalities .
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Similarly on the strength of Lemma [£.4] the functions

(1,2) B - - aw(()Q) (5+1)
\Ijn+2j+2,]+1( ) - Z Z —(O)Cm,i

2 1 i1
+ a2, WO (0)cGr >)Ei<x>

possess the asymptotics (9.19) and are the solutions of the equations (9.22)) when

n n 8¢(2) .
A= D (Z S (00! + a0 | AP, (9.26)

=1 m=1

And, finally, on the strength of the corollary [2| there exist functions \Iffjf; k141 € AF,

e
possessing the asymptotics (9.20) and being the solutions of the equations (9.23) with some
(1,2) |
An+2]+k:+1,]+1
At the next stage similarly from the condition of solubility of the equations (9.12]) for

(2,2) (@ .
W, 5540, 41(7) We obtain as,/,, . and obtain, that

(2,2) _ 22
ATL+2]+2 Jj+1 \Ijn+2j+2,j+1 0. (927)
Further, on the strength of the corollary [2| there are the functions \I!,(ff;j k21 € Af k>

possessing the asymptotics, requiring the asymptotics and being the solutions of the equations
9.12) with some A®

And so on.

n+23+k>+2 j+1-

Remark 9.4 (derivation of the formula (2.13)). Since An to1 = An1+22)1 on the strength of

E) and (9.17), (9. 27 then, substituting into (9.26) the values 041,0 from (9.24)and Ay, b
from Lemmas 4. 4 we derive the equality (2.15).

As aresult we obtain the validity of the following analogue of Theorem [8.1]and its corollary 3|

Theorem 9.2. Let the conditions of Theorem[9.1] hold. .

Then there exist the series <27 (x, u, €) of the form , the series V.2 (€, u,€) of the form
and the series such that:

1) the equality holds;

2) wn+2]+z J+1 € AZ U2j)+2+z j+1 € B’L?
3) for their partial sums the statements of the corollary@ hold.

10. CONSTRUCTION OF THE COMPLETE FORMAL ASYMPTOTIC EXPANSIONS IN CASE OF
THE EVEN-DIMENSIONAL DOMAINS

For the case of the even domains the asymptotic expansions are more bulky and contain the
degrees Ine. It is connected with the fact, that the asymptotics in the zero of the coefficients
of the external expansion contain logarithmic terms, which during rewriting in the internal
variables generate the summands, containing Ine. therefore in the internal and the external
expansions of the eigenfunctions and expansions of the characteristic constant sequentially oc-
cur summands of the form e’y Inewv; ;1(§), e'u 7 Ine; j1(x) and e’ Ine A; ;1. In its turn
rewriting the asymptotics in the zero of the coefficients of the external expansion v ;1(z) in
the internal variables sequentially generates the summands, containing In”e, in the internal,
external expansions of the eigenfunctions and in expansion of the characteristic constant. Ap-
plying the used in the previous sections algorithm of matching of the asymptotic expansions, it



PERTURBATION OF AN ELLIPTIC OPERATOR BY A NARROW POTENTIAL... 59

is easy to follow, that for the even n in case of the simple characteristic constant Ay the chain
of the origin of the first terms containing increasing degrees Ine, looks as follows:

voo = o(0), wvo=F, k=1
) (()j-‘rl

= ¥ vy 901 = o(0 20

= "I i = Go(0)ely VEo Az = o(0)cf Ao

= " et v, 410 = Yo(0 )A§1)7 Unt2j+k,j+1,1(§) = @Z)O(O)R,(:)({)
= ..

o TN s g = ¢0(0)A§q),

_ (9)
Vgn+2j+k,j+q.q9 = Yo(0)R
42§42 —j—q—171.4q . . _ (@) ,(G+1)
€ M In?e 1 Vgnyoji2jtq+1.q = Yo(0 )A' 20
3n+2j —j—31.-q . . (G+1) g(@) 1 .
€ H In?e: 77Z}(q+1)n+2j,j+q+17q @Z)O( )Coo Aj Eq;

