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SEPARATION OF AN EQUATION IN THE SYSTEM OF TWO

SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

YU.YU. BAGDERINA

Abstract. We consider projectable type systems of two second-order ordinary differential
equations with cubic nonlinearity of the right-hand side in first derivatives. For such systems
we obtain criteria of reducibility by local transformation to a system with a separating
equation in one of the unknown functions. Applications of the criteria and construction of
the corresponding transformation is illustrated by a number of examples.
Keywords: second-order equation, decoupling of equations, separation of an equation,
submersive system

1. Introduction

The problem of separation of equations in a system, like the problem of linearization of
differential equations corresponds to a particular case of the problem of equivalence. Let us
call two systems of second-order ordinary differential equations

𝑥′′ = 𝑓(𝑡, 𝑥, 𝑦, 𝑥′, 𝑦′), 𝑦′′ = 𝑔(𝑡, 𝑥, 𝑦, 𝑥′, 𝑦′) (1)

equivalent, if there is a reversible point substitution of variables

𝑡 = 𝜃(𝑡, 𝑥, 𝑦), 𝑥̃ = 𝜙(𝑡, 𝑥, 𝑦), 𝑦 = 𝜓(𝑡, 𝑥, 𝑦), ∆ =
𝜕(𝜃, 𝜙, 𝜓)

𝜕(𝑡, 𝑥, 𝑦)
̸= 0, (2)

when one system changes to the other. Here we use the following table of symbols 𝑥′ = 𝑑𝑥/𝑑𝑡,
𝑥′′ = 𝑑2𝑥/𝑑𝑡2, 𝑦′ = 𝑑𝑦/𝑑𝑡, 𝑦′′ = 𝑑2𝑦/𝑑𝑡2 for derivatives. As it was shown in S.Lie’s papers [1],
many particular methods of solution of differential equations are equivalent to finding such a
substitution of variables (2), which would reduce the given equation to one of already available
equations. Thus, in some cases the problem of linear integration of an ordinary differential
equation is considered to be solved, if the equation can be linearized. In the case of the system
of equations (1) the problem is reduced to a more simple one, if as a result of the transformation
(2) we obtain a system, in which an equation is separated relative to one of the functions, for
instance, 𝑥̃(𝑡):

𝑥̃′′ = 𝑓(𝑡, 𝑥̃, 𝑥̃′), 𝑦′′ = 𝑔(𝑡, 𝑥̃, 𝑦, 𝑥̃′, 𝑦′). (3)

Thereby the system integration is reduced to solution of the first equation (3) relative to 𝑥̃(𝑡)
and then, when the function 𝑥̃(𝑡) is available - to integration of the second equation (3) relative
to 𝑦(𝑡).

In some rare cases equations of the system (1) can be completely divided into:

𝑥̃′′ = 𝑓(𝑡, 𝑥̃, 𝑥̃′), 𝑦′′ = 𝑔(𝑡, 𝑦, 𝑦′)
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after the transformation (2), and then they are integrated independently from each other. The
problem of separation of equations in systems of second-order ordinary differential equations was
studied in [2, 3, 4]. Meanwhile there were considered transformations, effecting only dependent
variables and not changing 𝑡. The problem of separation of equations on the system (in such a
class of transformations) was studied in [5, 6].

The system (1), which is linearized to the form 𝑥̃′′ = 0, 𝑦′′ = 0, can be an example of
a system with separated equations. An available criterion of linearization [7, 8] in terms of
relative invariants 𝛾𝑖, 𝜎𝑘 of the system (1) can be formulated as follows.

Theorem 1. The system (1) is linearized to the form 𝑥̃′′ = 0, 𝑦′′ = 0 by the transformation
(2) if and only if there is

𝛾𝑖 = 0, 𝑖 = 0, 1, 2, 𝜎𝑘 = 0, 𝑘 = 0, . . . , 4, (4)

for it, where

𝛾0 = 1
2
𝐷(𝑓𝑦′) − 1

4
𝑓𝑦′(𝑓𝑥′ + 𝑔𝑦′) − 𝑓𝑦,

𝛾1 = 1
4
𝐷(𝑓𝑥′ − 𝑔𝑦′) + 1

8
(𝑔2𝑦′ − 𝑓 2

𝑥′) + 1
2
(𝑔𝑦 − 𝑓𝑥),

𝛾2 = −1
2
𝐷(𝑔𝑥′) + 1

4
𝑔𝑥′(𝑓𝑥′ + 𝑔𝑦′) + 𝑔𝑥,

(5)

𝐷 = 𝜕𝑡 + 𝑥′𝜕𝑥 + 𝑦′𝜕𝑦 + 𝑓𝜕𝑥′ + 𝑔𝜕𝑦′ is an operator of differentiation according to the system (1)
and

𝜎0 = 𝑓𝑦′𝑦′𝑦′ , 𝜎1 = 1
4
(3𝑓𝑥′𝑦′𝑦′ − 𝑔𝑦′𝑦′𝑦′), 𝜎2 = 1

2
(𝑓𝑥′𝑥′𝑦′ − 𝑔𝑥′𝑦′𝑦′),

𝜎3 = 1
4
(𝑓𝑥′𝑥′𝑥′ − 3𝑔𝑥′𝑥′𝑦′), 𝜎4 = −𝑔𝑥′𝑥′𝑥′ .

The system (1), satisfying the conditions 𝜎0 = 0, . . . 𝜎4 = 0, possesses the form

𝑥′′ = 𝐾1 + 2𝐿1𝑥
′ + 2𝑀1𝑦

′ + 𝑃1𝑥
′2 + 2𝑆1𝑥

′𝑦′ +𝑄1𝑦
′2

+𝑥′(𝑉1𝑥
′2 + 2𝑉0𝑥

′𝑦′ + 𝑉2𝑦
′2),

𝑦′′ = 𝐾2 + 2𝐿2𝑦
′ + 2𝑀2𝑥

′ + 𝑃2𝑦
′2 + 2𝑆2𝑥

′𝑦′ +𝑄2𝑥
′2

+𝑦′(𝑉1𝑥
′2 + 2𝑉0𝑥

′𝑦′ + 𝑉2𝑦
′2)

(6)

with the coefficients 𝐾𝑗, 𝐿𝑗, 𝑀𝑗, 𝑃𝑗, 𝑄𝑗, 𝑆𝑗, 𝑉0, 𝑉𝑗, 𝑗 = 1, 2, depending on 𝑡, 𝑥, 𝑦, and can be
associated with project connection in three-dimensional space [7]. For the system (6) according
to the formulae (5) we obtain

𝛾0 = 𝑎0𝑥
′3 − 𝑏0𝑥

′2𝑦′ + 𝑎2𝑥
′2 + 𝑎1𝑥

′𝑦′ + (2𝑎5 − 𝑎4)𝑥
′ + 𝑎3𝑦

′ + 𝑎7,
𝛾1 = −𝑎0𝑥′2𝑦′ + 𝑏0𝑥

′𝑦′2 + 1
2
(𝑏1𝑥

′2 + (𝑏2 − 𝑎2)𝑥
′𝑦′ − 𝑎1𝑦

′2

+(𝑏6 + 𝑏5 − 2𝑏4)𝑥
′ + (2𝑎4 − 𝑎5 − 𝑎6)𝑦

′ + 𝑎8 − 𝑏8),
𝛾2 = 𝑎0𝑥

′𝑦′2 − 𝑏0𝑦
′3 − 𝑏1𝑥

′𝑦′ − 𝑏2𝑦
′2 − 𝑏3𝑥

′ + (𝑏4 − 2𝑏5)𝑦
′ − 𝑏7,

(7)

and the condition of linearization (4) obtains the form of 15 relations

𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 0, 𝑎4 − 2𝑎5 = 0, 3𝑎5 − 𝑎6 = 0,
𝑏0 = 0, 𝑏1 = 0, 𝑏2 = 0, 𝑏3 = 0, 𝑏4 − 2𝑏5 = 0, 3𝑏5 − 𝑏6 = 0,

𝑎7 = 0, 𝑏7 = 0, 𝑎8 − 𝑏8 = 0.
(8)

The explicit form of relative invariants 𝑎𝑗, 𝑏𝑗, 𝑗 = 0, . . . , 8, of the system (6) is presented in
[9]. In particular,

𝑎5 = 𝑆1𝑡 − 𝐿1𝑦 −𝑀1𝑆2 +𝑀2𝑄1 + 3
2
𝐾1𝑉0 + 1

2
𝐾2𝑉2,

𝑏5 = 𝑆2𝑡 − 𝐿2𝑥 −𝑀2𝑆1 +𝑀1𝑄2 + 3
2
𝐾2𝑉0 + 1

2
𝐾1𝑉1,

𝑏8 = 𝐿2𝑡 −𝐾2𝑦 − 𝐿2
2 −𝑀1𝑀2 +𝐾2𝑃2 +𝐾1𝑆2.

(9)

In this paper we obtain the criterion of separation of an equation in systems of the form (6).
The criterion of complete separation of equations in the system (6) can be found in [10]. The
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class of equations (6) is closed relative to arbitrary nonsingular substitution of variables (2).
Such a substitution transforms the system (6) into the system of the same form

𝑥̃′′ = 𝐾̃1 + 2𝐿̃1𝑥̃
′ + 2𝑀̃1𝑦

′ + 𝑃1𝑥̃
′2 + 2𝑆1𝑥̃

′𝑦′ + 𝑄̃1𝑦
′2

+𝑥̃′(𝑉1𝑥̃
′2 + 2𝑉0𝑥̃

′𝑦′ + 𝑉2𝑦
′2),

𝑦′′ = 𝐾̃2 + 2𝐿̃2𝑦
′ + 2𝑀̃2𝑥̃

′ + 𝑃2𝑦
′2 + 2𝑆2𝑥̃

′𝑦′ + 𝑄̃2𝑥̃
′2

+𝑦′(𝑉1𝑥̃
′2 + 2𝑉0𝑥̃

′𝑦′ + 𝑉2𝑦
′2)

(10)

with some coefficients 𝐾̃𝑗, 𝐿̃𝑗, 𝑀̃𝑗, 𝑃𝑗, 𝑄̃𝑗, 𝑆𝑗, 𝑉0, 𝑉𝑗, 𝑗 = 1, 2, operating as functions 𝑡, 𝑥̃, 𝑦.
In the system (10) the first equation is separated if its coefficients satisfy the correlations

𝐾̃1 = 𝑃, 𝐿̃1 =
3

2
𝑄, 𝑀̃1 = 0, 𝑃1 = 3𝑅, 𝑆1 = 0, 𝑄̃1 = 0, 𝑉1 = 𝑆, 𝑉0 = 0, 𝑉2 = 0

with some functions 𝑃 , 𝑄, 𝑅, 𝑆, depending on 𝑡, 𝑥̃, and its equations possess the form

𝑥̃′′ = 𝑃 (𝑡, 𝑥̃) + 3𝑄(𝑡, 𝑥̃)𝑥̃′ + 3𝑅(𝑡, 𝑥̃)𝑥̃′2 + 𝑆(𝑡, 𝑥̃)𝑥̃′3, (11)

𝑦′′ = 𝐾̃2 + 2𝐿̃2𝑦
′ + 2𝑀̃2𝑥̃

′ + 𝑃2𝑦
′2 + 2𝑆2𝑥̃

′𝑦′ + 𝑄̃2𝑥̃
′2 + 𝑆(𝑡, 𝑥̃)𝑥̃′2𝑦′. (12)

In S2 there is a case of transformation (2) considered, where 𝜃 = 𝜃(𝑡). The case of arbitrary
transformation (2) (with 𝜃𝑥 ̸= 0 or 𝜃𝑦 ̸= 0) is studied in S4. In S3, 5 the application of the
obtained criteria of separation is demonstrated on the example of a normal form of the system
with two degrees of freedom and the system, which can be interpreted as geodesic equations in
the space with Riemannian metric.

