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PERFECT CUBOIDS AND

IRREDUCIBLE POLYNOMIALS

R.A. SHARIPOV

Abstract. The problem of constructing a perfect cuboid is related to a certain class of
univariate polynomials with three integer parameters 𝑎, 𝑏, and 𝑢. Their irreducibility over
the ring of integers under certain restrictions for 𝑎, 𝑏, and 𝑢 would mean the non-existence
of perfect cuboids. This irreducibility is conjectured and then verified numerically for
approximately 10 000 instances of 𝑎, 𝑏, and 𝑢.
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1. Introduction

An Euler cuboid is a rectangular parallelepiped whose edges and face diagonals are of integer
length. A perfect cuboid is an Euler cuboid whose space diagonal is also of integer length.
Cuboids with integer edges and face diagonals were known before Euler (see [1] and [2]). How-
ever, thanks to Leonhard Euler (see [3]) the problem of integer cuboids obtained a status, while
such cuboids themselves were named after him.

As for perfect cuboids, none of them is known so far. The problem of finding perfect cuboids
or proving of their non-existence is an unsolved mathematical problem. It has the long history
presented in papers [4-34].

In paper [35] the problem of constructing a perfect cuboid was reduced to the following 12th
order Diophantine equation of the variables 𝑎, 𝑏, 𝑐 and 𝑢:

𝑢4 𝑎4 𝑏4 + 6 𝑎4 𝑢2 𝑏4 𝑐2 − 2𝑢4 𝑎4 𝑏2 𝑐2 − 2𝑢4 𝑎2 𝑏4 𝑐2 + 4𝑢2 𝑏4 𝑎2 𝑐4+

+ 4 𝑎4 𝑢2 𝑏2 𝑐4 − 12𝑢4 𝑎2 𝑏2 𝑐4 + 𝑢4 𝑎4 𝑐4 + 𝑢4 𝑏4 𝑐4 + 𝑎4 𝑏4 𝑐4+

+ 6 𝑎4 𝑢2 𝑐6 + 6𝑢2 𝑏4 𝑐6 − 8 𝑎2 𝑏2 𝑢2 𝑐6 − 2𝑢4 𝑎2 𝑐6 − 2𝑢4 𝑏2 𝑐6−
− 2 𝑎4 𝑏2 𝑐6 − 2 𝑏4 𝑎2 𝑐6 + 𝑢4 𝑐8 + 𝑏4 𝑐8 + 𝑎4 𝑐8 + 4 𝑎2 𝑢2 𝑐8+

+ 4 𝑏2 𝑢2 𝑐8 − 12 𝑏2 𝑎2 𝑐8 + 6𝑢2 𝑐10 − 2 𝑎2 𝑐10 − 2 𝑏2 𝑐10 + 𝑐12 = 0.

(1.1)
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More precisely, the result of paper [35] is formulated in the form of the following theorem.

Theorem 1.1. A perfect cuboid does exist if and only if the Diophantine equation (1.1) has
got a solution, such that 𝑎, 𝑏, 𝑐, 𝑢 are four positive integer numbers, satisfying the inequalities
𝑎 < 𝑐, 𝑏 < 𝑐, 𝑢 < 𝑐, (𝑎 + 𝑐) (𝑏 + 𝑐) > 2 𝑐2.

A more simple equation associated with perfect cuboids was derived in [18] (see also [27]).
But our aim in the present paper is to study the equation (1.1) (it is new) and to obtain the
results declared in the abstract.

2. Rational cuboids

A rational cuboid is a rectangular parallelepiped whose edges lengths are expressed by rational
numbers. If the lengths of face diagonals are also rational, we have a rational Euler cuboid.
Finally, if the length of the space diagonal is also a rational number, we obtain a perfect cuboid.
It is easy to see, that every rational Euler cuboid can be transformed into an Euler cuboid with
integer edges and face diagonals. In the case of a perfect cuboid (either integer or rational) any
such cuboid can be transformed into a rational perfect cuboid with the unit space diagonal (see
[35]). Conversely, any rational perfect cuboid with a unit space diagonal can be transformed
into a perfect cuboid with integer edges and diagonals. Therefore, speaking of rational perfect
cuboids, below, by default, we assume their space diagonals to be unit.

