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ON A SPACE OF ENTIRE FUNCTIONS FAST DECREASING
ON A REAL LINE

M.I. MUSIN

Abstract. A space of entire functions decreasing fast on a real line is introduced. It
contains the space of the Fourier-Laplace transforms of infinitely differentiable functions on
a real line with a compact support as a proper subspace. The Fourier-Laplace transform of
functions of this space is studied. Equivalent description in terms of estimates of derivatives
of functions on a real line is obtained for the considered space.

Keywords: The Fourier-Laplace transform, entire functions, Paley-Wiener type theorem.

1. INTRODUCTION

1.1. Problem setting. In theory of generalized functions, theory of differential equations
there is a significant interest given to infinitely differential functions and functions, fast de-
creasing on a real line. To solve different problems of analysis in such spaces, it is possible to
use great opportunities, given by Fourier or Laplace transform. For some spaces of infinitely
differential functions (including entire functions), functions, fast decreasing on a real line, these
opportunities are demonstrated in papers of .M. Gelfand and G.E. Shilov [1], B.L. Gurevich
[2], G.E . Shilov [3], L. Hormander [4], K.I. Babenko [5], [6], R.S. Yulmukhametov [7], [8], A.M.
Sedletsky [9], in books of .M. Gelfand and G.E. Shilov [10], M.A. Evgrafov [11].

In the given paper we introduce a new class of entire functions spaces, fast decreasing on a real
line, and the Fourier-Laplace transform of functions from this space is also studied here. These
spaces are defined the following way. Everywhere further ¢ will be a nonnegative continuous
function on [0, 00), satisfying the conditions:

1) o(x) =0 for x € [0, el;

2) lim #lz) = +00;

T—+00 €T
3) function ¥ (z) = p(e*) is convex on [0, 00);
4) there are numbers h > 1 and K > 0 such that

2¢(z) < p(hx) + K, z € [0,00).

Suppose H(C) be a space of entire functions of a complex variable.
For arbitrary € > 0 and k£ € Z, assume

£ () +]=D"

Sei(p) = {f € H(C) : pep(f) = sup ==y 12
Suppose S(¢) = () S:x(p). With ordinary operations of addition and multiplication by

e>0,k€Z
complex numbers S(¢) is a linear space. Let us give S(¢) topology, defined by the family of
norms p. i (¢ >0, k € Z;).
Note, that the function f € H(C) belongs to S(¢) only when for any e > 0,k € Z, the
following value is finite
()

Gelf) = SUP Sy -
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Indeed, for any € > 0, k € Z, and f € H(C) the following inequalities occur:

k() < pei(f),
ps,k(f) 2" max .. (f).

0<m<k

Obviously, S(¢) contains Fourier-Laplace transforms of infinitely differentiable functions on
the real line with a compact support as its own space. It is easy to show, that operators of
differentiation, shift and multiplication by polynomials are continuous in S(y).

The space S(p) represents a new class of entire functions, fast decreasing on a real line. It
differs from the space of the form W, studied in [10] and initially introduced by B.L. Gurevich
[2]. Indeed, the spaces of the form W* are introduced the following way. On the growing
continuous unlimited function w on [0, c0) such that w(0) = 0, we can define the function Q2 on

y

[0,00): Qy) = /w(g) d¢, y > 0. Note, that €2 is a convex continuous function on [0, c0) and

0
Q
liI_’I_l 20y) = +00. The space W* consists of functions f € H(C), for which there is a number
y—r—+o00

b > 0 such that for all k£ € Z, with some C} > 0
25 f(2)] < Cre™™D, 2 e C.

The aim of the paper is to give an equivalent description of the space S(p) in terms of
estimates of derivative functions on the real line and to study the Fourier-Laplace transform

Tr—=>+o00 I
[11], gle)(z) = g(e*), x > 0.

The following two theorems (proved in section 3) allow to give another description of the
space S(¢).

Theorem 1. Suppose f € S(p). Then f € C®(R) and Ve > 0 Vm € Z; Fcop, > 0
VneZy VreR

from S(y).
1.2. Basic results. For the arbitrary real-valued continuous function g on [0, 00) such that
x
lim & = +o00, assume ¢*(z) = sup(zy — g(y)) be the function, conjugate by Jung with g
y>0

2™ f(2)] < e pnlee VM
Theorem 2. Suppose f € C®(R) and for any € > 0,m € Z, there is a number d > 0 such
that for any n € Z,
(1+ |z))™f™ (2)] < de"nle "™ 2 € R.
Then f (uniquely) extends up to the entire function from S(p).