1
)‘(q+1 yn+j,5+q+1,qg — ¢0( ) j+ )Ag A
= 8( +1)n+2]u —q— llanr -

4

4

(q+1
V(g+1)n+2j,j+q+1,g+1 = ¥o(0 )Aj )

_ (g+1)
V(g+1)n+2j+k,j+q+1,g+1 = Yo(0) R}

It results from this chain and the given in the previous section matching of asymptotic
expansions, that if 1y(0) = 0, then the internal expansion possesses the form

ins

e (& pe Zu €™ In? £ (€, 1, €), (10.1)

where s = 1, the series 9" (£, i1, €) coincides with the series ¢ (&, i1, €) from (5.15), and the

series ’(/)l (f ,i,€) when [ > 1 possess the same structure, the external expansions takes the
form

(&) = p e InTe it (x, p, €), (10.2)

q=0

where s = 1, the series ¢§"" (, u,€) coincides with the series %' (x, u, ) from (6.5)), and
the series wfmﬁl(g, i, €) + o(x) when I > 1 possess the same structure, and the asymptotic
expansion of the characteristic constant takes the form

Ao ven (1 Zu e In?e A\ (p, €), (10.3)

q=0

where s = 1, the series \j(u, €) coincides with the series AL, (1, €) from (6.7)), and the series
Al (pt,€) + Ao when [ > 1 possess the same structure. Consequently, the series /\éven(,u, ¢) takes
the form (2.1)).

If 40(0) = 0, then for the even n > 4 in case of the simple characteristic constant )\, the
chain of occurrence of the first terms, containing increasing degrees In €, possesses the following
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form:

0
Vo0 = 1o(0) =0 v10(§ Z % 0)m, vko=DLy, k=2

8a:m
= U394l = Z gii 20D >0
= Yniojr1j+1 = Z gfi (j+1 Ey;
Uni2jr2,+1 = Z Z g;bo jjl)Ei + Bj(l)Eo;
m=1i=1 ™
An42j42,j41 = Z Z gfo ]H A;
m=1 i=1 m

1
Un42541,5+1,1 = A§~ )7 Un+2j+1+l,j+1,1(§) = Rl (5)7 [>1

_ 4@ _ plg
Vgn+2j+1,5+q,9 = Aj y o Ugn+2j+1+15+q,9 = Rl

_ 4@ (j+1)
Ugn+2j+3,j+q+1,qg = Aj

by

7/J(q+1)n+2j+1,j+q+1,q = A(q)Céjarl)Eo;
V(g+1)n+2j+2,j+9+1, = Aﬁ‘” Z C(()J;H)Ei + B](QH)EO;
i=1

_ glq (J+1)
/\(q+1)n+2j+2,j+q+1,q - Aj Co,i A

=1

_ pk+D)
» Ugrnt2j+2,5+gtlatt = 1 =

(g+1)
= U2n42j+1,j+42,2 = Aj

Remark 10.1 (the case ¢y(0) = 0, n = 2). Since in the considered case
Eo(z) =—Inr+¢(Q)+O(rlnr), r—0,

on the strength of Lemma [4.5, the for the matching of the dominant terms of the external
and the internal asymptotic expansions of the eigenfunction in the presented above chain it is
sufficient to choose

o ;
U342j,j+1 = Z 2 ( U+ cf%”c(ﬁ)) )

8xm
Ugn+2j+3,j+q+1,q :qu (Zé]m +¢ (ﬁl) (Q)> , J=20,g21

It results from this chain and the considered in the previous section matching of the asymp-
totic expansions, that if 1)5(0) = 0, then the internal expansion possesses the form (10.1]), where
s —22 the series ¢ (&, u1, €) coincides with the series 17> (€, u, €) from (5.20)), and the series

(&, p,e) when [ > 1 possess the same structure with precision to the constant summand,
the internal expansion possesses the form , where s = 2, the series QZJSx’Q(:E, i, €) coincides
with the series ¥ (x, u, €) from , and the series ¥f" (z, i, €) + ¥o(z) when [ > 1 possess
the same structure, and the asymptotlc expansion of the characteristic constant possesses the
form (10.3]), where s = 2, the series A3(u, ) coincides with the series A2,,(u, ) from (6.7),
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and the series A?(u,€) + Ao when [ > 1 possess the same structure. Consequently, the series

