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BOUNDARY PROBLEM FOR THE GENERALIZED

CAUCHY–RIEMANN EQUATION IN SPACES, DESCRIBED

BY THE MODULUS OF CONTINUITY

A.Y. TIMOFEEV

Abstract. The article is devoted to the Dirichlet problem in the unit disk 𝐺 for 𝜕𝑧𝑤 +
𝑏(𝑧)𝑤 = 0, ℜ𝑤 = 𝑔 on 𝜕𝐺, ℑ𝑤 = ℎ at the point 𝑧0 = 1, where 𝑔 is a given Lipschitz
continuous function. The coefficient 𝑏 belongs to a subspace of 𝐿2(𝐺) which is not contained
in 𝐿𝑞(𝐺), 𝑞 > 2 in the general case. Thus, I. Vekua’s theory is not applicable in this
case. The article shows that, as well as in the case of Dirichlet’s problem for holomorphic
functions, there appears a “logarithmic effect”. The solution outside the point 𝑧 = 0
satisfies the Lipschits conditions with logarithmic factors. The existence of a continuous
solution of the problem in 𝐺 is proved

Keywords: generalized Cauchy–Riemann equation; Dirichlet problem; modulus of conti-
nuity; Tikhonov’s fixed point theorem

1. Introduction

Theory of generalized analytic functions is a theory of complex-valued functions 𝑤 = 𝑤(𝑧),
being solution of the equation

𝜕𝑧𝑤(𝑧) + 𝐴(𝑧)𝑤(𝑧) + 𝐵(𝑧)𝑤(𝑧) = 0, 𝑧 ∈ 𝐺, (1.1)

where 𝜕𝑧 := 1
2

(︁
𝜕
𝜕𝑥

+ 𝑖 · 𝜕
𝜕𝑦

)︁
, and 𝐴(𝑧), 𝐵(𝑧) are given in the bounded domain 𝐺 of the complex

plane functions. In case, when 𝐴(𝑧) ≡ 𝐵(𝑧) ≡ 0, (1.1) pass to the condition of the function
analyticity 𝑤(𝑧).

Theory of such functions was constructed by I. Vekua in the supposition, that 𝐴(𝑧), 𝐵(𝑧)
belongs to the space 𝐿𝑝(𝐺), where 𝑝 > 2 ([1]). In this case (1.1) is called a regular generalized
Cauchy–Riemann system, and its solution is called generalized analytic functions. Coefficients
of such functions can assume ¡¡weak¿¿ peculiarities, bounded by the demand of 𝑝-integrability.
In particular, if 𝐴(𝑧), 𝐵(𝑧) reduce to infinity in some isolated special point, than the order of
this peculiarity should be strongly less than 1. The study of problems for generalized equations
with coefficients, possessing peculiarities in some isolated point, was made in papers of L.G.
Mikhailov, Z.D. Usmanov, A. Tungatarov, N. Bliev, M. Otelbaev, M. Reissig and A.Y. Tim-
ofeev, R. Sacks, G.T. Makatsaria and others (for instance, [2]–[7]). Special attention in these
papers is paid to research of existence of continuous solutions for boundary equations problems
(1.1).

In paper [7] Dirichlet problem for generalized Cauchy–Riemann equation (1.1) is studied,
where 𝐺 = {𝑧 ∈ 𝐶 : |𝑧| < 1} , 𝐴(𝑧) ≡ 0.

The novelty of the research consists in assumption of peculiarity in the point 𝑧 = 0 where
coefficients 𝐵(𝑧) belong to the power space of functions 𝑆𝑝(𝐺), which is a generalization of
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spaces

𝑠𝑝(𝐺) =

{︃
𝐵(𝑧) : sup

𝐺∖{0}
(|𝐵(𝑧)| · 𝑝(|𝑧|)) < +∞

}︃
.

The set of functions 𝑝(𝑡), possessing sufficiently general properties, is denoted by 𝑃 (see section
2). The space 𝑆𝑝(𝐺) consists of only those given in 𝐺 functions 𝑓(𝑧), for each of which there is
such a function 𝑝(𝑡) ∈ 𝑃, that 𝑓(𝑧) ∈ 𝑠𝑝(𝐺).