3. Formulae for edges and face diagonals

Note, that the equation (1.1) is uniform with respect to variables 𝑎, 𝑏, 𝑐 and, 𝑢. Since 𝑐 > 0
in Theorem 1.1, we can introduce the variables

𝛼 =
𝑎

𝑐
, 𝛽 =

𝑏

𝑐
, 𝜐 =

𝑢

𝑐
. (3.1)

In the variables (3.1) the equation (1.1) is written in the following form:

𝜐4 𝛼4 𝛽4 + (6𝛼4 𝜐2 𝛽4 − 2 𝜐4 𝛼4 𝛽2 − 2 𝜐4 𝛼2 𝛽4) + (4 𝜐2 𝛽4 𝛼2+

+ 4𝛼4 𝜐2 𝛽2 − 12 𝜐4 𝛼2 𝛽2 + 𝜐4 𝛼4 + 𝜐4 𝛽4 + 𝛼4 𝛽4) + (6𝛼4 𝜐2 + 6 𝜐2 𝛽4−
− 8𝛼2 𝛽2 𝜐2 − 2 𝜐4 𝛼2 − 2 𝜐4 𝛽2 − 2𝛼4 𝛽2 − 2 𝛽4 𝛼2) + (𝜐4 + 𝛽4+

+𝛼4 + 4𝛼2 𝜐2 + 4 𝛽2 𝜐2 − 12 𝛽2 𝛼2) + (6 𝜐2 − 2𝛼2 − 2 𝛽2) + 1 = 0.

(3.2)

Note, that the variables 𝑎, 𝑏, 𝑐, and 𝑢 in (1.1) are neither edges, nor diagonals of a perfect
cuboid, they are just parameters. According to the formulae (3.1), the rational parameters 𝛼,
𝛽, and 𝜐 in (3.2) are expressed through them. And the edges and face diagonals of a perfect
cuboid are expressed by 𝛼, 𝛽, and 𝜐. Let us denote the edges of such a cuboid by 𝑥1, 𝑥2, and
𝑥3, and denote its face diagonals by 𝑑1, 𝑑2, and 𝑑3:

(𝑥1)
2 + (𝑥2)

2 = (𝑑3)
2, (𝑥2)

2 + (𝑥3)
2 = (𝑑1)

2, (𝑥3)
2 + (𝑥1)

2 = (𝑑2)
2. (3.3)

Then 𝑥1 and 𝑑1 are expressed through the parameter 𝜐:

𝑥1 =
2 𝜐

1 + 𝜐2
, 𝑑1 =

1 − 𝜐2

1 + 𝜐2
. (3.4)

Let us denote the following auxiliary parameter by 𝑧:

𝑧 =
(1 + 𝜐2) (1 − 𝛽2) (1 + 𝛼2)

2 (1 + 𝛽2) (1 − 𝛼2 𝜐2)
. (3.5)

Then the edges 𝑥2 and 𝑥3 are expressed by the formulae

𝑥2 =
2 𝑧 (1 − 𝜐2)

(1 + 𝜐2) (1 + 𝑧2)
, 𝑥3 =

(1 − 𝜐2) (1 − 𝑧2)

(1 + 𝜐2) (1 + 𝑧2)
, (3.6)
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and the face diagonals 𝑑2 and 𝑑3 are given by the following formulae:

𝑑2 =
(1 + 𝜐2) (1 + 𝑧2) + 2 𝑧(1 − 𝜐2)

(1 + 𝜐2) (1 + 𝑧2)
𝛽,

𝑑3 =
2 (𝜐2 𝑧2 + 1)

(1 + 𝜐2) (1 + 𝑧2)
𝛼.

(3.7)

The formulae (3.4), (3.5), (3.6), and (3.7) are taken from [35]. They can be verified by direct
calculations. Indeed, the second equality (3.3) transforms into an identity due to the formulae
(3.6). Moreover, the equations (3.3), a perfect cuboid is characterized by the equalities

(𝑥1)
2 + (𝑑1)

2 = 1, (𝑥2)
2 + (𝑑2)

2 = 1, (𝑥3)
2 + (𝑑3)

2 = 1. (3.8)

They mean that the length of the cuboid space diagonal is equal to unity. The first equality
(3.8) turn to an identity due to the formulae (3.4).

