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PERTURBATION OF AN ELLIPTIC OPERATOR BY A

NARROW POTENTIAL IN AN 𝑛-DIMENSIONAL DOMAIN

A.R. BIKMETOV, R.R. GADYL’SHIN

Abstract. We study a discrete spectrum of an elliptic operator of the second order in
an 𝑛-dimensional domain, 𝑛 > 2, perturbed by a potential depending on two parameters,
one of the parameters describes the length of the support of the potential and the inverse
of the other corresponds to the magnitude of the potential. We give the relation between
these parameters, under which the generalized convergence of the perturbed operator to
the unperturbed one holds. Under this relation we construct the asymptotics w.r.t. small
parameters of the eigenvalues of the perturbed operators.
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1. Introduction

Let the domain Ω ⊂ R𝑛, 𝑛 > 2, and, Ω can also coincide with R𝑛, 𝑎𝑖𝑗(𝑥), 𝑎(𝑥) be locally
integrated functions in Ω such that∫︁

Ω

𝑎(𝑥)|𝑢(𝑥)|2𝑑𝑥 > 𝑐(𝑎)‖𝑢‖2𝐿2(Ω), 𝑐(𝑎) > 0, (1.1)

for any functions 𝑢 from 𝐿2(Ω), for which this integral exists, 𝑎𝑖𝑗 = 𝑎𝑗𝑖,

𝛼1|𝜉|2 6
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 𝛼1 > 0, ∀𝑥 ∈ Ω, ∀𝜉 = (𝜉1, . . . , 𝜉𝑛). (1.2)

Since

h0(𝑢, 𝑣) :=
𝑛∑︁

𝑖,𝑗=1

(︂
𝑎𝑖𝑗

𝜕𝑢

𝜕𝑥𝑖
,
𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω)

+ (𝑎𝑢, 𝑣)𝐿2(Ω) (1.3)

is on the strength of (1.1) and (1.2) are of sesquilinear positive symmetrical form, then we

consider it as a scalar product in the Hilbert space ̃︁𝑊 1
2 (Ω) of all functions for which

‖𝑢‖̃︁𝑊 1
2 (Ω) :=

√︀
h0(𝑢, 𝑢) <∞.

Since ̃︁𝑊 1
2 (Ω) ⊂ 𝐿2(Ω) on the strength of (1.1) and (1.2), then the quadric quantic

h0[𝑢] := h0(𝑢, 𝑢) (1.4)

is closed in 𝐿2(Ω) (see, for instance, [1, chapter VI, Theorem 1.1]). And though the subset of
the functions from 𝐶∞(Ω), equal to zero in the neighbourhood of the border 𝜕Ω (if Ω ̸= R𝑛) and

with big 𝑥 (if Ω is an unbounded domain), is apparently a subset ̃︁𝑊 1
2 (Ω) and is dense in 𝐿2(Ω),

then the quadric quantic h0 is densely determined in 𝐿2(Ω). Consequently (see, for instance,

A.R. Bikmetov, R.R. Gadyl’shin, Perturbation of an elliptic operator by a narrow poten-
tial in an 𝑛-dimensional domain.
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[1, chapter VI, Theorems 2.1,2.6]), there is an associated with h0 selfconjugated operator ℋ0 in
𝐿2(Ω) with the domain of definition

𝒟(ℋ0) ⊂ 𝒟(h0) = ̃︁𝑊 1
2 (Ω)

(i.e. such that (ℋ0𝑢, 𝑣)𝐿2(Ω) = h0(𝑢, 𝑣) for any 𝑢, 𝑣 ∈ 𝒟(ℋ0)).
Everywhere below without limiting generality we consider, that the origin of coordinates lies

in Ω. Let us denote
h𝜇,𝜀[𝑢] := h0[𝑢] + 𝜇−1 (𝑉𝜀𝑢, 𝑢)𝐿2(Ω) , (1.5)

where
0 < 𝜀≪ 1, 𝜇(𝜀) > 0,

𝑉𝜀 is a family of equally bounded by 𝜀 functions from 𝐿∞(Ω), which carriers lie in 𝑛-dimensional
sphere of the radius 𝛾𝜀 with the centre in the origin of coordinates for some 𝛾 > 0.

Though the quadric quantic 𝜇−1 (𝑉𝜀𝑢, 𝑢)𝐿2(Ω) is apparently bounded on 𝐿2(Ω), then the

quadric quantic h𝜇,𝜀 is closed and densely determined in 𝐿2(Ω), moreover, 𝒟(h𝜇,𝜀) = ̃︁𝑊 1
2 (Ω).

Let us denote the selfconjugated operator associated with the quadric quantic h𝜇,𝜀[𝑢] by ℋ𝜇,𝜀.

Remark 1.1. If Ω ̸= R𝑛, then we denote by ̃︁𝑊 1
2,0(Ω) the closure by the norm ̃︁𝑊 1

2 (Ω) of the

subset of the functions from ̃︁𝑊 1
2 (Ω), reducing to zero in the neighbourhood 𝜕Ω. It is easy to

see, that the quadric quantics h0 and h𝜇,𝜀 determined in ̃︁𝑊 1
2,0(Ω) by the equalities (1.3), (1.4)

and (1.5), correspondingly, are symmetrical, closed and densely determined in 𝐿2(Ω). For the
selfconjugated operators associated with these forms, we retain the notation ℋ0.

In the first part of the paper we prove the convergence of characteristic constants of the
operator ℋ𝜇,𝜀 to characteristic constants of the operator ℋ0 (when the latter ones exist), when

𝜇−1𝛽𝑛(𝜀) = 𝑜 (1) , (1.6)

where 𝛽2(𝜀) = 𝜀2 |ln 𝜀|, 𝛽𝑛(𝜀) = 𝜀2 when 𝑛 > 3.
It is clear, that if, for instance,

𝑉𝜀(𝑥) = 𝑉
(︁𝑥
𝜀

)︁
, 𝑉 ∈ 𝐶∞

0 (Ω),

𝑎𝑖𝑗, 𝑎 ∈ 𝐶∞(R𝑛), if Ω = R𝑛,

𝑎𝑖𝑗, 𝑎 ∈ 𝐶∞(Ω), 𝜕Ω ∈ 𝐶∞, if Ω ̸= R𝑛,

(1.7)

then the operators ℋ0 and ℋ𝜇,𝜀 are expanded by Friedrichs differential operators 𝐻0 and 𝐻𝜇,𝜀

in 𝐿2(Ω), determined correspondingly as

𝐻0𝑢 := −
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝑎𝑖𝑗(𝑥)

𝜕𝑢

𝜕𝑥𝑗

)︂
+ 𝑎(𝑥)𝑢, 𝐻𝜇,𝜀 = 𝐻0𝑢+ 𝜇−1𝑉𝜀(𝑥)𝑢 (1.8)

on the functions, satisfying with Ω ̸= R𝑛 to the supplementary bounded to the Neumann
conditions

𝜕𝑢

𝜕𝜈
:=

(︂
𝑎𝑖𝑗(𝑥)

𝜕𝑢

𝜕𝑥𝑗

)︂
cos(𝑥𝑖,n) = 0, 𝑥 ∈ 𝜕Ω,

where n is an outer normal to 𝜕Ω, if the operators ℋ0 and ℋ𝜇,𝜀 are associated with quadric

quantics determined on ̃︁𝑊 1
2 (Ω) and to the boundary Dirichlet condition

𝑢 = 0, 𝑥 ∈ 𝜕Ω,

if the operators ℋ0 and ℋ𝜇,𝜀 are associated with quadric quantics determined on ̃︁𝑊 1
2,0(Ω).

In the general second part of the paper with the satisfied conditions (1.7) we construct com-
plete asymptotic expansions of characteristic constants of the operator ℋ𝜇,𝜀, converging to the
characteristic constants of the operator ℋ0 as in the case of a simple limiting characteristic
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constant of the operator ℋ0, as in the case of the twofold one. Though for the rigorous sub-
stantiation of the constructed asymptotics we have to impose a stricter (unlike (1.6)) restriction:

𝜇−1𝛽𝑛(𝜀) = 𝑂 (𝜀𝜏 ) , (1.9)

where 𝜏 > 0 is any number.
As it is seen from the further derivation of complete asymptotics of characteristic constants,

for their formal construction it would be sufficient to demand only an infinite differentiability
of the functions 𝑎𝑖𝑗(𝑥), and 𝑎(𝑥) in the neighbourhood of zero. Stricter conditions (1.7) are
imposed only for the purpose to avoid insignificant but bulky detailing in notations and proofs.

Let us note, that boundary-value problems for the Laplace operator in bounded domains
with similar perturbations depending on one parameter, were considered in [2], [3]. In [2] for
the three-dimensional domain there was proved convergence of characteristic constants in the
case 𝜇 = 𝜀𝜏 , 𝜏 < 2 and there was constructed the asymptotics of the characteristic constant
of the perturbed boundary-value problem, reducing to a simple characteristic constant of the
boundary problem. In [3] for 𝑛-dimensional bounded domain there was proved the convergence
of the characteristic constant of the perturbed operator in the case when 𝜇 = 𝜀𝜏 , 𝜏 < 1, and the
characteristic constant of the boundary operator is simple and we have constructed its binomial
asymptotics. In both papers during the proof of convergence compactness of the embedding
𝑊 1

2 into 𝐿2 for the bounded domains was significant. As it has already been mentioned above,
the asymptotics were constructed only for the case of a simple characteristic constant of the
boundary problem. Moreover, for the problem in the three-dimensional domain, considered in
[2], it was supplementary assumed, that, firstly, the eigenfunction of the boundary problem
does not reduce to zero in the point of compression of the carrier of the perturbed potential,
and secondly, the average value (integral) of this potential is not equivalent to zero. In [3]
during construction of binomial asymptotics there removed two last restrictions, but there was
imposed a stricter (in comparison with [2]) condition on the growth of the perturbing potential
(𝜏 < 1). As it is shown below (see remark 2.1), the influence of the equivalence to zero of the
average value of the perturbing potential on the first term of the theory of perturbations is
significantly different for the cases 𝜏 < 1 and 𝜏 > 1. In the conclusion of the section we note,
that suchlike perturbations of a differential operator of the second order in the one-dimensional
case were considered in [4],[5],[6].

2. Formulation of general statements

In the next section we prove

Theorem 2.1. Let the condition (1.6) hold. Then there takes place the convergence
ℋ𝜇,𝜀 → ℋ0 when 𝜀→ 0 in the general sense (resolvent convergence).

It results from this theorem and [1, chapter IV, Theorem 3.16]

Corollary 1. Let 𝜆0 be a characteristic constant of the operator ℋ0 of the order 𝑚 and there
holds the equality (1.6). Then when 𝜀 → 0 to 𝜆0 converge characteristic constants 𝜆𝜇,𝜀,𝑗 of the
operator ℋ𝜇,𝜀, the total order of which is also equal to 𝑚, and for the corresponding projector
𝒫𝜇,𝜀 there is convergence by the norm to the projector 𝒫0, corresponding to the characteristic
constant 𝜆0.

The general contents of the paper which is the rest of the article devoted to is the proof of the
method of matching of asymptotic decompositions [7], [8] of the formulated below Theorems 2.2–
2.4, with the satisfying the supplementary conditions of smoothness (1.7), a stricter demand
(1.9) to the relationship of the parameters 𝜀 and 𝜇 and not restricting the generality condition
𝑎𝑖𝑗(0) = 𝛿𝑗𝑖 , where 𝛿𝑗𝑖 is Kronecker delta.
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Before we proceed to formulation of general theorems, let us introduce some notations:

⟨𝑔⟩ :=

∫︁
R𝑛

𝑔(𝑥) 𝑑𝑥, ⟨𝑔⟩𝑖 :=

∫︁
R𝑛

𝑥𝑖𝑔(𝑥) 𝑑𝑥, ⟨𝑔⟩𝑖𝑗 :=

∫︁
R𝑛

𝑥𝑖𝑥𝑗𝑔(𝑥) 𝑑𝑥,

𝒢2(𝑥) =
1

2𝜋
ln 𝑟 when 𝑛 = 2, 𝒢𝑛(𝑥) = − 1

(𝑛− 2)|𝑆𝑛|
𝑟−𝑛+2 when 𝑛 > 3,

𝑧
(1)
0 (𝑥) =

∫︁
R𝑛

𝒢𝑛(𝑥− 𝑦)𝑉 (𝑦)𝑑𝑦.

Here and further |𝑆𝑛| is the area of a singular sphere in R𝑛. Assume 𝛿(𝑛) = 0 with odd 𝑛 and
𝛿(𝑛) = 1 with odd 𝑛.

Theorem 2.2. Let the condition (1.9)hold, then 𝜆0 is a simple characteristic constant of the
operator ℋ0, 𝜓0 is the corresponding normalized in 𝐿2(Ω) eigenfunction.
Therefore, if 𝜓0(0) ̸= 0, then the characteristic constant 𝜆𝜇,𝜀 of the operator ℋ𝜇,𝜀, converging

to 𝜆0, possesses the asymptotics

𝜆𝜇,𝜀 = 𝜆0 + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜆𝑛+𝑖,𝑗+1𝜀
𝑖𝜇−𝑗

+ 𝑑(𝑛)𝜀2𝑛𝜇−2 ln 𝜀
∞∑︁
𝑝=0

∞∑︁
𝑗=𝑝

∞∑︁
𝑖=2𝑗+(𝑛−2)𝑝

𝜆2𝑛+𝑖,𝑗+2,𝑝+1𝜀
𝑖𝜇−𝑗 ln𝑝 𝜀,

(2.1)

where

𝜆𝑛,1 =𝜓2
0(0) ⟨𝑉 ⟩ , (2.2)

𝜆𝑛+2,2 = − 𝜓2
0(0)

⃦⃦⃦
∇𝑧(1)0

⃦⃦⃦2
𝐿2(R𝑛)

. (2.3)

If, therewith, 𝑎𝑖𝑗(𝑥) ≡ 𝛿𝑖𝑗 (i.e. 𝐻0 = −∆ + 𝑎(𝑥)), then

𝜆𝑛+1,1 =(𝑛− 2)𝜓0(0)
𝑛∑︁

𝑚=1

⟨𝑉 ⟩𝑚
𝜕𝜓0

𝜕𝑥𝑚
(0), 𝑛 > 3, (2.4)

𝜆3,1 =𝜓0(0)
2∑︁

𝑚=1

⟨𝑉 ⟩𝑚
𝜕𝜓0

𝜕𝑥𝑚
(0), 𝑛 = 2. (2.5)

Remark 2.1. It results from the Theorem, that if ⟨𝑉 ⟩ = 0, then

𝜆𝜇,𝜀 =𝜆0 + 𝜀𝑛+1𝜇−1 (𝜆𝑛+1,1 + 𝑜 (1)) , if 𝜀 = 𝑜(𝜇) ,

𝜆𝜇,𝜀 =𝜆0 + 𝜀𝑛+2𝜇−2 (𝜆𝑛+2,2 + 𝑜 (1)) , if 𝜇 = 𝑜(𝜀).

Hence, when ⟨𝑉 ⟩ = 0 the order of the infinitesimality of the first term of the theory of pertur-
bations for 𝜆𝜇,𝜀 notably differs for the cases 𝜀 = 𝑜(𝜇) and 𝜇 = 𝑜(𝜀).

Theorem 2.3. Let the conditions of the Theorem 2.2 hold.
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Then, if 𝜓0(0) = 0, then the characteristic constant 𝜆𝜇,𝜀 of the operator ℋ𝜇,𝜀 converging to
𝜆0 possesses the asymptotics

𝜆𝜇,𝜀 =𝜆0 + 𝜀𝑛+2𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜆𝑛+2+𝑖,𝑗+1𝜀
𝑖𝜇−𝑗

+ 𝑑(𝑛)𝜀2𝑛+2𝜇−2 ln 𝜀
∞∑︁
𝑝=0

∞∑︁
𝑗=𝑝

∞∑︁
𝑖=2𝑗+(𝑛−2)𝑝

𝜀𝑖𝜇−𝑗 ln𝑝 𝜀𝜆2𝑛+𝑖+2,𝑗+2,𝑝+1,

(2.6)

where

𝜆𝑛+2,1 = ∇𝜓0(0)𝒱∇𝜓0(0), (2.7)

and 𝒱 is a symmetrical 𝑛× 𝑛-matrix with the components ⟨𝑉 ⟩𝑘𝑚.

Let 𝜆0 be a twofold characteristic constant of the operator ℋ0. It results from the corollary 1,
that for the converging to 𝜆0 characteristic constants of the operator 𝐻𝜇,𝜀 the following cases
are possible: either it is two simple characteristic constants, or it is one twofold characteristic
constant, or for different 𝜀 one of these variants takes place. And even, if two simple character-
istic constants 𝜆𝜇,𝜀,1 and 𝜆𝜇,𝜀,2 converge to 𝜆0, it is impossible to state, that the corresponding
normalized in 𝐿2(Ω) eigenfunctions 𝜓𝜇,𝜀,𝑗 have the limit. The corollary 1 only guarantees,
that from any sequence 𝜀𝑘 → 0 we can single out the subsequence 𝜀𝑘𝑚 → 0 such that there

takes place the convergence 𝜓𝜇,𝜀,𝑗 → 𝜓
(𝑗)
0 in 𝐿2(Ω), where 𝜓

(𝑗)
0 are orthonormalized in 𝐿2(Ω)

eigenfunctions of the operator ℋ0, corresponding to 𝜆0. Though, these limits can change in
dependence of the choice of the subsequence 𝜀𝑘𝑚 → 0.

In the paper we consider the case of the most general statement:

|𝜓(1)
0 (0)| + |𝜓(2)

0 (0)| ≠ 0. (2.8)

Then, obviously, these eigenfunctions can be chosen so, that

𝜓
(1)
0 (0) ̸= 0, 𝜓

(2)
0 (0) = 0. (2.9)

We plan to prove the following

Theorem 2.4. Let the following condition hold (1.9), ⟨𝑉 ⟩ ≠ 0, 𝜆0 is a twofold characteristic

constant of the operator ℋ0, 𝜓
(1)
0 and 𝜓

(2)
0 are the corresponding orthonormalized in 𝐿2(Ω)

eigenfunctions, which satisfy the condition (2.8) and which are chosen in compliance with (2.9).
Hence, there exist two simple characteristic constants 𝜆𝜇,𝜀,1 and 𝜆𝜇,𝜀,2 of the operator ℋ𝜇,𝜀,

converging to 𝜆0, and they possess the asymptotics

𝜆𝜇,𝜀,1 = 𝜆0 + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜆
(1)
𝑛+𝑖,𝑗+1𝜀

𝑖𝜇−𝑗

+ 𝑑(𝑛)𝜀2𝑛𝜇−2 ln 𝜀
∞∑︁
𝑝=0

∞∑︁
𝑗=𝑝

∞∑︁
𝑖=2𝑗+(𝑛−2)𝑝

𝜀𝑖𝜇−𝑗 ln𝑝 𝜀𝜆
(1)
2𝑛+𝑖,𝑗+2,𝑝+1,

(2.10)

𝜆𝜇,𝜀,2 =𝜆0 + 𝜀𝑛+2𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜆
(2)
𝑛+2+𝑖,𝑗+1𝜀

𝑖𝜇−𝑗

+ 𝑑(𝑛)𝜀2𝑛+2𝜇−2 ln 𝜀
∞∑︁
𝑝=0

∞∑︁
𝑗=𝑝

∞∑︁
𝑖=2𝑗+(𝑛−2)𝑝

𝜀𝑖𝜇−𝑗 ln𝑝 𝜀𝜆
(2)
2𝑛+𝑖+2,𝑗+2,𝑝+1,

(2.11)
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where

𝜆
(1)
𝑛,1 =

(︁
𝜓

(1)
0 (0)

)︁2
⟨𝑉 ⟩ , (2.12)

𝜆
(2)
𝑛+2,1 =∇𝜓(2)

0 (0)̃︀𝒱∇𝜓(2)
0 (0), (2.13)̃︀𝒱 is a symmetrical 𝑛× 𝑛-matrix with the components

⟨𝑉 ⟩𝑚𝑖 − (𝑛− 2)
⟨𝑉 ⟩𝑚 ⟨𝑉 ⟩𝑖

⟨𝑉 ⟩
, 𝑛 > 3, ⟨𝑉 ⟩𝑚𝑖 −

⟨𝑉 ⟩𝑚 ⟨𝑉 ⟩𝑖
⟨𝑉 ⟩

, 𝑛 = 2,

and the corresponding eigenfunctions 𝜓𝜇,𝜀,𝑠 converge to 𝜓
(𝑠)
0 in 𝐿2(Ω).