In [7] there was the following theorem proved

Theorem 1. We consider the following Dirichlet problem:

𝜕𝑧𝑤 + 𝐵(𝑧)𝑤 = 0, 𝑧 ∈ 𝐺 = {𝑧 ∈ C : |𝑧| < 1}, (1.2)

ℜ𝑤 = 𝑔(𝑧), 𝑧 ∈ 𝜕𝐺,ℑ𝑤 |𝑧0=1 = ℎ, (1.3)

where 𝐵 ∈ 𝑆𝑝(𝐺), 𝑔 ∈ 𝐶𝜆0(𝜕𝐺)(0 < 𝜆0 < 1), ℎ ∈ R. Then there is a unique solution of the
problem (1.2)–(1.3) 𝑤 = 𝑤(𝑧), and 𝑤 ∈ 𝐶(𝐺)

⋂︀
𝐶𝜆0(𝐺 ∖ {0}).

The boundary function 𝑔(𝑧) under condition (1.3) belongs to Helder’s space, described by the
modulus of continuity 𝜇(𝑡) = 𝑡𝜆0 . It is known, that in general case the modulus of continuity
satisfies the inequality

𝜇(𝑡) ≥ 𝑐 · 𝑡
with some constant 𝑐.

In this connection, it is interesting to study problems (1.2)–(1.3) for the case, when 𝑔(𝑧) be-
longs to another space of functions, described by the module of continuity 𝜇(𝑡). What condition
outside the point 𝑧 = 0 continuous solutions 𝑤(𝑧) of the system (1.2)–(1.3) will satisfy?

In the given paper we study the case of ¡¡minimal¿¿ space, described by the modulus of
continuity of the Lipschits space. In this case 𝜇(𝑡) = 𝑡. Let us introduce symbols: 𝜇1,0(𝑡) := 𝑡;
𝜇1,𝑘(𝑡) := 𝑡 · (ln 1

𝑡
)𝑘, 𝑘 ≥ 1(0 < 𝑡 < 1

𝑒
). It holds

Theorem 2. Assume 𝐵(𝑧) ∈ 𝑆𝑝(𝐺), 𝑔(𝑧) ∈ 𝐶𝜇1,0(𝜕𝐺), ℎ ∈ R. Then there is a unique

solution of the problem (1.2)–(1.3) 𝑤 = 𝑤(𝑧) ∈ 𝐶(𝐺)
⋂︀
𝐶𝜇1,5(𝐺 ∖ {0}).

In section 2 there is data on power functions, modulus of continuity and corresponding
functional spaces. In section 3 there are auxiliary statements formulated. In the conclusion we
give the algorithm of proof of Theorem 2.

2. Power functions, modulus of continuity. Basic functions spaces

In [7] there were introduced power functions 𝑝(𝑡), as functions, satisfying the following con-
ditions.

1. Given and positive on some gap (0, 𝑡𝑝], where the number 𝑡𝑝 depends on the function 𝑝(𝑡),
𝑡𝑝 < 1.

2. Do not decrease on (0, 𝑡𝑝].
3. lim

𝑡→+0
𝑝(𝑡) = 0.

4.

∫︁ 𝑡𝑝

0

𝑑𝑡

𝑝(𝑡)
< +∞.

Further we will consider functions 𝑝(𝑡) given on all the gap (0, 1], expanding in case of
necessity 𝑝(𝑡) on the gap [𝑡𝑝, 1] by the constant, which os equal to 𝑝(𝑡𝑝). In this case conditions
1, 2 and 4 will hold true already on all the gap (0, 1]. Let us denote the set of functions 𝑝(𝑡),
satisfying conditions 1–4 by 𝑃 .
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It is easy to show, that for functions 𝑝(𝑡) ∈ 𝑃 there is such a number 𝑐𝑝 > 0, that

𝑡

𝑝(𝑡)
6 𝑐𝑝, 𝑡 ∈ (0, 1]. (2.1)

Let us give examples of power functions.

1. 𝑝(𝑡) = 𝑡𝛼, 0 < 𝛼 < 1.
2. 𝑝(𝑡) = 𝑡 · ln𝛽 1

𝑡
, 𝛽 > 1.

