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SEPARATION OF AN EQUATION IN THE SYSTEM OF TWO
SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

YU.YU. BAGDERINA

Abstract. We consider projectable type systems of two second-order ordinary differential
equations with cubic nonlinearity of the right-hand side in first derivatives. For such systems
we obtain criteria of reducibility by local transformation to a system with a separating
equation in one of the unknown functions. Applications of the criteria and construction of
the corresponding transformation is illustrated by a number of examples.

Keywords: second-order equation, decoupling of equations, separation of an equation,
submersive system

1. INTRODUCTION

The problem of separation of equations in a system, like the problem of linearization of
differential equations corresponds to a particular case of the problem of equivalence. Let us
call two systems of second-order ordinary differential equations

' = ftxy 2y, Yy =gtrydy) (1)
equivalent, if there is a reversible point substitution of variables
. i _ 9(0,¢,v)
t=0(t = p(t =(t A=—"""24£0( 2
(tzy), T=e¢ltzy), y=¢Ezy), At.z.y) # 0, (2)

when one system changes to the other. Here we use the following table of symbols 2’ = dx/dt,
" = d*x/dt?, y = dy/dt, y" = d*y/dt* for derivatives. As it was shown in S.Lie’s papers [1],
many particular methods of solution of differential equations are equivalent to finding such a
substitution of variables , which would reduce the given equation to one of already available
equations. Thus, in some cases the problem of linear integration of an ordinary differential
equation is considered to be solved, if the equation can be linearized. In the case of the system
of equations the problem is reduced to a more simple one, if as a result of the transformation
we obtain a system, in which an equation is separated relative to one of the functions, for
instance, 7 (t):

= ftad),  §=90557.7) (3)
Thereby the system integration is reduced to solution of the first equation (3 relative to (%)
and then, when the function Z(f) is available - to integration of the second equation (3|) relative
to g(t).

In some rare cases equations of the system can be completely divided into:

P =ft a7, ¥ =9{07)
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after the transformation , and then they are integrated independently from each other. The
problem of separation of equations in systems of second-order ordinary differential equations was
studied in [2, 3, 4]. Meanwhile there were considered transformations, effecting only dependent
variables and not changing ¢. The problem of separation of equations on the system (in such a
class of transformations) was studied in [5] [].

The system , which is linearized to the form z” = 0, ¢ = 0, can be an example of
a system with separated equations. An available criterion of linearization [7, 8] in terms of
relative invariants ~;, o of the system can be formulated as follows.

Theorem 1. The system is linearized to the form " =0, §”" = 0 by the transformation
(2) if and only if there is

v=0, i=0,1,2, o0p=0, k=0,...,4, (4)

for it, where

0= 1D0) ~ Lyt a0) = for

71 :Z-?(fm’_gy/)l‘f‘ g(gyl_fx/)—f_i(gy_fx), (5)
’)/2 e _ED(gZ,) + ng/(fx/—i— gy/> —|— g.’L'a

D =0,+2'0, +y'0, + fOr + g0y is an operator of differentiation according to the system

and

1 1
o0 = fyyy, o1 = 13foyy — Gyyy), 02 = 5(farary — Goryy ),
_1 _
03 = Z(fx’x’x’ - ng’:r’y’)u 04 = —Gz'z'a’ -
The system , satisfying the conditions o9 =0, ... o4 = 0, possesses the form

= Kl + 2L1{E, + 2M1y/ + P1$/2 + QSlx’y’ + QlyQ
+a' (Viz™? + 2Vor'y' + Vay'?),

y' = Ky + 2Loy + 2Mox’ + Poy® + 252"y + Qo2 (6)
_l_y/(v'lx/Q + 2%1,/?/ + VQy’Z)

with the coefficients K, L;, M;, P;, Q;, S;, Vb, Vj, 7 = 1,2, depending on ¢, z, y, and can be
associated with project connection in three-dimensional space [7]. For the system @ according
to the formulae ([5)) we obtain

Yo = @™ — boxy’ + ayx™ + a2y’ + (2a5 — ag)r’ + asy’ + as,
Y = —apzy + box'y? + %(bﬂ@ + (by — ag)2'y’ — ary” (7)
+(b6 + b5 — 2()4)!El + (2&4 — a5 — ag)y’ + ag — bg),

Yo = agx'y"? — boy”® — b’y — bay'? — by’ + (by — 2bs)y’ — by,

and the condition of linearization obtains the form of 15 relations
ag=0, a1=0, ay=0, a3=0, ag4—2a5=0, 3a5—ag=0,
bo == 0, bl - O, bQ - O, bg - 0, b4 - 2b5 - 0, 3b5 - b@ = 0, (8)
CL7:O, b7:O, CLg—ngO.

The explicit form of relative invariants a;, b;, j = 0, ... ,8, of the system (@ is presented in
[9]. In particular,

as = Sy — Ly — M1Sy + M@ + SKiVo + 1Ko Vs,
bs = Sot — Loy — M3 St + M1Qo + 5 KoVo + 5 K1 V7, (9)
bg == L2t - sz - Lg - M1M2 + K2P2 "— Klsg.

In this paper we obtain the criterion of separation of an equation in systems of the form @
The criterion of complete separation of equations in the system @ can be found in [I0]. The
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class of equations @ is closed relative to arbitrary nonsingular substitution of variables .
Such a substitution transforms the system @ into the system of the same form

i = Ky + 20,7 + 2My§ + P + 25,77 + Q1
+7 (Vid? + 2V + Vo),

J" = Ky + 2Lof) + 2Myi + Poif? + 25,75 + Qqi"
—l—ﬂ/(‘?lfg + 2‘70:?@/ + ‘72@/2)

(10)

with some coefficients Kj, ij, Mj, I5j, Qj, S'j, ‘N/O, ‘7j, j = 1,2, operating as functions ¢, %, .
In the system the first equation is separated if its coefficients satisfy the correlations

_ . 3 . _ N N N N N
K, =P, L1:§Q, My=0, PP=3R, 5=0, Q1=0, Vi=5, V=0, V=0

with some functions P, Q, R, S, depending on ¢, #, and its equations possess the form

" = P(t,%) +3Q(t, )7 + 3R(f,7)3* + S(I,7)7", (11)

J" = Ky + 2Loif + 20Moi' + Poif? + 25,35 + Qud + S(t, )37 . (12)

In §2 there is a case of transformation ([2)) considered, where § = 6(t). The case of arbitrary
transformation (2)) (with 6, # 0 or 6, # 0) is studied in §4. In §3, 5 the application of the
obtained criteria of separation is demonstrated on the example of a normal form of the system
with two degrees of freedom and the system, which can be interpreted as geodesic equations in
the space with Riemannian metric.