For € > 0,m € Z, assume

Gem(W*) ={f e C"(R):
k £(n
[ fllem = OmaX max (sup|f(” (z)|, sup M) < oo}

z€R zeR keN kleFe v (k)
Assume G(¢*) = (| Gem(¥*). With ordinary operations of addition and multiplication

e>0,meZ4
by complex numbers G(¢*) is a linear space. Let us give G(1)*) topology, defined by the family
of norms || f||lcm (€ > 0, m € Z,).
Let us define the Fourier transform of the function f € S(y) by formula

- / f(€)e € dt, w e R
R
It was proved in Section 4

Theorem 3. The Fourier transform sets an isomorphism of the spaces S(p) and G(¢*).
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For the case, when the function ¢ is convex on [0, 00), it is shown in Section 5, that the space
G(v¢*) admits a more simple description.

Theorem 4. Let the function ¢ be convexr on [0,00). Then the space G(*) consists of
functions f € C*°(R) such that for any € > 0, n € Z,. there is a constant C.,, > 0 such that

1f ™ (2)] < Cone=? D, z € R.
2. AUXILIARY RESULTS

Assume a = In h and note, that condition 4) for the function ¢ is equivalent to the following
condition on :
20(z) < ¢Y(x+a)+ K, z>0.

Lemma 1. For any M > 0 there is a constant Cy; > 0 such that
x
() <axln— — C > 0.

,l/} (I’) >~ xln M T+ M, T

Proof. It results from the definition of the function ¢ and condition 2) on ¢, that for any
M > 0 there is a constant C; > 0 such that for all y > 0 ¥ (y) > Me¥ — C);. Consequently,
V() = sup(zy — P(y)) < sup(zy — Me’) + Cy <
y>0 y>0

< sup(zy — MeY) + Cy :xlni — x4+ Cyy.
yeR M

From Lemma 1 we obtain the following

% "))

Corollary 1. With any € > 0 the series o conjugates.
— ¢l
Jj=0

Lemma 2. Suppose 7 > 0, and g be a conver continuous function on [0,00) such that

lim M = +00. Then with some C >0
r—+o00 I

2g9(x) < glzr+71)+C, x>0, (1)

only when there is a constant A > 0 such that
g@+y) <g(x)+9°(y) +7(@+y)+ A z,y=0. (2)

Proof. Necessity. Let us first note, that
* > —1 > 0.

g'(z) = —inf g(&), = 2 0 (3)

Further, for arbitrary z,y,t € [0, c0)
9" (x) + 9" (y) = (z + y)t — 29(1).
According to (1), with any z,y,t > 0
g @) +9 ) =2 @+y)t+7)—gl+7)-C—7(x+y).
Consequently, with any z,y € [0, 00)
9" (x) +9"(y) = zgp((x+y)£—g(€)) —C—7(z+y). (4)

Further, with any z,y € [0, 00)
sup ((z +y)§ —g(§) < (x+y)7— inf ¢(§) < (z+y)7 — inf g(§).

0<g<r 0<g<r £>0
Subject to (3) we obtain

Sup (+y)€—9() < (@+yr+g(x) <
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<(@+y)T+g(x)+ 9" (y) + ggg(ﬁ)-

Hereof and from inequality (4), assuming A = max(C, g(f) g(&)), we obtain

g'@+y) <g (@) + 9" W) +7(x+y) + A 2,y >0
Sufficiency. According to formula of inversion of the Jung transform [11] g = (¢*)*. Apply-
ing this and (2), we obtain
2¢g(z) = sup(2zu — 2¢*(u)) < sup(2zu — g*(2u) + 27u + A) =

u>0 u>0
=sup((zr+7)t —g"(t) + A=g(z+71)+ A.
u>0

It remains to suppose C' = A. the proof is complete.
The space G(1)*) can be described the following way. For ¢ > 0, m € Z, assume

Qem(¥™) ={f € C"(R) : scm(f) = max  sup . —i;{;!|8k‘l—|1{*(k)( I oo}

0<Sn<m geR keZ,

Assume Q(¢*) = () Qem(¥*). Let us give Q(¢*) topology, defined by the family of norms
e>0meZ4
Sem (6 >0, m € Zy).
It is valid

Lemma 3. Q(¢*) = G(¢*).