3. 𝑝(𝑡) = 𝑡 · ln 1
𝑡
· ln ln 1

𝑡
· · · · · ln . . . ln⏟  ⏞  

𝑘−1

1
𝑡
· (ln . . . ln⏟  ⏞  

𝑘

1
𝑡
)𝛽, 𝛽 > 1.

In the set of power functions 𝑃 it is possible to introduce a partial order. Assume

𝑝1(𝑡), 𝑝2(𝑡) ∈ 𝑃. We will write 𝑝1 ≺ 𝑝2, if 𝑝1(𝑡) 6 𝑝2(𝑡), 𝑡 ∈ (0, 1], and 𝑝1(𝑡)
𝑝2(𝑡)

→ 0 with 𝑡 → +0.

It is possible to show (see [7]), that for every function 𝑝 ∈ 𝑃 there is 𝑝1 ∈ 𝑃 with the property,
that 𝑝1 ≺ 𝑝.

On the other hand, the correlation ≺ in the set of power functions 𝑃 is not an order: not for
any 𝑝1, 𝑝2 ∈ 𝑃 it is possible to say, that 𝑝1 ≺ 𝑝2 or 𝑝2 ≺ 𝑝1 (see [8]).

In paper [7] there are assumed peculiarities of the coefficients 𝐵(𝑧) (𝐴(𝑧) ≡ 0), which belong
to power space of functions 𝑆𝑝(𝐺),, which is in its turn a generalization of the spaces

𝑠𝑝(𝐺) =

{︃
𝐵(𝑧) : sup

𝐺∖{0}
(|𝐵(𝑧)| · 𝑝(|𝑧|)) < +∞

}︃
.

Note, that for such functions the following condition holds true 𝐵(𝑧) ∈ 𝐿∞,𝑙𝑜𝑐(𝐺 ∖ {0}). The
space 𝑆𝑝(𝐺) consists of only those given in 𝐺 functions 𝐵(𝑧), for every of which there is such
a function 𝑝(𝑡) ∈ 𝑃, that 𝐵(𝑧) ∈ 𝑠𝑝(𝐺). It is easy to show, that 𝑆𝑝(𝐺) ⊂ 𝐿2(𝐺).

According to the definition from [9, p. 41], the function 𝜔(𝑡), satisfying conditions

1. 𝜔(𝑡) ≥ 0 and does not decrease on [0, 1];
2. 𝜔(0) = 0;
3. 𝜔(𝑡1 + 𝑡2) 6 𝜔(𝑡1) + 𝜔(𝑡2);
4. 𝜔(𝑡) continuous on [0, 1],

is called a modulus of continuity.
We will not demand satisfying of condition 4, and instead of condition 3 we will assume

a stronger condition, that 𝜔(𝑡)
𝑡

does not increase with 𝑡 > 0. It is obvious, that then 𝜔(𝑡) is
half-additive. The set of all such functions will be denoted by Ω. Note, that for power functions

from 𝑃,, generally speaking, the lack of growth condition does not hold true 𝑝(𝑡)
𝑡

when 𝑡 > 0
(see [8]), and condition 4 of the functions of the class 𝑃 , does not hold true for the modulus of

continuity 𝜔(𝑡) =

{︂
𝑡 · ln 1

𝑡
, 0 < 𝑡 6 1

𝑒
0, 𝑡 = 0

.

Let us now denote subsets 𝐾 b C and 𝜔 ∈ Ω for the class of continuous functions 𝐶𝜔(𝐾),
for the closed bounded subset , satisfying the condition

||𝑓 ||𝜔 := max

{︂
sup
𝐾

|𝑓(𝑡)|, sup
𝑧1 ̸=𝑧2

|𝑓(𝑧1) − 𝑓(𝑧2)|
𝜔(|𝑧1 − 𝑧2|)

}︂
< ∞. (2.2)

It is obvious, that the value (2.2) satisfies all the axioms of the norm. Moreover, the space
(𝐶𝜔(𝐾), || · ||𝜔) is a Banach space (see, for instance, [10]). In case 𝜔(𝑡) = 𝑡𝜆 (0 < 𝜆 < 1) we
obtain Helder’s space, and when 𝜔(𝑡) = 𝑡we deal with Lipschitz space.