As it was noticed by the reviewer of the paper, the problem of separation of equations in the
system (6) can be solved in a more general formulation. Namely, we could find conditions of
separation in the system (6) of the equation of the form

𝑥̃′′ = 𝑃 (𝑡, 𝑥̃, 𝑦) + 3𝑄(𝑡, 𝑥̃, 𝑦)𝑥̃′ + 3𝑅(𝑡, 𝑥̃, 𝑦)𝑥̃′2 + 𝑆(𝑡, 𝑥̃, 𝑦)𝑥̃′3, (13)

which differs from the equation (11) fact, that the variable 𝑦 is entered into it as a parameter.
The corresponding criterion will also include as a particular case criteria of reducibility of the
system (6) to the form (11), (12), obtained in the given paper. The problem of separation in the
system (6) of the equation of the form (13) is not studied here. Its solution is a more complicated
task, as it is reduced to research of consistency of a redenoted system of 15 equations relative
to functions 𝜃, 𝜙, 𝜓, where the subsystem of 9 equations relative to the functions 𝜃, 𝜙 is not
separated (see subsystems (16), (17) and (46), (47)) below.

2. Criterion of separation of equations on the system (6). An example of a
particular case transformation

Let us find conditions when the system (6) of a nonsingular point substitution of variables

𝑡 = 𝜃(𝑡), 𝑥̃ = 𝜙(𝑡, 𝑥, 𝑦), 𝑦 = 𝜓(𝑡, 𝑥, 𝑦) (14)

can be transformed into a system of the form (11), (12). It is assumed, that 𝜙𝑥 ̸= 0, 𝜙𝑦 ̸= 0.
In other words, if the system (6) is reduced to the form (11), (12) by the transformation (14),
where 𝜙𝑥 = 0 (𝜙𝑦 = 0), it implies that the first (the second) equation in the system (6) has
been separated already.

Substitution of the transformation (14) in the equations (11), (12) results in the system of
the second-order ordinary differential equations relative to 𝑥(𝑡), 𝑦(𝑡) with the same type of
dependence on 𝑥′, 𝑦′, like in the equations (6). Setting its coefficients equal with degrees 𝑥′, 𝑦′

to the corresponding coefficients of the equations (6), we obtain 15 correlations, which under
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𝜙𝑥 ̸= 0, 𝜙𝑦 ̸= 0 can be solved relative to all derivatives of the second order of the function 𝜓:

𝜓𝑥𝑥 = −𝑃1𝜓𝑥−𝑄2𝜓𝑦+ 𝑃2𝜓
2
𝑥+ 2𝑆2𝜙𝑥𝜓𝑥+ 𝑄̃2𝜙

2
𝑥+ 𝑆(𝜙𝑥𝜓𝑡+ 2𝜙𝑡𝜓𝑥)𝜙𝑥/𝜃

′,

𝜓𝑥𝑦 = −𝑆1𝜓𝑥 − 𝑆2𝜓𝑦 + 𝑃2𝜓𝑥𝜓𝑦 + 𝑆2(𝜙𝑥𝜓𝑦 + 𝜙𝑦𝜓𝑥) + 𝑄̃2𝜙𝑥𝜙𝑦

+𝑆(𝜙𝑥𝜙𝑦𝜓𝑡 + 𝜙𝑡𝜙𝑦𝜓𝑥 + 𝜙𝑡𝜙𝑥𝜓𝑦)/𝜃
′,

𝜓𝑦𝑦 = −𝑄1𝜓𝑥− 𝑃2𝜓𝑦+ 𝑃2𝜓
2
𝑦 + 2𝑆2𝜙𝑦𝜓𝑦+ 𝑄̃2𝜙

2
𝑦 + 𝑆(𝜙𝑦𝜓𝑡+ 2𝜙𝑡𝜓𝑦)𝜙𝑦/𝜃

′,

𝜓𝑡𝑥 = −𝐿1𝜓𝑥 −𝑀2𝜓𝑦 + 𝜓𝑥𝜃
′′/(2𝜃′) + 𝜃′(𝐿̃2𝜓𝑥 + 𝑀̃2𝜙𝑥) + 𝑃2𝜓𝑡𝜓𝑥

+𝑆2(𝜙𝑥𝜓𝑡 + 𝜙𝑡𝜓𝑥) + 𝑄̃2𝜙𝑡𝜙𝑥 + 𝑆(𝜙𝑡𝜓𝑥 + 2𝜙𝑥𝜓𝑡)𝜙𝑡/(2𝜃
′),

𝜓𝑡𝑦 = −𝑀1𝜓𝑥 − 𝐿2𝜓𝑦 + 𝜓𝑦𝜃
′′/(2𝜃′) + 𝜃′(𝐿̃2𝜓𝑦 + 𝑀̃2𝜙𝑦) + 𝑃2𝜓𝑡𝜓𝑦

+𝑆2(𝜙𝑦𝜓𝑡 + 𝜙𝑡𝜓𝑦) + 𝑄̃2𝜙𝑡𝜙𝑦 + 𝑆(𝜙𝑡𝜓𝑦 + 2𝜙𝑦𝜓𝑡)𝜙𝑡/(2𝜃
′),

𝜓𝑡𝑡 = −𝐾1𝜓𝑥 −𝐾2𝜓𝑦 + 𝜓𝑡𝜃
′′/𝜃′ + 𝐾̃2𝜃

′2 + 2𝜃′(𝐿̃2𝜓𝑡 + 𝑀̃2𝜙𝑡) + 𝑃2𝜓
2
𝑡

+2𝑆2𝜙𝑡𝜓𝑡 + 𝑄̃2𝜙
2
𝑡 + 𝑆𝜙2

𝑡𝜓𝑡/𝜃
′

(15)

and derivatives of the function 𝜙:

𝜙𝑥𝑥 = −𝑃1𝜙𝑥 −𝑄2𝜙𝑦 + 3(𝑅 + 𝑆𝜙𝑡/𝜃
′)𝜙2

𝑥,
𝜙𝑥𝑦 = −𝑆1𝜙𝑥 − 𝑆2𝜙𝑦 + 3(𝑅 + 𝑆𝜙𝑡/𝜃

′)𝜙𝑥𝜙𝑦,
𝜙𝑦𝑦 = −𝑄1𝜙𝑥 − 𝑃2𝜙𝑦 + 3(𝑅 + 𝑆𝜙𝑡/𝜃

′)𝜙2
𝑦,

(16)

𝜙𝑡𝑥 = −𝐿1𝜙𝑥 −𝑀2𝜙𝑦 + 𝜙𝑥𝜃
′′/(2𝜃′) + 3/2(𝑄𝜃′ + 2𝑅𝜙𝑡 + 𝑆𝜙2

𝑡/𝜃
′)𝜙𝑥,

𝜙𝑡𝑦 = −𝑀1𝜙𝑥 − 𝐿2𝜙𝑦 + 𝜙𝑦𝜃
′′/(2𝜃′) + 3/2(𝑄𝜃′ + 2𝑅𝜙𝑡 + 𝑆𝜙2

𝑡/𝜃
′)𝜙𝑦,

𝜙𝑡𝑡 = −𝐾1𝜙𝑥 −𝐾2𝜙𝑦 + 𝑃𝜃′2 + (3𝑄𝜃′ + 𝜃′′/𝜃′)𝜙𝑡 + 3𝑅𝜙2
𝑡 + 𝑆𝜙3

𝑡/𝜃
′.

The remaining three correlations possess the form

𝑉1 = 𝑆𝜙2
𝑥/𝜃

′, 𝑉0 = 𝑆𝜙𝑥𝜙𝑦/𝜃
′, 𝑉2 = 𝑆𝜙2

𝑦/𝜃
′. (17)

Therefore, the system (6) is transformed into the system with the separating equation (11), (12)
by means of substitution of variables (14) if and only if the redetermined system of equations
(15)–(17) is combined relative to the functions 𝜃, 𝜙, 𝜓.

The equations (16), (17) are separated from the system (15)–(17), as they contain only the
functions 𝑃 , 𝑄, 𝑅, 𝑆, depending on 𝜃, 𝜙, and do not contain the functions 𝐾̃2, 𝐿̃2, 𝑀̃2, 𝑃2, 𝑆2,
𝑄̃2, depending on 𝜃, 𝜙, 𝜓. Their solution determines the functions 𝜃, 𝜙 in the transformation
(14). Any function such that substitution of variables (14) is nonsingular can be used as 𝜓.
From the six equations (15) we can determine the coefficients 𝐾̃2, 𝐿̃2, 𝑀̃2, 𝑃2, 𝑆2, 𝑄̃2 of the
equation (12). No limits are imposed on this type of coefficients. Therefore, the equations (15)
are combined, the same way as the system (15)–(17) in general, if the subsystem of equations
(16), (17) is combined. The system (16), (17) is redetermined, and the study of its compatibility
is based on the system of Pfuff equations. A detailed description of the theory of such equations
can be found, for instance, in [11].

It is easy to see, that if one of the functions 𝑉0, 𝑉1, 𝑉2 equals to zero, then the equations (17)
can be combined only when 𝑆 = 0, 𝑉0, 𝑉1, 𝑉2 = 0. While studying compatibility of the system
(16), (17) this case together with the case when the coefficients 𝑉0, 𝑉1, 𝑉2 in the system (6)
differ from zero, are considered separately. Together with (9) the following symbols are applied
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here
𝛼0 = 𝑎5𝑥 − 𝑏6𝑦 +𝑄1𝑏3 − 𝑆1𝑏4 − 𝑆2𝑎5 +𝑄2𝑎3 + 3(𝑀2𝑉2𝑡 −𝑀1𝑉1𝑡)

+3/2((3𝐿1 − 𝐿2)𝑉0𝑡 − 𝑉1𝑀1𝑡 + 𝑉0(𝐿1𝑡 − 𝐿2𝑡) + 𝑉2𝑀2𝑡),
𝛼1 = 𝑎3𝑥 − 𝑎4𝑦 + (𝑆2 − 𝑃1)𝑎3 + (2𝑆1 − 𝑃2)𝑎4 − 𝑆1𝑎6 +𝑄1(𝑏5 − 𝑏6)

+3/2(𝐿1 + 𝐿2)𝑉2𝑡,
𝛼2 = 𝑎7𝑥 − 𝑎8𝑦 +𝑄1𝑏7 + 𝑆1(𝑎8 − 𝑏8) − 𝑃1𝑎7 −𝑀1𝑏6

+𝐿1𝑎4 − 𝐿2𝑎5 +𝑀2𝑎3 + 3/2(𝐾1𝑉0𝑡 +𝐾2𝑉2𝑡),
𝛼3 = 𝑏5𝑡 − 𝑏6𝑡 + 3(𝑎8𝑥 − 𝑏8𝑥) + 6(𝑄2𝑎7 − 𝑆1𝑏7) + 2𝑀1𝑏3 + 2𝐿1(𝑏6 − 𝑏5)

+𝑀2(𝑎5 − 𝑎4 − 2𝑎6),
𝛼4 = 𝑎4𝑡 − 3𝑎7𝑥 + 3𝑆1(𝑏8 − 𝑎8) + 3(𝑃1 − 𝑆2)𝑎7

−2𝑀2𝑎3 + (𝐿2 − 3𝐿1)𝑎4 +𝑀1(𝑏6 − 𝑏5),
𝛼5 = 𝑎5𝑡 − 𝑎4𝑡 +𝑀1(𝑏5 − 𝑏4) − 𝐿2(𝑎4 + 2𝑎5) + 9/2(𝐾1𝑉0𝑡 +𝐾2𝑉2𝑡)

+3[𝑎7𝑥 − 𝑎8𝑦 +𝑄1𝑏7 + 𝑆1(𝑎8 − 𝑏8) − 𝑃1𝑎7 −𝑀1𝑏6 + 𝐿1𝑎4 +𝑀2𝑎3
+𝑉0(𝐾1𝑡/2 +𝐾1𝐿1 +𝐾2𝑀1) + 𝑉2(𝐾2𝑡/2 +𝐾1𝑀2 +𝐾2𝐿2)],