As it was noticed by the reviewer of the paper, the problem of separation of equations in the
system @ can be solved in a more general formulation. Namely, we could find conditions of
separation in the system @ of the equation of the form

¥ = P(1,2,9) +3Q(1,2,9)7' + 3R(1, 2,9)7"” + S({,7,9)2", (13)

which differs from the equation fact, that the variable ¢ is entered into it as a parameter.
The corresponding criterion will also include as a particular case criteria of reducibility of the
system (|6)) to the form , , obtained in the given paper. The problem of separation in the
system ((6)) of the equation of the form is not studied here. Its solution is a more complicated
task, as it is reduced to research of consistency of a redenoted system of 15 equations relative
to functions 6, ¢, ¥, where the subsystem of 9 equations relative to the functions 6, ¢ is not

separated (see subsystems ([16)), and (46), (47)) below.

2.  CRITERION OF SEPARATION OF EQUATIONS ON THE SYSTEM @ AN EXAMPLE OF A
PARTICULAR CASE TRANSFORMATION

Let us find conditions when the system @ of a nonsingular point substitution of variables

t=0), T=¢try), G=vzy) (14)

can be transformed into a system of the form , . It is assumed, that ¢, # 0, ¢, # 0.
In other words, if the system @ is reduced to the form , by the transformation ,
where ¢, = 0 (¢, = 0), it implies that the first (the second) equation in the system (6) has
been separated already.

Substitution of the transformation in the equations , results in the system of
the second-order ordinary differential equations relative to x(t), y(t) with the same type of
dependence on z’, ¢/, like in the equations @ Setting its coefficients equal with degrees z’, 3/
to the corresponding coefficients of the equations @, we obtain 15 correlations, which under
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0. # 0, ¢, # 0 can be solved relative to all derivatives of the second order of the function :

Vaw = —Pibe— Qo+ Potbi+ 28502100+ Qo+ S(patfi+ 20102 ) 0 /0

'lvay = —51% - 52% + Pszwy + 52(%% + @y¢x> + Q290x90y
+S(@apyr + Qroyibe + orpathy) /6

wyy Qﬂﬁx Pwa+ P2¢2 + 25290y¢y+ Q2§0y + S(prwt"i_ ngtwy)gpy/el

Vo = —L1thy — Mathy + ¢19"/(29/) + 0" (Lo, + Mop,) + Pz%l/)ac

Uy = =My — Lothy + %Uy@”/(zel) + 9'(L2¢y + M290y) + P2¢t@/)y
+S5(0ythe + orby) + Qaproy + Sty + 20400 ) 01/ (20),

Vu = — K1, — Koby + 0" /0" + K07 + 20 (Lot + Maw,) + Pyi?
+25290t¢t + Q290t + S /¢

(15)

and derivatives of the function ¢:

Tx — _lex - QQQOy + 3(R + S¢t/0/)¢i7
Ty — _5190:1: - SQQOy + 3(R + Sgpt/el)(pﬂfgoy? (16)
w = — Qs — Papy + 3(R+ S /0') 0},

¥
v

Pz = —L1ps — Moy + 00"/ (20') + 3/2(Q0' + 2Rp; + 5S¢} /0 ) pa,
Pry = —Mip, — Lapy + ,0"/(20") + 3/2(Q0' + 2R, + S©} /0') 0y,
pu = —Kip, — Koy + PO” + (3Q0 +0"/0') o, + 3R¢} + S} /0.

The remaining three correlations possess the form
= Sp3/0,  Vo=Seup,/0,  Va=S5¢/0 (17)

Therefore, the system @ is transformed into the system with the separating equation ,
by means of substitution of variables if and only if the redetermined system of equations
1} is combined relative to the functions 6, ¢, 1.

The equations , are separated from the system 7, as they contain only the
functions P, ), R, S, depending on 6, ¢, and do not contain the functions Ky, Ly, My, Py, Ss,
(5, depending on 6, ¢, 1. Their solution determines the functions 0, ¢ in the transformation
. Any function such that substitution of variables is nonsmgular can be used as .
From the six equations we can determine the coefﬁc1ents Ky, Ly, My, Py, S5, Qs of the
equation . No limits are 1mposed on this type of coefficients. Therefore, the equations ({1
are combined, the same way as the system — in general, if the subsystem of equations
, is combined. The system , is redetermined, and the study of its compatibility
is based on the system of Pfuff equations. A detailed description of the theory of such equations
can be found, for instance, in [11].