It results from the theorem, in particular, that if the condition (2.8) and ⟨𝑉 ⟩ ≠ 0 is satisfied
then the twofold characteristic constant 𝜆0 with the considered perturbation splits into two
simple characteristic constants, and the corresponding eigenfunctions converge to the eigen-
functions of the operator ℋ0, chosen in relation to (2.9).

In the paper there were also constructed complete asymptotic expansions of the corresponding
eigenfunctions.

3. Proof of Theorem 2.1

It results from the definition of quadric quantics h0 and h𝜇,𝜀 and the function 𝑉 , that firstly,
these forms are bounded below, and secondly, the following estimation holds:

|(h𝜇,𝜀 − h0)[𝑢]| = 𝜇−1

⃒⃒⃒⃒
⃒⃒∫︁
Ω

𝑉𝜀(𝑥)|𝑢(𝑥)|2𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 𝐶𝜇−1

∫︁
|𝑥|<𝛾𝜀

|𝑢(𝑥)|2𝑑𝑥, (3.1)

where 𝐶 > 0 is a constant independent of 𝜀.
Let 𝐵 be a 𝑛-dimensional sphere with the centre in the origin of coordinates and the radius

equal to three. Without limiting generality, we consider, that 𝐵 ⊂ Ω. It correspondingly results
from ([9, Ch. 3, Lemma 5.1]) and [10] for 𝑛 > 3 and 𝑛 = 2, that for any function 𝑣 ∈ 𝐶∞

0 (𝐵)
the following inequality holds:∫︁

|𝑥|<𝛾𝜀

|𝑣(𝑥)|2𝑑𝑥 6 𝐶1(𝛾)𝛽𝑛(𝜀)

∫︁
𝐵

|∇𝑣(𝑥)|2𝑑𝑥, (3.2)

where the constant 𝐶1 does not depend on 𝜀. Let 𝜒(𝑡) be an infinitely differentiated patch
function, identically equal to the unit when 𝑡 < 1 and to the zero when 𝑡 > 2.

Since ̃︁𝑊 1
2 (Ω) ⊂ 𝑊 1

2 (Ω) in the strength of (1.1), (1.2), then for any function 𝑢 ∈ ̃︁𝑊 1
2 (Ω)

according to (3.2), (1.1), (1.2) we sequentially obtain, that∫︁
|𝑥|<𝛾𝜀

|𝑢(𝑥)|2𝑑𝑥 =

∫︁
|𝑥|<𝛾𝜀

|𝑢(𝑥)𝜒(|𝑥|)|2𝑑𝑥 6 𝐶1𝛽𝑛(𝜀)

∫︁
𝐵

|∇(𝑢(𝑥)𝜒(|𝑥|)|2𝑑𝑥

6𝐶2𝛽𝑛(𝜀)

∫︁
Ω

(︀
|∇𝑢(𝑥)|2 + |𝑢(𝑥)|2

)︀
𝑑𝑥 6 𝐶3𝛽𝑛(𝜀)h0[𝑢],

where 𝐶2, 𝐶3 are some constants independent of 𝑢. It results from this inequality and the
inequality (3.1), that

|(h𝜇,𝜀 − h0)[𝑢]| 6 𝐶3𝐶𝜇
−1𝛽𝑛(𝜀)h0[𝑢]

for any function 𝑢 ∈ ̃︁𝑊 1
2 (Ω) = 𝒟(h0) = 𝒟(h𝜇,𝜀). Since the quadric quantics h0 and h𝜇,𝜀 are

densely defined in 𝐿2(R), bounded below and closed, and 𝜇−1𝛽𝑛(𝜀) → 0 when 𝜀 → 0 on the
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strength of (1.6), then it results from the latter estimate and [1, Chapter VI, Theorem 3.6],
that the statement of the theorem under consideration holds.

4. Auxiliary statements

It is considered in the text below, that the conditions (1.7) on the function 𝑉𝜀 hold and that
the coefficients of the differential expression 𝐻0 determined in (1.8), and there exists a not
limiting generality supposition, that 𝑎𝑖𝑗(0) = 𝛿𝑗𝑖 , where 𝛿𝑗𝑖 is the Kronecker delta.

Also below 𝑟 = |𝑥|, we denote homogeneous polynomials of the degree 𝑘 by 𝑃𝑘(𝑥), 𝑄𝑘(𝑥) and
𝑅𝑘(𝑥), homogeneous harmonic polynomials of the degree 𝑘 by 𝑌𝑘(𝑥), 𝑍𝑘(𝑥), and homogeneous
polynomials of the degree 𝑗 relative to the differentiating symbol 𝐷 = (𝐷1, . . . , 𝐷𝑛), 𝐷𝑞 =
𝜕/𝜕𝑥𝑞, which coefficients are homogeneous polynomials of the degree 𝑖 by 𝑄𝑖,𝑗(𝑥,𝐷). For the
whole 𝑗 by 𝑇𝑗(𝑥) we consider homogeneous functions of the degree 𝑘, presented in the form
𝑅𝑗+𝑘(𝑥)𝑟−𝑘 at least for some whole 𝑘.

In these notations for the differential expression 𝐻0 when 𝑟 → 0 the following presentation
holds

𝐻0 = −∆ +
∞∑︁
𝑖=1

𝑄𝑖,2(𝑥,𝐷) +
∞∑︁
𝑖=0

𝑄𝑖,1(𝑥,𝐷) +
∞∑︁
𝑖=0

𝑄𝑖,0(𝑥,𝐷). (4.1)

Let us denote by ̃︀𝒜0 the set of series of the form

ℰ(𝑥) = Φ0(𝑥) +
∞∑︁
𝑗=1

Φ𝑗(𝑥), (4.2)

where

Φ0(𝑥) =𝑏 ln 𝑟 + 𝑐, Φ𝑗(𝑥) = 𝑟−2𝑗𝑃3𝑗(𝑥) + ln 𝑟𝑅𝑗(𝑥) when 𝑛 = 2, 𝑗 > 1,

Φ0(𝑥) =𝑏𝑟2−𝑛 when 𝑛 > 3,

Φ𝑗(𝑥) =𝑟2−𝑛−2𝑗𝑃3𝑗(𝑥) when 𝑛 > 4, 1 6 𝑗 6 𝑛− 3,

Φ𝑗(𝑥) =𝑟2−𝑛−2𝑗𝑃3𝑗(𝑥) + 𝛿(𝑛) ln 𝑟𝑅𝑗+2−𝑛(𝑥) + (1 − 𝛿(𝑛))𝑄𝑗+2−𝑛(𝑥)

when 𝑛 > 3, 𝑗 > 𝑛− 2,

and 𝑏, 𝑐 are arbitrary numbers. Let us remind, that 𝛿(𝑛) = 0 with odd 𝑛 and 𝛿(𝑛) = 1 with
even 𝑛.

For the whole 𝑚 > 1 we denote by ̃︀𝒜𝑚 the set of series of the form (4.2), where

Φ0(𝑥) =𝑍𝑚(𝑥)𝑟−2𝑚+2−𝑛 when 𝑛 > 2,

Φ𝑗(𝑥) =

2𝑗−1∑︁
𝑠=0

𝑍𝑚+3𝑗−2𝑠(𝑥)𝑟−2𝑚+2−𝑛−2𝑗+2𝑠

when 𝑛 > 3, 𝑚 > 1, 1 6 𝑗 6 𝑛+𝑚− 3

and when 𝑛 = 2, 𝑚 > 2, 1 6 𝑗 6 𝑚− 1,

Φ𝑚(𝑥) =𝑃4𝑚(𝑥)𝑟−4𝑚 when 𝑛 = 2, 𝑗 = 𝑚,

Φ𝑗(𝑥) =𝑃𝑚+3𝑗(𝑥)𝑟−2𝑚+2−𝑛−2𝑗 + 𝛿(𝑛) ln 𝑟 𝑅𝑗−𝑚−𝑛+2(𝑥)

+ (1 − 𝛿(𝑛))𝑄𝑗−𝑚−𝑛+2(𝑥)

when 𝑛 > 3, 𝑗 > 𝑛+𝑚− 2 and when 𝑛 = 2, 𝑗 > 𝑚+ 1.

Let us denote the set of series presented in the form of the sum of series from ̃︀𝒜𝑗 when 𝑗 6 𝑚

by ̃︀𝒜𝑚.
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Lemma 4.1. Assume ℱ ∈ ̃︀𝒜𝑘. Then there is a series ℰ ∈ ̃︀𝒜𝑘, possessing the dominant term
Φ0(𝑥) = 𝑍𝑘(𝑥)𝑟−2𝑘+𝑛−2 when 𝑘 > 1, where 𝑍𝑘 is an arbitrary harmonic polynomial, and the
dominant terms Φ0(𝑥) = 𝑏 ln 𝑟 + 𝑐 when 𝑛 = 2, 𝑘 = 0 and Φ0(𝑥) = 𝑏𝑟2−𝑛 when 𝑛 > 3, 𝑘 = 0,
where 𝑏, 𝑐 are arbitrary constants, such that the following equalities hold:

∆Φ0 =0, ∆Φ1 = (𝑄1,2(𝑥,𝐷) +𝑄0,1(𝑥,𝐷)) Φ0,

∆Φ𝑗 =

𝑗∑︁
𝑖=2

(𝑄𝑖,2(𝑥,𝐷) +𝑄𝑖−1,1(𝑥,𝐷) +𝑄𝑖−2,0(𝑥,𝐷)) Φ𝑗−𝑖

+ (𝑄1,2(𝑥,𝐷) +𝑄0,1(𝑥,𝐷)) Φ𝑗−1 − 𝜆0Φ𝑗−2 − ̃︀Φ𝑗−2 for 𝑗 > 2,

where Φ𝑞, ̃︀Φ𝑞 are members of the series ℰ and ℱ correspondingly.

Validity of this statement is shown in the proof of Therem 1.1 from [11].
Let us denote by 𝒜𝑘 the set of functions 𝑢 ∈ 𝐶∞(R𝑛∖{0}) when Ω = R𝑛 and the set of

functions 𝑢 ∈ 𝐶∞(Ω∖{0}) when Ω ̸= R𝑛, possessing in the zero the differentiating asymptotics

from ̃︀𝒜𝑘and such that 𝑢κ belongs to the domain of the definition of the operator ℋ0 for any
patch function κ ∈ 𝐶∞(Ω), identically equal to zero in the neighbourhood of the origin of
coordinates,and such that supp(1 − κ) ⊂ Ω. We denote by 𝒜𝑚 the set of functions presented
in the form of sums of functions from 𝒜𝑗 when 𝑗 6 𝑚.

Lemma 4.2. Assume 𝑛+𝑘 > 3, 𝐹 ∈ 𝒜𝑘. Hence there exists the function 𝐸 ∈ 𝒜𝑘 possessing
the dominant term of the asymptotics in the zero Φ0(𝑥) = 𝑍𝑘(𝑥)𝑟−2𝑘+𝑛−2 when 𝑘 > 1, where
𝑍𝑘 is any required harmonic polynomial, and the dominant term of the asymptotics in the zero
Φ0(𝑥) = 𝑏𝑟2−𝑛 when 𝑘 = 0, where 𝑏 is any required constant, such that

𝐻0𝐸 = 𝜆0𝐸 + 𝐹 + Λ𝜓0 in Ω∖{0} (4.3)

with some number Λ, if 𝜆0 is a simple characteristic constant of the operator ℋ0, and the
equations

𝐻0𝐸 =𝜆0𝐸 + 𝐹 + Λ(1)𝜓
(1)
0 + Λ(2)𝜓

(2)
0 in Ω∖{0} (4.4)

with some numbers Λ(𝑘), if 𝜆0 is a twofold characteristic constant of the operator ℋ0.

Proof. Let us denote by ℱ ∈ ̃︀𝒜𝑘 the asymptotic expansion in the zero of the function 𝐹 (𝑥), by

ℰ ∈ ̃︀𝒜𝑘 - the series satisfying the statement of Lemma 4.1, and by ℰ𝑁(𝑥) - a partial sum of the
series ℰ(𝑥) up to the terms 𝑂

(︀
𝑟𝑁 ln 𝑟

)︀
inclusive, 𝑁 > 4. We search for the function 𝐸(𝑥) in

the form

𝐸𝑁(𝑥) = (1 − κ(𝑥))ℰ𝑁(𝑥) + ̃︀𝐸𝑁(𝑥), (4.5)

where ̃︀𝐸𝑁 ∈ 𝒟(ℋ0).
Let us consider the case when 𝜆0 is a simple characteristic constant. From (4.3) and (4.4) on

the strength of Lemma 4.1 we obtain the equation on ̃︀𝐸𝑁 :

ℋ0
̃︀𝐸𝑁 = 𝜆0 ̃︀𝐸𝑁 + ̃︀𝐹𝑁 + Λ(𝑁)𝜓0, (4.6)

where ̃︀𝐹𝑁 ∈ 𝐿2(R𝑛) ∩ 𝐶𝑁−3(R𝑛), if Ω = R𝑛, and ̃︀𝐹𝑁 ∈ 𝐿2(Ω) ∩ 𝐶𝑁−1(Ω), if Ω ̸= R𝑛. It results
from the needed and sufficient condition of the resolvability of this equation, that when

Λ(𝑁) = −
(︁ ̃︀𝐹𝑁 , 𝜓0

)︁
𝐿2(Ω)

the equation (4.6) has the solution ̃︀𝐸𝑁 ∈ 𝒟(ℋ0), and it results from the theorems of increas-
ing smoothness for the solutions of elliptical boundary-value problems, that 𝜓0 ∈ 𝐶∞(R𝑛),̃︀𝐸𝑁 ∈ 𝐶𝑁−1(R𝑛), if Ω = R𝑛, and 𝜓0 ∈ 𝐶∞(Ω), ̃︀𝐸𝑁 ∈ 𝐶𝑁−1(Ω), if Ω ̸= R𝑛.
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Let us show, that Λ(𝑁) does not depend on 𝑁 . Let us denote

𝐸𝑁,𝑀(𝑥) := 𝐸𝑁(𝑥) − 𝐸𝑀(𝑥), 𝑁 < 𝑀.

Then by the construction, firstly, 𝐸𝑁,𝑀 ∈ 𝒟(ℋ0), and secondly,

ℋ0𝐸𝑁,𝑀 = 𝜆0𝐸𝑁,𝑀 + (Λ(𝑁) − Λ(𝑀))𝜓0.

Whence it implies, that, firstly, Λ(𝑁) = Λ(𝑀) (i.e. Λ(𝑁) does not depend on 𝑁), and secondly,
𝐸𝑁,𝑀(𝑥) = 𝑏𝑁,𝑀𝜓0(𝑥). It is easy to see, that if when 𝑁 > 5 of the function 𝐸𝑁 is normalized
by the condition (𝐸𝑁,4, 𝜓0)𝐿2(Ω) = 0, then they also do not depend on 𝑁 . Therefore it results
from (4.5) and the arbitrary choice of 𝑁 , that 𝐸 ∈ 𝒜𝑘.

Validity of the statement of the lemma for the case when 𝜆0 is a simple characteristic constant
of the operator ℋ0, has been proved.

By analogy we show the validity of lemma for the case when 𝜆0 is a twofold characteristic
constant of the operator ℋ0.

Lemma 4.3. Let 𝑛 = 2, 𝐹 ∈ 𝒜0, 𝑏 be any constant. then there is the function 𝐸 ∈ 𝒜0

possessing the dominant term of the asymptotics in the zero Φ0(𝑥) = 𝑏 ln 𝑟 + 𝑑, satisfying the
equation (4.3) with some number Λ, if 𝜆0 is a simple characteristic constant of the operator
ℋ0, meanwhile, if 𝜓0(0) ̸= 0, then the constant 𝑑 can be chosen whatever and satisfying the
equation (4.4) with some numbers Λ(𝑘), if 𝜆0 is a twofold characteristic constant of the operator
ℋ0, meanwhile, in the nonsingular case (2.8) the constant 𝑑 can be chosen whatever.

Proof. The proof of this statement is completely analogous to that of Lemma 4.2. An opportu-
nity of choice of the constant 𝑑 arbitrary (under the conditions 𝜓0(0) ̸= 0 and (2.8)) apparently
results from the fact that the functions 𝐸 are defined with precision to the summand 𝐶𝜓0(𝑥)
for any 𝐶 in the case when 𝜆0 is a simple characteristic constant of the operator ℋ0, and with

precision to the arbitrary linear combination of the eigenfunctions 𝜓
(𝑠)
0 (𝑥) in case when 𝜆0 is a

twofold characteristic constant of the operator ℋ0.

Lemma 4.4. there exist functions 𝐸0 ∈ 𝒜0 when 𝑛 > 3 and 𝐸1, . . . 𝐸𝑛 ∈ 𝒜1 when 𝑛 > 2,
possessing with 𝑟 → 0 the asymptotics

𝐸0(𝑥) =𝑟−𝑛+2 +𝑂
(︀
𝑟−𝑛+3

)︀
when 𝑛 > 3,

𝐸𝑚(𝑥) =𝑥𝑚𝑟
−𝑛 +𝑂

(︀
𝑟−𝑛+2

)︀
when 𝑛 > 2, 𝑗 = 1, ...,𝑚

and satisfying in Ω∖{0} the equations

𝐻0𝐸𝑞 = 𝜆0𝐸𝑞 + Λ𝑞𝜓0 in Ω∖{0}, (4.7)

where

Λ0 = − |𝑆𝑛|(𝑛− 2)𝜓0(0) when 𝑛 > 3, (4.8)

Λ𝑚 = − |𝑆𝑛|
𝜕𝜓0

𝜕𝑥𝑚
(0) when 𝑛 > 2, 𝑚 = 1, ..., 𝑛, (4.9)

if 𝜆0 is a simple characteristic constant of the operator ℋ0, and satisfying in Ω∖{0} the equations

𝐻0𝐸𝑞 =𝜆0𝐸𝑞 + Λ(1)
𝑞 𝜓

(1)
0 + Λ(2)

𝑞 𝜓
(2)
0 ,

where the eigenfunctions 𝜓
(𝑠)
0 (𝑥) are orthonormalized in compliance with (2.9),

Λ
(1)
0 = − |𝑆𝑛|(𝑛− 2)𝜓

(1)
0 (0), Λ

(2)
0 = 0 when 𝑛 > 3,

Λ(𝑠)
𝑚 = − |𝑆𝑛|

𝜕𝜓
(𝑠)
0

𝜕𝑥𝑚
(0) when 𝑛 > 2, 𝑚 = 1, ..., 𝑛, 𝑠 = 1, 2,

(4.10)

if 𝜆0 is a twofold characteristic constant of the operator ℋ0.
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Proof. The statements of the Lemma being proved except for the explicit formulae (4.8)–(4.10)
are a partial case of Lemma 4.2. Therefore we should only show the validity of the equalities
(4.8)–(4.10).

