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ON A SPACE OF ENTIRE FUNCTIONS FAST DECREASING

ON A REAL LINE

M.I. MUSIN

Abstract. A space of entire functions decreasing fast on a real line is introduced. It
contains the space of the Fourier-Laplace transforms of infinitely differentiable functions on
a real line with a compact support as a proper subspace. The Fourier-Laplace transform of
functions of this space is studied. Equivalent description in terms of estimates of derivatives
of functions on a real line is obtained for the considered space.
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1. Introduction

1.1. Problem setting. In theory of generalized functions, theory of differential equations
there is a significant interest given to infinitely differential functions and functions, fast de-
creasing on a real line. To solve different problems of analysis in such spaces, it is possible to
use great opportunities, given by Fourier or Laplace transform. For some spaces of infinitely
differential functions (including entire functions), functions, fast decreasing on a real line, these
opportunities are demonstrated in papers of I.M. Gelfand and G.E. Shilov [1], B.L. Gurevich
[2], G.E . Shilov [3], L. Hormander [4], K.I. Babenko [5], [6], R.S. Yulmukhametov [7], [8], A.M.
Sedletsky [9], in books of I.M. Gelfand and G.E. Shilov [10], M.A. Evgrafov [11].

In the given paper we introduce a new class of entire functions spaces, fast decreasing on a real
line, and the Fourier-Laplace transform of functions from this space is also studied here. These
spaces are defined the following way. Everywhere further 𝜙 will be a nonnegative continuous
function on [0,∞), satisfying the conditions:

1) 𝜙(𝑥) = 0 for 𝑥 ∈ [0, 𝑒];

2) lim
𝑥→+∞

𝜙(𝑥)

𝑥
= +∞;

3) function 𝜓(𝑥) = 𝜙(𝑒𝑥) is convex on [0,∞);
4) there are numbers ℎ > 1 and 𝐾 > 0 such that

2𝜙(𝑥) ≤ 𝜙(ℎ𝑥) +𝐾, 𝑥 ∈ [0,∞).

Suppose 𝐻(C) be a space of entire functions of a complex variable.
For arbitrary 𝜀 > 0 and 𝑘 ∈ Z+ assume

𝑆𝜀,𝑘(𝜙) = {𝑓 ∈ 𝐻(C) : 𝑝𝜀,𝑘(𝑓) = sup
𝑧∈C

|𝑓(𝑧)|(1 + |𝑧|)𝑘

𝑒𝜙(𝜀|𝐼𝑚 𝑧|) <∞}.

Suppose 𝑆(𝜙) =
⋂︀

𝜀>0,𝑘∈Z+

𝑆𝜀,𝑘(𝜙). With ordinary operations of addition and multiplication by

complex numbers 𝑆(𝜙) is a linear space. Let us give 𝑆(𝜙) topology, defined by the family of
norms 𝑝𝜀,𝑘 (𝜀 > 0, 𝑘 ∈ Z+).

Note, that the function 𝑓 ∈ 𝐻(C) belongs to 𝑆(𝜙) only when for any 𝜀 > 0, 𝑘 ∈ Z+ the
following value is finite

𝑞𝜀,𝑘(𝑓) = sup
𝑧∈C

|𝑓(𝑧)𝑧𝑘|
𝑒𝜙(𝜀|𝐼𝑚 𝑧|) .
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Indeed, for any 𝜀 > 0, 𝑘 ∈ Z+ and 𝑓 ∈ 𝐻(C) the following inequalities occur:

𝑞𝜀,𝑘(𝑓) ≤ 𝑝𝜀,𝑘(𝑓),

𝑝𝜀,𝑘(𝑓) ≤ 2𝑘 max
0≤𝑚≤𝑘

𝑞𝜀,𝑚(𝑓).

Obviously, 𝑆(𝜙) contains Fourier-Laplace transforms of infinitely differentiable functions on
the real line with a compact support as its own space. It is easy to show, that operators of
differentiation, shift and multiplication by polynomials are continuous in 𝑆(𝜙).

The space 𝑆(𝜙) represents a new class of entire functions, fast decreasing on a real line. It
differs from the space of the form 𝑊Ω, studied in [10] and initially introduced by B.L. Gurevich
[2]. Indeed, the spaces of the form 𝑊Ω are introduced the following way. On the growing
continuous unlimited function 𝑤 on [0,∞) such that 𝑤(0) = 0, we can define the function Ω on

[0,∞): Ω(𝑦) =

𝑦∫︁
0

𝑤(𝜉) 𝑑𝜉, 𝑦 ≥ 0. Note, that Ω is a convex continuous function on [0,∞) and

lim
𝑦→+∞

Ω(𝑦)

𝑦
= +∞. The space 𝑊Ω consists of functions 𝑓 ∈ 𝐻(C), for which there is a number

𝑏 > 0 such that for all 𝑘 ∈ Z+ with some 𝐶𝑘 > 0

|𝑧𝑘𝑓(𝑧)| ≤ 𝐶𝑘𝑒
Ω(𝑏|𝑦|), 𝑧 ∈ C.

The aim of the paper is to give an equivalent description of the space 𝑆(𝜙) in terms of
estimates of derivative functions on the real line and to study the Fourier-Laplace transform
from 𝑆(𝜙).