It is easy to see, that if one of the functions Vj, Vi, V5 equals to zero, then the equations
can be combined only when S = 0, V{, Vi, V5 = 0. While studying compatibility of the system
, this case together with the case when the coefficients Vy, Vi, V5 in the system @
differ from zero, are considered separately. Together with @ the following symbols are applied
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here
Qo = a5y — by + Q103 — S1by — Ssas + Qoas + 3(MoVoy — My Vi)
+3/2((3Ly — Lo)Vor — ViMyy + Vo(Ly — Lay) + Vo),
1 = A3y — agy + (S2 — Pr)as + (251 — Py)ay — Siag + Q1(bs — be)
+3/2(L1 + Lg)Vay,
Qg = Q75 — agy + Q1b7 + S1(ag — bs) — Pray — Mibg
+Lyay — Loas + Maas + 3/2(FK1 Vo, + K3 Vay),
ag = bsy — b + 3(agy — bsz) + 6(Q2a7 — Sibr) +2M1bs 4 2L, (bs — bs)
+M2((l5 — a4 — 2(16),
Qy = Qg — v?)CL7z + 3SI(b8 — ag) + S(Pl — SQ)CW
—2M26L3 —|— (L2 — 3L1)6L4 —f- M1<b6 — b5),
a5 = a5y — age + My (bs — by) — Lo(as + 2as) + 9/2(K, Vo + Ko Vo)
+3[a7x — agy + Q1b7 + Sl(ag — bg) — P16L7 — M1b6 + L1a4 + MQCL?,
+Vo(K1/2 + KLy + KoMy ) + Va(Ka /2 + KMy + KoL),
Qg = A3¢ — 3a7y —+ 3Ql(b8 — Clg) + 3(51 — PQ)(Z7 — M1<Cl4 —+ aﬁ)
—(Ll + LQ)CL3,
ar = (Bs+ B — az)y — quy — Q186 + S1(Ba + P5) + S20q — Q206,
g = gy — (g + a5)y + Q1(as — B5) + 5186 + (S1 — Po) (o + as)
+(Ss — Pr) o,
ag = bgy + Prbg — S1b3 + 2Q2as,
a1p = a5y + S1(bs — bsy) + Saas + Q2as,
Q11 = agy + Socaz + Pras + Q1(bs — bs),
12 = agy + (2P, — Si)as + Q1(2a4 — ag),
and also 3;, © =0, ... ,12, formulae for which calculation it is necessary in the expressions for
«; to roles of the following pairs of variables: (x,y), (a;,b;), (o, Bx) and indexes (1,2) of the
coefficients of the system @ In particular, we obtain

Br = (s + a5 — B3)s — Bay — Q206 + Sa(ua + a5) + S184 — Q1 5,
P12 = bsy + (2P — S3)bs + Q2(2b4 — bs),

and etc. According to the same rule the values b; are obtained from a; (see (9)). The following
criteria of separation of the equation hold in the system @ as the result of the transformation

of the form .

Theorem 2. The system of two second-order ordinary differential equations

1" = K, + 2012’ + 2Myy + Py + 2812y + Q1y'2,

(18)

y" = Ky + 2Loy + 2Moa’ + Py + 252"y’ + Qa2 19
1s reduced to the form

"= p(t, &) +2q(t, 2)7 + r(t,7)7", (20)
J" = Ky + 2Loif + 20Myi' + Poif? + 25,75 + Qqi"” (21)

by the transformation

if and only if its coefficients satisfy the correlations
BnBja — BjiBia = 0, (22)
BJZQAI{:I — Bj1Bjo Ao + B?1Ak3 =0, (23)
(ArAis — AnArs)® + (Ao A — AAr) (A Ay — AidArs) = 0, (24)
Apr Apa Ags

det | An An Ay | =0, i,j=1,...,36, kilm=1,...,65, (25)

Aml Am2 Am3
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where
By = ay, By = ay, B3y = a4 — a5, By = ay, Bsi = ay,
By = —by, By = —bi, Bsp=0b5—by, By =—p1, Bss=—p, (26)
Br = as, By = =85, Be1 = ag, Bgy = — 32,

Bgi = a7 + 2Myaq; + 2(Ly — Lo)agg — 2Ma,
Bgy = B + 2My 10 + 2(L1 — L) B11 — 2M1 B1a,

27

Bgy = ag + 2Myono + 2(La — Ly)agy — 2Msais, (27)
By = 7 + 2M1 811 + 2(La — Ly) 10 — 2M3 3y,

Byij1 = (Bj)t — LiBjy — M1Bjs, Bogyj2 = (Bjs): — MaBjy — LyBjs,

Bigiji = (Bji)s — PiBj1 — S1Bj2, DBistj2 = (Bj2)s — Q2Bj1 — S2Bja, (28)

Borij1 = (Bj1)y — S1Bj1 — Q1Bj2, Barijo = (Bja)y — S2Bj1 — P2Bj,

j=1...9

Ay = as, Ay = as, A3y = ay, Ay = ay, As1 =—ag,

Ay =by—bg, Aoy =ag— as, Azy =0bg—ag, Ap=oa3, As = [s, (29)

Az = —bs, Agg = —bs, Aszg = —by, Ags =—P6, Asz = B,

Apiin = (Ak1)e— 201 Agy — My Apo, Apgiz = (Ags)e— Mo Agg— 2L Ays,

Apiro = (Ara)e — 2MoAps — (Ly + Lo) Age — 2M; Ay,

Ao = (Ap1)e— 2P1Ag — S1Ak2, Aoniis = (Ars)e— QaAra— 255 Ay, (30)

Agpiio = (Ak2)e — 2Q2Ak — (Pr + S2) Ao — 251 Ays,
Aspiig = (Ar)y— 2514k — Q1Ak2, Aspiks= (Akz)y— SoApa— 2P Ays,
Asnine = (Ak2)y — 2524k — (S1 + ) Ake — 2Q1 Ags,
where 1) n=5,k=1,...,5; 2)n=15, k=6, ...,20.
Theorem 3. The system of two second-order ordinary equations @ with the coefficients Vg,

Vi, Vo, different from zero, is reduced to the form , by the transformation iof and

only if its coefficients satisfy the following correlations

Ve =WV,  ag=0, by=0, (31)
ViBj1 + VoBjs = 0, VoBj1 + VaBja =0, j=1,...,13, (32)
ViAg + VoA + VaArz = 0, k=1,...,6, (33)
where Bj;, Ay are determined by the formulae , ,
Ag1 = ag, Agz = a7 + P, Agz = [s, (34)

Bgi = Vo, Bo1 = Viy— 2Vou, Bio1 = Vay, Biig = e+ Vo, Biag = Vay,
Bgo=—Viy, Boo= Vis, Bioa= Var— 2Voy, Br12=—Vii, Broo=¢e— Vi,

where ¢ = MiVi + (Lo — Ly)Vy — MyVs and
Biz1 = ag, Bigs = 37 Jor € =0, (36)

Big1 = ase, + aey + e[Prag + Si(ar + f7) + Q15 — oy — sy,
Big o= Bsey+ Breg+ e[ Pafs+ So(ar+ Br)+ Qaas— Bru— Bsy] for e # 0.