Let us first obtain the equality (4.8). For positive 𝑠 we denote 𝜒𝑞(𝑡) := 𝜒(𝑡𝑞−1), ̃︀𝜒𝑞(𝑡) :=

1 − 𝜒𝑞(𝑡), ̃︀𝐸(𝑥) := 𝐸0(𝑥)̃︀𝜒𝑞(𝑟), where 𝜒(𝑡) is an infinitely differentiating patch function which
is identically equal to the unit when 𝑡 < 1and to the zero when 𝑡 > 2. It is apparent, that̃︀𝐸 ∈ 𝒟(ℋ0) for any sufficiently small 𝑞, and on the strength of (4.7) the following equality holds:

ℋ0
̃︀𝐸 − 𝜆0 ̃︀𝐸 = Λ0𝜓0̃︀𝜒𝑞 − 2

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕̃︀𝜒𝑞

𝜕𝑥𝑗

𝜕𝐸0

𝜕𝑥𝑖
− 𝐸0

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝑎𝑖𝑗
𝜕̃︀𝜒𝑞

𝜕𝑥𝑗

)︂
.

On the strength of the condition of resolvability of this equation (orthogonality in 𝐿2(Ω) the
right side of the eigenfunction 𝜓0) and the definition ̃︀𝜒𝑞 we obtain:

Λ0(̃︀𝜒𝑞𝜓0, 𝜓0) = −2

(︃
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝜒𝑞

𝜕𝑥𝑗

𝜕𝐸0

𝜕𝑥𝑖
, 𝜓0

)︃
−

(︃
𝐸0

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝑎𝑖𝑗
𝜕𝜒𝑞

𝜕𝑥𝑗

)︂
, 𝜓0

)︃
.

Considering the asymptotics in the zero of the functions 𝑎𝑖,𝑗(𝑥), 𝐸0(𝑥) and 𝜓0(𝑥), passing in
the integrals in the right side of the latter equality to the expanded in 𝑞−1 times variable and
rushing 𝑞 to the zero, we obtain, that

Λ0 = − 𝜓0(0)

⎛⎝2

∫︁
𝑟<2

∇𝑟2−𝑛∇𝜒(𝑟)𝑑𝑥+

∫︁
𝑟<2

𝑟2−𝑛∆𝜒(𝑟)𝑑𝑥

⎞⎠
= − 𝜓0(0)

∫︁
𝑟<2

∇𝑟2−𝑛∇𝜒(𝑟)𝑑𝑥.

(4.11)

Integrating in parts with small 𝑡 > 0 we have:∫︁
𝑡<𝑟<2

∇𝑟2−𝑛∇𝜒(𝑟)𝑑𝑥 = (𝑛− 2)|𝑆𝑛|.

Passing in the latter equality to the limit when 𝑡 → 0 on the strength of (4.11) we obtain the
validity of the equality (4.8).

By analogy we prove the equalities (4.9) and (4.10).

Lemma 4.5. Assume 𝑛 = 2. Then there is the function 𝐸0 ∈ 𝒜0, possessing with 𝑟 → 0 the
asymptotics

𝐸0(𝑥) = − ln 𝑟 +𝑂(𝑟 ln 𝑟), if 𝜓0(0) ̸= 0, (4.12)

𝐸0(𝑥) = − ln 𝑟 + 𝑐(Ω) +𝑂(𝑟 ln 𝑟), if 𝜓0(0) = 0,

and satisfying in Ω∖{0} the equation

𝐻0𝐸0 = 𝜆0𝐸0 + Λ0𝜓0, where Λ0 = −2𝜋𝜓0(0),

if 𝜆0 is a simple characteristic constant of the operator ℋ0, and possessing with 𝑟 → 0 the
asymptotics (4.12) and satisfying in Ω∖{0} the equation

𝐻0𝐸0 =𝜆0𝐸0 + Λ
(1)
0 𝜓

(1)
0 + Λ

(2)
0 𝜓

(2)
0 ,

where the eigenfunctions 𝜓
(𝑚)
0 (𝑥) are orthonormalized in compliance with (2.9),

Λ
(1)
0 = − 2𝜋𝜓

(1)
0 (0), Λ

(2)
0 = 0,

if 𝜆0 is a twofold characteristic constant of the operator ℋ0.
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Proof. Subject to Lemma 4.3 the proof of this statement is completely analogous to the proof
of Lemma 4.4. The absence of the constant 𝑐(Ω) in (4.12) apparently results from the fact that
the function 𝐸0 is defined with precision to the summand 𝐶𝜓0(𝑥) for any 𝐶 in case when 𝜆0
is a characteristic constant of the operator ℋ0, and with the precision to the arbitrary linear

combination of the eigenfunctions 𝜓
(𝑠)
0 (𝑥) in case when 𝜆0 is a twofold characteristic constant

of the operator ℋ0.

It results from Lemmas 4.2, 4.4, 4.5, that

Corollary 2. Let 𝜆0 be a twofold characteristic constant of the operator ℋ0 and the eigen-

functions 𝜓
(𝑠)
0 (𝑥) be orthonormalized in compliance with (2.9). Then for any 𝑍𝑘(𝑥), 𝑘 > 1,

𝐹 ∈ 𝒜𝑘 there is the solution 𝐸 ∈ 𝒜𝑘 of the equation

𝐻0𝐸 =𝜆0𝐸 + 𝐹 + Λ𝜓
(2)
0 ,

in Ω∖{0} with some constant, possessing the dominant term of the asymptotics in the zero
Φ0(𝑥) = 𝑍𝑘(𝑥)𝑟−2𝑘+𝑛−2.

Let us denote

𝑧(1)𝑚 (𝑥) =

∫︁
R𝑛

𝒢𝑛(𝑥− 𝑦)𝑦𝑚𝑉 (𝑦)𝑑𝑦 when 𝑚 = 1, . . . , 𝑛.

It results from the definition of the functions𝑧
(1)
0 , . . . , 𝑧

(1)
𝑛 , that

Lemma 4.6. The functions 𝑧
(1)
0 , . . . , 𝑧

(1)
𝑛 ∈ 𝐶∞(R𝑛) satisfy the equations

∆𝑧
(1)
0 = 𝑉, ∆𝑧(1)𝑚 = 𝑥𝑚𝑉, 𝑚 = 1, . . . , 𝑛

in R𝑛 and possess with 𝑟 → ∞ differentiating asymptotics

𝑧(1)𝑞 (𝑥) = − 𝑐
(1)
𝑞,0 ln 𝑟 +

(︁
𝑐
(1)
𝑞,1𝑥1𝑟

−2 + 𝑐
(1)
𝑞,2𝑥2𝑟

−2
)︁

+
∞∑︁
𝑖=2

𝑌
(1,𝑞)
𝑖 (𝑥)𝑟−2𝑖 when 𝑛 = 2,

𝑧(1)𝑞 (𝑥) = 𝑐
(1)
𝑞,0𝑟

2−𝑛 +
𝑛∑︁

𝑚=1

𝑐(1)𝑞,𝑚𝑥𝑚𝑟
−𝑛 +

∞∑︁
𝑖=2

𝑌
(1,𝑞)
𝑖 (𝑥)𝑟−2𝑖−𝑛+2 when 𝑛 > 3,

where

𝑐
(1)
0,0 = − ⟨𝑉 ⟩

2𝜋
when 𝑛 = 2, 𝑐

(1)
0,0 = − ⟨𝑉 ⟩

(𝑛− 2)|𝑆𝑛|
when 𝑛 > 3,

𝑐
(1)
0,𝑚 = 𝑐

(1)
𝑚,0 = −⟨𝑉 ⟩𝑚

|𝑆𝑛|
, 𝑐(1)𝑝,𝑚 = −

⟨𝑉 ⟩𝑝𝑚
|𝑆𝑛|

when 𝑝,𝑚 = 1, . . . , 𝑛,

and 𝑌
(1,𝑞)
𝑖 (𝑥) are homogeneous harmonic polynomials of the order 𝑖.

When 𝑘 > 2 we recurrently define the following functions:

𝑧(𝑘)𝑞 (𝑥) =

∫︁
R𝑛

𝒢𝑛(𝑥− 𝑦)𝑉 (𝑦)𝑧(𝑘−1)
𝑞 (𝑦)𝑑𝑦, when 𝑞 = 0, 1, . . . , 𝑛.

Lemma 4.7. The functions 𝑧
(𝑘)
0 , . . . , 𝑧

(𝑘)
𝑛 ∈ 𝐶∞(R𝑛), 𝑘 > 2 satisfy in R𝑛 the equations

∆𝑧(𝑘)𝑞 =𝑉 𝑧(𝑘−1)
𝑞
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and possess with 𝑟 → ∞ differentiating asymptotics

𝑧(𝑘)𝑝 (𝑥) = − 𝑐
(𝑘)
𝑝,0 ln 𝑟 +

(︁
𝑐
(𝑘)
𝑝,1𝑥1𝑟

−2 + 𝑐
(𝑘)
𝑝,2𝑥2𝑟

−2
)︁

+
∞∑︁
𝑖=2

𝑌
(𝑘,𝑝)
𝑖 (𝑥)𝑟−2𝑖 when 𝑛 = 2,

𝑧(𝑘)𝑝 (𝑥) =𝑐
(𝑘)
𝑝,0𝑟

2−𝑛 +
𝑛∑︁

𝑚=1

𝑐(𝑘)𝑝,𝑚𝑥𝑚𝑟
−𝑛 +

∞∑︁
𝑖=2

𝑌
(𝑘,𝑝)
𝑖 (𝑥)𝑟−2𝑖−𝑛+2 when 𝑛 > 3,

where

𝑐
(2)
0,0 =

1

2𝜋

⃦⃦⃦
∇𝑧(1)0

⃦⃦⃦2
𝐿2(R2)

when 𝑛 = 2,

𝑐
(2)
0,0 =

1

(𝑛− 2)|𝑆𝑛|

⃦⃦⃦
∇𝑧(1)0

⃦⃦⃦2
𝐿2(R𝑛)

when 𝑛 > 3.
(4.13)

Proof. The validity of the Lemma statement except for the equalities (4.13) results directly

from the definition of the functions 𝑧
(𝑘)
𝑞 (𝑥).

Let us show the validity of (4.13). From the definition 𝑧
(2)
0 (𝑥) and 𝑧

(1)
0 (𝑥) we sequentially

obtain

𝑐
(2)
0,0 = −

⟨
𝑉 𝑧

(1)
0

⟩
2𝜋

when 𝑛 = 2, 𝑐
(2)
0,0 = −

⟨
𝑉 𝑧

(1)
0

⟩
(𝑛− 2)|𝑆𝑛|

when 𝑛 > 3,

𝑐
(2)
0,0 = −

⟨
𝑧
(1)
0 ∆𝑧

(1)
0

⟩
2𝜋

when 𝑛 = 2, 𝑐
(2)
0,0 = −

⟨
𝑧
(1)
0 ∆𝑧

(1)
0

⟩
(𝑛− 2)|𝑆𝑛|

when 𝑛 > 3.

Integrating in parts the right sides of two equalities we obtain the validity (4.13).

When 𝑗 > 0 we denote by ̃︀ℬ𝑗 a set of series of the form

∞∑︁
𝑖=0

𝑇𝑗−𝑖(𝑥) + 𝛿(𝑛) ln 𝑟

𝑗∑︁
𝑠=0

𝑃𝑗−𝑠(𝑥).

We denote by ℬ𝑗 a set of functions from 𝐶∞(R𝑛) possessing at infinity differentiated asymptotics

from ̃︀ℬ𝑗. It results from this definition, that 𝑧
(𝑝)
𝑗 ∈ ℬ0.

Lemma 4.8. Assume 𝑆 ∈ ℬ𝑞, and the series ̃︀𝑉 ∈ ̃︀ℬ𝑞+2 is the asymptotic solution of the
equation

∆𝑉 = 𝑆 in R𝑛, (4.14)

when 𝑟 → ∞. Then there is the solution 𝑉 ∈ ℬ𝑞+2 of this equation possessing at infinity the
asymptotics

𝑉 (𝜉) =̃︀𝑉 (𝑥) +
∞∑︁
𝑖=0

𝑍𝑖(𝑥)𝑟−2𝑖−𝑛+2 when 𝑛 > 3,

𝑉 (𝑥) =̃︀𝑉 (𝑥) + 𝑏 ln 𝑟 +
∞∑︁
𝑖=1

𝑍𝑖(𝑥)𝑟−2𝑖 when 𝑛 = 2.

Proof. Let us denote by ̃︀𝑉𝑁 a partial sum of the series ̃︀𝑉 up to the terms of the order 𝑟−𝑁−𝑛

inclusive. The solution of the equation (4.14) we search for in the form

𝑉𝑁(𝑥) = ̃︀𝑉𝑁(𝑥)(1 − 𝜒(𝑟)) + 𝑤𝑁(𝑥). (4.15)

Substituting (4.15) into (4.14) we obtain the equation for 𝑤𝑁 :

∆𝑤𝑁 = 𝑆𝑁 , 𝑥 ∈ R𝑛, (4.16)



40 A.R. BIKMETOV, R.R. GADYL’SHIN

where

𝑆𝑁 = 𝑆 − (1 − 𝜒)∆̃︀𝑉𝑁 + 2
𝑛∑︁

𝑖=1

𝜕𝜒

𝜕𝑥𝑖

𝜕 ̃︀𝑉𝑁
𝜕𝑥𝑖

.

Consequently, 𝑆𝑁(𝑥) = 𝑂(𝑟−𝑁−𝑛−3) when 𝑟 → ∞. Then the function

𝑤𝑁(𝑥) =

∫︁
R𝑛

𝒢𝑛(𝑥− 𝑦)𝑆𝑁(𝑦)𝑑𝑦

is the solution of the equation (4.16) and when 𝑟 → ∞ possesses the asymptotics

𝑤𝑁(𝑥) =𝑏 ln 𝑟 +
𝑁+1∑︁
𝑖=1

𝑍𝑖(𝑥)𝑟−2𝑖 + 𝑜(𝑟−𝑁−2) when 𝑛 = 2,

𝑤𝑁(𝑥) =
𝑁+1∑︁
𝑖=0

𝑍𝑖(𝑥)𝑟−𝑛−2𝑖+2 + 𝑜(𝑟−𝑁−𝑛) when 𝑛 > 3.

It results from here and from (4.15), that when 𝑟 → ∞

𝑉𝑁(𝑥) =̃︀𝑉𝑁(𝑥) + 𝑏 ln 𝑟 +
𝑁+1∑︁
𝑖=1

𝑍𝑖(𝑥)𝑟−2𝑖 + 𝑜(𝑟−𝑁−2) when 𝑛 = 2,

𝑉𝑁(𝑥) =̃︀𝑉𝑁(𝑥) +
𝑁+1∑︁
𝑖=0

𝑍𝑖(𝑥)𝑟−𝑛−2𝑖+2 + 𝑜(𝑟−𝑁−𝑛) when 𝑛 > 3.

(4.17)

The difference 𝑉𝑁1 − 𝑉𝑁2 is a harmonic in R𝑛 function reducing at infinity. Consequently,
𝑉𝑁1 − 𝑉𝑁2 = 0, i.e. 𝑉𝑁 does not depend on 𝑁 . Therefore the validity of the statement of
the Lemma under consideration results from (4.17) on the strength of the arbitrary choice of
𝑁 .

5. Derivation of the structure of the eigenfunction internal expansion
in case of an odd-dimensional domain

Below in this and three more sections 𝜆0 is a simple characteristic constant of the operator
ℋ0. In this case it results from the corollary 1, that for the normalized in 𝐿2(Ω) eigenfunction
𝜓𝜇,𝜀, corresponding to the characteristic constant 𝜆𝜇,𝜀 −→

𝜀→0
𝜆0, the convergence 𝜓𝜇,𝜀 → 𝜓0 in

𝐿2(Ω) takes place. Therefore outside the neighbourhood of the origin of coordinates (where
the perturbation of the operator ℋ𝜇,𝜀 is concentrated) the approximation 𝜓𝑒𝑥(𝑥, 𝜇, 𝜀) (outer
expansion) of the function 𝜓𝜇,𝜀 is natural to be searched in the form 𝜓𝑒𝑥(𝑥, 𝜇, 𝜀) ≈ 𝜓0(𝑥).
In the neighbourhood of the origin of coordinates the approximation 𝜓𝑖𝑛 (internal expansion)
of the function 𝜓𝜇,𝜀 is also natural to search in the form of the expansion by the functions
depending on the variable 𝜉 = 𝑥𝜀−1, corresponding to the argument of the perturbing potential
𝑉
(︀
𝑥
𝜀

)︀
.

The Taylor series of the function 𝜓0 in the zero has the form:

𝜓0(𝑥) =
∞∑︁
𝑘=0

𝑃𝑘(𝑥), 𝑟 → 0, (5.1)

where

𝑃0(𝑥) = 𝜓0(0), 𝑃1(𝑥) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑥𝑚, (5.2)

and, on the strength of the equation

𝐻0𝜓0 = 𝜆0𝜓0 (5.3)
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and the equality (4.1) the following equalities hold

∆𝑃0 =0, ∆𝑃1 = (𝑄1,2(𝑥,𝐷) +𝑄0,1(𝑥,𝐷))𝑃0 = 0,

∆𝑃𝑘 =
𝑘∑︁

𝑖=2

(𝑄𝑖,2(𝑥,𝐷) +𝑄𝑖−1,1(𝑥,𝐷) +𝑄𝑖−2,0(𝑥,𝐷))𝑃𝑘−𝑖

+ (𝑄1,2(𝑥,𝐷) +𝑄0,1(𝑥,𝐷))𝑃𝑘−1 − 𝜆0𝑃𝑘−2 when 𝑘 > 2.

(5.4)

Remark 5.1. Everywhere below we denote by 𝑃𝑘(𝑥) only members of the Taylor series in

the zero of the function 𝜓0(𝑥), and by 𝑃
(𝑠)
𝑘 (𝑥) - those of the functions 𝜓

(𝑠)
0 (𝑥).

Let us denote 𝜌 = |𝜉|. Rewriting the right side (5.1) in the variable 𝜉 subject to (5.2) we
obtain:

𝜓𝑒𝑥(𝑥, 𝜇, 𝜀) ≈ 𝜓0(𝑥) = 𝜓0(0) + 𝜀
𝑛∑︁

𝑗=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚 +

∞∑︁
𝑘=2

𝜀𝑘𝑃𝑘(𝜉), 𝜌𝜀−1 = 𝑟 → 0.

Therefore, following the method of matching of asymptotic expansions [7] we obtain, that the
internal expansion should be searched in the form

𝜓𝑖𝑛(𝜉, 𝜇, 𝜀) ≈ 𝜓𝑖𝑛
0 (𝜉, 𝜀) = 𝑣0,0(𝜉) + 𝜀𝑣1,0(𝜉) +

∞∑︁
𝑘=2

𝜀𝑘𝑣𝑘,0(𝜉), (5.5)

where

𝑣0,0(𝜉) ∼𝜓0(0), 𝑣1,0(𝜉) ∼
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝜌→ ∞,

𝑣𝑘,0(𝜉) ∼𝑃𝑘(𝜉), 𝑘 > 2, 𝜌→ ∞.