𝛼6 = 𝑎3𝑡 − 3𝑎7𝑦 + 3𝑄1(𝑏8 − 𝑎8) + 3(𝑆1 − 𝑃2)𝑎7 −𝑀1(𝑎4 + 𝑎6)
−(𝐿1 + 𝐿2)𝑎3,

𝛼7 = (𝛽4 + 𝛽5 − 𝛼3)𝑦 − 𝛼4𝑥 −𝑄1𝛽6 + 𝑆1(𝛽4 + 𝛽5) + 𝑆2𝛼4 −𝑄2𝛼6,
𝛼8 = 𝛼6𝑥 − (𝛼4 + 𝛼5)𝑦 +𝑄1(𝛼3 − 𝛽5) + 𝑆1𝛽6 + (𝑆1 − 𝑃2)(𝛼4 + 𝛼5)

+(𝑆2 − 𝑃1)𝛼6,
𝛼9 = 𝑏6𝑥 + 𝑃1𝑏6 − 𝑆1𝑏3 + 2𝑄2𝑎5,
𝛼10 = 𝑎5𝑥 + 𝑆1(𝑏6 − 𝑏4) + 𝑆2𝑎5 +𝑄2𝑎3,
𝛼11 = 𝑎4𝑦 + 𝑆2𝑎3 + 𝑃2𝑎4 +𝑄1(𝑏6 − 𝑏5),
𝛼12 = 𝑎3𝑦 + (2𝑃2 − 𝑆1)𝑎3 +𝑄1(2𝑎4 − 𝑎6),

(18)

and also 𝛽𝑖, 𝑖 = 0, . . . , 12, formulae for which calculation it is necessary in the expressions for
𝛼𝑖 to roles of the following pairs of variables: (𝑥, 𝑦), (𝑎𝑗, 𝑏𝑗), (𝛼𝑘, 𝛽𝑘) and indexes (1,2) of the
coefficients of the system (6). In particular, we obtain

𝛽7 = (𝛼4 + 𝛼5 − 𝛽3)𝑥 − 𝛽4𝑦 −𝑄2𝛼6 + 𝑆2(𝛼4 + 𝛼5) + 𝑆1𝛽4 −𝑄1𝛽6,
𝛽12 = 𝑏3𝑥 + (2𝑃1 − 𝑆2)𝑏3 +𝑄2(2𝑏4 − 𝑏6),

and etc. According to the same rule the values 𝑏𝑗 are obtained from 𝑎𝑗 (see (9)). The following
criteria of separation of the equation hold in the system (6) as the result of the transformation
of the form (14).

Theorem 2. The system of two second-order ordinary differential equations

𝑥′′ = 𝐾1 + 2𝐿1𝑥
′ + 2𝑀1𝑦

′ + 𝑃1𝑥
′2 + 2𝑆1𝑥

′𝑦′ +𝑄1𝑦
′2,

𝑦′′ = 𝐾2 + 2𝐿2𝑦
′ + 2𝑀2𝑥

′ + 𝑃2𝑦
′2 + 2𝑆2𝑥

′𝑦′ +𝑄2𝑥
′2 (19)

is reduced to the form

𝑥̃′′ = 𝑝(𝑡, 𝑥̃) + 2𝑞(𝑡, 𝑥̃)𝑥̃′ + 𝑟(𝑡, 𝑥̃)𝑥̃′2, (20)

𝑦′′ = 𝐾̃2 + 2𝐿̃2𝑦
′ + 2𝑀̃2𝑥̃

′ + 𝑃2𝑦
′2 + 2𝑆2𝑥̃

′𝑦′ + 𝑄̃2𝑥̃
′2 (21)

by the transformation (14)
if and only if its coefficients satisfy the correlations

𝐵𝑖1𝐵𝑗2 −𝐵𝑗1𝐵𝑖2 = 0, (22)

𝐵2
𝑗2𝐴𝑘1 −𝐵𝑗1𝐵𝑗2𝐴𝑘2 +𝐵2

𝑗1𝐴𝑘3 = 0, (23)

(𝐴𝑘1𝐴𝑙3 − 𝐴𝑙1𝐴𝑘3)
2 + (𝐴𝑘2𝐴𝑙1 − 𝐴𝑙2𝐴𝑘1)(𝐴𝑘2𝐴𝑙3 − 𝐴𝑙2𝐴𝑘3) = 0, (24)

det

⎛⎝ 𝐴𝑘1 𝐴𝑘2 𝐴𝑘3

𝐴𝑙1 𝐴𝑙2 𝐴𝑙3

𝐴𝑚1 𝐴𝑚2 𝐴𝑚3

⎞⎠ = 0, 𝑖, 𝑗 = 1, . . . , 36, 𝑘, 𝑙,𝑚 = 1, . . . , 65, (25)
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where
𝐵11 = 𝑎1, 𝐵21 = 𝑎2, 𝐵31 = 𝑎4 − 𝑎5, 𝐵41 = 𝛼0, 𝐵51 = 𝛼1,
𝐵12 = −𝑏2, 𝐵22 = −𝑏1, 𝐵32 = 𝑏5 − 𝑏4, 𝐵42 = −𝛽1, 𝐵52 = −𝛽0,
𝐵71 = 𝛼5, 𝐵72 = −𝛽5, 𝐵61 = 𝛼2, 𝐵62 = −𝛽2,

(26)

𝐵81 = 𝛼7 + 2𝑀2𝛼11 + 2(𝐿1 − 𝐿2)𝛼10 − 2𝑀1𝛼9,
𝐵82 = 𝛽8 + 2𝑀2𝛽10 + 2(𝐿1 − 𝐿2)𝛽11 − 2𝑀1𝛽12,
𝐵91 = 𝛼8 + 2𝑀1𝛼10 + 2(𝐿2 − 𝐿1)𝛼11 − 2𝑀2𝛼12,
𝐵92 = 𝛽7 + 2𝑀1𝛽11 + 2(𝐿2 − 𝐿1)𝛽10 − 2𝑀2𝛽9,

(27)

𝐵9+𝑗,1 = (𝐵𝑗1)𝑡 − 𝐿1𝐵𝑗1 −𝑀1𝐵𝑗2, 𝐵9+𝑗,2 = (𝐵𝑗2)𝑡 −𝑀2𝐵𝑗1 − 𝐿2𝐵𝑗2,
𝐵18+𝑗,1 = (𝐵𝑗1)𝑥 − 𝑃1𝐵𝑗1 − 𝑆1𝐵𝑗2, 𝐵18+𝑗,2 = (𝐵𝑗2)𝑥 −𝑄2𝐵𝑗1 − 𝑆2𝐵𝑗2,
𝐵27+𝑗,1 = (𝐵𝑗1)𝑦 − 𝑆1𝐵𝑗1 −𝑄1𝐵𝑗2, 𝐵27+𝑗,2 = (𝐵𝑗2)𝑦 − 𝑆2𝐵𝑗1 − 𝑃2𝐵𝑗2,
𝑗 = 1, . . . , 9,

(28)

𝐴11 = 𝑎5, 𝐴21 = 𝑎3, 𝐴31 = 𝑎7, 𝐴41 = 𝛼4, 𝐴51 =−𝛼6,
𝐴12 = 𝑏4− 𝑏6, 𝐴22 = 𝑎6− 𝑎4, 𝐴32 = 𝑏8− 𝑎8, 𝐴42 = 𝛼3, 𝐴52 = 𝛽3,
𝐴13 = −𝑏3, 𝐴23 = −𝑏5, 𝐴33 = −𝑏7, 𝐴43 =−𝛽6, 𝐴53 = 𝛽4,

(29)

𝐴𝑛+𝑘,1 = (𝐴𝑘1)𝑡− 2𝐿1𝐴𝑘1−𝑀1𝐴𝑘2, 𝐴𝑛+𝑘,3 = (𝐴𝑘3)𝑡−𝑀2𝐴𝑘2− 2𝐿2𝐴𝑘3,
𝐴𝑛+𝑘,2 = (𝐴𝑘2)𝑡 − 2𝑀2𝐴𝑘1 − (𝐿1 + 𝐿2)𝐴𝑘2 − 2𝑀1𝐴𝑘3,
𝐴2𝑛+𝑘,1 = (𝐴𝑘1)𝑥− 2𝑃1𝐴𝑘1− 𝑆1𝐴𝑘2, 𝐴2𝑛+𝑘,3 = (𝐴𝑘3)𝑥−𝑄2𝐴𝑘2− 2𝑆2𝐴𝑘3,
𝐴2𝑛+𝑘,2 = (𝐴𝑘2)𝑥 − 2𝑄2𝐴𝑘1 − (𝑃1 + 𝑆2)𝐴𝑘2 − 2𝑆1𝐴𝑘3,
𝐴3𝑛+𝑘,1 = (𝐴𝑘1)𝑦− 2𝑆1𝐴𝑘1−𝑄1𝐴𝑘2, 𝐴3𝑛+𝑘,3 = (𝐴𝑘3)𝑦− 𝑆2𝐴𝑘2− 2𝑃2𝐴𝑘3,
𝐴3𝑛+𝑘,2 = (𝐴𝑘2)𝑦 − 2𝑆2𝐴𝑘1 − (𝑆1 + 𝑃2)𝐴𝑘2 − 2𝑄1𝐴𝑘3,

(30)

where 1) 𝑛 = 5, 𝑘 = 1, . . . , 5; 2) 𝑛 = 15, 𝑘 = 6, . . . , 20.

Theorem 3. The system of two second-order ordinary equations (6) with the coefficients 𝑉0,
𝑉1, 𝑉2, different from zero, is reduced to the form (11), (12) by the transformation (14) if and
only if its coefficients satisfy the following correlations

𝑉 2
0 = 𝑉1𝑉2, 𝑎0 = 0, 𝑏0 = 0, (31)

𝑉1𝐵𝑗1 + 𝑉0𝐵𝑗2 = 0, 𝑉0𝐵𝑗1 + 𝑉2𝐵𝑗2 = 0, 𝑗 = 1, . . . , 13, (32)

𝑉1𝐴𝑘1 + 𝑉0𝐴𝑘2 + 𝑉2𝐴𝑘3 = 0, 𝑘 = 1, . . . , 6, (33)

where 𝐵𝑗𝑖, 𝐴𝑘𝑙 are determined by the formulae (26), (29),

𝐴61 = 𝛼8, 𝐴62 = 𝛼7 + 𝛽7, 𝐴63 = 𝛽8, (34)

𝐵81 = 𝑉2𝑥, 𝐵91 = 𝑉1𝑦− 2𝑉0𝑥, 𝐵10,1 = 𝑉2𝑦, 𝐵11,1 = 𝜀+ 𝑉0𝑡, 𝐵12,1 = 𝑉2𝑡,
𝐵82 =−𝑉1𝑦, 𝐵92 = 𝑉1𝑥, 𝐵10,2 = 𝑉2𝑥− 2𝑉0𝑦, 𝐵11,2 =−𝑉1𝑡, 𝐵12,2 = 𝜀− 𝑉0𝑡,

(35)

where 𝜀 = 𝑀1𝑉1 + (𝐿2 − 𝐿1)𝑉0 −𝑀2𝑉2 and

𝐵13,1 = 𝛼8, 𝐵13,2 = 𝛽7 for 𝜀 = 0, (36)

𝐵13,1 = 𝛼8𝜀𝑥 + 𝛼7𝜀𝑦 + 𝜀[𝑃1𝛼8 + 𝑆1(𝛼7 + 𝛽7) +𝑄1𝛽8 − 𝛼7𝑦 − 𝛼8𝑥],
𝐵13,2 = 𝛽8𝜀𝑦+ 𝛽7𝜀𝑥+ 𝜀[𝑃2𝛽8+ 𝑆2(𝛼7+ 𝛽7)+𝑄2𝛼8− 𝛽7𝑥− 𝛽8𝑦] for 𝜀 ̸= 0.