Thus, the second equality (3.3) and the first equality (3.8) transform to identities. The rest
four equalities (3.3) and (3.8) also transform to identities due to (3.4), (3.5), (3.6), and (3.7),
but subject to the equation (3.2).

4. Back to integer numbers

The equation (1.1) is homogeneous with respect to variables in it. Hence, due to (3.1) and
Theorem 1.1, the parameters 𝑎, 𝑏, 𝑐, and 𝑢 in the equation (1.1) can be considered as four
positive mutually coprime numbers, i. e. their greatest common divisor is equal to unity:

GCD(𝑎, 𝑏, 𝑐, 𝑢) = 1. (4.1)

Let us denote the greatest common divisor of the numbers 𝑎, 𝑏, and 𝑢 by 𝑚:

GCD(𝑎, 𝑏, 𝑢) = 𝑚. (4.2)

Then from (4.1) and (4.2) we can derive the equality

GCD(𝑚, 𝑐) = 1, (4.3)

i. e. 𝑚 and 𝑐 are mutually coprime. Due to (4.2) and (4.3), the fractions 𝑎/𝑚, 𝑏/𝑚, and 𝑢/𝑚 are
simplified to integer numbers, and the fraction 𝑐/𝑚 proves to be an irreducible one provided,
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𝑚 ̸= 1. The formulae (3.1) can be rewritten in terms of these fractions:

𝛼 =
𝑎/𝑚

𝑐/𝑚
, 𝛽 =

𝑏/𝑚

𝑐/𝑚
, 𝜐 =

𝑢/𝑚

𝑐/𝑚
. (4.4)

Relying on (4.4), we can change the variables in the following way:

𝑎

𝑚
→ 𝑎,

𝑏

𝑚
→ 𝑏,

𝑢

𝑚
→ 𝑢,

𝑐

𝑚
→ 𝑡. (4.5)

After introducing a new variable 𝑡 = 𝑐/𝑚 and renewing the variables 𝑎, 𝑏, and 𝑢, according to
(4.5), the formula (4.4) can be written as

𝛼 =
𝑎

𝑡
, 𝛽 =

𝑏

𝑡
, 𝜐 =

𝑢

𝑡
, (4.6)

and the equation (1.1) takes the following form:

𝑡12 + (6𝑢2 − 2 𝑎2 − 2 𝑏2) 𝑡10 + (𝑢4 + 𝑏4 + 𝑎4 + 4 𝑎2 𝑢2+

+ 4 𝑏2 𝑢2 − 12 𝑏2 𝑎2) 𝑡8 + (6 𝑎4 𝑢2 + 6𝑢2 𝑏4 − 8 𝑎2 𝑏2 𝑢2−
− 2𝑢4 𝑎2 − 2𝑢4 𝑏2 − 2 𝑎4 𝑏2 − 2 𝑏4 𝑎2) 𝑡6 + (4𝑢2 𝑏4 𝑎2+

+ 4 𝑎4 𝑢2 𝑏2 − 12𝑢4 𝑎2 𝑏2 + 𝑢4 𝑎4 + 𝑢4 𝑏4 + 𝑎4 𝑏4) 𝑡4+

+ (6 𝑎4 𝑢2 𝑏4 − 2𝑢4 𝑎4 𝑏2 − 2𝑢4 𝑎2 𝑏4) 𝑡2 + 𝑢4 𝑎4 𝑏4 = 0.

(4.7)

As for the formula (4.2), for the variables 𝑎, 𝑏, and 𝑢 renewed according to (4.5) this formula
gives the following relationship:

GCD(𝑎, 𝑏, 𝑢) = 1. (4.8)

The formula (4.8) implies that the numbers 𝑎, 𝑏, and 𝑢 in (4.6) and (4.7) are mutually coprime.
Note, that the equation (4.7) coincides with the original equation (1.1), but the variable 𝑐 in

it is replaced by 𝑡, while its terms are regrouped as is usually done in for polynomials of one
variable 𝑡. Now Theorem 1.1 is reformulated in the following way.

Theorem 4.1. A perfect cuboid does exist if and only if for some three positive mutually
coprime numbers 𝑎, 𝑏, 𝑢 polynomial equation (4.7) has got a rational solution 𝑡 satisfying the
inequalities 𝑡 > 𝑎, 𝑡 > 𝑏, 𝑡 > 𝑢, (𝑎 + 𝑡) (𝑏 + 𝑡) > 2 𝑡2.