1.2. Basic results. For the arbitrary real-valued continuous function 𝑔 on [0,∞) such that

lim
𝑥→+∞

𝑔(𝑥)

𝑥
= +∞, assume 𝑔*(𝑥) = sup

𝑦>0
(𝑥𝑦 − 𝑔(𝑦)) be the function, conjugate by Jung with 𝑔

[11], 𝑔[𝑒](𝑥) = 𝑔(𝑒𝑥), 𝑥 ≥ 0.
The following two theorems (proved in section 3) allow to give another description of the

space 𝑆(𝜙).

Theorem 1. Suppose 𝑓 ∈ 𝑆(𝜙). Then 𝑓 ∈ 𝐶∞(R) and ∀𝜀 > 0 ∀𝑚 ∈ Z+ ∃𝑐𝜀,𝑚 > 0
∀𝑛 ∈ Z+ ∀𝑥 ∈ R

|𝑥𝑚𝑓 (𝑛)(𝑥)| ≤ 𝑐𝜀,𝑚𝑛!𝜀𝑛𝑒−𝜓
*(𝑛) .

Theorem 2. Suppose 𝑓 ∈ 𝐶∞(R) and for any 𝜀 > 0,𝑚 ∈ Z+ there is a number 𝑑 > 0 such
that for any 𝑛 ∈ Z+

(1 + |𝑥|)𝑚|𝑓 (𝑛)(𝑥)| ≤ 𝑑𝜀𝑛𝑛!𝑒−𝜓
*(𝑛), 𝑥 ∈ R.

Then 𝑓 (uniquely) extends up to the entire function from 𝑆(𝜙).

For 𝜀 > 0,𝑚 ∈ Z+ assume
𝐺𝜀,𝑚(𝜓*) = {𝑓 ∈ 𝐶𝑚(R) :

‖𝑓‖𝜀,𝑚 = max
0≤𝑛≤𝑚

max

(︂
sup
𝑥∈R

|𝑓 (𝑛)(𝑥)|, sup
𝑥∈R,𝑘∈N

|𝑥𝑘𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

)︂
<∞}.

Assume 𝐺(𝜓*) =
⋂︀

𝜀>0,𝑚∈Z+

𝐺𝜀,𝑚(𝜓*). With ordinary operations of addition and multiplication

by complex numbers 𝐺(𝜓*) is a linear space. Let us give 𝐺(𝜓*) topology, defined by the family
of norms ‖𝑓‖𝜀,𝑚 (𝜀 > 0, 𝑚 ∈ Z+).

Let us define the Fourier transform of the function 𝑓 ∈ 𝑆(𝜙) by formula

𝑓(𝑥) =

∫︁
R
𝑓(𝜉)𝑒−𝑖𝑥𝜉 𝑑𝜉, 𝑥 ∈ R.

It was proved in Section 4

Theorem 3. The Fourier transform sets an isomorphism of the spaces 𝑆(𝜙) and 𝐺(𝜓*).
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For the case, when the function 𝜙 is convex on [0,∞), it is shown in Section 5, that the space
𝐺(𝜓*) admits a more simple description.

Theorem 4. Let the function 𝜙 be convex on [0,∞). Then the space 𝐺(𝜓*) consists of
functions 𝑓 ∈ 𝐶∞(R) such that for any 𝜀 > 0, 𝑛 ∈ Z+ there is a constant 𝐶𝜀,𝑛 > 0 such that

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
−𝜙*( |𝑥|

𝜀
), 𝑥 ∈ R.

2. Auxiliary results

Assume 𝑎 = lnℎ and note, that condition 4) for the function 𝜙 is equivalent to the following
condition on 𝜓:

2𝜓(𝑥) ≤ 𝜓(𝑥+ 𝑎) +𝐾, 𝑥 ≥ 0.

Lemma 1. For any 𝑀 > 0 there is a constant 𝐶𝑀 > 0 such that

𝜓*(𝑥) ≤ 𝑥 ln
𝑥

𝑀
− 𝑥+ 𝐶𝑀 , 𝑥 > 0.

Proof. It results from the definition of the function 𝜓 and condition 2) on 𝜙, that for any
𝑀 > 0 there is a constant 𝐶𝑀 > 0 such that for all 𝑦 ≥ 0 𝜓(𝑦) ≥𝑀𝑒𝑦 − 𝐶𝑀 . Consequently,

𝜓*(𝑥) = sup
𝑦>0

(𝑥𝑦 − 𝜓(𝑦)) ≤ sup
𝑦>0

(𝑥𝑦 −𝑀𝑒𝑦) + 𝐶𝑀 ≤

≤ sup
𝑦∈R

(𝑥𝑦 −𝑀𝑒𝑦) + 𝐶𝑀 = 𝑥 ln
𝑥

𝑀
− 𝑥+ 𝐶𝑀 .

From Lemma 1 we obtain the following

Corollary 1. With any 𝜀 > 0 the series
∞∑︁
𝑗=0

𝑒𝜓
*(𝑗)

𝜀𝑗𝑗!
conjugates.