The conditions of Theorem 2 are obtained by means of standard (analogous to the way it
was made in [9]) study of compatibility of the system (16]), which results in equations

(37)

Bji1o: + Bjap, =0, (38)
linear by ¢, ¢, with coefficients —, and equations
Aj9s 4+ Arapntpy + Arsp, = 0 (39)

of the second degree by ¢,, ¢, with the coefficients , (30). The equalities correspond
the condition of compatibility of the system (38), and (24)), — of the system (39). The
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equalities denote the condition of compatibility of the equations with the equations
(139)-

Remark.  The system (3§), can have two solutions ¢,/¢, = ¢1(t,z,y),
O/ Py = Ga(t, x,y) such that O(é1, ¢2)/0(x,y) # 0. It denotes, that the use of corresponding
solutions as Z, y results in the system, which equations are completely separated. It is necessary
and sufficient for this for the correlations all Bj; =0, and for rank||Ay|| = 1, and, if
any line (A1, Axe, Agz) differs from zero, then A2, —4A;; Agz # 0. The same remark also holds
for the case of the transformation with 6, # 0 or 6, # 0 (the corresponding statements on
separation of equations in the system of two second-order ordinary differential equations are
given in [10]).

Theorem 3 is proved similarly. The first condition and the equalities

serve as an algebraic corollary of the equations ((17]). The study of compatibility of the equations
17)) results in conditions ag = O by = 0, correlatlons Wlth the coefficients (26
or 1 ) and the correlatlons with the coeﬂi(nents ., that subJect to
prov1des conditions , of Theorem 3.

3. EXAMPLES OF SYSTEMS WITH A SEPARATING EQUATION
Example 1. Let us consider the family of equations

2" = Pi(x,y)r” + 251 (z, y)2'y + Q1 (x,y)y"
y' = Py(z,y)y? + 25 (x, y)2'y + Qa(, y)z"

with the form of dependence on the first derivatives, analogous to that of geodesic equations
in the space with Riemannian metric

d%z Y da? da®

dez R At de
If we assume (z',2?) = (z,y), then Christoffel symbols T i are connected with the coefficients
of the system by the correlations

Iy =—P, Tp=-5, Typ=-Q, T{=-Q), Th=-5, I5=-P.
It is known, that the equations referred to the parameter x take the form

(41)

=0, i,k =12 (42)

d2y dy dy\” dy\®
= 25 P,—25) (=] — —=
H-qres-nEs - (2) o (P
i.e. separation of the equation in the system as a result of the transformation ({2)) with
0, #0
t=ux, T =1y, y=t
holds for any system . Let us find conditions, when an equation is separated in the system

as a result of the transformation of the form (14).
If we calculate invariants by the formulae (5) we can determine, that for the system (41])

four invariants a;, as, b1, by form 18 a;, b;, 7 =0, ... ,8 differ from zero. In case of the system
they coincide with components of the curvature tensor [10]
a1 = Ryyy, as = Ryyy, by = R, by = Rjy.

It is easy to see, that all values , are equal to zero, and, accordingly, for the system
all the conditions f of Theorem 2 are satisfied identically. The condition is
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satisfied, if the rank of the next matrix (formed from non-nil lines of matrix B) is lower than 1:

ai by
a2 by
a1y — Pra; + Siby  boy — Saby + Qaay
Az — Prag + 510y bip — Saby + Q2as
ay — S1ay + Qrby  bay — Poby + Szay
agy — Stag + Q101 by — Poby + Saay

ool
I

The separation of an equation in the system is possible, if rankB = 1. If rankB = 0,
then the equations are completely separated and, due to Theorem 1, reduced to the form
" =0, §" = 0. It is demonstrated in [9, 10] , that in particular case of the system the
equality a;b; — asby = 0 is possible, only if a; =0, as =0, by =0, by = 0.

Example 2. The system, which in the case Iy = 0 describes plane motion of a particle
under gyroscopic forces, has the form

=2y —U,, y'= -2z — U, I #0. (43)

The functions I', U of variables t, x, y are assumed to be real, for the second derivatives of the
function U the following table of symbols is used V' = U,,, W = U,, — Uy,. Let us consider
an example of a nonlinear system (43]). The following coefficients in invariants differ from
zero for this system : ag = —I'y, bs = I'y, ay = =1y, by =Ty, a7 = Uyy + 1'y, by = Uyy — Iy,
ag = Uyp + T2 bs = Uy, + I'?. Tt results from conditions , when k£ = 1,2, j = 3 possessing
the form —T', (T2 + F?/) =0, -I,(I2+ F;) =0, that I', =0, I'y = 0.

Assume in the system I' = I'(¢). Then all the coefficients (26]), are equal to zero,
and the first several nonlinear coefficients , are equal to

A31 =TI + Ua:y7 A32 = Uyy - Uxaca A33 =I"- nyy A41 = _A43 = _3Uac:cy7
A42 = 3(nyy - Uwzx)a A51 = _A53 = _3Umyy7 A52 = 3(Uyyy - szy)a

A81 =I"+ F(Uxx - Uyy) + Utxy> ASQ = 4Fny + Utyy - Utmca

Agg - Iw —|— F(Uyy - Uxx) - Utzy-

Together with them the correlations take the form

(AV2+ W22 = (WV, — VIV,)?, (4‘/;/2 + I/VyZ)F’2 = (WV, = VIW,)?%
(Wx‘/;::r - ‘/szx>2 = 07 (Wzvxy - vaxy>2 = O,

(WyVay — Vnyy>2 =0, WV, — Vyvvzw)2 =0, (VuW, — %Ww)z =0,
(72 4 AT?T)(4V2 + W2) — 20T (4VV; + WW,) + STT2(WV; — VIV))
+T72(4V2 + W2) = (T(4V2 + W?2) + WV, — VIV,

that results in W = f1(t)V + fo(t), f& = (ff + DI, fi = (/£ + 4)T. Assume I' = //2 with
some function v(¢). Then fi(t) = 2tgy, fo(t) = £7”/cosy and the function U(t,x,y) should

satisfy the equation
"

i
Upe — Uy, =2ty U,, £ ) 44
yy &7 Yay cosy (44)
Consequently, separation of an equation in the system is possible, if
/ t 1
I'= 7; ), U= 7Z(m(x2 — y?)cosy — 2xy siny) (45)

+Via(t, ycosy + z(siny + 1)) + +V_1 (¢, ycosy + x(siny — 1)),

where m is equal either to +1 or to —1. In case of the functions all the conditions
, of Theorem 2 become identical, and all quadratic equations (39) possess a gen-
eral root ¢, /¢, = (siny +m)/cosy. The solution of the last equation is ¢ = ¢(t, z), where
z = ycosy + x(siny +m). Its substitution to results in the system of equations, when
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6 = t possessing partial solution ¢ = (siny + m)~/2z. Therefore, in the system (43| with the
coefficients there is the equation

7?2 v,
"+ I:?:—l—Zm\/sinfy—irm 8m =0
2

separated relative to the function Z(t) = (siny + m)~/2(y cosy + x(siny +m)).