5. Factoring the polynomial equation

Let us denote the polynomial in the left side of the equation (4.7) by 𝑃𝑎𝑏𝑢(𝑡). Having done
this, we consider it as a polynomial of one variable 𝑡, while variables 𝑎, 𝑏, and 𝑢 are considered
as parameters:

𝑃𝑎𝑏𝑢(𝑡) = 𝑡12 + (6𝑢2 − 2 𝑎2 − 2 𝑏2) 𝑡10 + (𝑢4 + 𝑏4 + 𝑎4 + 4 𝑎2 𝑢2+

+ 4 𝑏2 𝑢2 − 12 𝑏2 𝑎2) 𝑡8 + (6 𝑎4 𝑢2 + 6𝑢2 𝑏4 − 8 𝑎2 𝑏2 𝑢2−
− 2𝑢4 𝑎2 − 2𝑢4 𝑏2 − 2 𝑎4 𝑏2 − 2 𝑏4 𝑎2) 𝑡6 + (4𝑢2 𝑏4 𝑎2+

+ 4 𝑎4 𝑢2 𝑏2 − 12𝑢4 𝑎2 𝑏2 + 𝑢4 𝑎4 + 𝑢4 𝑏4 + 𝑎4 𝑏4) 𝑡4+

+ (6 𝑎4 𝑢2 𝑏4 − 2𝑢4 𝑎4 𝑏2 − 2𝑢4 𝑎2 𝑏4) 𝑡2 + 𝑢4 𝑎4 𝑏4.

(5.1)
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The polynomial (5.1) is symmetric with respect to the parameters 𝑎 and 𝑏, i. e.

𝑃𝑎𝑏𝑢(𝑡) = 𝑃𝑏𝑎𝑢(𝑡). (5.2)

To study the polynomial 𝑃𝑎𝑏𝑢(𝑡) we shall consider some certain cases:

1) 𝑎 = 𝑏; 3) 𝑏 𝑢 = 𝑎2; 5) 𝑎 = 𝑢;
(5.3)

2) 𝑎 = 𝑏 = 𝑢; 4) 𝑎 𝑢 = 𝑏2; 6) 𝑏 = 𝑢.

Particular case 𝑎 = 𝑏. In this particular case the polynomial 𝑃𝑎𝑏𝑢(𝑡) = 𝑃𝑎𝑎𝑢(𝑡) is set by
formula

𝑃𝑎𝑎𝑢(𝑡) = 𝑡12 + (6𝑢2 − 4 𝑎2) 𝑡10 + (8 𝑎2 𝑢2 − 10 𝑎4 + 𝑢4) 𝑡8+

+ (4 𝑎4 𝑢2 − 4 𝑎6 − 4𝑢4 𝑎2) 𝑡6 + (8 𝑎6 𝑢2 + 𝑎8 − 10𝑢4 𝑎4) 𝑡4+

+ (6 𝑎8 𝑢2 − 4𝑢4 𝑎6) 𝑡2 + 𝑢4 𝑎8.

(5.4)

The polynomial (5.4) is reducible. It is factorized as

𝑃𝑎𝑎𝑢(𝑡) = (𝑡2 + 𝑎2)2 𝑃𝑎𝑢(𝑡), (5.5)

where the polynomial 𝑃𝑎𝑢(𝑡) is given by formula

𝑃𝑎𝑢(𝑡) = 𝑡8 + 6 (𝑢2 − 𝑎2) 𝑡6 + (𝑎4 − 4 𝑎2 𝑢2 + 𝑢4) 𝑡4−
− 6 𝑎2 𝑢2 (𝑢2 − 𝑎2) 𝑡2 + 𝑢4 𝑎4.