Lemma 2. Suppose 𝜏 > 0, and 𝑔 be a convex continuous function on [0,∞) such that

lim
𝑥→+∞

𝑔(𝑥)

𝑥
= +∞. Then with some 𝐶 > 0

2𝑔(𝑥) ≤ 𝑔(𝑥+ 𝜏) + 𝐶, 𝑥 ≥ 0, (1)

only when there is a constant 𝐴 > 0 such that

𝑔*(𝑥+ 𝑦) ≤ 𝑔*(𝑥) + 𝑔*(𝑦) + 𝜏(𝑥+ 𝑦) + 𝐴, 𝑥, 𝑦 ≥ 0. (2)

Proof. Necessity. Let us first note, that

𝑔*(𝑥) ≥ − inf
𝜉≥0

𝑔(𝜉), 𝑥 ≥ 0. (3)

Further, for arbitrary 𝑥, 𝑦, 𝑡 ∈ [0,∞)

𝑔*(𝑥) + 𝑔*(𝑦) ≥ (𝑥+ 𝑦)𝑡− 2𝑔(𝑡).

According to (1), with any 𝑥, 𝑦, 𝑡 ≥ 0

𝑔*(𝑥) + 𝑔*(𝑦) ≥ (𝑥+ 𝑦)(𝑡+ 𝜏) − 𝑔(𝑡+ 𝜏) − 𝐶 − 𝜏(𝑥+ 𝑦).

Consequently, with any 𝑥, 𝑦 ∈ [0,∞)

𝑔*(𝑥) + 𝑔*(𝑦) ≥ sup
𝜉≥𝜏

((𝑥+ 𝑦)𝜉 − 𝑔(𝜉)) − 𝐶 − 𝜏(𝑥+ 𝑦). (4)

Further, with any 𝑥, 𝑦 ∈ [0,∞)

sup
0≤𝜉<𝜏

((𝑥+ 𝑦)𝜉 − 𝑔(𝜉)) ≤ (𝑥+ 𝑦)𝜏 − inf
0≤𝜉<𝜏

𝑔(𝜉) ≤ (𝑥+ 𝑦)𝜏 − inf
𝜉≥0

𝑔(𝜉).

Subject to (3) we obtain

sup
0≤𝜉<𝜏

((𝑥+ 𝑦)𝜉 − 𝑔(𝜉)) ≤ (𝑥+ 𝑦)𝜏 + 𝑔*(𝑥) ≤
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≤ (𝑥+ 𝑦)𝜏 + 𝑔*(𝑥) + 𝑔*(𝑦) + inf
𝜉≥0

𝑔(𝜉).

Hereof and from inequality (4), assuming 𝐴 = max(𝐶, inf
𝜉≥0

𝑔(𝜉)), we obtain

𝑔*(𝑥+ 𝑦) ≤ 𝑔*(𝑥) + 𝑔*(𝑦) + 𝜏(𝑥+ 𝑦) + 𝐴, 𝑥, 𝑦 ≥ 0.

Sufficiency. According to formula of inversion of the Jung transform [11] 𝑔 = (𝑔*)*. Apply-
ing this and (2), we obtain

2𝑔(𝑥) = sup
𝑢≥0

(2𝑥𝑢− 2𝑔*(𝑢)) ≤ sup
𝑢≥0

(2𝑥𝑢− 𝑔*(2𝑢) + 2𝜏𝑢+ 𝐴) =

= sup
𝑢≥0

((𝑥+ 𝜏)𝑡− 𝑔*(𝑡)) + 𝐴 = 𝑔(𝑥+ 𝜏) + 𝐴.

It remains to suppose 𝐶 = 𝐴. the proof is complete.
The space 𝐺(𝜓*) can be described the following way. For 𝜀 > 0, 𝑚 ∈ Z+ assume

𝑄𝜀,𝑚(𝜓*) = {𝑓 ∈ 𝐶𝑚(R) : 𝑠𝜀,𝑚(𝑓) = max
0≤𝑛≤𝑚

sup
𝑥∈R,𝑘∈Z+

(1 + |𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

<∞}.

Assume 𝑄(𝜓*) =
⋂︀

𝜀>0,𝑚∈Z+

𝑄𝜀,𝑚(𝜓*). Let us give 𝑄(𝜓*) topology, defined by the family of norms

𝑠𝜀,𝑚 (𝜀 > 0, 𝑚 ∈ Z+).
It is valid

Lemma 3. 𝑄(𝜓*) = 𝐺(𝜓*).

Proof. Assume 𝑓 ∈ 𝑄(𝜓*). Then for any 𝜀 > 0,𝑚 ∈ Z+ ‖𝑓‖𝜀,𝑚 ≤ 𝑠𝜀,𝑚(𝑓). It implies, that
𝑓 ∈ 𝐺(𝜓*). Moreover, the mapping of the insertion 𝐼 : 𝑄(𝜓*) → 𝐺(𝜓*) is continuous.

Let us now 𝑓 ∈ 𝐺(𝜓*). Then ∀𝜀 > 0 ∀𝑚 ∈ Z+ ‖𝑓‖ 𝜀
2
,𝑚 <∞. Consequently, whatever 𝑚 ∈ Z+

could be for 𝑛 ∈ Z+ such that 0 ≤ 𝑛 ≤ 𝑚

|𝑓 (𝑛)(𝑥)| ≤ ‖𝑓‖ 𝜀
2
,𝑚, 𝑥 ∈ R. (5)

Note, that for 𝑛 ∈ Z+ such that 0 ≤ 𝑛 ≤ 𝑚

sup
|𝑥|≤1,𝑘∈Z+

(1 + |𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

≤ sup
|𝑥|≤1,𝑘∈Z+

2𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

.