4. CRITERION OF SEPARATION OF AN EQUATION IN THE SYSTEM ([6]). GENERAL CASE

Let us find conditions, when the system @ can be transformed into the system with a
separating equation , by substitution of the variables with 6, # 0 or 6, # 0.
Assume 6, # 0 for more precision. Substitution of the transformation in the system ,
(12) results in the system of the second-order ordinary differential equations with the same form
of dependence on 2/, ¢/, like in the equations (@ If we equate its coefficients with the degrees
x', y' with corresponding coefficients of the equations @, we obtain 15 correlations, which with
6. # 0 can be solved relative to all derivatives of the second order of the functions ¢, ¥ and
three derivatives of the function #. Likewise in the case of transformation , considered in
§2, we obtain separation of a subsystem of nine equations

eyy = ‘/2025 - Qlex + (2F2 - P2)9y - 59027
Qty = Fget — Mlém + (F1 — Lg)ey — Sg&t(py, (46)
O =210, — K0, — K29y - 580?7

Pra = ‘/ISOt + (2F0_ Pl)gpa:_ Q290y+ PQQQ: + 3Q993§0x+ BRSOgQN Pry = ‘/Ogot
+(Fy — S1)ps + (Fo — S2)py + P00, + 3/2Q (0.0, + 0y0s) + 3Rp. 0y,
Pyy = ‘/QSOt - Ql@oz + (2F2 - PQ)SOy + P% + 3Q0y§0y + 3R9032ﬁ
Pro= Fopi+ (F1— L1)p.— Myp,+ P00, + 3/2Q(01p2+ 0p01) + B3RPy P,
Oy = Fopr— Mipe+ (F1— Lo)py+ P00y + 3/2Q (00 + 0y01) + 3Rpipy,
ou = 2F1p — K1, — Koy, + PO? + 3Q0,p, + 3Rp2,
which compatibility results in compatibility of all 15 equations relative to the functions 6, ¢,
1. The following table of symbols is used here

FO - (03317 - ‘/Iet + Plgz + Q20y + S(pi)/(ng)’
Fl - (th - FOHt + Llex + M2‘9y + S@t@x)/exa
F2 = (gxy — %et + 81(933 + (SZ — F())Qy + Sgoxgpy)/Hm

The proof of the below criterion of separation of an equation in the system @ is carried
out by analogy with the proof of Theorems 2, 3 and results in equalities, equivalent to ,
(39). The role of derivatives ¢,, ¢, in them is carried out by minors Mz, = 6,0, — 0,0,
M3 = 0,0, — 0, of Jacobi matrix of the transformation (2)). They cannot be equal to zero
simultaneously, otherwise, we obtain M3y = 0 from the identity 0,Ms; — 0, M3y + 0,M35 = 0
when 6, # 0 . Then it results from the expansion A = ¥, M3, — 1, Mss + 1, M3 that Jacobi
transformation (2)) is equal to zero, that contradicts supposition on its nonsingularity.

(47)

Theorem 4. The system of two second-order ordinary differential equations @ 15 reduced to

the form , by the transformation with 0, # 0 if and only if the system of algebraic
and differential equations is compatible relative to T, Y :

@1 = as — alT + (a6 — a5 — (14)Y - b0T2 + (ag + bg)TY
+(b6 — b5 — b4)Y2 - CLQT2Y - blTY2 + b3Y3 = 0,
(I)Q = ary + (CL4 - 2@5)T + (bg — ag)Y + (ZQT2 + (b@ + b5 - 2[)4)TY
—b;Y? — aoT? — 0y T*Y + b3TY? =0,
Atq)l - O, Atq)Q - O, qu)l - O, qu)g - O, (49)
T,—Y, = YT, —TY,, (50)
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BilBjQ - leBiQ = Oa

B?QAM — leBjQAk;z + B§1Ak3 - 07

(Ap1 Aiz — AllAk3)2 + (Ao An — ApAg) (A Ais — AAgs) = 0,

Akl Ak2 Ak3
det [ An  Ap Ay | =0, ij=1,...,10, kilm=1,...,15,
Aml AmZ Am3

Wbere At = at — T@x + )\08T + )\18}/ + ()\Qx + Tx>\OT + Yx>\0Y + Tﬁ)@Tz
+()\1x + Tx)\lT + Yx>\1Y + TxYx)aYza
Ay - ay - Yax + >\18T + )\ZaY + (Alx + TCC)\lT + Y;:)\lY + T:I:Y;t)aTz
+()\2I + Tx)\QT + Ym)\QY + Y;f)ayza
Bll - q)1Y7 BIQ = _q)1T7 BQl = _q)2Y7
Boij1 = ABji + (My +2T,)Bj1 — Aoy B,
Botjo = A¢Bjs — (M + Yy)Bji + (Mor + 31%) Bjo,

B22 = (I)2T>

Byyji = AyBji + (Aay +3Y3)Bj1n — (Miy + 1) Bja,

Byyjo = AyBjs — AorBj1 + (Mr +2Y,)Bjo, j=1,2,

By =X +TT,—T,, Brp=Bsgs=M+T1TY,—Y,, Bgo=X+YY, - Y,
By = 20 — Aoryas + (Aorr — 2Mry) o + Aipras,