(5.6)

The formulae (5.5) and (5.6) are easily proved by direct calculations.
Particular case 𝑎 = 𝑏 = 𝑢. This case corresponds to substituting 𝑎 = 𝑢 into the formula

(5.6). If 𝑎 = 𝑢, then the polynomial 𝑃𝑎𝑢(𝑡) = 𝑃𝑎𝑎(𝑡) is reducible:

𝑃𝑎𝑎(𝑡) = (𝑡− 𝑎)2 (𝑡 + 𝑎)2 (𝑡2 + 𝑎2)2. (5.7)

Due to the condition of mutual coprimality (4.8) the particular case 𝑎 = 𝑏 = 𝑢 satisfies the
conditions of Theorem 4.1 only if 𝑎 = 𝑏 = 𝑢 = 1. And then, due to (5.5) and (5.7), the
equation (4.7) looks as follows:

(𝑡− 1)2 (𝑡 + 1)2 (𝑡2 + 1)4 = 0. (5.8)

The equation (5.8) possesses two real rational solutions 𝑡 = −1 and 𝑡 = 1. But none of them
satisfies the conditions of Theorem 4.1. Indeed, they both do not satisfy the inequality 𝑡 > 𝑎,
where 𝑎 = 1.

Therefore, the subcase 𝑎 = 𝑏 = 𝑢 of the case 𝑎 = 𝑏 does not give perfect cuboids. Other
subcases of the particular case 𝑎 = 𝑏 are described by the following conjecture.

Conjecture 5.1. For any two positive mutually coprime numbers 𝑎 ̸= 𝑢 the polynomial
𝑃𝑎𝑢(𝑡) from (5.6) is irreducible in the ring of polynomials Z[𝑡].

Particular case 𝑏 𝑢 = 𝑎2. Comparing 𝑏 𝑢 = 𝑎2 with (4.8), it is easy to obtain the following
presentation for integer numbers 𝑎, 𝑏, and 𝑢:

𝑎 = 𝑝 𝑞, 𝑏 = 𝑝2, 𝑢 = 𝑞2. (5.9)

Here 𝑝 and 𝑞 are two parameters, i. e. two positive integer numbers, satisfying the condition
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of mutual coprimality

GCD(𝑝, 𝑞) = 1. (5.10)

Substituting (5.9) into (5.1), we obtain

𝑃𝑝𝑞𝑝2𝑞2(𝑡) = 𝑡12 + (6 𝑞4 − 2 𝑝2 𝑞2 − 2 𝑝4) 𝑡10 + (𝑞8 + 4 𝑝2 𝑞6+

+ 5 𝑝4 𝑞4 − 12 𝑝6 𝑞2 + 𝑝8) 𝑡8 − 2 𝑝2 𝑞2 (𝑞8 − 2 𝑝2 𝑞6 + 4 𝑝4 𝑞4−
− 2 𝑝6 𝑞2 + 𝑝8) 𝑡6 + 𝑝4 𝑞4 (𝑞8 − 12 𝑝2 𝑞6 + 5 𝑝4 𝑞4 + 4 𝑝6 𝑞2 + 𝑝8) 𝑡4+

+ 𝑞8 𝑝8 (−2 𝑞4 − 2 𝑝2 𝑞2 + 6 𝑝4) 𝑡2 + 𝑞12 𝑝12.

(5.11)

The polynomial 𝑃𝑝𝑞𝑝2𝑞2(𝑡) in (5.11) is reducible. Indeed, we have the expansion

𝑃𝑝𝑞𝑝2𝑞2(𝑡) = (𝑡− 𝑎) (𝑡 + 𝑎)𝑄𝑝𝑞(𝑡), (5.12)

where 𝑄𝑝𝑞(𝑡) is the following polynomial:

𝑄𝑝𝑞(𝑡) = 𝑡10 + (2 𝑞2 + 𝑝2) (3 𝑞2 − 2 𝑝2) 𝑡8 + (𝑞8 + 10 𝑝2 𝑞6+

+ 4 𝑝4 𝑞4 − 14 𝑝6 𝑞2 + 𝑝8) 𝑡6 − 𝑝2 𝑞2 (𝑞8 − 14 𝑝2 𝑞6 + 4 𝑝4 𝑞4+

+ 10 𝑝6 𝑞2 + 𝑝8) 𝑡4 − 𝑝6 𝑞6 (𝑞2 + 2 𝑝2) (−2 𝑞2 + 3 𝑝2) 𝑡2 − 𝑞10 𝑝10.

(5.13)

Due to (5.12) the polynomial (5.11) possesses two rational roots 𝑡 = 𝑎 and 𝑡 = −𝑎. Both of
these roots do not satisfy conditions of Theorem 4.1, as they do not satisfy the inequality 𝑡 > 𝑎.