Whereas lim
𝑘→∞

2𝑘

𝑘!𝜀𝑘𝑒−𝜓*(𝑘) = 0, then there is a number 𝐶(𝜀) > 1 such that for 𝑛 ∈ Z+ such that

0 ≤ 𝑛 ≤ 𝑚

sup
|𝑥|≤1,𝑘∈Z+

(1 + |𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

≤ 𝐶(𝜀) sup
|𝑥|≤1

|𝑓 (𝑛)(𝑥)|.

Consequently, for any 𝑓 ∈ 𝐺(𝜓*) with any 𝑚 ∈ Z+

max
0≤𝑛≤𝑚

sup
|𝑥|≤1,𝑘∈Z+

(1 + |𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

≤ 𝐶(𝜀)‖𝑓‖ 𝜀
2
,𝑚. (6)

Further, for 𝑛 ∈ Z+ such that 0 ≤ 𝑛 ≤ 𝑚

sup
|𝑥|>1,𝑘∈Z+

(1 + |𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

≤ sup
|𝑥|>1,𝑘∈Z+

(2|𝑥|)𝑘|𝑓 (𝑛)(𝑥)|
𝑘!𝜀𝑘𝑒−𝜓*(𝑘)

≤ ‖𝑓‖ 𝜀
2
,𝑚. (7)

It results from estimates (5) – (7), that for any 𝑓 ∈ 𝐺(𝜓*) with any 𝜀 > 0,𝑚 ∈ Z+

𝑠𝜀,𝑚(𝑓) ≤ 𝐶(𝜀)‖𝑓‖ 𝜀
2
,𝑚.

Thereby we state a topological equality 𝑄(𝜓*) = 𝐺(𝜓*).
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3. Equivalent description of the space 𝑆(𝜙)

Proof of Theorem 1. Assume 𝑓 ∈ 𝑆(𝜙). Applying Cauchy integral formula, we obtain
with any 𝑚,𝑛 ∈ Z+

(1 + |𝑥|)𝑚𝑓 (𝑛)(𝑥) =
𝑛!

2𝜋𝑖

∫︁
𝐿𝑅(𝑥)

(1 + |𝑥|)𝑚𝑓(𝜁)

(𝜁 − 𝑥)𝑛+1
𝑑𝜁, 𝑥 ∈ R,

where for 𝑅 > 0 𝐿𝑅(𝑥) = {𝜁 ∈ C : |𝜁 − 𝑥| = 𝑅}. Hereof with any 𝑅 > 0 and 𝜀 > 0

(1 + |𝑥|)𝑚|𝑓 (𝑛)(𝑥)| ≤ 𝑛! max
𝜁∈𝐿𝑅

(1 + |𝜁 − 𝑥|)𝑚(1 + |𝜁|)𝑚|𝑓(𝜁)|
𝑅𝑛

≤

≤ 𝑛!𝑝𝜀,𝑚(𝑓)
(1 +𝑅)𝑚𝑒𝜙(𝜀𝑅)

𝑅𝑛
.

Applying conditions 2) and 4) for the function 𝜙, we obtain with some 𝑐𝜀,𝑚 > 0 for any 𝑅 > 0

(1 + |𝑥|)𝑚|𝑓 (𝑛)(𝑥)| ≤ 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)
𝑒𝜙(𝜀ℎ𝑅)

𝑅𝑛
= 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)(𝜀ℎ)𝑛

𝑒𝜙(𝜀ℎ𝑅)

(𝜀ℎ𝑅)𝑛
.

Consequently, for any 𝑥 ∈ R

(1 + |𝑥|)𝑚|𝑓 (𝑛)(𝑥)| ≤ 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)(𝜀ℎ)𝑛 inf
𝑅≥1

𝑒𝜙(𝑅)

𝑅𝑛
=

= 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)(𝜀ℎ)𝑛 exp(− sup
𝑅≥1

(𝑛 ln𝑅− 𝜙(𝑅))) =

= 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)(𝜀ℎ)𝑛 exp(− sup
𝑟≥0

(𝑛𝑟 − 𝜓(𝑟))) = 𝑐𝜀,𝑚𝑛!𝑝𝜀,𝑚(𝑓)(𝜀ℎ)𝑛𝑒−𝜓
*(𝑛).

Theorem 1 has been proved.
Proof of Theorem 2. Suppose 𝑓 ∈ 𝐶∞(R) and for any 𝜀 > 0,𝑚 ∈ Z+ there be a number

𝑑 > 0 such that for any 𝑛 ∈ Z+

(1 + |𝑥|)𝑚|𝑓 (𝑛)(𝑥)| ≤ 𝑑𝜀𝑛𝑛!𝑒−𝜓
*(𝑛), 𝑥 ∈ R. (8)

In particular, |𝑓 (𝑛)(𝑥)| ≤ 𝑑𝜀𝑛𝑛!, 𝑥 ∈ R. Obviously, the sequence
(︁∑︀𝑘

𝑛=0
𝑓 (𝑛)(0)
𝑛!