Proof. Assume f € Q(¢*). Then for any € > 0,m € Zy || fllen < Sem(f). It implies, that
f € G(¥*). Moreover, the mapping of the insertion I : Q(¢*) — G(v*) is continuous.

Let us now f € G(¢*). Then Ve > 0Vm € Z || f||5,m < oo. Consequently, whatever m € Z.
could be for n € Z, such that 0 <n <m

FO@)] < [flsm, 7 € R 5
Note, that for n € Z, such that 0 <n <m

1 k| £(n)
A+ LY@
kleke=v=(k) || <1,k€Z,

2| ()]

kleke—v (k) ~

sup
lz|<1,k€Z4

Wkw(k) = 0, then there is a number C(¢) > 1 such that for n € Z, such that

Whereas lim
k—o0

0<n<m
(1 + [z)¥[ ™) ()]

e L < Cle) s o)

lal<1

|| <1,k€Z+

Consequently, for any f € G(¢*) with any m € Z,

1+ [a])*| f™) (2
mx, s g < OOl o

0=nsm |z|<1kezy
Further, for n € Z, such that 0 <n <m

(1+ Jz])*[f) ()]
kleke—v (k)

@) 1P (@) _

< e < s (7

|z|>1,kEZ 4 |z|>1,kEZ 4

It results from estimates (5) — (7), that for any f € G(¢*) with any € > 0,m € Z
sem(f) < C(g)HfHE,m
Thereby we state a topological equality Q(¢v*) = G(¢*).
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3. EQUIVALENT DESCRIPTION OF THE SPACE S(¢)

Proof of Theorem 1. Assume f € S(¢). Applying Cauchy integral formula, we obtain
with any m,n € Z,

(1—}-‘(1}|>mf(n)(l’) n! /L ()(1+|$|>mf<§) dC7 IGR,

= 9 (( — z)ntt
where for R >0 Lg(z) ={¢ € C:|¢ — x| = R}. Hereof with any R > 0 and ¢ > 0
(L +[¢—)™@ +[ch™f (O

(1+ 2™ f™ ()] < n! max 7 <
s )
Applying conditions 2) and 4) for the function ¢, we obtain with some ¢, ,,, > 0 for any R > 0
(14 )™ @) < comtlpom () = coptlpem (PR
< CemM!Pem I e,mMV De,m (hR)"
Consequently, for any x € R
(1+ |2))™ f ™ (@)] < comnlpem(f)(eh)" inf G
-7 ' R>1 Rnm

= Cem!Pem(f)(eh)" exp(— Zlil?(n In R —¢(R))) =

= ot (F) (R exp(= sup(nr = ¥(1)) = Cepnnlpn( £)(h)"e ),

Theorem 1 has been proved.
Proof of Theorem 2. Suppose f € C*°(R) and for any ¢ > 0, m € Z, there be a number
d > 0 such that for any n € Z,

(1+ 2™ f™ (2)] < de"nle "™ z € R. (8)

In particular, | £ (z)| < de™n!, = € R. Obviously, the sequence k: F(0) n conjugates
n=0 k=0

> (o
to f uniformly on the compacts of a number scale, and the series Z f—'()z” conjugates
n!
n=0
uniformly on the compacts in C and, consequently, the sum Fy(z) of this series is an entire
function in C. Note, that Fy(z) = f(z), = € R. Thus, we have obtained an analytic extension
of the function f up to the entire function in C of the function F}.

Applying the equality

. f(n)
Fe =2y cmaviy @y em)
n=0 :

and the inequality (8), we will estimate the growth of Fy. For any ¢ > 0,m € Z

(1 + Jz)™ (@ A+ Jy)™ L) ()]
n!