Other roots of the polynomial (5.11) coincide with the roots of the polynomial 𝑄𝑝𝑞(𝑡) from
(5.13). The polynomial (5.13) is reducible for 𝑞 = 𝑝. In this case we have

𝑄𝑝𝑝(𝑡) = (𝑡− 𝑎) (𝑡 + 𝑎) (𝑡2 + 𝑎2)4. (5.14)

The formula (5.14) is not a surprise. If 𝑞 = 𝑝, one can easily derive 𝑎 = 𝑏 = 𝑢 from (5.9). But
this case has already been considered (see (5.7) and (5.8)). From 𝑞 = 𝑝 and from (5.10) we
derive 𝑝 = 𝑞 = 1 and 𝑎 = 𝑏 = 𝑢 = 1.

In the case 𝑝 ̸= 𝑞 the polynomial (5.13) is described by the following conjecture.

Conjecture 5.2. For any two positive mutually coprime integer numbers 𝑝 ̸= 𝑞 the polyno-
mial 𝑄𝑝𝑞(𝑡) from (5.13) is irreducible in the ring of polynomials Z[𝑡].

Particular case 𝑎 𝑢 = 𝑏2. This particular case is reduced to the previous one. Indeed, from
𝑎 𝑢 = 𝑏2 and from (4.8) we obtain

𝑎 = 𝑝2, 𝑏 = 𝑝 𝑞, 𝑢 = 𝑞2, (5.15)

where 𝑝 and 𝑞 are two positive integer numbers, satisfying the condition of mutual coprimality
(5.10). Being substituted into (5.1) the formulae (5.15) are equivalent to the formulae (5.9)
due to the symmetry (5.2). These formulae result in the polynomial 𝑃𝑝2𝑝𝑞𝑞2(𝑡) coinciding with
the polynomial (5.11), and later they result in the polynomial (5.13), which has already been
considered above.

Particular case 𝑎 = 𝑢. This particular case is rather simple. In this case the polynomial
𝑃𝑎𝑏𝑢(𝑡) = 𝑃𝑢𝑏𝑢(𝑡) in (5.1) is reducible, and the following formula holds:

𝑃𝑢𝑏𝑢(𝑡) = (𝑡2 + 𝑢2)4 (𝑡− 𝑏)2 (𝑡 + 𝑏)2. (5.16)

The polynomial (5.16) possesses two real rational roots 𝑡 = 𝑏 and 𝑡 = −𝑏. Both of them do not
satisfy the conditions of Theorem 4.1 since they do not satisfy the inequality 𝑡 > 𝑏.
Particular case 𝑏 = 𝑢. This particular case is equivalent to the previous one due to the

symmetry (5.2).
The general case, which is not covered by the particular cases considered above in (5.3), is

described by the following conjecture.
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Conjecture 5.3. For any three positive mutually coprime integer numbers 𝑎, 𝑏, 𝑢 such that
none of the conditions (5.3) is satisfied the polynomial (5.1) is irreducible in the ring of poly-
nomials Z[𝑡].

6. Numerical test of conjectures

Presently no proofs of for the conjectures 5.1, 5.2, and 5.3 are available. Therefore, I have
studied them numerically. For this purpose the Maxima package of the version 5.21.1 with the
graphic shell wxMaxima 0.85 on the platform of Ubuntu 10.10 with the kernel Linux 2.5.35-24
was used.

The conjecture 5.1 was tested and proved for 1 6 𝑎 6 100, and 1 6 𝑢 6 100. The hypothe-
sis 5.2 was proved for 1 6 𝑝 6 100 and 1 6 𝑞 6 100. And the third hypothesis 5.3 was checked
an proved for 1 6 𝑎 6 22, 1 6 𝑏 6 22 and 1 6 𝑢 6 22. The number 22 was chosen intentionally
because

223 = 10 648 ≈ 10 000 = 1002.

This equality implies that each conjecture was tested and confirmed for approximately 10 000
different combinations of numerical parameters in it. The total result of calculations sounds as
follows: the equation (4.7) does not have solutions giving perfect cuboids for all values of the
numbers 𝑎, 𝑏, 𝑢 less or equal to 22.

7. Conclusions

Conjecrtures 5.1, 5.2, and 5.3 are not equivalent to the condition of non-existence of perfect
cuboids. However, if they are valid, then it is sufficient to prove that perfect cuboids do not
exist. The above results of numerical tests witness in favor of these conjectures.
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