𝑥𝑛
)︁∞

𝑘=0
conjugates

to 𝑓 uniformly on the compacts of a number scale, and the series
∞∑︁
𝑛=0

𝑓 (𝑛)(0)

𝑛!
𝑧𝑛 conjugates

uniformly on the compacts in C and, consequently, the sum 𝐹𝑓 (𝑧) of this series is an entire
function in C. Note, that 𝐹𝑓 (𝑥) = 𝑓(𝑥), 𝑥 ∈ R. Thus, we have obtained an analytic extension
of the function 𝑓 up to the entire function in C of the function 𝐹𝑓 .

Applying the equality

𝐹𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑓 (𝑛)(𝑥)

𝑛!
(𝑖𝑦)𝑛, 𝑧 = 𝑥+ 𝑖𝑦 (𝑥, 𝑦 ∈ R),

and the inequality (8), we will estimate the growth of 𝐹𝑓 . For any 𝜀 > 0,𝑚 ∈ Z+

(1 + |𝑧|)𝑚|𝐹𝑓 (𝑧)| ≤
∞∑︁
𝑛=0

(1 + |𝑥|)𝑚(1 + |𝑦|)𝑚+𝑛|𝑓 (𝑛)(𝑥)|
𝑛!

≤

≤
∞∑︁
𝑛=0

𝑑𝜀𝑛

𝑒𝜓*(𝑛)
(1 + |𝑦|)𝑛+𝑚 ≤ 𝑑(1 + |𝑦|)𝑚

∞∑︁
𝑛=0

(︂
1

2

)︂𝑛

𝑒
sup
𝑛≥0

(𝑛 ln(2𝜀(1+|𝑦|))−𝜓*(𝑛))

≤

≤ 2𝑑(1 + |𝑦|)𝑚𝑒
sup
𝑥≥0

(𝑥 ln(2𝜀(1+|𝑦|))−𝜓*(𝑥))

= 2𝑑(1 + |𝑦|)𝑚𝑒𝜓(ln(2𝜀(1+|𝑦|))).

In the end of this inequality there was applied a convexity 𝜓. Finally, we obtain with all
𝜀 > 0,𝑚 ∈ Z+,

(1 + |𝑧|)𝑚|𝐹𝑓 (𝑧)| ≤ 2𝑑(1 + |𝑦|)𝑚𝑒𝜙(2𝜀(1+|𝑦|)), 𝑧 ∈ C. (9)
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Whereas a never-decreasing function 𝜙 satisfies conditions 2) and 4), then it is possible to find
a constant 𝐶𝜀,𝑚,𝜙 > 0 (depending on 𝜀, 𝑚 and 𝜙) such that everywhere in C

(1 + |𝑧|)𝑚|𝐹 (𝑧)| ≤ 𝐶𝜀,𝑚,𝜙𝑑𝑒
𝜙(4𝜀ℎ|𝑦|).

Due to arbitrariness of numbers 𝑏 > 0,𝑚 ∈ Z+ we make a conclusion, that 𝐹𝑓 ∈ 𝑆(𝜙). The
uniqueness of the continuation results from the theorem of uniqueness for analytical functions.

Theorem 2 has been proved.

4. On Fourier transforms from the space 𝑆(𝜙)

Proof of Theorem 3. Assume 𝑓 ∈ 𝑆(𝜙). Then ∀𝜀 > 0 ∀𝑥 ∈ R

|𝑓 (𝑛)(𝑥)| ≤
∫︁
R
|𝑓(𝜉)||𝜉|𝑛 𝑑𝜉 ≤

∫︁
R

|𝑓(𝜉)|(1 + |𝜉|)𝑛+2

1 + 𝜉2
𝑑𝜉 ≤ 𝜋𝑝𝜀,𝑛+2(𝑓) . (10)

Whereas with any 𝑚 ∈ N, 𝑛 ∈ Z+, 𝑥, 𝜂 ∈ R

𝑥𝑚𝑓 (𝑛)(𝑥) = 𝑥𝑚
∫︁
R
𝑓(𝜁)(−𝑖𝜁)𝑛𝑒−𝑖𝑥𝜁 𝑑𝜉, 𝜁 = 𝜉 + 𝑖𝜂,

then

|𝑥𝑚𝑓 (𝑛)(𝑥)| ≤
∫︁
R
|𝑓(𝜁)||𝜁|𝑛𝑒𝑥𝜂|𝑥|𝑚 𝑑𝜉 ≤

∫︁
R
|𝑓(𝜁)|(1 + |𝜁|)𝑛+2𝑒𝑥𝜂|𝑥|𝑚 𝑑𝜉

1 + 𝜉2
.

Let us consider the case 𝑥 ̸= 0. Assume 𝜂 = − 𝑥
|𝑥|𝑡, 𝑡 > 0. Then with any 𝑡 > 0, 𝜀 > 0

|𝑥𝑚𝑓 (𝑛)(𝑥)| ≤ 𝜋𝑝𝜀,𝑛+2(𝑓)𝑒−𝑡|𝑥|𝑒𝜙(𝜀𝑡)|𝑥|𝑚 ≤

≤ 𝜋𝑝𝜀,𝑛+2(𝑓)𝑒
sup
𝑟>0

(−𝑡𝑟+𝑚 ln 𝑟)
𝑒𝜙(𝜀𝑡) ≤ 𝜋𝑝𝜀,𝑛+2(𝑓)𝑒𝑚 ln𝑚−𝑚−𝑚 ln 𝑡𝑒𝜙(𝜀𝑡).