[e.e]

A+ )™M E () < 0

n=0

<

> sup (n In(2e(1+y[))—¢* (n))

= de" e . \"
<Y a3 (5) ¢ <

n=0 n=0

sup (z In(2e(1+[y[)) =" ())
<2d(1 + |y|)"e==° = 2d(1 + |y|)m et (ne0+yD)

In the end of this inequality there was applied a convexity . Finally, we obtain with all
e>0meZy,
(14 |2 Fy ()] < 2d(1 + |y|)me?@EHD) 2 e C. (9)
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Whereas a never-decreasing function ¢ satisfies conditions 2) and 4), then it is possible to find
a constant C. ,,, , > 0 (depending on ¢, m and ¢) such that everywhere in C

(L ) F(2)] < Coppde015)

Due to arbitrariness of numbers b > 0,m € Z, we make a conclusion, that Fy € S(p). The
uniqueness of the continuation results from the theorem of uniqueness for analytical functions.
Theorem 2 has been proved.

4. ON FOURIER TRANSFORMS FROM THE SPACE S(¢)
Proof of Theorem 3. Assume f € S(¢). Then Ve > 0 Vz € R

n+2
)l < [ I©ler de < /”'1j§” U Smpalf). (10

Whereas with any me N neZ,, x,n e R

aﬁﬂwwzwféﬂOPKmed&<=f+m

then

2 FO@ < [ IHOIrelel™ d < [ 1FQNL+ I 2ealm 155

Let us consider the case x # 0. Assume n = T |t t > 0. Then with any t > 0, ¢ > 0

@™ F ()] < 7penia(f)eer Dz <
sup(—tr+mlnr)

< Pemta(f)er>? 2E) < 1. nia(f)e
Let us proceed to precise lower bound in all ¢ > 0 in the right part of this inequality (the left
part depends on t). Whereas

mln m—m—mlntecp(et)

inf(—mInt + ¢(et)) = mlne + inf(—mInu + p(u)) = mlne —sup(mInu — p(u)) =

=mlne —sup(mlnu — ¢(u)) =mlne — " (m),
u>1
then )
’xmf(n)(x)’ < 7_‘_p€7n+2(f)e,imemlnm mef'z/)*(m)' (11)

If 2 = 0, then for m € N and for any n € Z, 2™ f™(x) = 0, Hereof, from estimates (10) and
(1~1), and taking into account, that m™ < e™m/! for all m € N, we obtain with any ¢ > 0,k € Z
| fllek < mpepr2(f), [ € S(p). It implies, that the linear mapping F : S(¢) — G(¢*), acting
by the rule: f € S(¢) — f, is continuous.

Let us show, that F is surjective. Assume g € G(¢*). Then (applying Lemma 3) with any
€>0,k,meZ, and n € Z, such that n <m

(1+ [2))*g™ ()] < semlg)kle™ W, 2 e R,
Suppose f(§) = 5= [, 9(x)e™* dz, £ € R. For any n € Zy
1 .
fM(E) = py / g(x)(iz) e dx, € € R.

Hereof, (integrated in parts) for any m € Z,

1

(i)™ M (¢) = %(—1)’”/R(g(a:)(i:c)”)(m)eixf dr, £ € R.

Assume 7 = min(m,n). Then

(&)™ f™ (&) = i(—1)7"/RZCfn!J(m_” (2)((iz)") Ve dz, € € R.
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Hereof

|x|” I dr <
J)

o g;z /W
dx

< m—j) 1 n]+2—<
<5 s [l @l ey A <

J=
I~ . ! e
< E C m _ N\ 1gn—i+2,=¢"(n—j+2)

, ! ) o
CY n |sgm(g)(n —j+ 2)!5"‘”26_“’ (n=3) <
(n—j)!

n!€n+255m Z C] n - ] + 1)(n - j + 2) w*(nij).
7=0
Applying the conditions on 1 and Lemma 2, we obtain with some K, > 0
Pz +y) SPT(x) 9 (y) +alz +y) + Ky, 7,y 20, (12)
Therefore, for any £ € R

1 61/) (7)+an+Ky
m - 1y | =P H2 —¥*(n) -
€7 £ E)] < 5+ Dlmie™ s, EZ 5
47 ()
Assuming c.,,, = 2e2mlefv E —— we obtain with all n € Z,
’ — el gl
J:

€M FM(E)] < com(2e€M)™ !5 m(g)e™ ™ € € R
Consequently, with alln € Z, and £ € R
(L4 [EN™ SN < 2™ (cep + Com)sem(g)(25¢®) nle™ (.

According to Theorem 2 the function f (uniquely) extends up to an entire function of the
class S(¢). Therefore, f € S(p). It is obvious, that ¢ = F(f). Taking into account the
inequality (9), we obtain

(L [2D)™f(2)] € 27N oo + Com)sem(g) (1 + [y[)mef U UHD 2 e C.