Bgs = 284 — Aoty Bs + (Morr — 2A\iry) B7 + MirrBs,

Bio1 = 205 — Aoryar + (Aorr — 2Mi7y )as + Mirrag,

Bio2 = 285 — Moy Br + (Morr — 2Ai7y) Bs + Mirrfo,

A =bs, A =0b, Aiz=—a,

Aot = by +bs —bg + 01T — 2b3Y,  Agy = ag + by — 2a0T — b1Y, Ay = by,
A31 = b7, A32 = b6 + b5 — 2b4 — blT + 2b3y7 A33 = —Aa2 + QCL()T + b1Y7
Az = AAk + 2(My + 2T5) Agr — Aoy Age,

Asipo = NAko — 2(Mir + Y2) At + (Nor + My + 5T%) Ara — 2oy Ags,
Asips = DAk — (Mir + Ya) Ak + 2(Nor + 3T5) Ags,

A1 = DyAp +2(Xoy +3Y,) Ak — My + 1) Aga,

Ap i = NyAra — 20070 Ag + (Mir + Xay + 5Y5) Ake — 2(Miy + 1) Ags,

A6+k’3 == AyAkg — )\QTAkQ + 2(>\1T + 2Yx)Ak3, ]{7 — 1, 2, 3,
A10,1 = Qo, A10,2 = [ — v, A10,3 = —f,

Ang =asz, Anp =03+ ar, Ang= B,

A12,1 = Qs5, A12,2 = 35 — au, A12,3 = —fu,

A13,1 = Qr, A13,2 = 37 — ag, A13,3 = —fs,

A14,1 = (s, A1472 = fBs — az, A14,3 = —f,

A15,1 = Qpy, A15,2 = By — as, A15,3 = —fs.
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In the following table of symbols is used

No=—Ki+20,T — PIT? + ViT? + (— Ky + 2M,T — Q,T?)Y,

AN = ST — My + (Li— L)Y — VoT? + (Sy — P))TY + MyY? + ViT?Y — Q,TY?,

Ay = —Q1 + (251 — B)Y + (25, — P))Y?2 — QY3 + (Vo — 2VpY + V1Y 2)T,

51 = 2&0(/\17“ + )\gy + 4}/1) + 2’}/1Y + 3(—a0y - Sl(lo - ‘/le + ‘/()CLQ) - b()m - PQCLO
+(Sy — P1)bp — Viar + Vibs, M = aoz + Prag — Q200 + Voby — Viay,

ar = 2a0(Xor + My +4T,) + 20T + 3(aor + b1y + Liag — Qa1 + S1by — 2Vabs)
—2&290 — be — L2a0 — 4M2b0 — P1(26L2 + bg) + Sg(ag + ng)
+Vb(8b4 - b5 — 5b6) + ‘/1(7&5 - 2&4 — (16),

B2 = bi(Air + Aoy +4Y3) + 7Y + 3ag — ase + 3(L1 + La)ag — 2Maby — Q204
+Pgbl — (P1 + SQ)CLQ + %(2[)4 — b5 - b6) + 2%(2&5 — CL4),

Qg = b1<)\0T -+ >\1Y + 4Tx) + ’}/QT -+ (b4 + b5 — b6)z - 3b3y - 2L2b1 + 3(P2 - Sl)bg

+M2<CL2+ bg) + (Pl— 352)(b4+ b5— bﬁ) + 2@2(&6— as— CL4) + 2%()7 + ‘/1((18 - bg),

Yo = by — 2Msag + (Pr — S2)bi + Q2(as + by) — 2Vobs + Vi (2by — bs — bg),

B3 = 2bs(Air + Aoy +4Y2) + 293Y + 3(bsy — b1t — by + 2K2a0 + (La — L1)by
—M>by + S1bg + So(bs + bs — bg) + Vi(bs — ag)) + 2bg, — 5Maay — Pabs
+Q2(2(L4 + 5&5 — 3(16) + P1(2b6 — 3b4) — 4‘/0177,

Y3 = bgg + Maby + (P — 252)bs + Q2(bs + bs — bs) — Vibr,

az = 2bs(Aor + My +4T,) + 293T — 3(bgy + Kby + L1bs) + bz, + 51003
+M2(3b6 — b5 — 4[)4) + (P1 — Sg)b7 + QQ(bg — ag),

Ba= DS+ Dyfa+ (Mor — Ay — T2) 51 — (M + Yo )ag + (2Ar — Aoy — 2Y5) 5o
—Xar(ag + f3),

ay = Ao + Ay — Aoy B1 — 21,00 — (Miy + 1) B + (Mir — Ya) o — Aora,

Bs = ABo — AyBs + Aoy b1 + (My — Ty) Ba — (Mir + Yo )ao + 2Y, 85 + Aopas,

as = Ay — Ayas + Aoy (aq — B2) + (2A1y — Aor — 2T%)as + (Miy + 1) Fs
+(Mr — Aoy + Yy)as,

66 = 2(b0 -+ CloY)(2)\2y — >\1T -+ 4Yx) + 2@0(T)\2T — )\2) + 2(b2 — b]_Y))\QT
+2(_bOy + (bOx - aOy)Y + @O:L“YQ)a

ag = 2bp(Aor + Ay +4T%) + Y + 3V1®1 — Aipp Py
+(3b0$ + Aoy + (Pg - Sl)(l() + (352 + Pl)bo + 3‘/1a1 + Vébl - %(az + 3b2))T
+3(b()t + A1, + L2b0 — lel + SQCLl - 2%@3) — Qoy — 2b2y - L1b0 — 4M1(l0
—PQ(CLQ + 2b2) + 51(2(12 + bg) + %(8@4 — a5 — 5&6) + ‘/2(7b5 - 2b4 - b6),