A2, .. (11, €) takes the form (2.6)).

even

Remark 10.2. The equations for the coefficients of the asymptotic expansions (10.1)), (10.2
of the eigenfunctions are derived the same way as in the previous sections. The series (10.9
and are substituted into the equation

Hy g™ = NS, (10.4)

and we rewrite the equalities with similar degrees e,Ine and . In the result we obtain the equa-
tions for the coefficients of the external expansion . Analogously, by means of substituting
the series and into the equation , by changing in it to the internal variable
¢ and by rewriting the equalities with similar degrees g,Ine and p we obtain the equations for
the coefficients of the internal expansion . If the coefficients of the expansions satisfy
the obtained such way equations, we conszder, that the series (10.1), (10.9), (10.3) are the
asymptotic solutions of the equations .

By analogy with the indezes, applied in the considered above chains, when | > 1 fort he coef-

ficients of the series " (€, u, €), Vi (x, p, €) and )\l(s) (p,€) when e'u* we apply the notations
Vikds Vikg and N gy correspondz’ngly

Following the procedure of matching of the asymptotic expansions, presented in section [} it
is easy to obtain the validity of the following statement.

Theorem 10.1. Let \g be a simple characteristic constant of the operator Hy, Yy be the
corresponding normalized in Ly(Q)) eigenfunction. Then with even n there exist the series
110.1), (10.2), (10.5) such that:

1) they are the asymptotic solutions of the equation ;

2) the series Alyon(11,€), A2en(i1,€) coincide with the series (2.1), (2.6), correspondingly,

even

though, for them the equalities (2.4 (W, (-), , hold, (the latter subject to the statement
of Lemma[{.¢ for n = 2);

3) the series V5" (x, p, ) coincide with the series ¥y (x, pu,€) from ([6.5);

4) Yni2jrigets Unaojanivigrin € A Vajrotijit, Vajyimiasijrg € Bis

5) for the partial sums of the series (10.1), (10.3), ([10.3) the statements of the corollary[3
hold, (with the substitution of the index "odd” for "even” in the formulation).

Let us formulate the analogue of this theorem for the case multiple to A\g. Following the
algorithm presented in the previous section [0} it is easy to rewrite the chains of occurrence
of the first terms, containing increasing degrees Ine, and in case of the twofold characteristic
constant \g, and to make sure, that the asymptotic expansions possess the form ([10.1]), ,
(10.3)), where the series ¥5"*(€, i, €) coincide with the series 17 (&, 1,€) from (9.4), and the
series w””(g ,i,€) when [ > 1 possess the same structure (the latter - with precision to the
constant summand), the series 1" (x, 1, €) coincide with the series ¢ (z, y, €)from (9.5), and

the series ;"% (x, u,€) + 77/)05) (x) when [ > 1 possess the same structure, and the asymptotic
expansions of the characteristic constants possess the form (2.10), (2.11). Analogous to the
previous section we prove the validity of the following statement.

Theorem 10.2. Let Ay be a twofold characteristic constant of the operator Hy, (V) # 0, (()1)

and w((f) be the corresponding orthonormalized in Lo(S2) eigenfunctions, satisfying (2.8), chosen
in compliance with (2.9). Then with the even n there are the series (10.1), (10.9), (10.5) such
that:

1) they are the asymptotic solutions of the equation ;

2)the series AL, (i1, €), N2 (1, €) coincide with the series (2.10) and (2.11)) correspondingly,

even

though, for them the equalities and hold;
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3) the series ¥5"* (x, p,€) coincide with the series Yoy (, p,€) from (9.5);
(s) (s) O (s)
4) Untojrijrts Cnrojinirijiis € AL Vafiori ity Vojaimaorijiiy € Bis

5) for the partial sums of the series (10.1), (10.3), (10.3) the statements of the corollary[3
hold (with the substitution of the index "odd” for "even” in the formulation).