(5.6)

Substituting 𝜆𝜇,𝜀 = 𝜆0, (4.1) and (5.5) into the equation

𝐻𝜇,𝜀𝜓
𝜇,𝜀 = 𝜆𝜇,𝜀𝜓𝜇,𝜀, (5.7)

changing to the variable 𝜉 and equalling the coefficients with similar degrees 𝜀 and 𝜇, we obtain
a recurrent system of equations for 𝑣𝑘,0:

𝜀−2 : ∆𝜉𝑣0,0 = 0,

𝜀−1 : ∆𝜉𝑣1,0 = (𝑄1,2(𝜉,𝐷𝜉) +𝑄0,1(𝜉,𝐷𝜉)) 𝑣0,0,

𝜀𝑘−2 :
∆𝜉𝑣𝑘,0 =

𝑘∑︁
𝑖=2

(𝑄𝑖,2(𝜉,𝐷𝜉) +𝑄𝑖−1,1(𝜉,𝐷𝜉) +𝑄𝑖−2,0(𝜉,𝐷𝜉)) 𝑣𝑘−𝑖,0

+ (𝑄1,2(𝜉,𝐷𝜉) +𝑄0,1(𝜉,𝐷𝜉)) 𝑣𝑘−1,0 − 𝜆0𝑣𝑘−2,0, 𝑘 > 2

(5.8)

and supplementary demands for these functions:

𝜀𝑖𝜇−1 : 𝑉 (𝜉)𝑣𝑖,0(𝜉) = 0, 𝑖 > 0. (5.9)

Remark 5.2. Here ∆𝜉 denotes the Laplace operator by the variable 𝜉. Similarly, the symbol
of differentiation 𝐷𝜉 denotes, that differentiation is made by the variable 𝜉. Though below in
the equations for the coefficients of internal expansions the Laplace operator and the symbol of
differentiation are applied only in this sense, for simplicity of the notations in ∆𝜉 and 𝐷𝜉 we
omit this index 𝜉.

On the strength of (5.4), (5.2) and (5.8) the functions

𝑣0,0 ≡ 𝜓0(0), 𝑣1,0(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝑣𝑘,0(𝜉) = 𝑃𝑘(𝜉), 𝑘 > 2, (5.10)
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are, apparently, solutions of the equations (5.8), satisfying the condition (5.6) (the condition of
matching of asymptotic expansions).

Though, it is also apparent, that the conditions (5.9) are not satisfied. therefore, following
the method of matching of asymptotic expansions we should supplement new terms into the
internal expansion:

𝜓𝑖𝑛(𝜉, 𝜇, 𝜀) ≈ 𝜓𝑖𝑛
1 (𝜉, 𝜇, 𝜀) = 𝜓𝑖𝑛

0 (𝜉, 𝜀) + 𝜇−1

(︃
𝜀2𝑣2,1(𝜉) +

∞∑︁
𝑘=3

𝜀𝑘𝑣𝑘,1(𝜉)

)︃
. (5.11)

Substituting 𝜆𝜇,𝜀 = 𝜆0, (4.1) and (5.11) (instead of (5.5)) into the equation (5.7), changing
to the variable 𝜉 and equalling the coefficients with similar degrees 𝜀 and 𝜇, we obtain a new
recurrent system of equations (5.8), a new recurrent system of equations for the functions
𝑣2+𝑘,1(𝜉), the first two of which possess the form:

𝜇−1 : ∆𝑣2,1 = 𝑉 𝑣0,0, (5.12)

𝜀𝜇−1 : ∆𝑣3,1 = (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷)) 𝑣2,1 + 𝑉 𝑣1,0 (5.13)

and supplementary demands for these functions (instead of the conditions (5.9)):

𝜀𝑖𝜇−2 : 𝑉 (𝜉)𝑣𝑖,1(𝜉) = 0, 𝑖 > 2. (5.14)

It is apparent, that the equalities (5.14) are not satisfied. And to substitute these equalities for
the equations of the type (5.12), (5.13) in the internal expansion (5.11), we should supplement
the summands 𝜇−2𝜀𝑖+2𝑣𝑖+2,2 (similarly to that with the equalities (5.10)). These new summands
in their turn result in demands of the form (5.9), (5.14) when 𝜇−3𝜀𝑖, 𝑖 > 4, for which eliminating
we should introduce the summands 𝜇−3𝜀𝑖+2𝑣𝑖+2,3 and etc. Therefore the internal expansion in
natural to be searched in the form

𝜓𝑖𝑛
𝑜𝑑𝑑(𝜉, 𝜇, 𝜀) =𝜓𝑖𝑛,1

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =
∞∑︁
𝑖=0

𝜀𝑖𝑣𝑖,0(𝜉)

+ 𝜀2𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝑣2+𝑖,𝑗+1(𝜉), if 𝜓0(0) ̸= 0.

(5.15)

Substituting 𝜆𝜇,𝜀 = 𝜆0, (4.1) and (5.15) (instead of (5.11)) into the equation (5.7), changing
to the variable 𝜉 and equalling the coefficients with 𝜀𝑘𝜇−𝑙, we obtain with 𝑙 = 0 the system
of equations (5.8), and when 𝑙 = 𝑗 + 1 > 1 we obtain a recurrent system of equations for the
functions 𝑣2+𝑘,𝑗+1(𝜉), the first two of which (with the fixed 𝑗 > 0) have the form

𝜀2𝑗𝜇−𝑗−1 : ∆𝑣2𝑗+2,𝑗+1 = 𝑉 𝑣2𝑗,𝑗, (5.16)

𝜀2𝑗+1𝜇−𝑗−1 : ∆𝑣2𝑗+3,𝑗+1 = (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷)) 𝑣2𝑗+2,𝑗+1 + 𝑉 𝑣2𝑗+1,𝑗, (5.17)

including, in particular, when 𝑗 = 0 the equations (5.12), (5.13).
In the strength of th the equalities (5.10) and the Lemmas 4.6, 4.7 the functions

𝑣2𝑗+2,𝑗+1(𝜉) = 𝜓0(0)𝑧
(𝑗+1)
0 (𝜉), 𝑗 > 0, (5.18)

are the solutions of the equations (5.16).

Remark 5.3 (the case 𝜓0(0) = 0). If 𝜓0(0) = 0, then again on the strength of the equalities
(5.10) and the Lemmas 4.6, 4.7 the functions

𝑣2𝑗+2,𝑗+1(𝜉) ≡ 0, 𝑣2𝑗+3,𝑗+1(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑧(𝑗+1)

𝑚 (𝜉), 𝑗 > 0,

if 𝜓0(0) = 0,

(5.19)

are the solutions of the equations (5.16), (5.17).
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It results from (5.10), (5.19) and (5.15), in particular, that

𝜓𝑖𝑛
𝑜𝑑𝑑(𝜉, 𝜇, 𝜀) =𝜓𝑖𝑛,2

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =
∞∑︁
𝑖=1

𝜀𝑖𝑣𝑖,0(𝜉)

+ 𝜀3𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝑣3+𝑖,𝑗+1(𝜉), if 𝜓0(0) = 0.

(5.20)

Remark 5.4 (on evenness 𝑛). Let us emphasize, that the described above algorithm does
not depend on oddness 𝑛. The further matching of the internal and the external asymptotic
expansions of the eigenfunctions of the operator ℋ𝜇,𝜀, presented below, shows, that the internal
asymptotic expansion really possesses the form (5.15), (5.20), (5.10), (5.18), (5.19) for odd 𝑛,
but possesses a more bulky structure for even 𝑛, unlike (5.15), (5.20). The case of an even 𝑛
is studied below in the section 10.

6. Derivation of the structure of the external asymptotic expansion of
the eigenfunction and the asymptotics of the characteristic constant in

case of an odd-dimensional domain

Temporarily we consider unidentified coefficients in (5.15) and (5.20) equal to zero, i.e. we
suppose, that

𝜓𝑖𝑛,1
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑖=0

𝜀𝑖𝑣𝑖,0(𝜉) +
∞∑︁
𝑗=0

𝜀2𝑗+2𝜇−𝑗−1𝑣2𝑗+2,𝑗+1(𝜉), 𝜓0(0) ̸= 0,

𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑖=1

𝜀𝑖𝑣𝑖,0(𝜉) +
∞∑︁
𝑗=0

𝜀2𝑗+3𝜇−𝑗−1𝑣2𝑗+3,𝑗+1(𝜉), 𝜓0(0) = 0.

(6.1)

Then, substituting coefficients in (6.1) the coefficients 𝑣𝑖,0, 𝑣2𝑗+2,𝑗+1 and 𝑣2𝑗+3,𝑗+1 into their
asymptotics when 𝜌→ ∞ and rewriting the obtained sum in variables 𝑥, subject to the equal-
ities (5.10), (5.18), (5.19) and statements of Lemmas 4.6, 4.7 we obtain, that

𝜓𝑖𝑛,1
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑘=0

𝑃𝑘(𝑥) + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜙
(1)
𝑛+𝑖,𝑗+1(𝑥)

+ 𝛿2𝑛𝑑1(𝜇, 𝜀) ln 𝜀, 𝜓0(0) ̸= 0,

𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑘=1

𝑃𝑘(𝑥) + 𝜀𝑛+1𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜙
(2)
𝑛+𝑖+1,𝑗+1(𝑥)

+ 𝛿2𝑛𝑑2(𝜇, 𝜀) ln 𝜀, 𝜓0(0) = 0,

(6.2)

where (we should remind) 𝛿𝑞𝑝 is the Kronecker delta,

𝑑1(𝜇, 𝜀) =𝜀2𝜇−1𝜓0(0)
∞∑︁
𝑗=0

𝜀2𝑗𝜇−𝑗𝑐
(𝑗+1)
0,0 ,

𝑑2(𝜇, 𝜀) =𝜀3𝜇−1

∞∑︁
𝑗=0

𝜀2𝑗𝜇−𝑗

2∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 ,

𝜙
(1)
2+2𝑗,𝑗+1(𝑥) = − 𝜓0(0)𝑐

(𝑗+1)
0,0 ln 𝑟, 𝑗 > 0, 𝑛 = 2,

𝜙
(2)
2+2𝑗+1,𝑗+1(𝑥) = −

2∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 ln 𝑟, 𝑗 > 0, 𝑛 = 2,

(6.3)
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𝜙
(1)
𝑛+2𝑗,𝑗+1(𝑥) =𝜓0(0)𝑐

(𝑗+1)
0,0 𝑟−𝑛+2, 𝑗 > 0, 𝑛 > 3,

𝜙
(2)
𝑛+2𝑗+1,𝑗+1(𝑥) =

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 𝑟−𝑛+2, 𝑗 > 0, 𝑛 > 3,

(6.4)

and 𝜙
(𝑠)
𝑛+𝑖+𝑞−1,𝑗+1(𝑥) with the remaining low indexes are finite sums of homogeneous functions

of the order not less than (−𝑛− 𝑖+ 2𝑗 + 2).

Remark 6.1 (on the case 𝑛 = 2). As for the summands 𝑑𝑞(𝜇, 𝜀) ln 𝜀 in (6.2) when 𝑛 = 2,
we plan to consider them below in the Remark 7.2. Until then we ignore them.

Following the method of matching of asymptotic expansions and considering the equalities
(6.2), (6.3), (6.4) and Remark 6.1, the external expansions is searched in the form

𝜓𝑒𝑥
𝑜𝑑𝑑(𝑥, 𝜇, 𝜀) =𝜓𝑒𝑥,1

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)

=𝜓0(𝑥) + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜓𝑛+𝑖,𝑗+1(𝑥), 𝜓0(0) ̸= 0,

𝜓𝑒𝑥
𝑜𝑑𝑑(𝑥, 𝜇, 𝜀) =𝜓𝑒𝑥,2

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)

=𝜓0(𝑥) + 𝜀𝑛+1𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜓𝑛+𝑖+1,𝑗+1(𝑥), 𝜓0(0) = 0,

(6.5)

where, in particular,

𝜓2+2𝑗,𝑗+1(𝑥) ∼− 𝜓0(0)𝑐
(𝑗+1)
0,0 ln 𝑟, 𝑗 > 0, 𝑛 = 2, 𝜓0(0) ̸= 0,

𝜓3+2𝑗,𝑗+1(𝑥) ∼−
2∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 ln 𝑟, 𝑗 > 0, 𝑛 = 2, 𝜓0(0) = 0,

𝜓𝑛+2𝑗,𝑗+1(𝑥) ∼𝜓0(0)𝑐
(𝑗+1)
0,0 𝑟−𝑛+2, 𝑗 > 0, 𝑛 > 3, 𝜓0(0) ̸= 0,

𝜓𝑛+2𝑗+1,𝑗+1(𝑥) ∼
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 𝑟−𝑛+2, 𝑗 > 0, 𝑛 > 3, 𝜓0(0) = 0,

(6.6)

when 𝑟 → 0.
Since the external expansion should describe behaviour of the eigenfunction almost in all the

domain Ω (except fort he small neighbourhood of the zero), then by analogy with (6.5) (and
subject to Remark 6.1) the asymptotics of the characteristic constant is natural to be searched
in the form

𝜆𝑜𝑑𝑑(𝜇, 𝜀) = 𝜆1𝑜𝑑𝑑(𝜇, 𝜀) = 𝜆0 + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜆𝑛+𝑖,𝑗+1, 𝜓0(0) ̸= 0, (6.7)

𝜆𝑜𝑑𝑑(𝜇, 𝜀) =𝜆2𝑜𝑑𝑑(𝜇, 𝜀)

=𝜆0 + 𝜀𝑛+1𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜆𝑛+𝑖+1,𝑗+1, 𝜓0(0) = 0.
(6.8)

Remark 6.2 (on the structure of the asymptotics of the characteristic constant). For the odd
𝑛 the series (6.7) has the form (2.1), but in the critical case 𝜓0(0) = 0 the form of the series
(6.8) differs from the form of the series (2.6). For the series (6.8) to possess the form (2.6) we
need only the equalities 𝜆𝑛+2𝑗+1,𝑗+1 = 0. Consideration of this equality satisfying are presented
below in Remark 7.1.
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7. Derivation of equations for the coefficients of asymptotic expansions
in case of an odd-dimensional domain

Since the external expansion is considered outside the neighbourhood of the origin of coordi-
nates and 𝐻0 = 𝐻𝜇,𝜀 outside the neighbourhood of the origin of coordinates, then substituting
into the equation

𝐻0𝜓
𝜇,𝜀 = 𝜆𝜇,𝜀𝜓𝜇,𝜀 (7.1)

the series (6.5), (6.7), (6.8) and equalling the coefficients with similar degrees 𝜀 and 𝜇, we
obtain a fortiori satisfying equation (5.3) and a recurrent system of equations in Ω∖{0} for the
remaining coefficients of the external expansion (6.5):

𝜀𝑛+𝑖𝜇−1 : (𝐻0 − 𝜆0)𝜓𝑛+𝑖,1 = 𝜆𝑛+𝑖,1𝜓0, 𝑖 > 0,

𝜀𝑛+𝑖+2𝑗𝜇−1−𝑗 : (𝐻0 − 𝜆0)𝜓𝑛+𝑖+2𝑗,𝑗+1 = 𝜆𝑛+𝑖+2𝑗,𝑗+1𝜓0, 0 6 𝑖 6 𝑛− 3,

(𝐻0 − 𝜆0)𝜓𝑛+𝑖+2𝑗,𝑗+1 = 𝜆𝑛+𝑖+2𝑗,𝑗+1𝜓0

+
𝑖−𝑛+2∑︁
𝑘=0

𝑗−1∑︁
𝑠=0

𝜆𝑛+𝑘+2𝑠,𝑠+1𝜓𝑖−𝑘+2(𝑗−𝑠),𝑗−𝑠,

𝑖 > 𝑛− 2, 𝑗 > 1,

(7.2)

where

𝜓𝑛+2𝑗,𝑗+1(𝑥) = 𝜆𝑛+2𝑗,𝑗+1 = 0, if 𝜓0(0) = 0, (7.3)

on the strength of (6.5) and (6.8).

Remark 7.1 (on the structure of asymptotics of the characteristic constant in the case 𝜓0(0) = 0).
From (7.2), (7.3) we obtain the following equality:

𝐻0𝜓𝑛+2𝑗+1,𝑗+1 =𝜆0𝜓𝑛+2𝑗+1,𝑗+1 + 𝜆𝑛+2𝑗+1,𝑗+1𝜓0, 𝜓0(0) = 0, (7.4)

when 𝑗 > 0. On the strength of Lemmas 4.4, 4.5 the functions

𝜓𝑛+2𝑗+1,𝑗+1(𝑥) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 𝐸0(𝑥), 𝑗 > 0, 𝜓0(0) = 0, (7.5)

possess the asymptotics (6.6) and are solutions of the equations (7.4) when

𝜆𝑛+2𝑗+1,𝑗+1 =0, 𝑗 > 0, if 𝜓0(0) = 0. (7.6)

Subject to the equalities (7.6), firstly, the series (6.8) already takes the form (2.6) for the odd
𝑛, and secondly, in the equations (7.2) the condition (7.3) is substituted by the following:

𝜓2+2𝑗,𝑗+1(𝑥) = 𝜆2+2𝑗,𝑗+1 = 𝜆3+2𝑗,𝑗+1 = 0 when 𝜓0(0) = 0 (7.7)

for the coefficients of the external expansion.
Certainly, even from the position of construction of complete formal asymptotic expansions

of characteristic constants and the corresponding eigenfunctions the equalities (7.7) still remain
expected and reliable. The verification of validity of the equality (7.7) in this sense is presented
in the next section 8 with the construction of complete formal asymptotic expansions (see, for
instance, the conclusion of the equality (8.13)).

Remark 7.2 (on evenness 𝑛). Let us again emphasize, that the presented above algorithm
still does not depend on evenness-oddness 𝑛 > 3. The further matching of the internal and
the external asymptotic expansions of the eigenfunctions of the operator ℋ𝜇,𝜀, presented below,
demonstrates, that the external asymptotic expansion really possesses the form (6.5) for odd 𝑛.
Though for even 𝑛 the situations complicates. For instance, to match in (6.2)the summands,
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containing ln 𝜀 when 𝑛 = 2, in the internal expansions (5.15) for 𝜓𝑖𝑛,1
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) and (5.20) for

𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) it is necessary to supplement summands containing ln 𝜀:

ln 𝜀 𝑑1(𝜇, 𝜀), ln 𝜀 𝑑2(𝜇, 𝜀)

correspondingly. A similar situation occurs at the following stages of matching of asymptotic
expansions and for even 𝑛 > 4, as, for instance, the asymptotics in the zero of the function
𝐸0(𝑥) from the equalities (7.5) contains with even 𝑛 logarithmic terms. The derivation of the
structure of complete asymptotic expansions of characteristic constant is presented below in
section 10.

In the conclusion of the section let us derive equations for the coefficients of the internal
expansion. Substituting series (5.15), (5.20), (6.7) and (6.8) into the equation

𝐻𝜇,𝜀𝜓
𝜇,𝜀 = 𝜆𝜇,𝜀𝜓𝜇,𝜀,

changing in it to the internal variables 𝜉 and writing the equalities with similar degrees 𝜀 and 𝜇,
we obtain for the coefficients of internal expansions equations (5.8), satisfied for the functions
defined by the equalities (5.10) and the equations

∆𝑣2𝑗+2,𝑗+1 =𝑉 𝑣2𝑗,𝑗,

∆𝑣2𝑗+3,𝑗+1 = (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷)) 𝑣2𝑗+2,𝑗+1 + 𝑉 𝑣2𝑗+1,𝑗,

∆𝑣𝑖+4+2𝑗,𝑗+1 =
𝑖∑︁

𝑞=2

(︀
𝑄𝑞,2(𝜉,𝐷) +𝑄𝑞−1,1(𝜉,𝐷)

+𝑄𝑞−2,0(𝜉,𝐷)
)︀
𝑣𝑖+4−𝑞+2𝑗,𝑗+1

+ (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷)) 𝑣𝑖+3+2𝑗,𝑗+1 + 𝑉 𝑣𝑖+2𝑗+2,𝑗

− 𝜆0𝑣𝑖+2𝑗+2,𝑗+1, 𝑖 < 𝑛,

∆𝑣𝑖+4+2𝑗,𝑗+1 =
𝑖∑︁

𝑞=2

(︀
𝑄𝑞,2(𝜉,𝐷) +𝑄𝑞−1,1(𝜉,𝐷)

+𝑄𝑞−2,0(𝜉,𝐷)
)︀
𝑣𝑖+4−𝑞+2𝑗,𝑗+1

+ (𝑄1,2(𝜉,𝐷) +𝑄0,1(𝜉,𝐷)) 𝑣𝑖+3+2𝑗,𝑗+1 + 𝑉 𝑣𝑖+2𝑗+2,𝑗

−
𝑖−𝑛∑︁
𝑝=0

𝑗∑︁
𝑙=0

𝑣𝑝+2𝑙,𝑙𝜆𝑖+2(𝑗−𝑙)−𝑝+2,𝑗−𝑙+1

− 𝜆0𝑣𝑖+2𝑗+2,𝑗+1, 𝑖 > 𝑛, 𝑗 > 0,

(7.8)

where

𝑣2𝑗+2,𝑗+1(𝜉) = 𝜆𝑛+2𝑗+2,𝑗+1 = 𝜆𝑛+1+2𝑗+2,𝑗+1 = 0, if 𝜓0(0) = 0. (7.9)

on the strength of (5.19), (7.7).