Let us proceed to precise lower bound in all 𝑡 > 0 in the right part of this inequality (the left
part depends on 𝑡). Whereas

inf
𝑡>0

(−𝑚 ln 𝑡+ 𝜙(𝜀𝑡)) = 𝑚 ln 𝜀+ inf
𝑢>0

(−𝑚 ln𝑢+ 𝜙(𝑢)) = 𝑚 ln 𝜀− sup
𝑢>0

(𝑚 ln𝑢− 𝜙(𝑢)) =

= 𝑚 ln 𝜀− sup
𝑢≥1

(𝑚 ln𝑢− 𝜙(𝑢)) = 𝑚 ln 𝜀− 𝜓*(𝑚),

then
|𝑥𝑚𝑓 (𝑛)(𝑥)| ≤ 𝜋𝑝𝜀,𝑛+2(𝑓)𝜀𝑚𝑒𝑚 ln𝑚−𝑚𝑒−𝜓

*(𝑚). (11)

If 𝑥 = 0, then for 𝑚 ∈ N and for any 𝑛 ∈ Z+ 𝑥𝑚𝑓 (𝑛)(𝑥) = 0, Hereof, from estimates (10) and
(11), and taking into account, that 𝑚𝑚 ≤ 𝑒𝑚𝑚! for all 𝑚 ∈ N, we obtain with any 𝜀 > 0, 𝑘 ∈ Z+

‖𝑓‖𝜀,𝑘 ≤ 𝜋𝑝𝜀,𝑘+2(𝑓), 𝑓 ∈ 𝑆(𝜙). It implies, that the linear mapping ℱ : 𝑆(𝜙) → 𝐺(𝜓*), acting

by the rule: 𝑓 ∈ 𝑆(𝜙) → 𝑓 , is continuous.
Let us show, that ℱ is surjective. Assume 𝑔 ∈ 𝐺(𝜓*). Then (applying Lemma 3) with any

𝜀 > 0, 𝑘,𝑚 ∈ Z+ and 𝑛 ∈ Z+ such that 𝑛 ≤ 𝑚

(1 + |𝑥|)𝑘|𝑔(𝑛)(𝑥)| ≤ 𝑠𝜀,𝑚(𝑔)𝜀𝑘𝑘!𝑒−𝜓
*(𝑘), 𝑥 ∈ R.

Suppose 𝑓(𝜉) = 1
2𝜋

∫︀
R 𝑔(𝑥)𝑒𝑖𝑥𝜉 𝑑𝑥, 𝜉 ∈ R. For any 𝑛 ∈ Z+

𝑓 (𝑛)(𝜉) =
1

2𝜋

∫︁
R
𝑔(𝑥)(𝑖𝑥)𝑛𝑒𝑖𝑥𝜉 𝑑𝑥, 𝜉 ∈ R.

Hereof, (integrated in parts) for any 𝑚 ∈ Z+

(𝑖𝜉)𝑚𝑓 (𝑛)(𝜉) =
1

2𝜋
(−1)𝑚

∫︁
R
(𝑔(𝑥)(𝑖𝑥)𝑛)(𝑚)𝑒𝑖𝑥𝜉 𝑑𝑥, 𝜉 ∈ R.

Assume 𝑟 = min(𝑚,𝑛). Then

(𝑖𝜉)𝑚𝑓 (𝑛)(𝜉) =
1

2𝜋
(−1)𝑚

∫︁
R

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚𝑔

(𝑚−𝑗)(𝑥)((𝑖𝑥)𝑛)(𝑗)𝑒𝑖𝑥𝜉 𝑑𝑥, 𝜉 ∈ R.
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Hereof

|𝜉𝑚𝑓 (𝑛)(𝜉)| ≤ 1

2𝜋

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚

∫︁
R
|𝑔(𝑚−𝑗)(𝑥)| 𝑛!

(𝑛− 𝑗)!
|𝑥|𝑛−𝑗 𝑑𝑥 ≤

≤ 1

2𝜋

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚

𝑛!

(𝑛− 𝑗)!

∫︁
R
|𝑔(𝑚−𝑗)(𝑥)|(1 + |𝑥|)𝑛−𝑗+2 𝑑𝑥

1 + 𝑥2
≤

≤ 1

2

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚

𝑛!

(𝑛− 𝑗)!
𝑠𝜀,𝑚(𝑔)(𝑛− 𝑗 + 2)!𝜀𝑛−𝑗+2𝑒−𝜓

*(𝑛−𝑗+2) ≤

≤ 1

2

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚

𝑛!

(𝑛− 𝑗)!
𝑠𝜀,𝑚(𝑔)(𝑛− 𝑗 + 2)!𝜀𝑛−𝑗+2𝑒−𝜓

*(𝑛−𝑗) ≤

≤ 1

2
𝑛!𝜀𝑛+2𝑠𝜀,𝑚(𝑔)

𝑟∑︁
𝑗=0

𝐶𝑗
𝑚(𝑛− 𝑗 + 1)(𝑛− 𝑗 + 2)𝜀−𝑗𝑒−𝜓

*(𝑛−𝑗).