ﬂ'y = 2(b0 + a()Y)()\QT — 2)\1y — Tx) + 2@0(/\1 — T)\IT — TY;)
+2(01Y = ba2) (M7 + Ya) + 2(boy — boo T+ aotY — ao, TY'),

a7 = (agT — ag — 2by + 301Y ) A1y + 2T%) + 1T? + 37TY — 3y3Y 2 4 3V Doy
+(by + b5 — bg + b1 T — 3b3Y)(2Y, — Air) + Vi(TPor — Po) + 5MoPyp
+3Q2(2P1 — 2T P17 — Y1y ) — 3b3Y Aoy + by (T A + 3Y Ay — )
+3bo Aoy — brdar + ag(TAor + 6Y Aoy — 2Xg) — (aor + aop + 2b2,)T
+(3(bg + b5 — bg) — 3bsy + 4Koa0 + 2(Ly — L1)by — 2Ms(ag + bs)

‘|—2‘/1 (ag — bg) + 4‘/()b7)Y + (agt - b2t>/4 + 3/4((4@4 + a5 — 3@6)33 + 3b5y - b6y>
—Kiag + 2Ksby + 2Msay — Miby + 3Q1bs — 3Q2as + Viar — 2Vaby,

ﬂg = (3@0T — asg + b1Y)()\1y - QTx) + (b6 + 3b5 - 3b4 - 3b1T + b3Y)()\1T + QYx)
—3NT? = 3%TY + v3Y? + 3Ma®ip 4+ Q2 (Y @1y — @1) 4 5V Doy
—|—3‘/1(2(I)2 —T®yr — 2Y<I)2y) 4+ bo Aoy — 3agT Aot + bl()\l — 3T\t — Y)\ly)
—3b7Aor + b3 (6T Aop + Y Aoy — 2X2) + ((be + 3bs — 3bs), — b3,))Y
+(3CL2$ — 3a0t -+ 4M2b0 —+ 2@2(11 -+ 2Slb1 + 2‘/0(2[)4 — b5 — bG) — 4‘/2b3)T
+3/4(a2t - th + (4&4 - 5@5 - &ﬁ)x + 3b5y — bﬁy)/4 + 3K1(L0 - 2K2b0
+Mby + Qa3 — Q1bs — 3Viar + 2Vabr 4 2V (ag — bs),

ag = 2<b7 — bgT)(2)\1T — /\QY + Yw) + 263(/\1 - Y/\ly — YT$>
+2(2b5 — by — 01T)(Ny + 1) + 2(—bry + bg, T + b7, Y — b3, TY),
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By = =2b7(Mir + Aoy +4Y5) + BT + 3Q2Ps + Aiyy Pop + (bse — 3b7, + Kaby
(L + La)bs + My(4by — 5bs — bg) + (55 — Py)by + 3Qa(as — b)Y
+3(ng — A8y — b7y + Klbl + K2b2 + Lg(b4 — 2b5) — 2@2@7 + Sg(ag — bg))
+(b6 + 3b5 — 3b4)t — K2a2 — 4M1b3 -+ L1(3b4 — 2b6) + M2(3a6 + 7&5 - 8&4)

+(P + S1)br,
Qg = 2(()7 — bgT)()\ly — 2>\0T — 4Tx> + 2b3(Y)\()Y — )\0)

+2(by — 2b5 + b1T) Aoy + 2(bre — (b3t + bre)T + b3 T?).

Proof. Let us find conditions of compatibility of the system , . If we denote T' = 6,/0,,
Y =6,/0,, then the condition of equality of the derivatives 0;,,, 6,,, and 0y, 04, calculated
my means of differentiation of expressions by t, y, takes the form . Differentiation of
by ¢, x, y and comparison of mixed third-order derivatives of the function ¢ results in two
correlations

(56)

B M3y + BigM3sz = 0, (57)

where B;;, 1,j = 1,2 are introduced in , and six correlations
(GO + bl + Qlei + QQQxQOx + Qg(ﬂi)Mgl — CL()M33 = 0, (58)
b3M31 — (Go —I— Qlﬁg + QQQxQOx —f- Q390i)M33 = O, (59)

(Gl — 264 — Q(GO -+ bl)T -+ 21)3Y)M31 + (GQ — a9 + 2a0T -+ (bl — 2G0)Y)M33 = O, (60)
(3G + ag + 2by— dagT — (4G + b1)Y + 2(06% + Qab.p, + Q303)Y) My

+(292 — PS + 3Q3@$/Q$)M321 + 2b0M33 = 0, (61)
(3G2 — Q9 + (b1 — 4G0)Y + 2(9192 —|— QQQIQOI —|— Qggpi)Y)Mgg (62)
—|—<292— pS + 39390x/9x)M31M33+ 2(b6— bg,— b4 — blT + 2b3Y)M31 = O,
—(292 — PS + 3Qgg0z/€z)M323 — 2b7M31 == 0,
where 0 =3/2Qp — P, — 9/4Q% + 3PR, Q2 = 3Ry — 3/2Q, + 2PS, Q3 = Sy +3/2Q)S,
Go = For — Fg + PLFy + Qo Fy — Vi, — (Ly + F1)Vi — MV,
G = Fip + (L1 — F1)Fo + Mo Fy + bg — (KG Vi + Ko V) /2 + GoT + b3Y,
Gy = Fop + (S1 — Fo) Fy + SoFy — Vor — My Vi — (Lo + F1)Vo + agT + GoY.
Given by equalities
A M3, + Aga Mz Mg + Az M3y = 0, (64)

where Ay, k, 1 =1,2,3, serve as their algebraic corollary .

To find the condition of compatibility of the equations (48], (57)), (64) with the system (46]),
, let us differentiate them by ¢ (as respect to y) and subtract from them the same equations,
differentiated by x and multiplied by T' (by Y'). It provides correlations and equalities of
the form , with coefficients B;;, i = 3,4,5,6, Ay, k=4, ... ,9, denoted by correlations
(55). The identity (50) is a corollary of the equality of the derivatives 6y, and 6,,. If we use the
table of symbols the equations can be presented in the form

T, —TT, — g+ SM323/02 =0,
Y;g—T}/x—/\l—SMglM?,g/@i:O, Yy—YYm—/\Q‘f—SM??I/Qg:O
The exclusion of the summands with S results in
(Mo + TT, — Ty)Msy + (M + TY, — Y;) M35 = 0,
(M+TY, —Y) My + (M +YY, —Y,) M3 = 0.