(37)

The conditions of Theorem 2 are obtained by means of standard (analogous to the way it
was made in [9]) study of compatibility of the system (16), which results in equations

𝐵𝑗1𝜙𝑥 +𝐵𝑗2𝜙𝑦 = 0, (38)

linear by 𝜙𝑥, 𝜙𝑦 with coefficients (26)–(28), and equations

𝐴𝑘1𝜙
2
𝑥 + 𝐴𝑘2𝜙𝑥𝜙𝑦 + 𝐴𝑘3𝜙

2
𝑦 = 0 (39)

of the second degree by 𝜙𝑥, 𝜙𝑦 with the coefficients (29), (30). The equalities (22) correspond
the condition of compatibility of the system (38), and (24), (25) — of the system (39). The
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equalities (23) denote the condition of compatibility of the equations (38) with the equations
(39).

Remark. The system (38), (39) can have two solutions 𝜙𝑥/𝜙𝑦 = 𝜑1(𝑡, 𝑥, 𝑦),
𝜙𝑥/𝜙𝑦 = 𝜑2(𝑡, 𝑥, 𝑦) such that 𝜕(𝜑1, 𝜑2)/𝜕(𝑥, 𝑦) ̸= 0. It denotes, that the use of corresponding
solutions as 𝑥̃, 𝑦 results in the system, which equations are completely separated. It is necessary
and sufficient for this for the correlations (38) all 𝐵𝑗𝑖 = 0, and for (39) rank‖𝐴𝑘𝑙‖ = 1, and, if
any line (𝐴𝑘1, 𝐴𝑘2, 𝐴𝑘3) differs from zero, then 𝐴2

𝑘2− 4𝐴𝑘1𝐴𝑘3 ̸= 0. The same remark also holds
for the case of the transformation (2) with 𝜃𝑥 ̸= 0 or 𝜃𝑦 ̸= 0 (the corresponding statements on
separation of equations in the system of two second-order ordinary differential equations are
given in [10]).

Theorem 3 is proved similarly. The first condition (31) and the equalities

𝑉0𝜙𝑥 = 𝑉1𝜙𝑦, 𝑉2𝜙𝑥 = 𝑉0𝜙𝑦 (40)

serve as an algebraic corollary of the equations (17). The study of compatibility of the equations
(16), (17) results in conditions 𝑎0 = 0, 𝑏0 = 0, correlations (38) with the coefficients (26), (35),
(36) or (37) and the correlations (39) with the coefficients (29), (34), that subject to (40)
provides conditions (32), (33) of Theorem 3.

3. Examples of systems with a separating equation

Example 1. Let us consider the family of equations

𝑥′′ = 𝑃1(𝑥, 𝑦)𝑥′2 + 2𝑆1(𝑥, 𝑦)𝑥′𝑦′ +𝑄1(𝑥, 𝑦)𝑦′2,
𝑦′′ = 𝑃2(𝑥, 𝑦)𝑦′2 + 2𝑆2(𝑥, 𝑦)𝑥′𝑦′ +𝑄2(𝑥, 𝑦)𝑥′2,

(41)

with the form of dependence on the first derivatives, analogous to that of geodesic equations
in the space with Riemannian metric

d2𝑥𝑖

d𝑡2
+ Γ𝑖

𝑗𝑘

d𝑥𝑗

d𝑡

d𝑥𝑘

d𝑡
= 0, 𝑖, 𝑗, 𝑘,= 1, 2. (42)

If we assume (𝑥1, 𝑥2) = (𝑥, 𝑦), then Christoffel symbols Γ𝑖
𝑗𝑘 are connected with the coefficients

of the system (41) by the correlations

Γ1
11 = −𝑃1, Γ1

12 = −𝑆1, Γ1
22 = −𝑄1, Γ2

11 = −𝑄2, Γ2
12 = −𝑆2, Γ2

22 = −𝑃2.

It is known, that the equations (41) referred to the parameter 𝑥 take the form

𝑑2𝑦

𝑑𝑥2
= 𝑄2 + (2𝑆2 − 𝑃1)

𝑑𝑦

𝑑𝑥
+ (𝑃2 − 2𝑆1)

(︂
𝑑𝑦

𝑑𝑥

)︂2

−𝑄1

(︂
𝑑𝑦

𝑑𝑥

)︂3

,

i.e. separation of the equation in the system (41) as a result of the transformation (2) with
𝜃𝑥 ̸= 0

𝑡 = 𝑥, 𝑥̃ = 𝑦, 𝑦 = 𝑡

holds for any system (41). Let us find conditions, when an equation is separated in the system
(41) as a result of the transformation of the form (14).

If we calculate invariants (13) by the formulae (5) we can determine, that for the system (41)
four invariants 𝑎1, 𝑎2, 𝑏1, 𝑏2 form 18 𝑎𝑗, 𝑏𝑗, 𝑗 = 0, . . . , 8 differ from zero. In case of the system
(42) they coincide with components of the curvature tensor [10]

𝑎1 = 𝑅1
221, 𝑎2 = 𝑅1

121, 𝑏1 = 𝑅2
112, 𝑏2 = 𝑅2

212.

It is easy to see, that all values (29), (30) are equal to zero, and, accordingly, for the system
(41) all the conditions (23)–(25) of Theorem 2 are satisfied identically. The condition (22) is
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satisfied, if the rank of the next matrix (formed from non-nil lines of matrix 𝐵) is lower than 1:

𝐵̃ =

⎛⎜⎜⎜⎜⎜⎝
𝑎1 𝑏2
𝑎2 𝑏1
𝑎1𝑥 − 𝑃1𝑎1 + 𝑆1𝑏2 𝑏2𝑥 − 𝑆2𝑏2 +𝑄2𝑎1
𝑎2𝑥 − 𝑃1𝑎2 + 𝑆1𝑏1 𝑏1𝑥 − 𝑆2𝑏1 +𝑄2𝑎2
𝑎1𝑦 − 𝑆1𝑎1 +𝑄1𝑏2 𝑏2𝑦 − 𝑃2𝑏2 + 𝑆2𝑎1
𝑎2𝑦 − 𝑆1𝑎2 +𝑄1𝑏1 𝑏1𝑦 − 𝑃2𝑏1 + 𝑆2𝑎2

⎞⎟⎟⎟⎟⎟⎠ .

The separation of an equation in the system (41) is possible, if rank𝐵̃ = 1. If rank𝐵̃ = 0,
then the equations (41) are completely separated and, due to Theorem 1, reduced to the form
𝑥̃′′ = 0, 𝑦′′ = 0. It is demonstrated in [9, 10] , that in particular case of the system (42) the
equality 𝑎1𝑏1 − 𝑎2𝑏2 = 0 is possible, only if 𝑎1 = 0, 𝑎2 = 0, 𝑏1 = 0, 𝑏2 = 0.
Example 2. The system, which in the case Γ𝑡 = 0 describes plane motion of a particle

under gyroscopic forces, has the form

𝑥′′ = 2Γ 𝑦′ − 𝑈𝑥, 𝑦′′ = −2Γ𝑥′ − 𝑈𝑦, Γ ̸= 0. (43)

The functions Γ, 𝑈 of variables 𝑡, 𝑥, 𝑦 are assumed to be real, for the second derivatives of the
function 𝑈 the following table of symbols is used 𝑉 = 𝑈𝑥𝑦, 𝑊 = 𝑈𝑥𝑥 − 𝑈𝑦𝑦. Let us consider
an example of a nonlinear system (43). The following coefficients in invariants (13) differ from
zero for this system : 𝑎3 = −Γ𝑦, 𝑏3 = Γ𝑥, 𝑎4 = −Γ𝑥, 𝑏4 = Γ𝑦, 𝑎7 = 𝑈𝑥𝑦 + Γ𝑡, 𝑏7 = 𝑈𝑥𝑦 − Γ𝑡,
𝑎8 = 𝑈𝑥𝑥 + Γ2, 𝑏8 = 𝑈𝑦𝑦 + Γ2. It results from conditions (23), when 𝑘 = 1, 2, 𝑗 = 3 possessing
the form −Γ𝑥(Γ2

𝑥 + Γ2
𝑦) = 0, −Γ𝑦(Γ

2
𝑥 + Γ2

𝑦) = 0, that Γ𝑥 = 0, Γ𝑦 = 0.
Assume in the system (43) Γ = Γ(𝑡). Then all the coefficients (26), (28) are equal to zero,

and the first several nonlinear coefficients (29), (30) are equal to

𝐴31 = Γ′ + 𝑈𝑥𝑦, 𝐴32 = 𝑈𝑦𝑦 − 𝑈𝑥𝑥, 𝐴33 = Γ′ − 𝑈𝑥𝑦, 𝐴41 = −𝐴43 = −3𝑈𝑥𝑥𝑦,
𝐴42 = 3(𝑈𝑥𝑦𝑦 − 𝑈𝑥𝑥𝑥), 𝐴51 = −𝐴53 = −3𝑈𝑥𝑦𝑦, 𝐴52 = 3(𝑈𝑦𝑦𝑦 − 𝑈𝑥𝑥𝑦),
𝐴81 = Γ′′ + Γ(𝑈𝑥𝑥 − 𝑈𝑦𝑦) + 𝑈𝑡𝑥𝑦, 𝐴82 = 4Γ𝑈𝑥𝑦 + 𝑈𝑡𝑦𝑦 − 𝑈𝑡𝑥𝑥,
𝐴83 = Γ′′ + Γ(𝑈𝑦𝑦 − 𝑈𝑥𝑥) − 𝑈𝑡𝑥𝑦.

Together with them the correlations (24) take the form

(4𝑉 2
𝑥 +𝑊 2

𝑥 )Γ′2 = (𝑊𝑉𝑥 − 𝑉𝑊𝑥)2, (4𝑉 2
𝑦 +𝑊 2

𝑦 )Γ′2 = (𝑊𝑉𝑦 − 𝑉𝑊𝑦)
2,

(𝑊𝑥𝑉𝑥𝑥 − 𝑉𝑥𝑊𝑥𝑥)2 = 0, (𝑊𝑥𝑉𝑥𝑦 − 𝑉𝑥𝑊𝑥𝑦)
2 = 0,

(𝑊𝑦𝑉𝑥𝑦 − 𝑉𝑦𝑊𝑥𝑦)
2 = 0, (𝑊𝑦𝑉𝑦𝑦 − 𝑉𝑦𝑊𝑦𝑦)

2 = 0, (𝑉𝑥𝑊𝑦 − 𝑉𝑦𝑊𝑥)2 = 0,
(Γ′′2 + 4Γ2Γ′2)(4𝑉 2 +𝑊 2) − 2Γ′Γ′′(4𝑉 𝑉𝑡 +𝑊𝑊𝑡) + 8ΓΓ′2(𝑊𝑉𝑡 − 𝑉𝑊𝑡)
+Γ′2(4𝑉 2

𝑡 +𝑊 2
𝑡 ) = (Γ(4𝑉 2 +𝑊 2) +𝑊𝑉𝑡 − 𝑉𝑊𝑡)

2,

that results in 𝑊 = 𝑓1(𝑡)𝑉 + 𝑓0(𝑡), 𝑓
2
0 = (𝑓 2

1 + 4)Γ′2, 𝑓 ′
1 = (𝑓 2

1 + 4)Γ. Assume Γ = 𝛾′/2 with
some function 𝛾(𝑡). Then 𝑓1(𝑡) = 2 tg𝛾, 𝑓0(𝑡) = ±𝛾′′/cos𝛾 and the function 𝑈(𝑡, 𝑥, 𝑦) should
satisfy the equation

𝑈𝑥𝑥 − 𝑈𝑦𝑦 = 2 tg𝛾 𝑈𝑥𝑦 ±
𝛾′′

cos𝛾
. (44)

Consequently, separation of an equation in the system (43) is possible, if

Γ =
𝛾′(𝑡)

2
, 𝑈 =

𝛾′′

4
(𝑚(𝑥2 − 𝑦2)cos𝛾 − 2𝑥𝑦 sin𝛾)

+𝑉+1(𝑡, 𝑦cos𝛾 + 𝑥(sin𝛾 + 1)) + +𝑉−1(𝑡, 𝑦cos𝛾 + 𝑥(sin𝛾 − 1)),
(45)

where 𝑚 is equal either to +1 or to −1. In case of the functions (45) all the conditions
(24), (25) of Theorem 2 become identical, and all quadratic equations (39) possess a gen-
eral root 𝜙𝑥/𝜙𝑦 = (sin𝛾 +𝑚)/cos𝛾. The solution of the last equation is 𝜙 = 𝜑(𝑡, 𝑧), where
𝑧 = 𝑦 cos𝛾 + 𝑥(sin𝛾 +𝑚). Its substitution to (16) results in the system of equations, when
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𝜃 = 𝑡 possessing partial solution 𝜑 = (sin𝛾 + 𝑚)−1/2𝑧. Therefore, in the system (43) with the
coefficients (45) there is the equation

𝑥̃′′ +
𝛾′2

4
𝑥̃+ 2𝑚

√︀
sin𝛾 +𝑚

𝜕𝑉𝑚
𝜕𝑧

= 0

separated relative to the function 𝑥̃(𝑡) = (sin𝛾 +𝑚)−1/2(𝑦 cos𝛾 + 𝑥(sin𝛾 +𝑚)).