Applying the conditions on 𝜓 and Lemma 2, we obtain with some 𝐾𝜓 > 0

𝜓*(𝑥+ 𝑦) ≤ 𝜓*(𝑥) + 𝜓*(𝑦) + 𝑎(𝑥+ 𝑦) +𝐾𝜓, 𝑥, 𝑦 ≥ 0. (12)

Therefore, for any 𝜉 ∈ R

|𝜉𝑚𝑓 (𝑛)(𝜉)| ≤ 1

2
(𝑛+ 2)!𝑚!𝜀𝑛+2𝑠𝜀,𝑚(𝑔)𝑒−𝜓

*(𝑛)
𝑟∑︁
𝑗=0

𝑒𝜓
*(𝑗)+𝑎𝑛+𝐾𝜓

𝜀𝑗𝑗!
.

Assuming 𝑐𝜀,𝑚 = 2𝜀2𝑚!𝑒𝐾𝜓
∞∑︁
𝑗=0

𝑒𝜓
*(𝑗)

𝜀𝑗𝑗!
, we obtain with all 𝑛 ∈ Z+

|𝜉𝑚𝑓 (𝑛)(𝜉)| ≤ 𝑐𝜀,𝑚(2𝜀𝑒𝑎)𝑛𝑛!𝑠𝜀,𝑚(𝑔)𝑒−𝜓
*(𝑛), 𝜉 ∈ R.

Consequently, with all 𝑛 ∈ Z+ and 𝜉 ∈ R
(1 + |𝜉|)𝑚|𝑓 (𝑛)(𝜉)| ≤ 2𝑚(𝑐𝜀,0 + 𝑐𝜀,𝑚)𝑠𝜀,𝑚(𝑔)(2𝜀𝑒𝑎)𝑛𝑛!𝑒−𝜓

*(𝑛).

According to Theorem 2 the function 𝑓 (uniquely) extends up to an entire function of the
class 𝑆(𝜙). Therefore, 𝑓 ∈ 𝑆(𝜙). It is obvious, that 𝑔 = ℱ(𝑓). Taking into account the
inequality (9), we obtain

(1 + |𝑧|)𝑚|𝑓(𝑧)| ≤ 2𝑚+1(𝑐𝜀,0 + 𝑐𝜀,𝑚)𝑠𝜀,𝑚(𝑔)(1 + |𝑦|)𝑚𝑒𝜙(4𝜀𝑒𝑎(1+|𝑦|)), 𝑧 ∈ C.
Due to conditions 2) and 4) on 𝜙 we can find a constant 𝐾𝜀,𝑚,𝜙 > 0 such that

𝑝8𝜀𝑒𝑎ℎ,𝑚(𝑓) ≤ 𝐾𝜀,𝑚,𝜙𝑠𝜀,𝑚(𝑔).

Applying Lemma 3, we obtain, that the inverse mapping 𝐼−1 is continuous.
Thus, it was proved, that the Fourier transform sets a topological isomorphism of the spaces

𝑆(𝜙) and 𝐺(𝜓*).

5. A special case of the function 𝜙

Proof of Theorem 4. Let the function 𝜙 satisfy conditions 1) – 4) and be convex on [0,∞).
Let us show, that in this case the space 𝐺(𝜓*) consists of functions 𝑓 ∈ 𝐶∞(R) such that for
any 𝜀 > 0, 𝑛 ∈ Z+ there is a constant 𝐶𝜀,𝑛 > 0 such that

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
−𝜙*( |𝑥|

𝜀
), 𝑥 ∈ R. (13)

Suppose 𝑓 ∈ 𝐺(𝜓*), 𝜀 ∈ (0, 1) be arbitrary, 𝑏 = 𝜀
2𝑒𝑎+1 . According to Lemma 3 ∀𝑛, 𝑘 ∈ Z+

|𝑓 (𝑛)(𝑥)| ≤ 𝑠𝑏,𝑛(𝑓)
𝑘!𝑏𝑘𝑒−𝜓

*(𝑘)

(1 + |𝑥|)𝑘
, 𝑥 ≥ 0. (14)
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Applying the inequality: 𝑘! < 3𝑘
𝑘+1

𝑒𝑘
for any 𝑘 ∈ N, inequality (12) and monotony 𝜓*, we obtain

for 𝑘 ∈ N, 𝑡 ∈ [𝑘, 𝑘 + 1), 𝑏 ∈ (0, 1), 𝑥 ∈ R

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
< 3

𝑏𝑘𝑘𝑘+1𝑒−𝜓
*(𝑘)

𝑒𝑘(1 + |𝑥|)𝑘
≤ 3𝑏𝑡𝑡𝑡+1𝑒−𝜓

*(𝑡)+𝜓*(1)+𝑎𝑡+𝐾𝜓+1

𝑏𝑒𝑡(1 + |𝑥|)𝑡
(1 + |𝑥|) =

=
3𝑒𝐾𝜓+1+𝜓*(1)

𝑏
𝑒𝑡 ln 𝑏+(𝑡+1) ln 𝑡−𝜓*(𝑡)+𝑎𝑡−𝑡−𝑡 ln(1+|𝑥|)(1 + |𝑥|).