To obtain the condition of the mutual equality of mixed derivatives of the forth-order function
0 , let us differentiate f by x and substitute forth-order derivatives 6 subject to the
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equations , , differentiated by ¢, x, y. In case of the equation it results in identity,
and for the equations — it provides correlations

a1 M3y + By Mss — 3(F19x + FQSOa:)Mg?1 =0,
aoMsy + BoMs3 — 3(I'10, + Loy ) May Mss = 0, (65)
a3 Msy + B3Mss + 3(T'10, + Do) M35 = 0,

where I'; = P%D — 2@@, + Rgp + P(2S@ — 3R<p) + 3@(2Q¢ — Rg) — 3Rp<p + SPy,
I'y = wa, — 2R9(p + Sgo — PS@ +3Q.Sy + 3R(Q§0 — 2R9) + S(3Q9 — 2P¢). Algebraic corollary of
the equations can be presented as

M3, + (Ba — ay) My Maz — BiMy; =0, asMy; + (B3 + o) May Mz + B M3, = 0.

Having differentiated the second equation by y, t and having compiled, correspondingly,
a sum with the first equation , differentiated by ¢, and the difference with the third one,
differentiated by y, we obtain correlations

2004 M3y + 284 M3
+3T2[Nory M3 + (2Airy — Nozr) M3y Mag — Mipr M| M3, /6, = 0,

66
2005 M3y + 235 M3 (66)
+302[Xory M3, + (2M i1y — Norr) Msi Msz — Mipr M35 | Mss /6, = 0.
To exclude I'y; we use correlations
M1+ BeMss+ 309 M5, /0, = 0, azMsy+ BrMssz+ 302 M3, Mss /6, = 0, (67)

agMszi+ BsMsz+ 3F2M31M323/9x =0, agMsi+ BoMs3+ 3F2M§3/0x =0,

which are obtained during differentiating , by vy, t and substitution of derivatives 6
subject to the equations , twice differentiated by x. The equalities of the form (64)) with
the coefficients Ay, £ = 12,13,14,15 is an algebraic corollary of , . Substitution of
(67) into provides two more correlations of the form , which the coefficients Bgy, Bgs,
B10,17 Blo’g defined by the formulae "

Hence, studying compatibility of the system we have obtained ten equations lin-
ear by M3y, M3z and fifteen second-degree equations by M3y, M33. Their conditions of
compatibility is supported by the equalities —, which are added to the conditions of

compatibility (48)-(50) of the equations (46).
The system (46]), (47) is compatible in case, when the system of equations 1} is

compatible relative to T, Y. This system is divided into the subsystem of equations (48)),
and f with 7,7 = 1,2, k,[,m = 1,2, 3, algebraic relative to T, Y, and the subsystem
of differential equations, including equations and the remaining equations f. The
system f is compatible when the subsystem of algebraic equations is decidable relative
to the values T', Y, and their substitution into the remaining equations of the system results in
identities. The theorem has been proved.

Let us note, that in most cases to state, that the equation in the system of two ordinary
differential equations does not separate, it is sufficient to study compatibility of the algebraic
subsystem of equations —. If it proves to be compatible, and the substitution of its
solution 7', Y into the remaining equations — does not result in contradicting equality,
the substitution of variables , which results in the given system of ordinary differential
equations taking the form , (12), can be calculated from compatibility of the system of the
equations 6,/0, =T, 0,/0, =Y, (46)), [(47), B7)-(64).

To check up whether the system (|6)) can take the form , by the transformation ([2)),
where 0, # 0, it is sufficient to make a substitution Z = y, ¥ = « in the system @ and apply
Theorem 4 to it.
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5. EXAMPLE OF A SYSTEM WITH A SEPARATING EQUATION

Example 3. Let us continue the study of the system and find, what ', U in it result
in separation of the equation by transformation ([2) with 6, # 0. The first condition (48)) and
the condition (52)) when k& = 1,2, j = 2 possess the form

(Y24 1)(YT, —T,) =0, L ((Y2—1)T,—2YT,)?=0,
(2YT, — T,)((Y2 = 1)I, — 2YT,)? = 0,

this implies I'; = 0, I'y = 0.
If T' = I['(¢), then all correlations (53)), become identities, and the simplest of the condi-
tions possess the form

Y, ¥ =0, (Y, = YY,)¥ =0, Y, = TY, + (Y2 +1)I)¥ =0, (68)

where ¥ = U, — Uy, +2Y (U, —I). Assume U # 0 and I' = 7/(¢)/2, then Y, =0, Y, =0,
Y; + (Y2 +1)7//2 = 0. The substitution of Y = —tg(v/2) into the second equality

Y[ - U,,) +Y(Uyy —Upp) + T+ U,, =0 (69)

with precision to substitution 4 = = 4 7/2 results in the equation relative to U(t, x,y).
If ¥ = 0, then all the conditions of Theorem 4 are reduced to compatible system of equations

AV2H W2 =417, 20V -1V, + WV, =0, 2(V-T)W,+WW, =0, (70)

', r+vr”—-1r'v,-rr'w =0, 20V -1I'"T,+ WT, =4I'T",

W, T+ WI" —T'W, + 4TT'V =0, 2(V —T')Y + W =0,
where T' = 6,/0,, Y = 0,/6,. It is supposed, that V £ I" # 0, I # 0, otherwise, it results
from the first equation (70]), that the system is linear. Let the function U(t, z,y) satisfy
three correlations , then we can obtain 6 from the equations . Moreover, Az =V — 1",
Aszs =0, A3z = 0, and it follows from that M3, = 0, which is equivalent to the equation

20V =T, + W, =0 (72)

relative to ¢. The solution 6, ¢ of this equation and equations is necessary to substitute into
the system , (7)), to completely denote the form of the functions 6, ¢ in the transformation
. Whereas the function ¢ is denoted from the correlations ¢, — 170, =0, 0, — Y0, =0 as a
function of one argument, then the system is reduced to one ordinary differential equation
relative to this function. The function ¢ from the equation ([72)) is denoted as a function of
two arguments, and its substitution transforms into a compatible system relative to this
function. In the capacity of ¢ we can take any partial solution of this system, chosen the way
for the corresponding transformation to be nonsingular.

(71)
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