4. Criterion of separation of an equation in the system (6). General case

Let us find conditions, when the system (6) can be transformed into the system with a
separating equation (11), (12) by substitution of the variables (2) with 𝜃𝑥 ̸= 0 or 𝜃𝑦 ̸= 0.
Assume 𝜃𝑥 ̸= 0 for more precision. Substitution of the transformation (2) in the system (11),
(12) results in the system of the second-order ordinary differential equations with the same form
of dependence on 𝑥′, 𝑦′, like in the equations (6). If we equate its coefficients with the degrees
𝑥′, 𝑦′ with corresponding coefficients of the equations (6), we obtain 15 correlations, which with
𝜃𝑥 ̸= 0 can be solved relative to all derivatives of the second order of the functions 𝜙, 𝜓 and
three derivatives of the function 𝜃. Likewise in the case of transformation (14), considered in
S2, we obtain separation of a subsystem of nine equations

𝜃𝑦𝑦 = 𝑉2𝜃𝑡 −𝑄1𝜃𝑥 + (2𝐹2 − 𝑃2)𝜃𝑦 − 𝑆𝜙2
𝑦,

𝜃𝑡𝑦 = 𝐹2𝜃𝑡 −𝑀1𝜃𝑥 + (𝐹1 − 𝐿2)𝜃𝑦 − 𝑆𝜙𝑡𝜙𝑦,
𝜃𝑡𝑡 = 2𝐹1𝜃𝑡 −𝐾1𝜃𝑥 −𝐾2𝜃𝑦 − 𝑆𝜙2

𝑡 ,
(46)

𝜙𝑥𝑥 = 𝑉1𝜙𝑡 + (2𝐹0− 𝑃1)𝜙𝑥−𝑄2𝜙𝑦+ 𝑃𝜃2𝑥 + 3𝑄𝜃𝑥𝜙𝑥+ 3𝑅𝜙2
𝑥, 𝜙𝑥𝑦 = 𝑉0𝜙𝑡

+(𝐹2 − 𝑆1)𝜙𝑥 + (𝐹0 − 𝑆2)𝜙𝑦 + 𝑃𝜃𝑥𝜃𝑦 + 3/2𝑄(𝜃𝑥𝜙𝑦 + 𝜃𝑦𝜙𝑥) + 3𝑅𝜙𝑥𝜙𝑦,
𝜙𝑦𝑦 = 𝑉2𝜙𝑡 −𝑄1𝜙𝑥 + (2𝐹2 − 𝑃2)𝜙𝑦 + 𝑃𝜃2𝑦 + 3𝑄𝜃𝑦𝜙𝑦 + 3𝑅𝜙2

𝑦,
𝜙𝑡𝑥 = 𝐹0𝜙𝑡+ (𝐹1− 𝐿1)𝜙𝑥−𝑀2𝜙𝑦+ 𝑃𝜃𝑡𝜃𝑥+ 3/2𝑄(𝜃𝑡𝜙𝑥+ 𝜃𝑥𝜙𝑡)+ 3𝑅𝜙𝑡𝜙𝑥,
𝜙𝑡𝑦 = 𝐹2𝜙𝑡−𝑀1𝜙𝑥+ (𝐹1− 𝐿2)𝜙𝑦+ 𝑃𝜃𝑡𝜃𝑦+ 3/2𝑄(𝜃𝑡𝜙𝑦+ 𝜃𝑦𝜙𝑡)+ 3𝑅𝜙𝑡𝜙𝑦,
𝜙𝑡𝑡 = 2𝐹1𝜙𝑡 −𝐾1𝜙𝑥 −𝐾2𝜙𝑦 + 𝑃𝜃2𝑡 + 3𝑄𝜃𝑡𝜙𝑡 + 3𝑅𝜙2

𝑡 ,

(47)

which compatibility results in compatibility of all 15 equations relative to the functions 𝜃, 𝜙,
𝜓. The following table of symbols is used here

𝐹0 = (𝜃𝑥𝑥 − 𝑉1𝜃𝑡 + 𝑃1𝜃𝑥 +𝑄2𝜃𝑦 + 𝑆𝜙2
𝑥)/(2𝜃𝑥),

𝐹1 = (𝜃𝑡𝑥 − 𝐹0𝜃𝑡 + 𝐿1𝜃𝑥 +𝑀2𝜃𝑦 + 𝑆𝜙𝑡𝜙𝑥)/𝜃𝑥,
𝐹2 = (𝜃𝑥𝑦 − 𝑉0𝜃𝑡 + 𝑆1𝜃𝑥 + (𝑆2 − 𝐹0)𝜃𝑦 + 𝑆𝜙𝑥𝜙𝑦)/𝜃𝑥.

The proof of the below criterion of separation of an equation in the system (6) is carried
out by analogy with the proof of Theorems 2, 3 and results in equalities, equivalent to (38),
(39). The role of derivatives 𝜙𝑥, 𝜙𝑦 in them is carried out by minors 𝑀31 = 𝜃𝑥𝜙𝑦 − 𝜃𝑦𝜙𝑥,
𝑀33 = 𝜃𝑡𝜙𝑥 − 𝜃𝑥𝜙𝑡 of Jacobi matrix of the transformation (2). They cannot be equal to zero
simultaneously, otherwise, we obtain 𝑀32 = 0 from the identity 𝜃𝑡𝑀31 − 𝜃𝑥𝑀32 + 𝜃𝑦𝑀33 = 0
when 𝜃𝑥 ̸= 0 . Then it results from the expansion ∆ = 𝜓𝑡𝑀31 − 𝜓𝑥𝑀32 + 𝜓𝑦𝑀33 that Jacobi
transformation (2) is equal to zero, that contradicts supposition on its nonsingularity.

Theorem 4. The system of two second-order ordinary differential equations (6) is reduced to
the form (11), (12) by the transformation (2) with 𝜃𝑥 ̸= 0 if and only if the system of algebraic
and differential equations is compatible relative to 𝑇 , 𝑌 :

Φ1 ≡ 𝑎3 − 𝑎1𝑇 + (𝑎6 − 𝑎5 − 𝑎4)𝑌 − 𝑏0𝑇
2 + (𝑎2 + 𝑏2)𝑇𝑌

+(𝑏6 − 𝑏5 − 𝑏4)𝑌
2 − 𝑎0𝑇

2𝑌 − 𝑏1𝑇𝑌
2 + 𝑏3𝑌

3 = 0,
Φ2 ≡ 𝑎7 + (𝑎4 − 2𝑎5)𝑇 + (𝑏8 − 𝑎8)𝑌 + 𝑎2𝑇

2 + (𝑏6 + 𝑏5 − 2𝑏4)𝑇𝑌
−𝑏7𝑌 2 − 𝑎0𝑇

3 − 𝑏1𝑇
2𝑌 + 𝑏3𝑇𝑌

2 = 0,

(48)

∆𝑡Φ1 = 0, ∆𝑡Φ2 = 0, ∆𝑦Φ1 = 0, ∆𝑦Φ2 = 0, (49)

𝑇𝑦 − 𝑌𝑡 = 𝑌 𝑇𝑥 − 𝑇𝑌𝑥, (50)
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𝐵𝑖1𝐵𝑗2 −𝐵𝑗1𝐵𝑖2 = 0, (51)

𝐵2
𝑗2𝐴𝑘1 −𝐵𝑗1𝐵𝑗2𝐴𝑘2 +𝐵2

𝑗1𝐴𝑘3 = 0, (52)

(𝐴𝑘1𝐴𝑙3 − 𝐴𝑙1𝐴𝑘3)
2 + (𝐴𝑘2𝐴𝑙1 − 𝐴𝑙2𝐴𝑘1)(𝐴𝑘2𝐴𝑙3 − 𝐴𝑙2𝐴𝑘3) = 0, (53)

det

⎛⎝ 𝐴𝑘1 𝐴𝑘2 𝐴𝑘3

𝐴𝑙1 𝐴𝑙2 𝐴𝑙3

𝐴𝑚1 𝐴𝑚2 𝐴𝑚3

⎞⎠ = 0, 𝑖, 𝑗 = 1, . . . , 10, 𝑘, 𝑙,𝑚 = 1, . . . , 15, (54)

where ∆𝑡 = 𝜕𝑡 − 𝑇𝜕𝑥 + 𝜆0𝜕𝑇 + 𝜆1𝜕𝑌 + (𝜆0𝑥 + 𝑇𝑥𝜆0𝑇 + 𝑌𝑥𝜆0𝑌 + 𝑇 2
𝑥 )𝜕𝑇𝑥

+(𝜆1𝑥 + 𝑇𝑥𝜆1𝑇 + 𝑌𝑥𝜆1𝑌 + 𝑇𝑥𝑌𝑥)𝜕𝑌𝑥 ,
∆𝑦 = 𝜕𝑦 − 𝑌 𝜕𝑥 + 𝜆1𝜕𝑇 + 𝜆2𝜕𝑌 + (𝜆1𝑥 + 𝑇𝑥𝜆1𝑇 + 𝑌𝑥𝜆1𝑌 + 𝑇𝑥𝑌𝑥)𝜕𝑇𝑥

+(𝜆2𝑥 + 𝑇𝑥𝜆2𝑇 + 𝑌𝑥𝜆2𝑌 + 𝑌 2
𝑥 )𝜕𝑌𝑥 ,

𝐵11 = Φ1𝑌 , 𝐵12 = −Φ1𝑇 , 𝐵21 = −Φ2𝑌 , 𝐵22 = Φ2𝑇 ,
𝐵2+𝑗,1 = ∆𝑡𝐵𝑗1 + (𝜆1𝑌 + 2𝑇𝑥)𝐵𝑗1 − 𝜆0𝑌𝐵𝑗2,
𝐵2+𝑗,2 = ∆𝑡𝐵𝑗2 − (𝜆1𝑇 + 𝑌𝑥)𝐵𝑗1 + (𝜆0𝑇 + 3𝑇𝑥)𝐵𝑗2,