3. Auxiliary statements

The following theorem is rather important in the proof of Theorem 1 in [7]:

Theorem 3. Assume 𝑏(𝑧) ∈ 𝑆𝑝(𝐺), then the function 𝑇𝐺(𝑏)(𝑧) is continuous in the point
𝑧 = 0.



140 A.Y. TIMOFEEV

Here by 𝑇𝐺(·) we consider the basic operator of I. Vekua’s theory, namely, the following:

𝑇𝐺(𝑏)(𝑧) := − 1

𝜋

∫︁∫︁
𝐺

𝑏(𝜁)

𝜁 − 𝑧
𝑑𝜉 𝑑𝜂, 𝜁 = 𝜉 + 𝑖 · 𝜂.

Moreover, the following property was applied.

Theorem 4. Let 𝑎(𝑧) be a prescribed function from 𝐿∞(𝐺), 𝑤(𝑧) ∈ 𝑆𝑝(𝐺). Then
𝑇𝐺(𝑎 · 𝑤) ∈ 𝐶𝜆(𝐺 ∖ {0}) for any 𝜆 ∈ (0, 1), and

|𝑇𝐺(𝑎 · 𝑤)(𝑧)| 6 𝐴1(𝑙, 𝑝) · ||𝑤||𝑝 · ||𝑎||𝐿∞(𝐺), 𝑧 ∈ 𝐺 ∖ 𝑈𝑙, (3.1)

|𝑇𝐺(𝑎 · 𝑤)(𝑧1) − 𝑇𝐺(𝑎 · 𝑤)(𝑧2)| 6 𝐴2(𝑙, 𝑝, 𝜆) · ||𝑤||𝑝 · ||𝑎||𝐿∞(𝐺) · |𝑧1 − 𝑧2|𝜆, (3.2)

where 𝑈𝑙 = {𝑧 : |𝑧| 6 1
2𝑙
}(𝑙 = 1, 2, . . .).

It results from (3.1) and (3.2), that for any 𝜆 ∈ (0, 𝑙) and any 𝑙 ∈ N

||𝑇𝐺(𝑎 · 𝑤)||𝐶𝜆(𝐺∖𝑈𝑙)
6 𝐴(𝑙, 𝑝, 𝜆) · ||𝑤||𝑝 · ||𝑎||𝐿∞(𝐺). (3.3)

Remark. Whereas outside the circle 𝑈𝑙 the function 𝑎(𝑧) · 𝑤(𝑧) is bounded, that instead of
(3.2) we can state a more precise inequality (see [1, p. 39])

|𝑇𝐺(𝑎 · 𝑤)(𝑧1) − 𝑇𝐺(𝑎 · 𝑤)(𝑧2)| 6 𝐴3(𝑙, 𝑝) · ||𝑤||𝑝 · ||𝑎||𝐿∞(𝐺) · |𝑧1 − 𝑧2| · ln
1

|𝑧1 − 𝑧2|
, (3.4)

where |𝑧1 − 𝑧2| < 1
𝑒
, therefore, when the condition of the Theorem 4 holds true, the following

estimate is valid:

||𝑇𝐺(𝑎 · 𝑤)||𝜔1,1 6 𝐴4(𝑙, 𝑝) · ||𝑤||𝑝 · ||𝑎||𝐿∞(𝐺) (3.5)

in the sense of the space 𝐶𝜔1,1(𝐺 ∖ 𝑈𝑙).
Proving Theorem 1 we applied the Dirichlet problem solution for holomorphic functions,

namely, the following (see [11, p. 131])

Theorem 5. If the function 𝑔 is given on 𝜕𝐺 and is continuous, according to Helder with
the index 𝜆 (0 < 𝜆 < 1), then there is a unique holomorphic in 𝐺 function 𝑓, continuous in the
closed circle 𝐺 and satisfying conditions

ℜ𝑓 = 𝑔(𝑧), 𝑧 ∈ 𝜕𝐺,ℑ𝑓 |𝑧=𝑧0 = 𝑐, (3.6)

where 𝑧0 ∈ 𝜕𝐺 is a prescribed point, and 𝑓 is continuous, according to Helder in 𝐺 with the
same index 𝜆, i.e. 𝑓 ∈ 𝐶𝜆(𝐺).