Let us apply the inequality [12]

(𝜙[𝑒])*(𝑥) + (𝜙*[𝑒])*(𝑥) = 𝑥 ln𝑥− 𝑥, 𝑥 > 0, (15)

and assume, that 𝐶 = 3𝑒
𝐾𝜓+1+𝜓*(1)

𝑏
. Then

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
< 𝐶(1 + |𝑥|)𝑒𝑡 ln

𝑏𝑒𝑎

1+|𝑥|+ln 𝑡+(𝜙*[𝑒])*(𝑡) < 𝐶(1 + |𝑥|)𝑒𝑡 ln
𝑏𝑒𝑎+1

1+|𝑥| +(𝜙*[𝑒])*(𝑡).

It implies, that

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶(1 + |𝑥|) inf

𝑡≥1
𝑒𝑡 ln

𝑏𝑒𝑎+1

1+|𝑥| +(𝜙*[𝑒])*(𝑡).

Subject to 𝑏𝑒𝑎+1 < 1, we obtain with some 𝐶1 = 𝐶1(𝑏, 𝜙) > 0

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶1(1 + |𝑥|)2 inf

𝑡≥0
𝑒𝑡 ln

𝑏𝑒𝑎+1

1+|𝑥| +(𝜙*[𝑒])*(𝑡).

Let us rewrite the latter inequality in the following form

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶1(1 + |𝑥|)2𝑒

− sup
𝑡>0

(𝑡 ln
1+|𝑥|
𝑏𝑒𝑎+1−(𝜙*[𝑒])*(𝑡))

=

= 𝐶1(1 + |𝑥|)2𝑒−(𝜙*([𝑒])**(ln 1+|𝑥|
𝑏𝑒𝑎+1 )).

Applying formula of inversion of the Jung transform, we obtain

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶1𝑒

2 ln(1+|𝑥|)−𝜙*( 1+|𝑥|
𝑏𝑒𝑎+1 ).

Whereas lim
𝑥→+∞

𝜙*(𝑥)

𝑥
= +∞, then there is a constant 𝐶2 = 𝐶2(𝑏, 𝜙) > 0 such that

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶2𝑒

− 1
2
𝜙*( 1+|𝑥|

𝑏𝑒𝑎+1 ).

Whereas 𝜙*(2𝑢) ≥ 2𝜙*(𝑢) for any 𝑢 ≥ 0, then

inf
𝑘∈N

𝑘!𝑏𝑘𝑒−𝜓
*(𝑘)

(1 + |𝑥|)𝑘
≤ 𝐶2𝑒

−𝜙*( 1+|𝑥|
2𝑏𝑒𝑎+1 ).

Hereof and from (14) (assuming 𝐶𝑛,𝜀 = 𝑠𝑏,𝑛(𝑓)𝐶2) we obtain

|𝑓 (𝑛)(𝑥)| ≤ 𝑠𝑏,𝑛(𝑓)𝐶2𝑒
−𝜙*( |𝑥|

2𝑏𝑒𝑎+1 ) = 𝐶𝑛,𝜀𝑒
−𝜙*( |𝑥|

𝜀
).

Thus, the estimate (13) has been obtained.
Let us now 𝑓 ∈ 𝐶∞(R) satisfy inequality (13). Let us show, that 𝑓 ∈ 𝐺(𝜓*). For 𝑥 ̸= 0 and

any 𝑛 ∈ Z+

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
−𝜙*(𝑒ln

|𝑥|
𝜀 ),

i.e.

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
−𝜙*[𝑒](ln |𝑥|

𝜀
).
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Applying formula of inversion of the Jung transform, we obtain

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
− sup
𝑡≥0

(𝑡 ln
|𝑥|
𝜀
−(𝜙*[𝑒])*(𝑡))

, 𝑥 ̸= 0.

Applying equality (15), we deal with

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
− sup
𝑡≥0

(𝑡 ln
|𝑒𝑥|
𝜀

−𝑡 ln 𝑡+𝜓*(𝑡))

, 𝑥 ̸= 0.

Consequently,

|𝑓 (𝑛)(𝑥)| ≤ 𝐶𝜀,𝑛𝑒
− sup
𝑘∈N

(𝑘 ln
|𝑒𝑥|
𝜀

−𝑘 ln 𝑘+𝜓*(𝑘))
, 𝑥 ̸= 0.

Therefore, with any 𝜀 > 0, 𝑘 ∈ N

|𝑓 (𝑛)(𝑥)𝑥𝑘| ≤ 𝐶𝜀,𝑛𝜀
𝑘

(︂
𝑘

𝑒

)︂𝑘

𝑒−𝜓
*(𝑘), 𝑥 ̸= 0.

Taking into account, that 𝑘𝑘 ≤ 𝑒𝑘𝑘! for any 𝑘 ∈ N, we obtain

|𝑓 (𝑛)(𝑥)𝑥𝑘| ≤ 𝐶𝜀,𝑛𝜀
𝑘𝑘!𝑒−𝜓

*(𝑘), 𝑘 ∈ N, 𝑥 ̸= 0.

This inequality is also valid in the point 𝑥 = 0 with any 𝑘 ∈ N and for any 𝑥 ∈ R with 𝑘 = 0
(due to (13)). Hence, 𝑓 ∈ 𝐺(𝜓*).

Theorem 4 has been proved.
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