𝐵4+𝑗,1 = ∆𝑦𝐵𝑗1 + (𝜆2𝑌 + 3𝑌𝑥)𝐵𝑗1 − (𝜆1𝑌 + 𝑇𝑥)𝐵𝑗2,
𝐵4+𝑗,2 = ∆𝑦𝐵𝑗2 − 𝜆2𝑇𝐵𝑗1 + (𝜆1𝑇 + 2𝑌𝑥)𝐵𝑗2, 𝑗 = 1, 2,
𝐵71 = 𝜆0 + 𝑇𝑇𝑥− 𝑇𝑡, 𝐵72 = 𝐵81 = 𝜆1 + 𝑇𝑌𝑥− 𝑌𝑡, 𝐵82 = 𝜆2 + 𝑌 𝑌𝑥− 𝑌𝑦,
𝐵91 = 2𝛼4 − 𝜆0𝑇𝑌 𝛼6 + (𝜆0𝑇𝑇 − 2𝜆1𝑇𝑌 )𝛼7 + 𝜆1𝑇𝑇𝛼8,
𝐵92 = 2𝛽4 − 𝜆0𝑇𝑌 𝛽6 + (𝜆0𝑇𝑇 − 2𝜆1𝑇𝑌 )𝛽7 + 𝜆1𝑇𝑇𝛽8,
𝐵10,1 = 2𝛼5 − 𝜆0𝑇𝑌 𝛼7 + (𝜆0𝑇𝑇 − 2𝜆1𝑇𝑌 )𝛼8 + 𝜆1𝑇𝑇𝛼9,
𝐵10,2 = 2𝛽5 − 𝜆0𝑇𝑌 𝛽7 + (𝜆0𝑇𝑇 − 2𝜆1𝑇𝑌 )𝛽8 + 𝜆1𝑇𝑇𝛽9,

(55)

𝐴11 = 𝑏3, 𝐴12 = 𝑏1, 𝐴13 = −𝑎0,
𝐴21 = 𝑏4 + 𝑏5 − 𝑏6 + 𝑏1𝑇 − 2𝑏3𝑌, 𝐴22 = 𝑎2 + 𝑏2 − 2𝑎0𝑇 − 𝑏1𝑌, 𝐴23 = 𝑏0,
𝐴31 = 𝑏7, 𝐴32 = 𝑏6 + 𝑏5 − 2𝑏4 − 𝑏1𝑇 + 2𝑏3𝑌, 𝐴33 = −𝑎2 + 2𝑎0𝑇 + 𝑏1𝑌,
𝐴3+𝑘,1 = ∆𝑡𝐴𝑘1 + 2(𝜆1𝑌 + 2𝑇𝑥)𝐴𝑘1 − 𝜆0𝑌𝐴𝑘2,
𝐴3+𝑘,2 = ∆𝑡𝐴𝑘2 − 2(𝜆1𝑇 + 𝑌𝑥)𝐴𝑘1 + (𝜆0𝑇 + 𝜆1𝑌 + 5𝑇𝑥)𝐴𝑘2 − 2𝜆0𝑌𝐴𝑘3,
𝐴3+𝑘,3 = ∆𝑡𝐴𝑘3 − (𝜆1𝑇 + 𝑌𝑥)𝐴𝑘2 + 2(𝜆0𝑇 + 3𝑇𝑥)𝐴𝑘3,
𝐴6+𝑘,1 = ∆𝑦𝐴𝑘1 + 2(𝜆2𝑌 + 3𝑌𝑥)𝐴𝑘1 − (𝜆1𝑌 + 𝑇𝑥)𝐴𝑘2,
𝐴6+𝑘,2 = ∆𝑦𝐴𝑘2 − 2𝜆2𝑇𝐴𝑘1 + (𝜆1𝑇 + 𝜆2𝑌 + 5𝑌𝑥)𝐴𝑘2 − 2(𝜆1𝑌 + 𝑇𝑥)𝐴𝑘3,
𝐴6+𝑘,3 = ∆𝑦𝐴𝑘3 − 𝜆2𝑇𝐴𝑘2 + 2(𝜆1𝑇 + 2𝑌𝑥)𝐴𝑘3, 𝑘 = 1, 2, 3,
𝐴10,1 = 𝛼2, 𝐴10,2 = 𝛽2 − 𝛼1, 𝐴10,3 = −𝛽1,
𝐴11,1 = 𝛼3, 𝐴11,2 = 𝛽3 + 𝛼2, 𝐴11,3 = 𝛽2,
𝐴12,1 = 𝛼5, 𝐴12,2 = 𝛽5 − 𝛼4, 𝐴12,3 = −𝛽4,
𝐴13,1 = 𝛼7, 𝐴13,2 = 𝛽7 − 𝛼6, 𝐴13,3 = −𝛽6,
𝐴14,1 = 𝛼8, 𝐴14,2 = 𝛽8 − 𝛼7, 𝐴14,3 = −𝛽7,
𝐴15,1 = 𝛼9, 𝐴15,2 = 𝛽9 − 𝛼8, 𝐴15,3 = −𝛽8.
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In (55) the following table of symbols is used

𝜆0 = −𝐾1 + 2𝐿1𝑇 − 𝑃1𝑇
2 + 𝑉1𝑇

3 + (−𝐾2 + 2𝑀2𝑇 −𝑄2𝑇
2)𝑌,

𝜆1 = 𝑆1𝑇 −𝑀1 + (𝐿1− 𝐿2)𝑌 − 𝑉0𝑇
2 + (𝑆2 − 𝑃1)𝑇𝑌 +𝑀2𝑌

2 + 𝑉1𝑇
2𝑌 −𝑄2𝑇𝑌

2,
𝜆2 = −𝑄1 + (2𝑆1 − 𝑃2)𝑌 + (2𝑆2 − 𝑃1)𝑌

2 −𝑄2𝑌
3 + (𝑉2 − 2𝑉0𝑌 + 𝑉1𝑌

2)𝑇,
𝛽1 = 2𝑎0(𝜆1𝑇 + 𝜆2𝑌 + 4𝑌𝑥) + 2𝛾1𝑌 + 3(−𝑎0𝑦 − 𝑆1𝑎0 − 𝑉2𝑏1 + 𝑉0𝑎2) − 𝑏0𝑥 − 𝑃2𝑎0

+(𝑆2 − 𝑃1)𝑏0 − 𝑉1𝑎1 + 𝑉0𝑏2, 𝛾1 = 𝑎0𝑥 + 𝑃1𝑎0 −𝑄2𝑏0 + 𝑉0𝑏1 − 𝑉1𝑎2,
𝛼1 = 2𝑎0(𝜆0𝑇 + 𝜆1𝑌 + 4𝑇𝑥) + 2𝛾1𝑇 + 3(𝑎0𝑡 + 𝑏1𝑦 + 𝐿1𝑎0 −𝑄2𝑎1 + 𝑆1𝑏1 − 2𝑉2𝑏3)

−2𝑎2𝑥 − 𝑏2𝑥 − 𝐿2𝑎0 − 4𝑀2𝑏0 − 𝑃1(2𝑎2 + 𝑏2) + 𝑆2(𝑎2 + 2𝑏2)
+𝑉0(8𝑏4 − 𝑏5 − 5𝑏6) + 𝑉1(7𝑎5 − 2𝑎4 − 𝑎6),

𝛽2 = 𝑏1(𝜆1𝑇 + 𝜆2𝑌 + 4𝑌𝑥) + 𝛾2𝑌 + 3𝑎0𝑡 − 𝑎2𝑥 + 3(𝐿1 + 𝐿2)𝑎0 − 2𝑀2𝑏0 −𝑄2𝑎1
+𝑃2𝑏1 − (𝑃1 + 𝑆2)𝑎2 + 𝑉0(2𝑏4 − 𝑏5 − 𝑏6) + 2𝑉1(2𝑎5 − 𝑎4),

𝛼2 = 𝑏1(𝜆0𝑇 + 𝜆1𝑌 + 4𝑇𝑥) + 𝛾2𝑇 + (𝑏4 + 𝑏5 − 𝑏6)𝑥 − 3𝑏3𝑦 − 2𝐿2𝑏1 + 3(𝑃2 − 𝑆1)𝑏3
+𝑀2(𝑎2+ 𝑏2) + (𝑃1− 3𝑆2)(𝑏4+ 𝑏5− 𝑏6) + 2𝑄2(𝑎6− 𝑎5− 𝑎4) + 2𝑉0𝑏7 + 𝑉1(𝑎8 − 𝑏8),
𝛾2 = 𝑏1𝑥 − 2𝑀2𝑎0 + (𝑃1 − 𝑆2)𝑏1 +𝑄2(𝑎2 + 𝑏2) − 2𝑉0𝑏3 + 𝑉1(2𝑏4 − 𝑏5 − 𝑏6),
𝛽3 = 2𝑏3(𝜆1𝑇 + 𝜆2𝑌 + 4𝑌𝑥) + 2𝛾3𝑌 + 3(𝑏3𝑦 − 𝑏1𝑡 − 𝑏4𝑥 + 2𝐾2𝑎0 + (𝐿2 − 𝐿1)𝑏1

−𝑀2𝑏2 + 𝑆1𝑏3 + 𝑆2(𝑏4 + 𝑏5 − 𝑏6) + 𝑉1(𝑏8 − 𝑎8)) + 2𝑏6𝑥 − 5𝑀2𝑎2 − 𝑃2𝑏3
+𝑄2(2𝑎4 + 5𝑎5 − 3𝑎6) + 𝑃1(2𝑏6 − 3𝑏4) − 4𝑉0𝑏7,

𝛾3 = 𝑏3𝑥 +𝑀2𝑏1 + (𝑃1 − 2𝑆2)𝑏3 +𝑄2(𝑏4 + 𝑏5 − 𝑏6) − 𝑉1𝑏7,
𝛼3 = 2𝑏3(𝜆0𝑇 + 𝜆1𝑌 + 4𝑇𝑥) + 2𝛾3𝑇 − 3(𝑏3𝑡 +𝐾2𝑏1 + 𝐿1𝑏3) + 𝑏7𝑥 + 5𝐿2𝑏3

+𝑀2(3𝑏6 − 𝑏5 − 4𝑏4) + (𝑃1 − 𝑆2)𝑏7 +𝑄2(𝑏8 − 𝑎8),
𝛽4 = ∆𝑡𝛽1 + ∆𝑦𝛽2 + (𝜆0𝑇 − 𝜆1𝑌 − 𝑇𝑥)𝛽1 − (𝜆1𝑇 + 𝑌𝑥)𝛼1 + (2𝜆1𝑇 − 𝜆2𝑌 − 2𝑌𝑥)𝛽2

−𝜆2𝑇 (𝛼2 + 𝛽3),
𝛼4 = ∆𝑡𝛼1 + ∆𝑦𝛼2 − 𝜆0𝑌 𝛽1 − 2𝑇𝑥𝛼1 − (𝜆1𝑌 + 𝑇𝑥)𝛽2 + (𝜆1𝑇 − 𝑌𝑥)𝛼2 − 𝜆2𝑇𝛼3,
𝛽5 = ∆𝑡𝛽2 − ∆𝑦𝛽3 + 𝜆0𝑌 𝛽1 + (𝜆1𝑌 − 𝑇𝑥)𝛽2 − (𝜆1𝑇 + 𝑌𝑥)𝛼2 + 2𝑌𝑥𝛽3 + 𝜆2𝑇𝛼3,
𝛼5 = ∆𝑡𝛼2 − ∆𝑦𝛼3 + 𝜆0𝑌 (𝛼1 − 𝛽2) + (2𝜆1𝑌 − 𝜆0𝑇 − 2𝑇𝑥)𝛼2 + (𝜆1𝑌 + 𝑇𝑥)𝛽3

+(𝜆1𝑇 − 𝜆2𝑌 + 𝑌𝑥)𝛼3,
𝛽6 = 2(𝑏0 + 𝑎0𝑌 )(2𝜆2𝑌 − 𝜆1𝑇 + 4𝑌𝑥) + 2𝑎0(𝑇𝜆2𝑇 − 𝜆2) + 2(𝑏2 − 𝑏1𝑌 )𝜆2𝑇

+2(−𝑏0𝑦 + (𝑏0𝑥 − 𝑎0𝑦)𝑌 + 𝑎0𝑥𝑌
2),

𝛼6 = 2𝑏0(𝜆0𝑇 + 𝜆1𝑌 + 4𝑇𝑥) + 𝛼1𝑌 + 3𝑉1Φ1 − 𝜆1𝑇𝑇Φ1𝑌

+(3𝑏0𝑥 + 𝑎0𝑦 + (𝑃2 − 𝑆1)𝑎0 + (3𝑆2 + 𝑃1)𝑏0 + 3𝑉1𝑎1 + 𝑉2𝑏1 − 𝑉0(𝑎2 + 3𝑏2))𝑇
+3(𝑏0𝑡 + 𝑎1𝑥 + 𝐿2𝑏0 −𝑄1𝑏1 + 𝑆2𝑎1 − 2𝑉1𝑎3) − 𝑎2𝑦 − 2𝑏2𝑦 − 𝐿1𝑏0 − 4𝑀1𝑎0
−𝑃2(𝑎2 + 2𝑏2) + 𝑆1(2𝑎2 + 𝑏2) + 𝑉0(8𝑎4 − 𝑎5 − 5𝑎6) + 𝑉2(7𝑏5 − 2𝑏4 − 𝑏6),