8. Construction of complete formal asymptotic expansions
in case of odd-dimensional domain

We determine operators 𝒦𝑞,𝑚 and 𝒦 in the series 𝑈(𝑥, 𝜀, 𝜇) of the form (6.5) the following
way. We decompose coefficients of the series 𝑈(𝑥, 𝜀, 𝜇) into the series when 𝑟 → 0 and change
to the variables 𝜉. In the series obtained we save only terms of the form 𝜀𝑞𝜇−𝑚Φ(𝜉). We denote
this series by 𝒦𝑞,𝑚(𝑈(𝑥, 𝜀, 𝜇)) and assume

𝒦 =
∑︁
𝑞,𝑚

𝒦𝑞,𝑚.
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We construct the coefficients of the asymptotics of the characteristic constant and the external
expansion of the eigenfunction in the following form

𝜆𝑛+𝑖+2𝑗,𝑗+1 =
𝑖∑︁

𝑡=0

Λ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1, 𝑗 > 0, (8.1)

𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥) =
𝑖∑︁

𝑡=0

Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1(𝑥), 𝑗 > 0. (8.2)

Let us denote

Φ
(𝑁)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) :=

min{𝑖,𝑁}∑︁
𝑡=0

Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1(𝑥).

In these notations Φ
(𝑁)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) = 𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥) when 𝑁 > 𝑖 on the strength of (8.2). We

denote by Φ𝑒𝑥
𝑜𝑑𝑑,𝑁(𝑥, 𝜇, 𝜀) series of the form (6.5), where the coefficients 𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥) are sub-

stituted for Φ
(𝑁)
𝑛+𝑖+2𝑗,𝑗+1(𝑥).

The validity of the following statement results from the definition 𝒜𝑚, 𝒜𝑚, ̃︀ℬ𝑚, 𝒦𝑚,𝑙, 𝒦,
Φ𝑒𝑥

𝑜𝑑𝑑,𝑁(𝑥, 𝜇, 𝜀) and (8.1), (8.2).

Lemma 8.1. If the coefficients 𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥) of the series (6.5) belong to 𝒜𝑖, then

𝒦(𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)) = Ψ𝑖𝑛,𝑠

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀),

where Ψ𝑖𝑛,𝑠
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) are series of the form (5.15), (5.20), in which the coefficients 𝑣2+𝑖,𝑗+1(𝜉) are

substituted for the series 𝑉2+𝑖,𝑗+1(𝜉) ∈ ̃︀ℬ𝑖−2𝑗.

If Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) ∈ 𝒜𝑖−𝑡, then the functions 𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥), determined by the equality (8.2),

belong to 𝒜𝑖 the following equalities take place:

𝑉2𝑗+2+𝑡,𝑗+1(𝜉) = ̃︀𝑉2𝑗+2+𝑡,𝑗+1(𝜉) +
∞∑︁
𝑘=0

𝑍
(2𝑗+2+𝑡,𝑗+1)
𝑘 (𝜉)𝜌−𝑛+2−2𝑘,

where ̃︀𝑉2𝑗+2,𝑗+1(𝜉) ≡0,̃︀𝑉2𝑗+2+𝑡,𝑗+1(𝜉) =𝜀−2𝑗−2−𝑡𝜇𝑗+1𝒦2𝑗+2+𝑡,𝑗+1

(︀
Φ𝑒𝑥

𝑜𝑑𝑑,𝑡−1(𝑥, 𝜇, 𝜀)
)︀
∈ ̃︀ℬ𝑡, 𝑡 > 1,

(i.e. ̃︀𝑉2𝑗+2+𝑡,𝑗+1 do not depend on Ψ
(𝑚)
𝑝,𝑞 when 𝑚 > 𝑡 − 1), and 𝑍

(2𝑗+2+𝑡,𝑗+1)
𝑘 𝑟−𝑛+2−2𝑘 is the

dominant term of the asymptotics Ψ
(𝑡)
𝑛+2𝑗−𝑡+𝑘,𝑗+1 in the zero.

If, meanwhile, the functions Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) are in Ω∖{0} the solutions of the equations

(𝐻0 − 𝜆0) Ψ
(𝑡)
𝑛+𝑖,1 =Λ

(𝑡)
𝑛+𝑖,1𝜓0, 𝑖 > 0,

(𝐻0 − 𝜆0) Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1 =Λ

(𝑡)
𝑛+𝑖+2𝑗,𝑗+1𝜓0, 0 6 𝑖 6 𝑛− 3,

(𝐻0 − 𝜆0) Ψ
(𝑡)
𝑛+𝑖+2𝑗,𝑗+1 =Λ

(𝑡)
𝑛+𝑖+2𝑗,𝑗+1𝜓0

+
𝑖−𝑛+2∑︁
𝑘=0

𝑗−1∑︁
𝑠=0

𝑡∑︁
𝑝=0

Λ
(𝑝)
𝑛+𝑘+2𝑠,𝑠+1Ψ

(𝑡−𝑝)
𝑖−𝑘+2(𝑗−𝑠),𝑗−𝑠,

𝑖 > 𝑛− 2, 𝑗 > 1,

(8.3)

then the functions 𝜓𝑛+𝑖+2𝑗,𝑗+1(𝑥), determined by the equalities (8.2), are the solutions of the

equations (7.2) where 𝜆𝑛+𝑖+2𝑗,𝑗+1, determined by the equalities (8.1), the series ̃︀𝑉2𝑗+2+𝑡,𝑗+1 are
formal asymptotic solutions of the equations (7.8) when 𝜌 → ∞, where in the first side of the
function 𝑣𝑚,𝑞(𝜉) are substituted by the series 𝑉𝑚,𝑞(𝜉) when 𝑞 > 0.
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Theorem 8.1. Let 𝑛 be odd, 𝜆0 be a simple characteristic constant of the operator ℋ0, 𝜓0

be the corresponding normalized in 𝐿2(Ω) eigenfunction.
Therefore there exist series (2.1), (2.6), (6.5), (5.15) and (5.20) such that:

1) the equalities (2.2), (2.3), (2.4), (2.7) hold;
2) the functions 𝜓𝑛+2𝑗+𝑖,𝑗+1 ∈ 𝒜𝑖 are the solutions of the equations (7.2), (7.7);
3) the functions 𝑣𝑖,0 are determined by the equalities (5.10), and the functions 𝑣2𝑗+2+𝑖,𝑗+1 ∈ ℬ𝑖

are the solutions of the equations (7.8), (7.9);
4) the following equality holds

𝒦(𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)) = 𝜓𝑖𝑛,𝑠

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀), 𝜌→ ∞.

Proof. Subject to the statements of Lemma 8.1 to prove the theorem it is sufficient to show,
that the correct choice at the 𝑡 stage of the matching of the dominant terms of asymptotics in

the zero of the functions Ψ
(𝑡)
𝑛+2𝑗−𝑡+𝑘,𝑗+1(𝑥), enables to achieve the existence of the series (5.15),

(5.20) such that their coefficients 𝑣2𝑗+2+𝑡,𝑗+1(𝜉) ∈ ℬ𝑡 are the solutions of the equations (7.8),
(7.9) and possess with 𝜌→ ∞ the asymptotics 𝑉2𝑗+2+𝑡,𝑗+1 from the formulation of Lemma 8.1.

Let us start with the definition Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥). As is has been shown above (see, (5.10),

(5.8), (5.18), (5.16) ) the functions

𝑣0,0 ≡ 𝜓(0), 𝑣2𝑗+2,𝑗+1(𝜉) = 𝜓0(0)𝑧
(𝑗+1)
0 (𝜉) ∈ ℬ0, 𝑗 > 0, (8.4)

are the solutions of the equations (5.8) and (7.8) (in the first line) and due to Lemmas 4.6, 4.7
they have with 𝜌→ ∞ the following asumptotics

𝑉2𝑗+2,𝑗+1(𝜉) = 𝜓0(0)

(︃
𝑐
(𝑗+1)
0,0 𝜌2−𝑛 +

𝑛∑︁
𝑚=1

𝑐
(𝑗+1)
0,𝑚 𝜉𝑚𝜌

−𝑛 +
∞∑︁
𝑘=2

𝑌𝑘(𝜉)𝜌−2𝑘−𝑛+2

)︃
.

Whence on the strength of Lemma 8.1 we obtain the dominant terms of the asymptotics in the

zero for the functions Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥):

Ψ
(0)
𝑛+2𝑗,𝑗+1(𝑥) ∼𝜓0(0)𝑐

(𝑗+1)
0,0 𝑟2−𝑛,

Ψ
(0)
𝑛+2𝑗+1,𝑗+1(𝑥) ∼𝜓0(0)

𝑛∑︁
𝑚=1

𝑐
(𝑗+1)
0,𝑚 𝑥𝑚𝑟

−𝑛,

Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) ∼𝜓0(0)𝑌𝑘(𝑥)𝑟−2𝑘−𝑛+2, 𝑘 > 2.

(8.5)

On the strength of Lemma 4.2 there are the functions Ψ
(0)
𝑛+2𝑗+𝑞,𝑗+1(𝑥) ∈ 𝒜𝑞, possessing the

required asymptotics in the zero and satisfying the equations (8.3) when some Λ
(0)
𝑛+2𝑗+𝑞,𝑗+1.

Consequently, in particular, we verify the suppositions (2.1) and (6.5) for the case 𝜓0(0) ̸= 0.
Besides, firstly, the functions

Ψ
(0)
𝑛+2𝑗,𝑗+1(𝑥) =𝜓0(0)𝑐

(𝑗+1)
0,0 𝐸0(𝑥),

Ψ
(0)
𝑛+2𝑗+1,𝑗+1(𝑥) =𝜓0(0)

𝑛∑︁
𝑚=1

𝑐
(𝑗+1)
0,𝑚 𝐸𝑚(𝑥)

(8.6)

possess the required asymptotics (8.5) and satisfy the equations (8.3) when

Λ
(0)
𝑛+2𝑗,𝑗+1 = 𝜓0(0)𝑐

(𝑗+1)
0,0 Λ0, Λ

(0)
𝑛+2𝑗+1,𝑗+1 = 𝜓0(0)

𝑛∑︁
𝑚=1

𝑐
(𝑗+1)
0,𝑚 Λ𝑚 (8.7)

on the strength of Lemma 4.4, and secondly, the following presentations are apparent

Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) =𝜓0(0)̃︀Ψ(0)

𝑛+2𝑗+𝑘,𝑗+1(𝑥),

Λ
(0)
𝑛+2𝑗+𝑘,𝑗+1 =𝜓0(0)̃︀Λ(0)

𝑛+2𝑗+𝑘,𝑗+1, 𝑘 > 2.
(8.8)
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Remark 8.1 (derivation of the formulae (2.2) and (2.3)). On the strength of (8.1), (8.2),
(8.6) and (8.7) we obtain, that

𝜆𝑛+2𝑗,𝑗+1 = 𝜓0(0)𝑐
(𝑗+1)
0,0 Λ0, 𝜓𝑛+2𝑗,𝑗+1(𝑥) = 𝜓0(0)𝑐

(𝑗+1)
0,0 𝐸0(𝑥) ∈ 𝒜0. (8.9)

Substituting into these equalities for 𝜆𝑛,1 and 𝜆𝑛+2,2 values of the constants Λ0, 𝑐
(1)
0,0 and 𝑐

(2)
0,0

from Lemmas 4.4, 4.6, 4.7 we obtain the equalities (2.2) and (2.3).

Remark 8.2 (the case 𝜓0(0) = 0). On the strength of (8.5)–(8.8), (8.9) and the presenta-
tions (8.1), (8.2) we sequentially obtain, that

Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) = Λ

(0)
𝑛+2𝑗+𝑘,𝑗+1 =0, 𝑘 > 1,

𝜆𝑛+2𝑗,𝑗+1 = 𝜓𝑛+2𝑗,𝑗+1(𝑥) =0 if 𝜓0(0) = 0.
(8.10)

Consequently, in particular, the presentation (6.5) is verified also for the case 𝜓0(0) = 0, and
on the strength of Lemma 8.1 the following equality holds̃︀𝑉2𝑗+3,𝑗+1(𝜉) ≡ 0.

The next stage is (𝑡 = 1). Due to Lemma 8.1 we obtain, that the series̃︀𝑉2𝑗+3,𝑗+1(𝜉) = 𝜀−2𝑗−3𝜇𝑗+1𝒦2𝑗+3,𝑗+1

(︀
Φ𝑒𝑥

𝑜𝑑𝑑,0(𝑥, 𝜇, 𝜀)
)︀
∈ ̃︀ℬ1

are asymptotic solutions when 𝜌 → ∞ of the second equations in (7.8), where in the right
side the functions 𝑣2𝑞+2,𝑞+1 are substituted for their asymptotics 𝑉2𝑞+2,𝑞+1 when 𝜌 → ∞, and
𝑣1,0 = 𝑃1. Due to Lemma 4.8 the are the functions 𝑣2𝑗+3,𝑗+1 ∈ ℬ1, which are the solutions of
the second equations in (7.8) and possess with 𝜌→ ∞ the asymptotics 𝑉2𝑗+3,𝑗+1, such that

𝑉2𝑗+3,𝑗+1(𝜉) = ̃︀𝑉2𝑗+3,𝑗+1(𝜉) +
∞∑︁
𝑘=0

𝑍𝑘(𝜉)𝜌−𝑛+2−2𝑘. (8.11)

Whence due to Lemma 8.1 we obtain the dominant terms of the asymptotics in the zero for

the functions Ψ
(1)
𝑛+2𝑗+1+𝑘,𝑗+1(𝑥):

Ψ
(1)
𝑛+2𝑗+1+𝑘,𝑗+1(𝑥) ∼𝑍𝑘(𝑥)𝑟−𝑛+2−2𝑘, 𝑘 > 0. (8.12)

On the strength of Lemma 4.2 there exist the functions Ψ
(1)
𝑛+2𝑗+1+𝑘,𝑗+1(𝑥) ∈ 𝒜𝑘, possessing the

required asymptotics in the zero and satisfying the equations (8.3) when some Λ
(1)
𝑛+2𝑗+1+𝑘,𝑗+1.

And since at the previous stage there were Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) ∈ 𝒜𝑘 and Λ

(0)
𝑛+2𝑗+𝑘,𝑗+1 determined,

then in compliance with (8.1), (8.2) the coefficients 𝜆𝑛+2𝑗+1,𝑗+1 and 𝜓𝑛+2𝑗+1,𝑗+1(𝑥) ∈ 𝒜1 are
finally determined.

Remark 8.3 (the case 𝜓0(0) = 0). Let us note, that

Λ
(1)
𝑛+2𝑗+1,𝑗+1 = 0, if 𝜓0(0) = 0

due to (8.12) and Lemma 4.4. It results from this simple equality and (8.10), (8.1), that

𝜆𝑛+2𝑗+1,𝑗+1 = 𝜆𝑛+2𝑗,𝑗+1 = 0, if 𝜓0(0) = 0. (8.13)

Therefore the presentation (2.6) has been verified.
To obtain at the next stage the equality (2.7) for 𝜆𝑛+2,1 in the critical case 𝜓0(0) = 0, let us

note, that

𝑣0,0(𝜉) = 𝑣2,1(𝜉) ≡ 0, 𝑣1,0(𝜉) =
𝑛∑︁

𝑗=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚, if 𝜓0(0) = 0
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(see, (5.10), (8.4)). Therefore the equation (7.8) for 𝑣3,1(𝜉) (the second when 𝑗 = 0) takes the
form

∆𝑣3,1 = 𝑉 𝑣1,0 = 𝑉 (𝜉)
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚. (8.14)

Due to Lemma 4.6 the function

𝑣3,1(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑧(1)𝑚 (𝜉) (8.15)

is the solution of this equation and when 𝜌→ ∞ it possesses the following asymptotic expansion
𝑉3,1(𝜉):

𝑉3,1(𝜉) =𝜌2−𝑛

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,0

+
𝑛∑︁

𝑚=1

𝑛∑︁
𝑘=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,𝑘𝜉𝑘𝜌

−𝑛 +𝑂(𝜌−𝑛), if 𝜓0(0) = 0.

(8.16)

It results from (8.11), (8.12)and (8.16), that

Ψ
(1)
𝑛+2,1(𝑥) ∼

𝑛∑︁
𝑚=1

𝑛∑︁
𝑘=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,𝑘𝑥𝑘𝑟

−𝑛. (8.17)

Due to Lemma 4.4 the function

Ψ
(1)
𝑛+2,1(𝑥) =

𝑛∑︁
𝑚=1

𝑛∑︁
𝑘=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,𝑘𝐸𝑘(𝑥)

possesses the asymptotics (8.17) in the zero and is the solution of the equation (8.3) when

Λ
(1)
𝑛+2,1 =

𝑛∑︁
𝑚=1

𝑛∑︁
𝑘=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,𝑘Λ𝑘. (8.18)

Let us proceed to the next stage (𝑡 = 2). Due to Lemma 8.1 we obtain, that the series̃︀𝑉2𝑗+4,𝑗+1(𝜉) = 𝜀−2𝑗−4𝜇𝑗+1𝒦2𝑗+4,𝑗+1

(︀
Φ𝑒𝑥

𝑜𝑑𝑑,1(𝑥, 𝜇, 𝜀)
)︀
∈ ̃︀ℬ2

are the asymptotic solutions when 𝜌→ ∞ of the equation (7.8), where the functions 𝑣2𝑗+3,𝑗+1(𝜉)
are substituted for their asymptotics 𝑉2𝑗+3,𝑗+1(𝜉), and when 𝑗 > 0 and the functions and
𝑣2𝑗+2,𝑗(𝜉) are substituted for their asymptotics 𝑉2𝑗+2,𝑗(𝜉). Due to Lemma 4.8 there exist the
functions 𝑣2𝑗+4,𝑗+1(𝜉) ∈ ℬ2 which are the solutions of the equations (7.8) and possess when
𝜌→ ∞ the following asymptitics 𝑉2𝑗+4,𝑗+1(𝜉):

𝑉2𝑗+4,𝑗+1(𝜉) = ̃︀𝑉2𝑗+4,𝑗+1(𝜉) +
∞∑︁
𝑘=0

𝑍
(2𝑗+4,𝑗+1)
𝑘 (𝜉)𝜌−𝑛+2−2𝑘.

Whence on the strength of Lemma 8.1 we obtain the dominant terms of the asymptotics in the

zero for the functions Ψ
(2)
𝑛+2𝑗+2+𝑘,𝑗+1(𝑥):

Ψ
(2)
𝑛+2𝑗+2+𝑘,𝑗+1(𝑥) ∼𝑍(2𝑗+4,𝑗+1)

𝑘 (𝑥)𝑟−𝑛+2−2𝑘, 𝑘 > 0.

On the strength of Lemma 4.2 there exist the functions Ψ
(1)
𝑛+2𝑗+2+𝑘,𝑗+1(𝑥) ∈ 𝒜𝑘, possessing the

required asymptotics in the zero and satisfying the equations (8.3) when some Λ
(2)
𝑛+2𝑗+2+𝑘,𝑗+1.