Remark. As it results from [11, p. 131], the following estimate is valid

||𝑓 ||𝐶𝜆(𝐺) 6 𝐴(𝜆)||𝑓 ||𝐶𝜆(𝜕𝐺). (3.7)

As it is shown in [10] and [12], analogues of Theorem 5 hold true for more general, than
Helder, spaces of functions, of described modulus of continuity. In particular, it holds, that

Theorem 6. If 𝑔 ∈ 𝐶𝜇1,𝑘
(𝜕𝐺) (𝑘 ≥ 0), then there is a unique holomorphic in G function 𝑓,

satisfying (3.6), and 𝑓 ∈ 𝐶𝜇1,𝑘+2
(𝐺).

The analogue of the inequality (3.7) in this case

||𝑓 ||𝐶𝜇1,𝑘+2
(𝐺) 6 𝐴 · ||𝑓 ||𝐶𝜇1,𝑘+2

(𝜕𝐺) (3.8)

is used in section 4 on step 2 and step 3 with the application of a point immobility.
Remark. Theorems 5 and 6 hold true in case of real and imaginary parts change in the

condition (3.6).
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4. Algorithm of Theorem 2 proof

The proof of Theorem 2 is made according to algorithm of Theorem 1 proof (see [7, p. 661–
662]).

1-st step. We search for the solution 𝑤 = 𝑤(𝑧) (1.2)–(1.3) in the form

𝑤(𝑧) = Φ(𝑧) · exp𝜔(𝑧), (4.1)

where Φ(𝑧) is a holomorphic in 𝐺 function, which is continuous in 𝐺, and exp𝜔(𝑧) ∈ 𝐿∞(𝐺).
Substituting (4.1) into (1.2), we obtain the equation for 𝜔 = 𝜔(𝑧) :

𝜕𝜔

𝜕𝑧
+ 𝐵(𝑧) · Φ(𝑧)

Φ(𝑧)
· exp𝜔(𝑧)

exp𝜔(𝑧)
= 0, 𝑧 ∈ 𝐺. (4.2)

We select the solution (4.2) so, that the following conditions could hold true

ℑ𝜔|𝜕𝐺 = 0,ℜ𝜔|𝑧0=1 = 0. (4.3)

From (4.2) we obtain ([1]) for the solution (4.2) representation

𝜔(𝑧) = Φ̃(𝜔,Φ)(𝑧) − 𝑇𝐺

(︂
𝐵 · Φ

Φ
· exp𝜔

exp𝜔

)︂
(𝑧), 𝑧 ∈ 𝐺, (4.4)

where Φ̃ is an arbitrary holomorphic function, depending on 𝜔 and Φ. It results from Theorem

3, 4 and Remark, that 𝑇𝐺

(︁
𝐵 · Φ

Φ
· exp𝜔
exp𝜔

)︁
∈ 𝐶(𝐺)

⋂︀
𝐶𝜇1,1(𝐺 ∖ {0}), and (see (3.5))⃒⃒⃒⃒⃒⃒⃒⃒

𝑇𝐺

(︂
𝐵 · Φ

Φ
· exp𝜔

exp𝜔

)︂⃒⃒⃒⃒⃒⃒⃒⃒
𝐶(𝐺)

6 𝐶𝐵,

⃒⃒⃒⃒⃒⃒⃒⃒
𝑇𝐺

(︂
𝐵 · Φ

Φ
· exp𝜔

exp𝜔

)︂⃒⃒⃒⃒⃒⃒⃒⃒
𝐶𝜇1,1 (𝐺∖𝑈𝑙)

6 𝐶𝐵,𝑙, (4.5)

where constants 𝐶𝐵 and 𝐶𝐵,𝑙 do not depend on 𝜔 and Φ.