𝛽7 = 2(𝑏0 + 𝑎0𝑌 )(𝜆0𝑇 − 2𝜆1𝑌 − 𝑇𝑥) + 2𝑎0(𝜆1 − 𝑇𝜆1𝑇 − 𝑇𝑌𝑥)
+2(𝑏1𝑌 − 𝑏2)(𝜆1𝑇 + 𝑌𝑥) + 2(𝑏0𝑡 − 𝑏0𝑥𝑇 + 𝑎0𝑡𝑌 − 𝑎0𝑥𝑇𝑌 ),

𝛼7 = (𝑎0𝑇 − 𝑎2 − 2𝑏2 + 3𝑏1𝑌 )(𝜆1𝑌 + 2𝑇𝑥) + 𝛾1𝑇
2 + 3𝛾2𝑇𝑌 − 3𝛾3𝑌

2 + 3𝑉0Φ2𝑌

+(𝑏4 + 𝑏5 − 𝑏6 + 𝑏1𝑇 − 3𝑏3𝑌 )(2𝑌𝑥 − 𝜆1𝑇 ) + 𝑉1(𝑇Φ2𝑇 − Φ2) + 5𝑀2Φ1𝑇

+3𝑄2(2Φ1 − 2𝑇Φ1𝑇 − 𝑌 Φ1𝑌 ) − 3𝑏3𝑌 𝜆2𝑌 + 𝑏1(𝑇𝜆1𝑇 + 3𝑌 𝜆1𝑌 − 𝜆1)
+3𝑏0𝜆0𝑌 − 𝑏7𝜆2𝑇 + 𝑎0(𝑇𝜆0𝑇 + 6𝑌 𝜆0𝑌 − 2𝜆0) − (𝑎0𝑡 + 𝑎2𝑥 + 2𝑏2𝑥)𝑇
+(3(𝑏4 + 𝑏5 − 𝑏6)𝑥 − 3𝑏3𝑦 + 4𝐾2𝑎0 + 2(𝐿2 − 𝐿1)𝑏1 − 2𝑀2(𝑎2 + 𝑏2)

+2𝑉1(𝑎8 − 𝑏8) + 4𝑉0𝑏7)𝑌 + (𝑎2𝑡 − 𝑏2𝑡)/4 + 3/4((4𝑎4 + 𝑎5 − 3𝑎6)𝑥 + 3𝑏5𝑦 − 𝑏6𝑦)
−𝐾1𝑎0 + 2𝐾2𝑏0 + 2𝑀2𝑎1 −𝑀1𝑏1 + 3𝑄1𝑏3 − 3𝑄2𝑎3 + 𝑉1𝑎7 − 2𝑉2𝑏7,

𝛽8 = (3𝑎0𝑇 − 𝑎2 + 𝑏1𝑌 )(𝜆1𝑌 − 2𝑇𝑥) + (𝑏6 + 3𝑏5 − 3𝑏4 − 3𝑏1𝑇 + 𝑏3𝑌 )(𝜆1𝑇 + 2𝑌𝑥)
−3𝛾1𝑇

2 − 3𝛾2𝑇𝑌 + 𝛾3𝑌
2 + 3𝑀2Φ1𝑇 +𝑄2(𝑌 Φ1𝑌 − Φ1) + 5𝑉0Φ2𝑌

+3𝑉1(2Φ2 − 𝑇Φ2𝑇 − 2𝑌 Φ2𝑌 ) + 𝑏0𝜆0𝑌 − 3𝑎0𝑇𝜆0𝑇 + 𝑏1(𝜆1 − 3𝑇𝜆1𝑇 − 𝑌 𝜆1𝑌 )
−3𝑏7𝜆2𝑇 + 𝑏3(6𝑇𝜆2𝑇 + 𝑌 𝜆2𝑌 − 2𝜆2) + ((𝑏6 + 3𝑏5 − 3𝑏4)𝑥 − 𝑏3𝑦)𝑌
+(3𝑎2𝑥 − 3𝑎0𝑡 + 4𝑀2𝑏0 + 2𝑄2𝑎1 + 2𝑆1𝑏1 + 2𝑉0(2𝑏4 − 𝑏5 − 𝑏6) − 4𝑉2𝑏3)𝑇
+3/4(𝑎2𝑡 − 𝑏2𝑡 + (4𝑎4 − 5𝑎5 − 𝑎6)𝑥 + 3𝑏5𝑦 − 𝑏6𝑦)/4 + 3𝐾1𝑎0 − 2𝐾2𝑏0
+𝑀1𝑏1 +𝑄2𝑎3 −𝑄1𝑏3 − 3𝑉1𝑎7 + 2𝑉2𝑏7 + 2𝑉0(𝑎8 − 𝑏8),

𝛼8 = 2(𝑏7 − 𝑏3𝑇 )(2𝜆1𝑇 − 𝜆2𝑌 + 𝑌𝑥) + 2𝑏3(𝜆1 − 𝑌 𝜆1𝑌 − 𝑌 𝑇𝑥)
+2(2𝑏5 − 𝑏4 − 𝑏1𝑇 )(𝜆1𝑌 + 𝑇𝑥) + 2(−𝑏7𝑦 + 𝑏3𝑦𝑇 + 𝑏7𝑥𝑌 − 𝑏3𝑥𝑇𝑌 ),
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𝛽9 = −2𝑏7(𝜆1𝑇 + 𝜆2𝑌 + 4𝑌𝑥) + 𝛽3𝑇 + 3𝑄2Φ2 + 𝜆1𝑌 𝑌 Φ2𝑇 + (𝑏3𝑡 − 3𝑏7𝑥 +𝐾2𝑏1
−(𝐿1 + 𝐿2)𝑏3 +𝑀2(4𝑏4 − 5𝑏5 − 𝑏6) + (5𝑆2 − 𝑃1)𝑏7 + 3𝑄2(𝑎8 − 𝑏8))𝑌
+3(𝑏8𝑥 − 𝑎8𝑥 − 𝑏7𝑦 +𝐾1𝑏1 +𝐾2𝑏2 + 𝐿2(𝑏4 − 2𝑏5) − 2𝑄2𝑎7 + 𝑆2(𝑎8 − 𝑏8))
+(𝑏6 + 3𝑏5 − 3𝑏4)𝑡 −𝐾2𝑎2 − 4𝑀1𝑏3 + 𝐿1(3𝑏4 − 2𝑏6) +𝑀2(3𝑎6 + 7𝑎5 − 8𝑎4)
+(𝑃2 + 𝑆1)𝑏7,

𝛼9 = 2(𝑏7 − 𝑏3𝑇 )(𝜆1𝑌 − 2𝜆0𝑇 − 4𝑇𝑥) + 2𝑏3(𝑌 𝜆0𝑌 − 𝜆0)
+2(𝑏4 − 2𝑏5 + 𝑏1𝑇 )𝜆0𝑌 + 2(𝑏7𝑡 − (𝑏3𝑡 + 𝑏7𝑥)𝑇 + 𝑏3𝑥𝑇

2).
(56)

Proof. Let us find conditions of compatibility of the system (46), (47). If we denote 𝑇 = 𝜃𝑡/𝜃𝑥,
𝑌 = 𝜃𝑦/𝜃𝑥, then the condition of equality of the derivatives 𝜃𝑡𝑦𝑦, 𝜃𝑦𝑦𝑡 and 𝜃𝑡𝑡𝑦, 𝜃𝑡𝑦𝑡, calculated
my means of differentiation of expressions (46) by 𝑡, 𝑦, takes the form (48). Differentiation of
(47) by 𝑡, 𝑥, 𝑦 and comparison of mixed third-order derivatives of the function 𝜙 results in two
correlations

𝐵𝑖1𝑀31 +𝐵𝑖2𝑀33 = 0, (57)

where 𝐵𝑖𝑗, 𝑖, 𝑗 = 1, 2 are introduced in (55), and six correlations

(𝐺0 + 𝑏1 + Ω1𝜃
2
𝑥 + Ω2𝜃𝑥𝜙𝑥 + Ω3𝜙

2
𝑥)𝑀31 − 𝑎0𝑀33 = 0, (58)

𝑏3𝑀31 − (𝐺0 + Ω1𝜃
2
𝑥 + Ω2𝜃𝑥𝜙𝑥 + Ω3𝜙

2
𝑥)𝑀33 = 0, (59)

(𝐺1 − 2𝑏4 − 2(𝐺0 + 𝑏1)𝑇 + 2𝑏3𝑌 )𝑀31 + (𝐺2 − 𝑎2 + 2𝑎0𝑇 + (𝑏1 − 2𝐺0)𝑌 )𝑀33 = 0, (60)

(3𝐺2 + 𝑎2 + 2𝑏2− 4𝑎0𝑇− (4𝐺0 + 𝑏1)𝑌 + 2(Ω1𝜃
2
𝑥 + Ω2𝜃𝑥𝜙𝑥 + Ω3𝜙

2
𝑥)𝑌 )𝑀31

+(2Ω2 − 𝑃𝑆 + 3Ω3𝜙𝑥/𝜃𝑥)𝑀2
31 + 2𝑏0𝑀33 = 0,

(61)

(3𝐺2 − 𝑎2 + (𝑏1 − 4𝐺0)𝑌 + 2(Ω1𝜃
2
𝑥 + Ω2𝜃𝑥𝜙𝑥 + Ω3𝜙

2
𝑥)𝑌 )𝑀33

+(2Ω2− 𝑃𝑆 + 3Ω3𝜙𝑥/𝜃𝑥)𝑀31𝑀33+ 2(𝑏6− 𝑏5− 𝑏4 − 𝑏1𝑇 + 2𝑏3𝑌 )𝑀31 = 0,
(62)

(3𝐺1 − 4𝑏6 − 4𝐺0𝑇 − 4𝑏3𝑌 + 2(Ω1𝜃
2
𝑥 + Ω2𝜃𝑥𝜙𝑥 + Ω3𝜙

2
𝑥)𝑇 )𝑀33

−(2Ω2 − 𝑃𝑆 + 3Ω3𝜙𝑥/𝜃𝑥)𝑀2
33 − 2𝑏7𝑀31 = 0,

(63)

where Ω1 = 3/2𝑄𝜃 − 𝑃𝜙 − 9/4𝑄2 + 3𝑃𝑅, Ω2 = 3𝑅𝜃 − 3/2𝑄𝜙 + 2𝑃𝑆, Ω3 = 𝑆𝜃 + 3/2𝑄𝑆,

𝐺0 = 𝐹0𝑥 − 𝐹 2
0 + 𝑃1𝐹0 +𝑄2𝐹2 − 𝑉1𝑡 − (𝐿1 + 𝐹1)𝑉1 −𝑀2𝑉0,

𝐺1 = 𝐹1𝑥 + (𝐿1 − 𝐹1)𝐹0 +𝑀2𝐹2 + 𝑏6 − (𝐾1𝑉1 +𝐾2𝑉0)/2 +𝐺0𝑇 + 𝑏3𝑌,
𝐺2 = 𝐹2𝑥 + (𝑆1 − 𝐹2)𝐹0 + 𝑆2𝐹2 − 𝑉0𝑡 −𝑀1𝑉1 − (𝐿2 + 𝐹1)𝑉0 + 𝑎0𝑇 +𝐺0𝑌.