Since we have already determined Ψ
(0)
𝑛+2𝑗+𝑘,𝑗+1, Ψ

(1)
𝑛+2𝑗+1+𝑘,𝑗+1 ∈ 𝒜𝑘 and Λ

(0)
𝑛+2𝑗+𝑘,𝑗+1,

Λ
(1)
𝑛+2𝑗+1+𝑘,𝑗+1, then in compliance with (8.1), (8.2) the coefficients 𝜆𝑛+2𝑗+2,𝑗+1 and 𝜓𝑛+2𝑗+2,𝑗+1 ∈

𝒜2 are also finally determined.
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And on the same lines.

Remark 8.4 (derivation of the formula (2.7)). Let us note, that

Λ
(2)
𝑛+2,1 = 0, if 𝜓0(0) = 0 (8.19)

on the strength of (8.12) and Lemma 4.4. It results from (8.10), (8.18), (8.19) and (8.1), that

𝜆𝑛+2,1 =
𝑛∑︁

𝑚=1

𝑛∑︁
𝑘=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,𝑘Λ𝑘, if 𝜓0(0) = 0.

Substituting into the equality the values of the constants Λ𝑘 and 𝑐
(1)
𝑚,𝑘 from Lemmas 4.4, 4.6 we

obtain the equality (2.7).

Remark 8.5 (derivation of the formula (2.4)). If 𝐻0 = −∆ + 𝑎, then the equation (7.8) for
𝑣3,1(𝜉) once again takes the form (8.14). Its solution is determined by the equality (8.15) and
possesses when 𝜌→ ∞ the asymptotics (8.16). It results from (8.11), (8.12) and (8.16), that

Ψ
(1)
𝑛+1,1(𝑥) ∼𝑟2−𝑛

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,0, 𝑟 → 0.

Due to Lemma 4.4 the function

Ψ
(1)
𝑛+1,1(𝑥) =𝐸0(𝑥)

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,0.

possesses in the zero the required asymptotics and is the solution of the equation (8.3) when

Λ
(1)
𝑛+1,1 =Λ0

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,0. (8.20)

It results from (8.7), (8.20) and (8.1), that

𝜆𝑛+1,1 = 𝜓0(0)
𝑛∑︁

𝑚=1

𝑐
(1)
0,𝑚Λ𝑚 + Λ0

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(1)
𝑚,0.

Substituting into this equality the values of the constants Λ𝑘 and 𝑐
(1)
𝑚,𝑘 from Lemmas 4.4, 4.6 we

obtain the equality (2.4).

The Theorem has been completely proved.

Let us denote partial sums of the series 𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) and 𝜓𝑖𝑛,𝑠

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) up to the degrees 𝑀

by 𝜀 inclusive by ̂︀𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑,𝑀(𝑥, 𝜇, 𝜀) and ̂︀𝜓𝑖𝑛,𝑠

𝑜𝑑𝑑,𝑀(𝜉, 𝜇, 𝜀), correspondingly. And by ̂︀𝜆1𝑜𝑑𝑑,𝑀(𝜇, 𝜀) and̂︀𝜆2𝑜𝑑𝑑,𝑀(𝜇, 𝜀) we denote analogous partial sums of the series (2.1) and (2.6) correspondingly. it
results from the items 2)–4) of the proved Theorem 8.1, that

Corollary 3. The following equalities hold(︁
𝐻0 − ̂︀𝜆𝑠𝑜𝑑𝑑,𝑛+2𝑁(𝜇, 𝜀)

)︁ ̂︀𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑,𝑛+2𝑁(𝑥, 𝜇, 𝜀) =𝑂

(︂
𝒢𝑛(𝑟)

(︁(︀
𝜀𝑟−1

)︀2
+ 𝜀2𝜇−1

)︁𝑁−1
)︂

when 𝑟 → 0, 𝜀𝑟−1 → 0,(︁
𝐻𝜇,𝜀 − ̂︀𝜆𝑠𝑜𝑑𝑑,𝑛+2𝑁(𝜇, 𝜀)

)︁ ̂︀𝜓𝑖𝑛,𝑠
𝑜𝑑𝑑,2(𝑁+1)(𝜉, 𝜇, 𝜀) =𝑂

(︁
(𝜀𝜌)−1 (︀(𝜀𝜌)2 + 𝜀2𝜇−1

)︀𝑁)︁
when 𝜌→ ∞, 𝜀𝜌→ 0,̂︀𝜓𝑒𝑥,𝑠

𝑜𝑑𝑑,𝑛+2𝑁(𝑥, 𝜇, 𝜀) − ̂︀𝜓𝑖𝑛,𝑠
𝑜𝑑𝑑,2(𝑁+1)(𝜉, 𝜇, 𝜀) =𝑂

(︁(︀
𝑟2 + 𝜀2𝜇−1 + 𝜌−2

)︀𝑁)︁
when 𝑟 → 0, 𝜌→ ∞,
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meanwhile, the latter equality is differentiated by 𝑥𝑚 (subject to 𝜉 = 𝜀−1𝑥).

9. Construction of complete formal asymptotic expansions
in case of twofold characteristic constant 𝜆0 and the odd-dimensional

domain

In the above sections there was considered the case of the simple characteristic constant 𝜆0
under the construction of the asymptotic expansion of the characteristic constant when the
construction could be started not with the function 𝜓0(𝑥), but for instance, with the function
𝜓0(𝑥) + 𝜀𝑞𝐶𝜓0(𝑥) = (1 + 𝜀𝑞𝐶)𝜓0(𝑥) for any 𝑞 > 0 and 𝐶, that, apparently, due to the linearity
of the considered operators could result in the same asymptotics of the characteristic constant.
Therefore it was useless to start construction of the asymptotics with the similar functions. In
the case considered in the present section, when 𝜆0 is a twofold characteristic constant of the
operator ℋ0, the situation is different, as this characteristic constant is corresponded by the

two eigenfunctions 𝜓
(1)
0 (𝑥) and 𝜓

(2)
0 (𝑥). Therefore while constructing the asymptotic expansions

corresponding to the eigenfunctions of the operator ℋ𝜇,𝜀 which converge to the eigenfunctions

𝜓
(𝑠)
0 (𝑥), we start the construction with the following asymptotic series:

𝜓
(𝑠)
0 (𝑥) + 𝜀𝜓

(𝑠*)
0 (𝑥)

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝛼
(𝑠)
𝑖+1,𝑗𝜀

𝑖𝜇−𝑗, (9.1)

where 𝑠* = 2, if 𝑠 = 1 and, on the contrary, 𝑠* = 1, if 𝑠 = 2, and 𝛼
(𝑠)
𝑖+1,𝑗 are still arbitrary

constants.

Remark 9.1. The intuitive consideration of presence of the latter sums in (9.5) (their va-
lidity is seen from the further matching of the asymptotic expansions of the eigenfunctions)
consists in the following observation: there is nothing restricting during the construction of

the internal expansion of the eigenfunction, converging to 𝜓
(1)
0 (𝑥) (to 𝜓

(2)
0 (𝑥)), to supplement

a function which is proportional to 𝜓
(2)
0 (𝑥) (proportional to 𝜓

(1)
0 (𝑥)) at every other stage of

construction.

While starting the construction of the asymptotic expansions with (9.1) and following the
method of matching of the asymptotic expansions (repeating the algorithm described in sec-

tion 5), we sequentially obtain first the functions 𝑣
(𝑠)
𝑝,0 and the dominant terms (at an increasing

rate of negative degrees 𝜇) of the internal expansions:

𝑣
(1)
0,0 ≡𝜓(1)

0 (0), 𝑣
(1)
𝑞,0(𝜉) = 𝑃 (1)

𝑞 (𝜉) + 𝛼
(1)
1,0𝑃

(2)
𝑞 (𝜉), 𝑞 > 1,

𝑣
(2)
1,0(𝜉) =

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝜉𝑚 + 𝛼

(2)
1,0𝜓

(1)
0 (0), 𝑣

(2)
𝑘,0(𝜉) = 𝑃

(2)
𝑘 (𝜉) + 𝛼

(2)
1,0𝑃

(1)
𝑘 (𝜉), 𝑘 > 2,

𝑣
(1)
2𝑗+2,𝑗+1(𝜉) =𝜓

(1)
0 (0)𝑧

(𝑗+1)
0 (𝜉), 𝑗 > 0, (9.2)

𝑣
(2)
2𝑗+3,𝑗+1(𝜉) =

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑧(𝑗+1)

𝑚 (𝜉)

+ 𝜓
(1)
0 (0)

(︃
𝑗∑︁

𝑘=0

𝛼
(2)
2𝑘+1,𝑘𝑧

(𝑗+1−𝑘)
0 (𝜉) + 𝛼

(2)
2𝑗+3,𝑗+1

)︃
, 𝑗 > 0;

(9.3)
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then of the internal asymptotic expansions:

𝜓𝑖𝑛,1
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑖=0

𝜀𝑖𝑣
(1)
𝑖,0 (𝜉) + 𝜀2𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝑣
(1)
2+𝑖,𝑗+1(𝜉),

𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) =

∞∑︁
𝑖=1

𝜀𝑖𝑣
(2)
𝑖,0 (𝜉) + 𝜀3𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝑣
(2)
3+𝑖,𝑗+1(𝜉)

(9.4)

(the analogue (5.15), (5.20)); then the supposed structures of the external asymptotic expan-
sions:

𝜓𝑒𝑥,1
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜓

(1)
0 (𝑥) + 𝜀𝑛𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜓
(1)
𝑛+𝑖,𝑗+1(𝑥)

+ 𝜀𝜓
(2)
0 (𝑥)

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝛼
(1)
𝑖+1,𝑗𝜀

𝑖𝜇−𝑗,

𝜓𝑒𝑥,2
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) = 𝜓

(2)
0 (𝑥) + 𝜀𝑛+1𝜇−1

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝜀𝑖𝜇−𝑗𝜓
(2)
𝑛+𝑖+1,𝑗+1(𝑥)

+ 𝜀𝜓
(1)
0 (𝑥)

∞∑︁
𝑗=0

∞∑︁
𝑖=2𝑗

𝛼
(2)
𝑖+1,𝑗𝜀

𝑖𝜇−𝑗,

(9.5)

(the analogue (6.5)) and the expected structures (2.10), (2.11) of the asymptotic expansions of
the characteristic constants (the analogue (2.1), (2.6)).

Substituting the series (2.10), (2.11), (9.5) into the equation (7.1) we obtain a fortiori holding
equations

𝐻0𝜓
(𝑠)
0 = 𝜆0𝜓

(𝑠)
0 in Ω

and recurrent systems of the equations in Ω∖{0} for the remaining coefficients of the external
expansions (9.5):

(𝐻0 − 𝜆0)𝜓
(𝑠)
𝑛+2𝑗,𝑗+1 =𝜆

(𝑠)
𝑛+2𝑗,𝑗+1𝜓

(𝑠)
0 , 𝑗 > 0

(𝐻0 − 𝜆0)𝜓
(𝑠)
𝑛+𝑖,1 =𝜆

(𝑠)
𝑛+𝑖,1𝜓

(𝑠)
0 + 𝜓

(𝑠*)
0

𝑖∑︁
𝑝=1

𝛼
(𝑠)
𝑝,0𝜆

(𝑠)
𝑛+𝑖−𝑝,1 𝑖 > 1,

(𝐻0 − 𝜆0)𝜓
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1 =𝜆

(𝑠)
𝑛+𝑖+2𝑗,𝑗+1𝜓

(𝑠)
0

+ 𝜓
(𝑠*)
0

𝑖∑︁
𝑝=1

𝑗∑︁
𝑞=0

𝛼
(𝑠)
2𝑞+𝑝,𝑞𝜆

(𝑠)
𝑛+𝑖−𝑝+2(𝑗−𝑞),𝑗−𝑞+1,

1 6 𝑖 6 𝑛− 3, 𝑗 > 1,

(𝐻0 − 𝜆0)𝜓
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1 =𝜆

(𝑠)
𝑛+𝑖+2𝑗,𝑗+1𝜓

(𝑠)
0

+
𝑖−𝑛+2∑︁
𝑘=0

𝑗−1∑︁
𝑞=0

𝜆
(𝑠)
𝑛+𝑘+2𝑞,𝑞+1𝜓

(𝑠)
𝑖−𝑘+2(𝑗−𝑞),𝑗−𝑞

+ 𝜓
(𝑠*)
0

𝑖∑︁
𝑝=1

𝑗∑︁
𝑞=0

𝛼
(𝑠)
2𝑞+𝑝,𝑞𝜆

(𝑠)
𝑛+𝑖−𝑝+2(𝑗−𝑞),𝑗−𝑞+1,

𝑖 > 𝑛− 2, 𝑗 > 1,

(9.6)

(the analogue (7.2)), where

𝜓
(2)
𝑛+2𝑗,𝑗+1(𝑥) = 𝜆

(2)
𝑛+2𝑗,𝑗+1 = 𝜆

(2)
𝑛+1+2𝑗,𝑗+1 = 0 (9.7)
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(the analogue (7.3), (8.13)).
Substituting the series (2.10), (2.11), (9.4) into the equation (7.1) we obtain for the coeffi-

cients of the internal expansions (9.4) the equations (7.8), in which the coefficients 𝑣𝑝,𝑞, 𝜆𝑘,𝑙 are

substituted for 𝑣
(𝑠)
𝑝,𝑞 , 𝜆

(𝑠)
𝑘,𝑙 , and the equality (7.9) is substituted for the following:

𝑣
(2)
0,0(𝜉) = 𝑣

(2)
2𝑗+2,𝑗+1(𝜉) = 𝜆

(2)
𝑛+2𝑗+2,𝑗+1 = 𝜆

(2)
𝑛+1+2𝑗+2,𝑗+1 = 0. (9.8)

Therefore below for the coefficients of the internal expansion we refer to the equations (7.8),
implying, that the indexes mentioned above are supplemented into them.

By analogy with the previous section the coefficients of the asymptotic expansions of the char-
acteristic constants and external expansions of the eigenfunctions we construct in the following
form

𝜆
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1 =

𝑖∑︁
𝑡=0

Λ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1, 𝑗, 𝑖 > 0, (9.9)

𝜓
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) =

𝑖∑︁
𝑡=0

Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥), 𝑗, 𝑖 > 0, (9.10)

𝛼
(𝑠)
2𝑗+𝑖,𝑗 =

𝑖∑︁
𝑡=0

𝛼
(𝑡,𝑠)
2𝑗+𝑡,𝑗, 𝑗, 𝑖 > 0, (9.11)

and denote by Φ𝑒𝑥,𝑠
𝑜𝑑𝑑,𝑁(𝑥, 𝜇, 𝜀) the series of the form (9.5), where 𝜓

(𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) and 𝛼

(𝑠)
2𝑗+𝑖,𝑗 are

substituted for

Φ
(𝑁,𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) =

min{𝑖,𝑁}∑︁
𝑡=0

Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥), 𝑗 > 0,

Θ
(𝑁,𝑠)
2𝑗+𝑖,𝑗+1 =

min{𝑖,𝑁}∑︁
𝑡=0

𝛼
(𝑡,𝑠)
2𝑗+𝑖,𝑗+1, 𝑗 > 0,

correspondingly.
For the further matching of the series 𝜓𝑒𝑥,𝑠

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) and 𝜓𝑖𝑛,𝑠
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) from (9.5) and (9.4) we

need the following analogue of Lemma 8.1, which validity also results from the definition 𝒜𝑚,

𝒜𝑚, ̃︀ℬ𝑚, 𝒦𝑚,𝑙, 𝒦, Φ𝑒𝑥,𝑠
𝑜𝑑𝑑,𝑁(𝑥, 𝜇, 𝜀) and (9.9), (9.10), (9.11).

Lemma 9.1. If the coefficients 𝜓
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) of the series (9.5) belong to 𝒜𝑖, then

𝒦(𝜓𝑒𝑥,𝑠
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)) = Ψ𝑖𝑛,𝑠

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀),

where Ψ𝑖𝑛,𝑠
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) are the series of the form (9.4), in which the coefficients 𝑣

(𝑠)
2+𝑖,𝑗+1(𝜉) are

substituted for the series 𝑉
(𝑠)
2+𝑖,𝑗+1(𝜉) ∈ ̃︀ℬ𝑖−2𝑗.

If Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) ∈ 𝒜𝑖−𝑡, then the function 𝜓

(𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥), determined by the equality (9.10),

belongs to 𝒜𝑖 and the following equalities take place:

𝑉
(𝑠)
2𝑗+2+𝑡,𝑗+1(𝜉) = ̃︀𝑉 (𝑠)

2𝑗+2+𝑡,𝑗+1(𝜉) +
∞∑︁
𝑘=0

𝑍
(2𝑗+2+𝑡,𝑗+1,𝑠)
𝑘 (𝜉)𝜌−𝑛+2−2𝑘,

where ̃︀𝑉 (𝑠)
2𝑗+2,𝑗+1(𝜉) ≡ 0,̃︀𝑉 (𝑠)

2𝑗+2+𝑡,𝑗+1(𝜉) =𝜀−2𝑗−2−𝑡𝜇𝑗+1𝒦2𝑗+2+𝑡,𝑗+1

(︀
Φ𝑒𝑥,𝑠

𝑜𝑑𝑑,𝑡−1(𝑥, 𝜇, 𝜀)
)︀
∈ ̃︀ℬ𝑡, 𝑡 > 1,

(i.e. ̃︀𝑉 (𝑠)
2𝑗+2+𝑡,𝑗+1 does not depend on Ψ

(𝑚,𝑠)
𝑝,𝑞 when 𝑚 > 𝑡− 1), and 𝑍

(2𝑗+2+𝑡,𝑗+1,𝑠)
𝑘 𝑟−𝑛+2−2𝑘 is the

dominant term of the asymptotics Ψ
(𝑡,𝑠)
𝑛+2𝑗−𝑡+𝑘,𝑗+1(𝑥) in the zero.
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If, meanwhile, the functions Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥) are in Ω∖{0} the solutions of the equations

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+2𝑗,𝑗+1 =Λ

(𝑡,𝑠)
𝑛+2𝑗,𝑗+1𝜓

(𝑠)
0 , 𝑗 > 0

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖,1 =Λ

(𝑡,𝑠)
𝑛+𝑖,1𝜓

(𝑠)
0 + 𝜓

(𝑠*)
0

𝑖∑︁
𝑝=1

𝛼
(𝑠)
𝑝,0Λ

(𝑡,𝑠)
𝑛+𝑖−𝑝,1 𝑖 > 1,

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖,1 =Λ

(𝑡,𝑠)
𝑛+𝑖,1𝜓0, 𝑖 > 0,

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1 =Λ

(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1𝜓0

+
𝑖−𝑛+2∑︁
𝑘=0

𝑗−1∑︁
𝑞=0

𝑡∑︁
𝑝=0

Λ
(𝑝,𝑠)
𝑛+𝑘+2𝑞,𝑞+1Ψ

(𝑡−𝑝,𝑠)
𝑖−𝑘+2(𝑗−𝑞),𝑗−𝑞

+ 𝜓
(𝑠*)
0

𝑖∑︁
𝑝=1

𝑗∑︁
𝑞=0

𝛼
(𝑠)
2𝑞+𝑝,𝑞Λ

(𝑡,𝑠)
𝑛+𝑖−𝑝+2(𝑗−𝑞),𝑗−𝑞+1,

𝑖 > 1 𝑗 > 1,

(9.12)

or the equations

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+2𝑗,𝑗+1 =Λ

(𝑡,𝑠)
𝑛+2𝑗,𝑗+1𝜓

(𝑠)
0 , 𝑗 > 0

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖,1 =Λ

(𝑡,𝑠)
𝑛+𝑖,1𝜓

(𝑠)
0 + 𝜓

(𝑠*)
0

𝑖∑︁
𝑝=1

𝑡∑︁
𝑙=0

𝛼
(𝑙,𝑠)
𝑝,0 Λ

(𝑡−𝑙,𝑠)
𝑛+𝑖−𝑝,1 𝑖 > 1,

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖,1 =Λ

(𝑡,𝑠)
𝑛+𝑖,1𝜓0, 𝑖 > 0,

(𝐻0 − 𝜆0) Ψ
(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1 =Λ

(𝑡,𝑠)
𝑛+𝑖+2𝑗,𝑗+1𝜓0

+
𝑖−𝑛+2∑︁
𝑘=0

𝑗−1∑︁
𝑞=0

𝑡∑︁
𝑝=0

Λ
(𝑝,𝑠)
𝑛+𝑘+2𝑞,𝑞+1Ψ

(𝑡−𝑝,𝑠)
𝑖−𝑘+2(𝑗−𝑞),𝑗−𝑞

+ 𝜓
(𝑠*)
0

𝑖∑︁
𝑝=1

𝑗∑︁
𝑞=0

𝑡∑︁
𝑙=0

𝛼
(𝑙,𝑠)
2𝑞+𝑝,𝑞Λ

(𝑡−𝑙,𝑠)
𝑛+𝑖−𝑝+2(𝑗−𝑞),𝑗−𝑞+1,

𝑖 > 1 𝑗 > 1,

(9.13)

then the functions 𝜓
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1(𝑥), determined by the equalities (9.10) are the solutions of the

equations (9.6), (9.7), when 𝜆
(𝑠)
𝑛+𝑖+2𝑗,𝑗+1, determined by the equalities (9.9), and the series̃︀𝑉 (𝑠)

2𝑗+2+𝑡,𝑗+1 are formal asymptotic solutions of the equations (7.8) when 𝜌 → ∞, where in the

right side 𝑣𝑝,𝑞 and 𝜆𝑝,𝑞 are substituted for 𝑉
(𝑠)
𝑝,𝑞 and 𝜆

(𝑠)
𝑝,𝑞 when 𝑞 > 0.