The construction of the formal asymptotic expansions of the (2.1)—(2.13)) characteristic con-
stants, of the corresponding eigenfunctions by method of matching of the asymptotic expansions
has been completed. Let us also note, that in the process of the asymptotics construction the

condition (1.9) was not applied. It is apparent, that the series (2.1)), (2.6]), (2.10]), (2.11) are

asymptotic even under a weaker condition ({1.6]).

11. JUSTIFICATION OF THE ASYMPTOTIC EXPANSIONS

Everywhere below, firstly, the asymptotic expansions of the eigenfunctions and the charac-
teristic constants are considered chosen in compliance with the statements of Theorems [8.1]
0.1], 9.2} [10.1], [10.2} and secondly, since the further description does not depend on evenness
of n, then in the notations of these series and from the partial sums we omit the indexes
"odd” and "even”. Subject to the statements of the mentioned theorems the justification of
the constructed asymptotic expansions is standard (see, for instance, [§]).

Let us denote

Oz, pye) = (1 —X (%)) TZZ%#;N(%% ) +X (%) @T(LJ’\?H) (f?“’ 5)

where x(t) is an infinite differential patching function, which is identically equal to the unit
when ¢t < 1 and to the zero when ¢ > 2. The validity of the the following Lemma results from

the statement of Theorems [8.1] 10.1]
Lemma 11.1. For Q%\‘;) the following equalities hold:

108 = 067 llzat) —3 0. (11.1)
HyucON = Napon ¥y + 15, (11.2)

though, if the condition (@ 15 satisfied, then
1 o) = O (M), M(N) 00 (11.3)

Let us denote by o (#,,.) the spectre of the operator #,, .. On the strength of the well-known
estimate of the resolvent (see, for instance, [I, Chapter 5, § 3]) we possess

_ |1f$>||L2<s3 ‘
La(9) dist {0' (Hu,s> ) )‘Z+2N}

It results from this estimate and (11.1)), (11.3]), that
dist {O(Hu,a),AfLHN} =0 (M), M(N) — oo.

N—oo

H 7(s)
N

This equality on the strength of Theorem its corollary (1| and the arbitrary choice of N
justifies the asymptotic expansions f of the characteristic constant and, in particular,
completes the proof of Theorems [2.2]

Let us also note, that in case of the twofold characteristic constant \g

|/\,u,,€,2 _ )\u,e,l| > anﬂ_17 c > O7 (]_14)
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on the strength of - and the inequality (V) # 0. Consequently, the characteristic
constants A1 and M2 are surnple and for the finale proof of Theorem [2.4 H it is left to show,
that

9#* = Loty —3 0. (11.5)
Let us expand 1%\}) into the direct sum:
77ZJ](\}) = bN(:uv g)wu,a,l + @Zjiev (116)
o 1 87 ?67 —_—
where bn(p,€) = ( gv)ﬂﬁ“’ 1>L2(Q)’ (¢i5’¢“ 1)LQ(Q) =0. (11.7)
On the strength of (11.2), (11.6)) we obtain, that
Hyctpe =M=t + f, (11.8)

where f <>\n+2N )\“’6’1) (bN (,u7 5)¢“’€’1 + wie) + f](\/l)

It results from the latter equality and from ((11.7)), (11.1]) and ((11.3)), that
17 ooy = O (M™), M(N) — oc. (11.9)

N—oo

Since two simple characteristic constants \*&! and M2 converge to \g, then it results from

(11.8) and the second equality in (11.7)), that

17 | 2o
||¢ HLQ(Q) |>\M76f\27 _L;\M,g71| .

It results from this inequality (11.9) and (11.4)), that
— 0.

1
ku,a ) e—=0

Whence and from ((11.6)and ((11.1)) we obtain the convergence ({11.5) when s = 1. In its turn it
results from this convergence, corollary [1]and the orthonormalization =1 and ¢*2 in Ly(1),
that the convergence ((11.5) and when s = 2. Theorem has been completely proved.

The first author is thankful to the Kazakh National University in the name of Al-Faraby,
where a part of the present work was carried out for their hospitality.
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