2-nd step. Further we select an arbitrary function Φ̃ so, that the condition holds true (4.3),
i.e. ⎧⎪⎪⎨⎪⎪⎩

ℑΦ̃
⃒⃒⃒
𝜕𝐺

= ℑ𝑇𝐺

(︁
𝐵 · Φ

Φ
· exp𝜔
exp𝜔

)︁⃒⃒⃒
𝜕𝐺

ℜΦ̃
⃒⃒⃒
𝑧0=1

= ℜ𝑇𝐺

(︁
𝐵 · Φ

Φ
· exp𝜔
exp𝜔

)︁⃒⃒⃒
𝑧0=1

.

(4.6)

The right-side part of the first correlation (4.6) is a function of class 𝐶𝜇1,1(𝜕𝐺). According to

the Remark and Theorem 6, there is a unique holomorphic in 𝐺 function Φ̃(𝑧), which satisfies
conditions (4.6), and

||Φ̃||𝐶𝜇1,3 (𝐺) 6 𝐶 · ||Φ̃||𝐶𝜇1,3 (𝜕𝐺).

Therefore, the right-side part (4.4), and the left-side part, i.e. the function 𝜔(𝑧), for any
Φ ∈ 𝐻(𝐺)

⋂︀
𝐶(𝐺) and 𝜔 ∈ 𝐿∞(𝐺) is a function of the class 𝐶(𝐺)

⋂︀
𝐶𝜇1,3(𝐺 ∖ {0}). Further,

applying Tikhonov theorem on a point immobility to the mapping

𝜔 → 𝐹1(Φ, 𝜔) := Φ̃(𝜔,Φ) − 𝑇𝐺

(︂
𝐵 · Φ

Φ
· exp𝜔

exp𝜔

)︂
,

we obtain, that for any Φ ∈ 𝐻(𝐺)
⋂︀

𝐶(𝐺) there is a unique function 𝜔(𝑧) ∈ 𝐶(𝐺)
⋂︀
𝐶𝜇1,3(𝐺 ∖

{0}) with properties (4.2)–(4.3). As a result, we obtain, that for any Φ ∈ 𝐻(𝐺)
⋂︀
𝐶(𝐺) there

is a function 𝑤(𝑧) of the form (4.1), which is in 𝐺 solution of the equation (4.1).

3-rd step. We select such a holomorphic in 𝐺 function Φ̂ ∈ 𝐶(𝐺), that the function 𝑤 =

Φ̂·exp𝜔, where 𝜔 would be the function of the 2-nd step, and the following boundary conditions
could hold true (1.3). For this purpose we will consider the mapping

𝜔 → Φ̂,
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where
ℜΦ̂ = ℜ(𝑤 · exp(−𝜔)) = exp(−ℜ𝜔) · 𝑔(𝑧) = 𝑔1(𝑧), 𝑧 ∈ 𝜕𝐺,

ℑΦ̂ = exp(−ℜ𝜔(𝑧0 = 1)) · ℑ𝑤(𝑧0 = 1) = ℎ.

Note, that 𝑔1(𝑧) ∈ 𝐶𝜇1,3(𝜕𝐺). Therefore, we select a holomorphic in 𝐺 function Φ̂, so, that

ℜΦ̂
⃒⃒⃒
𝜕𝐺

= 𝑔1(𝑧), ℑΦ̂
⃒⃒⃒
𝑧0=1

= ℎ.

According to Theorem 6, there is such a function and it is unique. Moreover, Φ̂(𝑧) ∈ 𝐶𝜇1,5(𝐺).
To prove this solution existence, we will study the mapping

𝐾 : Φ ∈ 𝐻(𝐺)
⋂︁

𝐶(𝐺) → 𝜔 = 𝐾1(Φ) → Φ̂ = 𝐾2(𝜔), Φ̂ = 𝐾(Φ),

where 𝜔 = 𝐾1(Φ) is an immobile point for 𝜔 = 𝐹1(𝜔,Φ), and Φ̂ is solution of the given
above Dirichlet problem. Applying Schauder theorem on a point immobility to the mapping
Φ̂ = 𝐾(Φ), likewise in [7], we obtain the proof of the solution existence (1.2)–(1.3).

4-th step. Likewise in [7], we can prove the uniqueness of the solution (1.2)–(1.3) in the class
of solutions in the sense of Sobolev functions from 𝐶(𝐺).
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