First we consider the matching of the series 𝜓𝑒𝑥,1
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) and 𝜓𝑖𝑛,1

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀). In this case we
search for the equations (9.13). Following the algorithm of the proof of Theorem 8.1, we see,

that the functions 𝑣
(1)
2𝑗+2,𝑗+1(𝜉), 𝑗 > 0, determined by the equalities (9.2), belong to ℬ0, are

the solutions of the equations (7.8) (in the first line), and on the strength of Lemmas 4.6, 4.7
possess with 𝜌→ ∞ the following asymptotics

𝑉
(1)
2𝑗+2,𝑗+1(𝜉) = 𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0 𝜌2−𝑛 +

∞∑︁
𝑘=1

𝑌𝑘(𝜉)𝜌−2𝑘−𝑛+2, 𝑗 > 0.
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Whence due to Lemma 9.1 we obtain the dominant terms of the asymptotics in the zero for

the functions Ψ
(0,1)
𝑛+2𝑗+𝑘,𝑗+1(𝑥):

Ψ
(0,1)
𝑛+2𝑗,𝑗+1(𝑥) ∼𝜓(1)

0 (0)𝑐
(𝑗+1)
0,0 𝑟2−𝑛,

Ψ
(0,1)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) ∼𝑌𝑘(𝑥)𝑟−2𝑘−𝑛+2, 𝑘 > 1.

(9.14)

The functions

Ψ
(0,1)
𝑛+2𝑗,𝑗+1(𝑥) =𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0 𝐸0(𝑥) (9.15)

possess the required asymptotics in the zero and due to Lemma 4.4 they satisfy the correspond-
ing equations

(𝐻0 − 𝜆0)Ψ
(0,1)
𝑛+2𝑗,𝑗+1 = Λ

(0,1)
𝑛+2𝑗,𝑗+1𝜓

(1)
0 , 𝑗 > 0

from (9.13) when

Λ
(0,1)
𝑛+2𝑗,𝑗+1 = 𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0 Λ0. (9.16)

Remark 9.2 (derivation of the formula (2.12)). On the strength of (9.9), (9.10), (9.16) and
(9.15), in particular, we obtain, that

𝜆
(1)
𝑛+2𝑗,𝑗+1 = 𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0 Λ0, 𝜓𝑛+2𝑗,𝑗+1(𝑥) = 𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0 𝐸0(𝑥) ∈ 𝒜0.

Substituting into these equalities the values Λ0, 𝑐
(1)
0,0 from Lemmas 4.4, 4.6, we obtain the equality

(2.12) for 𝜆
(1)
𝑛,1.

When 𝑘 > 1 the equations (9.13) for Ψ
(0,1)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) take the form

(𝐻0 − 𝜆0)Ψ
(0,1)
𝑛+2𝑗+𝑘,𝑗+1 =Λ

(0,1)
𝑛+2𝑗+𝑘,𝑗+1𝜓

(1)
0

+ 𝜓
(2)
0

𝑘∑︁
𝑚=1

𝑗−1∑︁
𝑞=0

𝛼
(0,1)
2𝑞+𝑚,𝑞Λ

(0,1)
𝑛+2(𝑗−𝑞)+𝑘−𝑚,(𝑗−𝑞)+1.

On the strength of Lemma 4.2 from the condition of solubility of these equations with the given

in (9.14) features in the zero solutions, firstly, we determine Λ
(0,1)
𝑛+2𝑗+𝑘,𝑗+1 and Ψ

(0,1)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) ∈

𝒜𝑘, and secondly, considering, that Λ
(0,1)
𝑛,1 = 𝜆

(1)
𝑛,1 ̸= 0 on the strength of (2.12) and the condition

⟨𝑉 ⟩ ≠ 0, we obtain 𝛼
(0,1)
2𝑗+𝑘,𝑗+1. Let us note, that 𝛼

(1)
2𝑗+1,𝑗 = 𝛼

(0,1)
2𝑗+1,𝑗 due to (9.11).

At the next stage we similarly determine Ψ
(1,1)
𝑛+2𝑗+1+𝑘,𝑗+1, Λ

(1,1)
𝑛+2𝑗+1+𝑘,𝑗+1 and 𝛼

(1,1)
2𝑗+𝑘+2,𝑗 when

𝑘 > 0, and consequently due to (9.9), (9.10) and (9.11) we finally obtain 𝜓
(1)
𝑛+2𝑗+1,𝑗+1, 𝜆

(1)
𝑛+2𝑗+1,𝑗+1

and 𝛼
(1)
2𝑗+2,𝑗. And so on.

As a result we obtain the validity of the following analogue of Theorem 8.1 and its corollary 3.

Theorem 9.1. Let 𝑛 be odd, ⟨𝑉 ⟩ ≠ 0, 𝜆0 be the twofold characteristic constant of the opera-

tor ℋ0, 𝜓
(1)
0 and 𝜓

(2)
0 be the corresponding orthonormalized in 𝐿2(Ω) eigenfunctions, satisfying

the condition (2.8) and chosen in compliance with (2.9).
Then there exist the series 𝜓𝑒𝑥,1

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) of the form (9.5), the series 𝜓𝑖𝑛,1
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) of the form

(9.4) and the series (2.10) such that:
1) the equality (2.12) holds;

2) 𝜓
(1)
𝑛+2𝑗+𝑖,𝑗+1 ∈ 𝒜𝑖, 𝑣

(1)
2𝑗+2+𝑖,𝑗+1 ∈ ℬ𝑖;

3) for their partial sums the statements of the corollary 3 hold.

Let us proceed to the matching of the series 𝜓𝑒𝑥,2
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) and 𝜓𝑖𝑛,2

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀). In this case it
is sufficient to apply the equations (9.12). Following the described above algorithm we see,

that the functions 𝑣
(2)
2𝑗+3,𝑗+1(𝜉), 𝑗 > 0, determined by the equalities (9.3), belong to ℬ0 ⊂ ℬ1,
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are the solutions of the equations (7.8) (subject to the equalities (9.8)) and on the strength of
Lemmas 4.6, 4.7 possess when 𝜌→ ∞ the following asymptotics

𝑉
(2)
2𝑗+3,𝑗+1(𝜉) =

(︃
𝑛∑︁

𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 + 𝛼

(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0

)︃
𝜌2−𝑛

+
𝑛∑︁

𝑖=1

(︃
𝑛∑︁

𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑖
(0)𝑐

(𝑗+1)
𝑚,𝑖 + 𝛼

(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,𝑖

)︃
𝜉𝑖𝜌

−𝑛

+
∞∑︁
𝑘=2

(︁
𝑌

(𝑗+1,0,2)
𝑘 (𝜉) + 𝛼

(2)
2𝑗+1,𝑗𝑌

(𝑗+1,0,1)
𝑘 (𝜉)

)︁
𝜌−2𝑘−𝑛+2.

Whence, firstly, on the strength of (9.9), (9.10) sequentially results, that

Ψ
(0,2)
𝑛+2𝑗+𝑘,𝑗+1(𝑥) =Λ

(0,2)
𝑛+2𝑗+𝑘,𝑗+1 = 0, 𝑘 > 0,

𝜓
(2)
𝑛+2𝑗,𝑗+1(𝑥) =𝜆

(2)
𝑛+2𝑗,𝑗+1 = 0,

(9.17)

and secondly, on the strength of Lemma 9.1 we obtain, that Ψ
(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1(𝑥):

Ψ
(1,2)
𝑛+2𝑗+1,𝑗+1(𝑥) ∼

(︃
𝑛∑︁

𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 + 𝛼

(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,0

)︃
𝜌2−𝑛, (9.18)

Ψ
(1,2)
𝑛+2𝑗+2,𝑗+1(𝑥) ∼

𝑛∑︁
𝑖=1

(︂ 𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,𝑖

+ 𝛼
(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,𝑖

)︂
𝜉𝑖𝜌

−𝑛,

(9.19)

Ψ
(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1(𝑥) ∼

(︁
𝑌

(𝑗+1,0,2)
𝑘 (𝜉)

+ 𝛼
(2)
2𝑗+1,𝑗𝑌

(𝑗+1,0,1)
𝑘 (𝜉)

)︁
𝜌−2𝑘−𝑛+2, 𝑘 > 2,

(9.20)

when 𝑟 → 0. The equations (9.12) for these functions subject to the equalities (9.17) take the
following form:

(𝐻0 − 𝜆0)Ψ
(1,2)
𝑛+2𝑗+1,𝑗+1 =Λ

(1,2)
𝑛+2𝑗+1,𝑗+1𝜓

(2)
0 , (9.21)

(𝐻0 − 𝜆0)Ψ
(1,2)
𝑛+2𝑗+2,𝑗+1 =Λ

(1,2)
𝑛+2𝑗+2,𝑗+1𝜓

(2)
0 , (9.22)

(𝐻0 − 𝜆0)Ψ
(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1 =Λ

(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1𝜓

(2)
0 , 𝑘 > 2. (9.23)

On the strength of Lemma 4.4 the equations (9.21) possess the solutions with the asymptotics
(9.18) in the zero only if the multiplier in (9.18) is equal to zero, i.e.

𝛼
(2)
2𝑗+1,𝑗 = − 1

𝜓
(1)
0 (0)𝑐

(𝑗+1)
0,0

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 , (9.24)

that in its turn results in the equalities

Λ
(1,2)
𝑛+2𝑗+1,𝑗+1 = Ψ

(1,2)
𝑛+2𝑗+1,𝑗+1 = 0. (9.25)

Remark 9.3 (on the structure of the external expansion). The equalities result from (9.25),
(9.17) and (9.9), (9.10):

𝜓
(2)
𝑛+2𝑗,𝑗+1(𝑥) = 𝜓

(2)
𝑛+2𝑗+1,𝑗+1(𝑥) = 𝜆

(2)
𝑛+2𝑗,𝑗+1 = 𝜆

(2)
𝑛+1+2𝑗,𝑗+1 = 0,

which are more detailed than the equalities (9.7).
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Similarly on the strength of Lemma 4.4 the functions

Ψ
(1,2)
𝑛+2𝑗+2,𝑗+1(𝑥) =

𝑛∑︁
𝑖=1

(︂ 𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,𝑖

+ 𝛼
(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,𝑖

)︂
𝐸𝑖(𝑥)

possess the asymptotics (9.19) and are the solutions of the equations (9.22) when

Λ
(1,2)
𝑛+2𝑗+2,𝑗+1 =

𝑛∑︁
𝑖=1

(︃
𝑛∑︁

𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,𝑖 + 𝛼

(2)
2𝑗+1,𝑗𝜓

(1)
0 (0)𝑐

(𝑗+1)
0,𝑖

)︃
Λ

(2)
𝑖 . (9.26)

And, finally, on the strength of the corollary 2 there exist functions Ψ
(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1 ∈ 𝒜𝑘,

possessing the asymptotics (9.20) and being the solutions of the equations (9.23) with some

Λ
(1,2)
𝑛+2𝑗+𝑘+1,𝑗+1.
At the next stage similarly from the condition of solubility of the equations (9.12) for

Ψ
(2,2)
𝑛+2𝑗+2,𝑗+1(𝑥) we obtain 𝛼

(2)
2𝑗+2,𝑗 and obtain, that

Λ
(2,2)
𝑛+2𝑗+2,𝑗+1 = Ψ

(2,2)
𝑛+2𝑗+2,𝑗+1 = 0. (9.27)

Further, on the strength of the corollary 2 there are the functions Ψ
(2,2)
𝑛+2𝑗+𝑘+2,𝑗+1 ∈ 𝒜𝑘, 𝑘 > 1,

possessing the asymptotics, requiring the asymptotics and being the solutions of the equations

(9.12) with some Λ
(2,2)
𝑛+2𝑗+𝑘+2,𝑗+1. And so on.

Remark 9.4 (derivation of the formula (2.13)). Since Λ
(2)
𝑛+2,1 = Λ

(1,2)
𝑛+2,1 on the strength of

(9.9) and (9.17), (9.27), then, substituting into (9.26) the values 𝛼
(2)
1,0 from (9.24)and Λ𝑘, 𝑐

(1)
𝑚,𝑘

from Lemmas 4.4, 4.6, we derive the equality (2.13).

As a result we obtain the validity of the following analogue of Theorem 8.1 and its corollary 3.

Theorem 9.2. Let the conditions of Theorem 9.1 hold.
Then there exist the series 𝜓𝑒𝑥,2

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) of the form (9.5), the series 𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) of the form

(9.4) and the series (2.11) such that:
1) the equality (2.13) holds;

2) 𝜓
(2)
𝑛+2𝑗+𝑖,𝑗+1 ∈ 𝒜𝑖, 𝑣

(2)
2𝑗+2+𝑖,𝑗+1 ∈ ℬ𝑖;

3) for their partial sums the statements of the corollary 3 hold.

10. Construction of the complete formal asymptotic expansions in case of
the even-dimensional domains

For the case of the even domains the asymptotic expansions are more bulky and contain the
degrees ln 𝜀. It is connected with the fact, that the asymptotics in the zero of the coefficients
of the external expansion contain logarithmic terms, which during rewriting in the internal
variables generate the summands, containing ln 𝜀. therefore in the internal and the external
expansions of the eigenfunctions and expansions of the characteristic constant sequentially oc-
cur summands of the form 𝜀𝑖𝜇−𝑗 ln 𝜀 𝑣𝑖,𝑗,1(𝜉), 𝜀

𝑖𝜇−𝑗 ln 𝜀 𝜓𝑖,𝑗,1(𝑥) and 𝜀𝑖𝜇−𝑗 ln 𝜀 𝜆𝑖,𝑗,1. In its turn
rewriting the asymptotics in the zero of the coefficients of the external expansion 𝜓𝑖,𝑗,1(𝑥) in
the internal variables sequentially generates the summands, containing ln2 𝜀, in the internal,
external expansions of the eigenfunctions and in expansion of the characteristic constant. Ap-
plying the used in the previous sections algorithm of matching of the asymptotic expansions, it
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is easy to follow, that for the even 𝑛 in case of the simple characteristic constant 𝜆0 the chain
of the origin of the first terms containing increasing degrees ln 𝜀, looks as follows:

𝑣0,0 = 𝜓0(0), 𝑣𝑘,0 = 𝑃𝑘, 𝑘 > 1

⇒ 𝜀2+2𝑗𝜇−𝑗−1 : 𝑣2+2𝑗,𝑗+1 = 𝜓0(0)𝑧
(𝑗+1)
0 𝑗 > 0

⇒ 𝜀𝑛+2𝑗𝜇−𝑗−1 : 𝜓𝑛+2𝑗,𝑗+1 = 𝜓0(0)𝑐
(𝑗+1)
0,0 𝐸0; 𝜆𝑛+2𝑗,𝑗+1 = 𝜓0(0)𝑐

(𝑗+1)
0,0 Λ0

⇒ 𝜀𝑛+2𝑗𝜇−𝑗−1 ln 𝜀 : 𝑣𝑛+2𝑗,𝑗+1,1 = 𝜓0(0)𝐴
(1)
𝑗 , 𝑣𝑛+2𝑗+𝑘,𝑗+1,1(𝜉) = 𝜓0(0)𝑅

(1)
𝑘 (𝜉)

⇒ . . .

⇒ 𝜀𝑞𝑛+2𝑗𝜇−𝑗−𝑞 ln𝑞 𝜀 : 𝑣𝑞𝑛+2𝑗,𝑗+𝑞,𝑞 = 𝜓0(0)𝐴
(𝑞)
𝑗 ,

𝑣𝑞𝑛+2𝑗+𝑘,𝑗+𝑞,𝑞 = 𝜓0(0)𝑅
(𝑞)
𝑘

⇒ 𝜀𝑞𝑛+2𝑗+2𝜇−𝑗−𝑞−1 ln𝑞 𝜀 : 𝑣𝑞𝑛+2𝑗+2,𝑗+𝑞+1,𝑞 = 𝜓0(0)𝐴
(𝑞)
𝑗 𝑧

(𝑗+1)
0

⇒ 𝜀3𝑛+2𝑗𝜇−𝑗−3 ln𝑞 𝜀 : 𝜓(𝑞+1)𝑛+2𝑗,𝑗+𝑞+1,𝑞 = 𝜓0(0)𝑐
(𝑗+1)
0,0 𝐴

(𝑞)
𝑗 𝐸0;

𝜆(𝑞+1)𝑛+𝑗,𝑗+𝑞+1,𝑞 = 𝜓0(0)𝑐
(𝑗+1)
0,0 𝐴

(𝑞)
𝑗 Λ0

⇒ 𝜀(𝑞+1)𝑛+2𝑗𝜇−𝑗−𝑞−1 ln𝑞+1 𝜀 : 𝑣(𝑞+1)𝑛+2𝑗,𝑗+𝑞+1,𝑞+1 = 𝜓0(0)𝐴
(𝑞+1)
𝑗 ,

𝑣(𝑞+1)𝑛+2𝑗+𝑘,𝑗+𝑞+1,𝑞+1 = 𝜓0(0)𝑅
(𝑞+1)
𝑘 ⇒ . . .