Given by (55) equalities

𝐴𝑘1𝑀
2
31 + 𝐴𝑘2𝑀31𝑀33 + 𝐴𝑘3𝑀

2
33 = 0, (64)

where 𝐴𝑘𝑙, 𝑘, 𝑙 = 1, 2, 3, serve as their algebraic corollary .
To find the condition of compatibility of the equations (48), (57), (64) with the system (46),

(47), let us differentiate them by 𝑡 (as respect to 𝑦) and subtract from them the same equations,
differentiated by 𝑥 and multiplied by 𝑇 (by 𝑌 ). It provides correlations (49) and equalities of
the form (57), (64) with coefficients 𝐵𝑖𝑗, 𝑖 = 3, 4, 5, 6, 𝐴𝑘𝑙, 𝑘 = 4, . . . , 9, denoted by correlations
(55). The identity (50) is a corollary of the equality of the derivatives 𝜃𝑡𝑦 and 𝜃𝑦𝑡. If we use the
table of symbols (56), the equations (46) can be presented in the form

𝑇𝑡 − 𝑇𝑇𝑥 − 𝜆0 + 𝑆𝑀2
33/𝜃

3
𝑥 = 0,

𝑌𝑡 − 𝑇𝑌𝑥 − 𝜆1 − 𝑆𝑀31𝑀33/𝜃
3
𝑥 = 0, 𝑌𝑦 − 𝑌 𝑌𝑥 − 𝜆2 + 𝑆𝑀2

31/𝜃
3
𝑥 = 0.

The exclusion of the summands with 𝑆 results in

(𝜆0 + 𝑇𝑇𝑥 − 𝑇𝑡)𝑀31 + (𝜆1 + 𝑇𝑌𝑥 − 𝑌𝑡)𝑀33 = 0,
(𝜆1 + 𝑇𝑌𝑥 − 𝑌𝑡)𝑀31 + (𝜆2 + 𝑌 𝑌𝑥 − 𝑌𝑦)𝑀33 = 0.

To obtain the condition of the mutual equality of mixed derivatives of the forth-order function
𝜃 , let us differentiate (60)–(63) by 𝑥 and substitute forth-order derivatives 𝜃 subject to the
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equations (58), (59), differentiated by 𝑡, 𝑥, 𝑦. In case of the equation (60) it results in identity,
and for the equations (61)–(63) it provides correlations

𝛼1𝑀31 + 𝛽1𝑀33 − 3(Γ1𝜃𝑥 + Γ2𝜙𝑥)𝑀2
31 = 0,

𝛼2𝑀31 + 𝛽2𝑀33 − 3(Γ1𝜃𝑥 + Γ2𝜙𝑥)𝑀31𝑀33 = 0,
𝛼3𝑀31 + 𝛽3𝑀33 + 3(Γ1𝜃𝑥 + Γ2𝜙𝑥)𝑀2

33 = 0,
(65)

where Γ1 = 𝑃𝜙𝜙 − 2𝑄𝜃𝜙 +𝑅𝜃𝜃 + 𝑃 (2𝑆𝜃 − 3𝑅𝜙) + 3𝑄(2𝑄𝜙 −𝑅𝜃) − 3𝑅𝑃𝜙 + 𝑆𝑃𝜃,
Γ2 = 𝑄𝜙𝜙 − 2𝑅𝜃𝜙 + 𝑆𝜃𝜃 −𝑃𝑆𝜙 + 3𝑄𝑆𝜃 + 3𝑅(𝑄𝜙 − 2𝑅𝜃) + 𝑆(3𝑄𝜃 − 2𝑃𝜙). Algebraic corollary of
the equations (65) can be presented as

𝛼2𝑀
2
31 + (𝛽2 − 𝛼1)𝑀31𝑀33 − 𝛽1𝑀

2
33 = 0, 𝛼3𝑀

2
31 + (𝛽3 + 𝛼2)𝑀31𝑀33 + 𝛽2𝑀

2
33 = 0.

Having differentiated the second equation (65) by 𝑦, 𝑡 and having compiled, correspondingly,
a sum with the first equation (65), differentiated by 𝑡, and the difference with the third one,
differentiated by 𝑦, we obtain correlations

2𝛼4𝑀31 + 2𝛽4𝑀33

+3Γ2[𝜆0𝑇𝑌𝑀
2
31 + (2𝜆1𝑇𝑌 − 𝜆0𝑇𝑇 )𝑀31𝑀33 − 𝜆1𝑇𝑇𝑀

2
33]𝑀31/𝜃𝑥 = 0,

2𝛼5𝑀31 + 2𝛽5𝑀33

+3Γ2[𝜆0𝑇𝑌𝑀
2
31 + (2𝜆1𝑇𝑌 − 𝜆0𝑇𝑇 )𝑀31𝑀33 − 𝜆1𝑇𝑇𝑀

2
33]𝑀33/𝜃𝑥 = 0.

(66)

To exclude Γ2 we use correlations

𝛼6𝑀31+ 𝛽6𝑀33+ 3Γ2𝑀
3
31/𝜃𝑥 = 0, 𝛼7𝑀31+ 𝛽7𝑀33+ 3Γ2𝑀

2
31𝑀33/𝜃𝑥 = 0,

𝛼8𝑀31+ 𝛽8𝑀33+ 3Γ2𝑀31𝑀
2
33/𝜃𝑥 = 0, 𝛼9𝑀31+ 𝛽9𝑀33+ 3Γ2𝑀

3
33/𝜃𝑥 = 0,

(67)

which are obtained during differentiating (61), (63) by 𝑦, 𝑡 and substitution of derivatives 𝜃
subject to the equations (46), twice differentiated by 𝑥. The equalities of the form (64) with
the coefficients 𝐴𝑘𝑙, 𝑘 = 12, 13, 14, 15 is an algebraic corollary of (66), (67). Substitution of
(67) into (66) provides two more correlations of the form (57), which the coefficients 𝐵91, 𝐵92,
𝐵10,1, 𝐵10,2 defined by the formulae (55).

Hence, studying compatibility of the system (47) we have obtained ten equations (57) lin-
ear by 𝑀31, 𝑀33 and fifteen second-degree equations (64) by 𝑀31, 𝑀33. Their conditions of
compatibility is supported by the equalities (51)–(54), which are added to the conditions of
compatibility (48)–(50) of the equations (46).

The system (46), (47) is compatible in case, when the system of equations (48)–(54) is
compatible relative to 𝑇 , 𝑌 . This system is divided into the subsystem of equations (48), (49)
and (51)–(54) with 𝑖, 𝑗 = 1, 2, 𝑘, 𝑙,𝑚 = 1, 2, 3, algebraic relative to 𝑇 , 𝑌 , and the subsystem
of differential equations, including equations (50) and the remaining equations (51)–(54). The
system (48)–(54) is compatible when the subsystem of algebraic equations is decidable relative
to the values 𝑇 , 𝑌 , and their substitution into the remaining equations of the system results in
identities. The theorem has been proved.

Let us note, that in most cases to state, that the equation in the system of two ordinary
differential equations does not separate, it is sufficient to study compatibility of the algebraic
subsystem of equations (48)–(54). If it proves to be compatible, and the substitution of its
solution 𝑇 , 𝑌 into the remaining equations (48)–(54) does not result in contradicting equality,
the substitution of variables (2), which results in the given system of ordinary differential
equations taking the form (11), (12), can be calculated from compatibility of the system of the
equations 𝜃𝑡/𝜃𝑥 = 𝑇 , 𝜃𝑦/𝜃𝑥 = 𝑌 , (46), (47), (57)–(64).

To check up whether the system (6) can take the form (11), (12) by the transformation (2),
where 𝜃𝑦 ̸= 0, it is sufficient to make a substitution 𝑥̃ = 𝑦, 𝑦 = 𝑥 in the system (6) and apply
Theorem 4 to it.
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5. Example of a system with a separating equation

Example 3. Let us continue the study of the system (43) and find, what Γ, 𝑈 in it result
in separation of the equation by transformation (2) with 𝜃𝑥 ̸= 0. The first condition (48) and
the condition (52) when 𝑘 = 1, 2, 𝑗 = 2 possess the form

(𝑌 2 + 1)(𝑌 Γ𝑥 − Γ𝑦) = 0, Γ𝑥((𝑌 2 − 1)Γ𝑥 − 2𝑌 Γ𝑦)
2 = 0,

(2𝑌 Γ𝑥 − Γ𝑦)((𝑌
2 − 1)Γ𝑥 − 2𝑌 Γ𝑦)

2 = 0,

this implies Γ𝑥 = 0, Γ𝑦 = 0.
If Γ = Γ(𝑡), then all correlations (53), (54) become identities, and the simplest of the condi-

tions (51) possess the form

𝑌𝑥Ψ = 0, (𝑌𝑦 − 𝑌 𝑌𝑥)Ψ = 0, (𝑌𝑡 − 𝑇𝑌𝑥 + (𝑌 2 + 1)Γ)Ψ = 0, (68)

where Ψ = 𝑈𝑥𝑥 − 𝑈𝑦𝑦 + 2𝑌 (𝑈𝑥𝑦 − Γ′). Assume Ψ ̸= 0 and Γ = 𝛾′(𝑡)/2, then 𝑌𝑥 = 0, 𝑌𝑦 = 0,
𝑌𝑡 + (𝑌 2 + 1)𝛾′/2 = 0. The substitution of 𝑌 = −tg(𝛾/2) into the second equality (48)

𝑌 2(Γ′ − 𝑈𝑥𝑦) + 𝑌 (𝑈𝑦𝑦 − 𝑈𝑥𝑥) + Γ′ + 𝑈𝑥𝑦 = 0 (69)

with precision to substitution 𝛾 = 𝛾 ± 𝜋/2 results in the equation (44) relative to 𝑈(𝑡, 𝑥, 𝑦).
If Ψ = 0, then all the conditions of Theorem 4 are reduced to compatible system of equations

4𝑉 2 +𝑊 2 = 4Γ′2, 2(𝑉 − Γ′)𝑉𝑦 +𝑊𝑉𝑥 = 0, 2(𝑉 − Γ′)𝑊𝑦 +𝑊𝑊𝑥 = 0, (70)

Γ′𝑉𝑥𝑇 + 𝑉 Γ′′ − Γ′𝑉𝑡 − ΓΓ′𝑊 = 0, 2(𝑉 − Γ′)𝑇𝑦 +𝑊𝑇𝑥 = 4ΓΓ′,
Γ′𝑊𝑥𝑇 +𝑊Γ′′ − Γ′𝑊𝑡 + 4ΓΓ′𝑉 = 0, 2(𝑉 − Γ′)𝑌 +𝑊 = 0,

(71)

where 𝑇 = 𝜃𝑡/𝜃𝑥, 𝑌 = 𝜃𝑦/𝜃𝑥. It is supposed, that 𝑉 ± Γ′ ̸= 0, Γ′ ̸= 0, otherwise, it results
from the first equation (70), that the system (43) is linear. Let the function 𝑈(𝑡, 𝑥, 𝑦) satisfy
three correlations (70), then we can obtain 𝜃 from the equations (71). Moreover, 𝐴31 = 𝑉 −Γ′,
𝐴32 = 0, 𝐴33 = 0, and it follows from (64) that 𝑀31 = 0, which is equivalent to the equation

2(𝑉 − Γ′)𝜙𝑦 +𝑊𝜙𝑥 = 0 (72)

relative to 𝜙. The solution 𝜃, 𝜙 of this equation and equations (71) is necessary to substitute into
the system (46), (47), to completely denote the form of the functions 𝜃, 𝜙 in the transformation
(2). Whereas the function 𝜃 is denoted from the correlations 𝜃𝑡 − 𝑇𝜃𝑥 = 0, 𝜃𝑦 − 𝑌 𝜃𝑥 = 0 as a
function of one argument, then the system (46) is reduced to one ordinary differential equation
relative to this function. The function 𝜙 from the equation (72) is denoted as a function of
two arguments, and its substitution transforms (47) into a compatible system relative to this
function. In the capacity of 𝜙 we can take any partial solution of this system, chosen the way
for the corresponding transformation (2) to be nonsingular.
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