Due to conditions 2) and 4) on ¢ we can find a constant K. ,,, > 0 such that
p&aeah,m(f) S Ka,m,gosa,m<g)'

Applying Lemma 3, we obtain, that the inverse mapping I~! is continuous.
Thus, it was proved, that the Fourier transform sets a topological isomorphism of the spaces

S(p) and G(¢7).

5. A SPECIAL CASE OF THE FUNCTION ¢

Proof of Theorem 4. Let the function ¢ satisfy conditions 1) — 4) and be convex on [0, 00).
Let us show, that in this case the space G(¢*) consists of functions f € C*°(R) such that for
any € > 0, n € Z, there is a constant C, > 0 such that

£ (@)] < Cone ), 2R, (13)
Suppose f € G(¢*), € € (0,1) be arbitrary, b = 5-57. According to Lemma 3 Vn, k € Z,
klbFe—v" ()
@) < son(f) e 22 0. (14)

(1 [])*
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k;

(12) and monotony ©*, we obtain

Applying the inequality: k! < 3
for ke N, t ek, k+1),0be(0, 1) reR

Epke—¢" (k) prfk+1 =" (k) pttttle—v  (O+¢" (D tat+Ky+1
< < 14 |z|) =
G+t =t = dearpy T ED
_ 36Kw+;+w*(l)etlnb+(t+1)lntw*(t)+atttln(1+m|)(1 + ).
Let us apply the inequality [12]
(ole])*(z) + (¢*[e])"(z) =xlnz — 2z, >0, (15)
36Kw+1+w*(1)

and assume, that C' = . Then

b

ke —* (k a a
klbke—v" (k) <C(l+ |I|)etln1”%‘1‘+lnt+(<p*[e})*(t) <C(1+ |x|)etln%+(@*[e])*(t)'
(14 [a])*
It implies, that
klbke —p*(k beat+1 Ty
f 1 f In Tz +(50 [e]) (t)
e T o |) C1+ Jal) ot e
Subject to be®™! < 1, we obtain with some C} = C;(b, ) > 0
Elpke—¢"( [Ty
< Oy (1 + |2|)? mf e 1+|ﬂ” HerleD (),
heN (1+ |z |)
Let us rewrite the latter mequahty in the following form
Elbke=v"( —sup(tIn ;£ — (0¥ [e)* (1))
1 t>0 =
g |)k = Gill+Ja)e

— Oy (1 + |a] )2 (D™ (n n5)
Applying formula of inversion of the Jung transform, we obtain
ke —* (k
g MO e
keN (14 |z|)F —

Whereas lim ¢ ()

r——+00 T

= 400, then there is a constant Cy = Cy(b, ¢) > 0 such that

k!bke—v" (k) !

ken (L+ [a|)F =
Whereas ¢*(2u) > 2¢*(u) for any v > 0, then

1k ot () .
lnf kbe— S 0267 Qi:u‘.#»l)
keN (14 |z|)*

Hereof and from (14) (assuming C,, . = s, (f)C2) we obtain

||

* |z *
[f(@)] < spn(f)Coe™? G = €, e ?" (5,
Thus, the estimate (13) has been obtained.
Let us now f € C*(R) satisfy inequality (13). Let us show, that f € G(¢*). For  # 0 and
any n € Z,
1P (@) < Cope? ),
ie.
£ ()] < O el 2
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Applying formula of inversion of the Jung transform, we obtain

—sup(tIn ZL—(p*[e))*(¢))

[ (@)] < Cepe = , © #0.

Applying equality (15), we deal with

—sup(tln @ —tlnt4+*(t))

|f(n)(x)| < Cepe =20 , © #0.
Consequently,
—sup(kIn 12—k 1n k4y* (k)
@) < Come * LT #0,

Therefore, with any ¢ > 0,k € N

A
|f(n)(x)‘rk| < Ce,ngk (_> 6—1/’ (k), X 7& 0.
e

Taking into account, that k¥ < e*k! for any k € N, we obtain

|f™ (2)2"| < CeneRle™ ™, ke N,z #£0.

This inequality is also valid in the point x = 0 with any £ € N and for any x € R with £ =0
(due to (13)). Hence, f € G(v*).
Theorem 4 has been proved.

10.

11.
12.
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