It results from this chain and the given in the previous section matching of asymptotic
expansions, that if 𝜓0(0) = 0, then the internal expansion possesses the form

𝜓𝑖𝑛,𝑠
𝑒𝑣𝑒𝑛(𝜉, 𝜇, 𝜀) =

∞∑︁
𝑞=0

𝜇−𝑞𝜀𝑞𝑛 ln𝑞 𝜀 𝜓𝑖𝑛,𝑠
𝑞 (𝜉, 𝜇, 𝜀), (10.1)

where 𝑠 = 1, the series 𝜓𝑖𝑛,1
0 (𝜉, 𝜇, 𝜀) coincides with the series 𝜓𝑖𝑛,1

𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) from (5.15), and the

series 𝜓𝑖𝑛,1
𝑙 (𝜉, 𝜇, 𝜀) when 𝑙 > 1 possess the same structure, the external expansions takes the

form

𝜓𝑒𝑥,𝑠
𝑒𝑣𝑒𝑛(𝜉, 𝜇, 𝜀) =

∞∑︁
𝑞=0

𝜇−𝑞𝜀𝑞𝑛 ln𝑞 𝜀 𝜓𝑒𝑥,𝑠
𝑞 (𝑥, 𝜇, 𝜀), (10.2)

where 𝑠 = 1, the series 𝜓𝑒𝑥,1
0 (𝑥, 𝜇, 𝜀) coincides with the series 𝜓𝑒𝑥,1

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) from (6.5), and

the series 𝜓𝑒𝑥,1
𝑙 (𝜉, 𝜇, 𝜀) + 𝜓0(𝑥) when 𝑙 > 1 possess the same structure, and the asymptotic

expansion of the characteristic constant takes the form

𝜆𝑠𝑒𝑣𝑒𝑛(𝜇, 𝜀) =
∞∑︁
𝑞=0

𝜇−𝑞𝜀𝑞𝑛 ln𝑞 𝜀 𝜆𝑠𝑞(𝜇, 𝜀), (10.3)

where 𝑠 = 1, the series 𝜆10(𝜇, 𝜀) coincides with the series 𝜆1𝑜𝑑𝑑(𝜇, 𝜀) from (6.7), and the series
𝜆1𝑙 (𝜇, 𝜀) + 𝜆0 when 𝑙 > 1 possess the same structure. Consequently, the series 𝜆1𝑒𝑣𝑒𝑛(𝜇, 𝜀) takes
the form (2.1).

If 𝜓0(0) = 0, then for the even 𝑛 > 4 in case of the simple characteristic constant 𝜆0 the
chain of occurrence of the first terms, containing increasing degrees ln 𝜀, possesses the following
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form:

𝑣0,0 = 𝜓0(0) = 0 𝑣1,0(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝑣𝑘,0 = 𝑃𝑘, 𝑘 > 2

⇒ 𝑣3+2𝑗,𝑗+1 =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑧(𝑗+1)

𝑚 , 𝑗 > 0

⇒ 𝜓𝑛+2𝑗+1,𝑗+1 =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,0 𝐸0;

𝜓𝑛+2𝑗+2,𝑗+1 =
𝑛∑︁

𝑚=1

𝑛∑︁
𝑖=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,𝑖 𝐸𝑖 +𝐵

(1)
𝑗 𝐸0;

𝜆𝑛+2𝑗+2,𝑗+1 =
𝑛∑︁

𝑚=1

𝑛∑︁
𝑖=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐

(𝑗+1)
𝑚,𝑖 Λ𝑖

⇒ 𝑣𝑛+2𝑗+1,𝑗+1,1 = 𝐴
(1)
𝑗 , 𝑣𝑛+2𝑗+1+𝑙,𝑗+1,1(𝜉) = 𝑅

(1)
𝑙 (𝜉), 𝑙 > 1

⇒ . . .

⇒ 𝑣𝑞𝑛+2𝑗+1,𝑗+𝑞,𝑞 = 𝐴
(𝑞)
𝑗 , 𝑣𝑞𝑛+2𝑗+1+𝑙,𝑗+𝑞,𝑞 = 𝑅

(𝑞)
𝑙

⇒ 𝑣𝑞𝑛+2𝑗+3,𝑗+𝑞+1,𝑞 = 𝐴
(𝑞)
𝑗 𝑧

(𝑗+1)
0

⇒ 𝜓(𝑞+1)𝑛+2𝑗+1,𝑗+𝑞+1,𝑞 = 𝐴
(𝑞)
𝑗 𝑐

(𝑗+1)
0,0 𝐸0;

𝜓(𝑞+1)𝑛+2𝑗+2,𝑗+𝑞+1,𝑞 = 𝐴
(𝑞)
𝑗

𝑛∑︁
𝑖=1

𝑐
(𝑗+1)
0,𝑖 𝐸𝑖 +𝐵

(𝑞+1)
𝑗 𝐸0;

𝜆(𝑞+1)𝑛+2𝑗+2,𝑗+𝑞+1,𝑞 = 𝐴
(𝑞)
𝑗

𝑛∑︁
𝑖=1

𝑐
(𝑗+1)
0,𝑖 Λ𝑖

⇒ 𝑣2𝑛+2𝑗+1,𝑗+2,2 = 𝐴
(𝑞+1)
𝑗 , 𝑣(𝑞+1)𝑛+2𝑗+2,𝑗+𝑞+1,𝑞+1 = 𝑅

(𝑘+1)
𝑙 ⇒ . . .

Remark 10.1 (the case 𝜓0(0) = 0, 𝑛 = 2). Since in the considered case

𝐸0(𝑥) = − ln 𝑟 + 𝑐(Ω) +𝑂(𝑟 ln 𝑟), 𝑟 → 0,

on the strength of Lemma 4.5, the for the matching of the dominant terms of the external
and the internal asymptotic expansions of the eigenfunction in the presented above chain it is
sufficient to choose

𝑣3+2𝑗,𝑗+1 =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)
(︁
𝑧(𝑗+1)
𝑚 + 𝑐

(𝑗+1)
𝑚,0 𝑐(Ω)

)︁
,

𝑣𝑞𝑛+2𝑗+3,𝑗+𝑞+1,𝑞 =𝐴
(𝑞)
𝑗

(︁
𝑧
(𝑗+1)
0 + 𝑐

(𝑗+1)
0,0 𝑐(Ω)

)︁
, 𝑗 > 0, 𝑞 > 1.

It results from this chain and the considered in the previous section matching of the asymp-
totic expansions, that if 𝜓0(0) = 0, then the internal expansion possesses the form (10.1), where
𝑠 = 2, the series 𝜓𝑖𝑛,2

0 (𝜉, 𝜇, 𝜀) coincides with the series 𝜓𝑖𝑛,2
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) from (5.20), and the series

𝜓𝑖𝑛,2
𝑙 (𝜉, 𝜇, 𝜀) when 𝑙 > 1 possess the same structure with precision to the constant summand,

the internal expansion possesses the form (10.2), where 𝑠 = 2, the series 𝜓𝑒𝑥,2
0 (𝑥, 𝜇, 𝜀) coincides

with the series 𝜓𝑒𝑥,2
𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) from (6.5), and the series 𝜓𝑒𝑥,2

𝑙 (𝑥, 𝜇, 𝜀) + 𝜓0(𝑥) when 𝑙 > 1 possess
the same structure, and the asymptotic expansion of the characteristic constant possesses the
form (10.3), where 𝑠 = 2, the series 𝜆20(𝜇, 𝜀) coincides with the series 𝜆2𝑜𝑑𝑑(𝜇, 𝜀) from (6.7),
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and the series 𝜆2𝑙 (𝜇, 𝜀) + 𝜆0 when 𝑙 > 1 possess the same structure. Consequently, the series
𝜆2𝑒𝑣𝑒𝑛(𝜇, 𝜀) takes the form (2.6).

Remark 10.2. The equations for the coefficients of the asymptotic expansions (10.1), (10.2)
of the eigenfunctions are derived the same way as in the previous sections. The series (10.2)
and (10.3) are substituted into the equation

𝐻𝜇,𝜀𝜓
𝜇,𝜀 = 𝜆𝜇,𝜀𝜓𝜇,𝜀, (10.4)

and we rewrite the equalities with similar degrees 𝜀, ln 𝜀 and 𝜇. In the result we obtain the equa-
tions for the coefficients of the external expansion (10.2). Analogously, by means of substituting
the series (10.1) and (10.3) into the equation (10.4), by changing in it to the internal variable
𝜉 and by rewriting the equalities with similar degrees 𝜀, ln 𝜀 and 𝜇 we obtain the equations for
the coefficients of the internal expansion (10.1). If the coefficients of the expansions satisfy
the obtained such way equations, we consider, that the series (10.1), (10.2), (10.3) are the
asymptotic solutions of the equations (10.4).

By analogy with the indexes, applied in the considered above chains, when 𝑙 > 1 fort he coef-

ficients of the series 𝜓𝑖𝑛,𝑠
𝑙 (𝜉, 𝜇, 𝜀), 𝜓𝑒𝑥,𝑠

𝑙 (𝑥, 𝜇, 𝜀) and 𝜆
(𝑠)
𝑙 (𝜇, 𝜀) when 𝜀𝑖𝜇𝑘 we apply the notations

𝑣𝑖,𝑘,𝑙, 𝜓𝑖,𝑘,𝑙 and 𝜆𝑖,𝑘,𝑙 correspondingly.

Following the procedure of matching of the asymptotic expansions, presented in section 8, it
is easy to obtain the validity of the following statement.

Theorem 10.1. Let 𝜆0 be a simple characteristic constant of the operator ℋ0, 𝜓0 be the
corresponding normalized in 𝐿2(Ω) eigenfunction. Then with even 𝑛 there exist the series
(10.1), (10.2), (10.3) such that:

1) they are the asymptotic solutions of the equation (10.4);
2) the series 𝜆1𝑒𝑣𝑒𝑛(𝜇, 𝜀), 𝜆2𝑒𝑣𝑒𝑛(𝜇, 𝜀) coincide with the series (2.1), (2.6), correspondingly,

though, for them the equalities (2.2), (2.3), (2.4), (2.5) hold, (the latter subject to the statement
of Lemma 4.6 for 𝑛 = 2);

3) the series 𝜓𝑒𝑥,𝑠
0 (𝑥, 𝜇, 𝜀) coincide with the series 𝜓𝑒𝑥,𝑠

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) from (6.5);
4) 𝜓𝑛+2𝑗+𝑖,𝑗+1, 𝜓𝑛+2𝑗+𝑛𝑙+𝑖,𝑗+1,𝑙 ∈ 𝒜𝑖, 𝑣2𝑗+2+𝑖,𝑗+1, 𝑣2𝑗+𝑙𝑛+2+𝑖,𝑗+1,𝑙 ∈ ℬ𝑖;
5) for the partial sums of the series (10.1), (10.2), (10.3) the statements of the corollary 3

hold,(with the substitution of the index ”odd” for ”even” in the formulation).

Let us formulate the analogue of this theorem for the case multiple to 𝜆0. Following the
algorithm presented in the previous section 9, it is easy to rewrite the chains of occurrence
of the first terms, containing increasing degrees ln 𝜀, and in case of the twofold characteristic
constant 𝜆0, and to make sure, that the asymptotic expansions possess the form (10.1), (10.2),
(10.3), where the series 𝜓𝑖𝑛,𝑠

0 (𝜉, 𝜇, 𝜀) coincide with the series 𝜓𝑖𝑛,𝑠
𝑜𝑑𝑑 (𝜉, 𝜇, 𝜀) from (9.4), and the

series 𝜓𝑖𝑛,𝑠
𝑙 (𝜉, 𝜇, 𝜀) when 𝑙 > 1 possess the same structure (the latter - with precision to the

constant summand), the series 𝜓𝑒𝑥,𝑠
0 (𝑥, 𝜇, 𝜀) coincide with the series 𝜓𝑒𝑥,𝑠

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀)from (9.5), and

the series 𝜓𝑒𝑥,𝑠
𝑙 (𝑥, 𝜇, 𝜀) + 𝜓

(𝑠)
0 (𝑥) when 𝑙 > 1 possess the same structure, and the asymptotic

expansions of the characteristic constants possess the form (2.10), (2.11). Analogous to the
previous section we prove the validity of the following statement.

Theorem 10.2. Let 𝜆0 be a twofold characteristic constant of the operator ℋ0, ⟨𝑉 ⟩ ≠ 0, 𝜓
(1)
0

and 𝜓
(2)
0 be the corresponding orthonormalized in 𝐿2(Ω) eigenfunctions, satisfying (2.8), chosen

in compliance with (2.9). Then with the even 𝑛 there are the series (10.1), (10.2), (10.3) such
that:

1) they are the asymptotic solutions of the equation (10.4);
2)the series 𝜆1𝑒𝑣𝑒𝑛(𝜇, 𝜀), 𝜆2𝑒𝑣𝑒𝑛(𝜇, 𝜀) coincide with the series (2.10) and (2.11) correspondingly,

though, for them the equalities (2.12)and (2.13) hold;
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3) the series 𝜓𝑒𝑥,𝑠
0 (𝑥, 𝜇, 𝜀) coincide with the series 𝜓𝑒𝑥,𝑠

𝑜𝑑𝑑 (𝑥, 𝜇, 𝜀) from (9.5);

4) 𝜓
(𝑠)
𝑛+2𝑗+𝑖,𝑗+1, 𝜓

(𝑠)
𝑛+2𝑗+𝑛𝑙+𝑖,𝑗+1,𝑙 ∈ 𝒜𝑖, 𝑣

(𝑠)
2𝑗+2+𝑖,𝑗+1, 𝑣

(𝑠)
2𝑗+𝑙𝑛+2+𝑖,𝑗+1,𝑙 ∈ ℬ𝑖;

5) for the partial sums of the series (10.1), (10.2), (10.3) the statements of the corollary 3
hold (with the substitution of the index ”odd” for ”even” in the formulation).

The construction of the formal asymptotic expansions of the (2.1)–(2.13) characteristic con-
stants, of the corresponding eigenfunctions by method of matching of the asymptotic expansions
has been completed. Let us also note, that in the process of the asymptotics construction the
condition (1.9) was not applied. It is apparent, that the series (2.1), (2.6), (2.10), (2.11) are
asymptotic even under a weaker condition (1.6).

11. Justification of the asymptotic expansions

Everywhere below, firstly, the asymptotic expansions of the eigenfunctions and the charac-
teristic constants are considered chosen in compliance with the statements of Theorems 8.1,
9.1, 9.2, 10.1, 10.2, and secondly, since the further description does not depend on evenness
of 𝑛, then in the notations of these series and from the partial sums we omit the indexes
”odd” and ”even”. Subject to the statements of the mentioned theorems the justification of
the constructed asymptotic expansions is standard (see, for instance, [8]).

Let us denote

̃︀𝜓(𝑠)
𝑁 (𝑥, 𝜇, 𝜀) :=

(︂
1 − 𝜒

(︂
𝑟√
𝜀

)︂)︂ ̂︀𝜓𝑒𝑥,𝑠
𝑛+2𝑁(𝑥, 𝜇, 𝜀) + 𝜒

(︂
𝑟√
𝜀

)︂ ̂︀𝜓𝑖𝑛,𝑠
2(𝑁+1)

(︁𝑥
𝜀
, 𝜇, 𝜀

)︁
where 𝜒(𝑡) is an infinite differential patching function, which is identically equal to the unit
when 𝑡 < 1 and to the zero when 𝑡 > 2. The validity of the the following Lemma results from
the statement of Theorems 8.1, 9.1, 10.1, 10.2.

Lemma 11.1. For ̃︀𝜓(𝑠)
𝑁 the following equalities hold:

‖ ̃︀𝜓(𝑠)
𝑁 − 𝜓

(𝑠)
0 ‖𝐿2(Ω) −→

𝜀→0
0, (11.1)

ℋ𝜇,𝜀
̃︀𝜓(𝑠)
𝑁 = ̂︀𝜆𝑠𝑛+2𝑁

̃︀𝜓(𝑠)
𝑁 + 𝑓

(𝑠)
𝑁 , (11.2)

though, if the condition (1.9) is satisfied, then

‖𝑓 (𝑠)
𝑁 ‖𝐿2(Ω) = 𝑂

(︀
𝜀𝑀(𝑁)

)︀
, 𝑀(𝑁) −→

𝑁→∞
∞. (11.3)

Let us denote by 𝜎 (ℋ𝜇,𝜀) the spectre of the operator ℋ𝜇,𝜀. On the strength of the well-known
estimate of the resolvent (see, for instance, [1, Chapter 5, S 3]) we possess⃦⃦⃦ ̃︀𝜓(𝑠)

𝑁

⃦⃦⃦
𝐿2(Ω)

6
‖𝑓 (𝑠)

𝑁 ‖𝐿2(Ω)

dist
{︁
𝜎 (ℋ𝜇,𝜀) , ̂︀𝜆𝑠𝑛+2𝑁

}︁ .
It results from this estimate and (11.1), (11.3), that

dist
{︁
𝜎 (ℋ𝜇,𝜀) , ̂︀𝜆𝑠𝑛+2𝑁

}︁
= 𝑂

(︀
𝜀𝑀(𝑁)

)︀
, 𝑀(𝑁) −→

𝑁→∞
∞.

This equality on the strength of Theorem 2.1, its corollary 1 and the arbitrary choice of 𝑁
justifies the asymptotic expansions (2.1)–(2.13) of the characteristic constant and, in particular,
completes the proof of Theorems 2.2, 2.3.

Let us also note, that in case of the twofold characteristic constant 𝜆0⃒⃒
𝜆𝜇,𝜀,2 − 𝜆𝜇,𝜀,1

⃒⃒
> 𝑐𝜀𝑛𝜇−1, 𝑐 > 0, (11.4)
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on the strength of (2.10)–(2.12) and the inequality ⟨𝑉 ⟩ ≠ 0. Consequently, the characteristic
constants 𝜆𝜇,𝜀,1 and 𝜆𝜇,𝜀,2 are simple and for the finale proof of Theorem 2.4 it is left to show,
that

‖𝜓𝜇,𝜀,𝑠 − 𝜓
(𝑠)
0 ‖𝐿2(Ω) −→

𝜀→0
0. (11.5)

Let us expand ̃︀𝜓(1)
𝑁 into the direct sum:̃︀𝜓(1)

𝑁 = 𝑏𝑁(𝜇, 𝜀)𝜓𝜇,𝜀,1 + 𝜓⊥
𝜇,𝜀, (11.6)

where 𝑏𝑁(𝜇, 𝜀) =
(︁̃︀𝜓(1)

𝑁 , 𝜓𝜇,𝜀,1
)︁
𝐿2(Ω)

,
(︀
𝜓⊥
𝜇,𝜀, 𝜓

𝜇,𝜀,1
)︀
𝐿2(Ω)

= 0. (11.7)

On the strength of (11.2), (11.6) we obtain, that

ℋ𝜇,𝜀𝜓
⊥
𝜇,𝜀 =𝜆𝜇,𝜀,1𝜓⊥

𝜇,𝜀 + ̃︀𝑓 (1)
𝑁 , (11.8)

where ̃︀𝑓 (1)
𝑁 =

(︁̂︀𝜆1𝑛+2𝑁 − 𝜆𝜇,𝜀,1
)︁ (︀
𝑏𝑁(𝜇, 𝜀)𝜓𝜇,𝜀,1 + 𝜓⊥

𝜇,𝜀

)︀
+ 𝑓

(1)
𝑁 .

It results from the latter equality and from (11.7), (11.1) and (11.3), that

‖ ̃︀𝑓 (1)
𝑁 ‖𝐿2(Ω) = 𝑂

(︀
𝜀𝑀(𝑁)

)︀
, 𝑀(𝑁) −→

𝑁→∞
∞. (11.9)

Since two simple characteristic constants 𝜆𝜇,𝜀,1 and 𝜆𝜇,𝜀,2 converge to 𝜆0, then it results from
(11.8) and the second equality in (11.7), that⃦⃦

𝜓⊥
𝜇,𝜀

⃦⃦
𝐿2(Ω)

6
‖ ̃︀𝑓 (1)

𝑁 ‖𝐿2(Ω)

|𝜆𝜇,𝜀,2 − 𝜆𝜇,𝜀,1|
.

It results from this inequality (11.9) and (11.4), that⃦⃦
𝜓⊥
𝜇,𝜀

⃦⃦
𝐿2(Ω)

−→
𝜀→0

0.

Whence and from (11.6)and (11.1) we obtain the convergence (11.5) when 𝑠 = 1. In its turn it
results from this convergence, corollary 1 and the orthonormalization 𝜓𝜇,𝜀,1 and 𝜓𝜇,𝜀,2 in 𝐿2(Ω),
that the convergence (11.5) and when 𝑠 = 2. Theorem 2.4 has been completely proved.

The first author is thankful to the Kazakh National University in the name of Al-Faraby,
where a part of the present work was carried out for their hospitality.
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