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ON SOME FAMILIES OF COMPLEX LINES WHICH ARE

SUFFICIENT FOR A HOLOMORPHIC EXTENSION OF

FUNCTIONS

V.I. KUZOVATOV

Abstract. The present article is based on the result related to the holomorphic extension
of functions. Functions with the one-dimensional holomorphic extension property along
families of complex lines are discussed. Real analytic functions given on the boundary of a
bounded domain𝐷 in C𝑛, 𝑛 > 1 with the one - dimensional holomorphic extension property
along families of complex lines are considered. The existence of holomorphic extensions of
these functions to 𝐷 is studied depending on the form of the domain and location of the
families of complex lines.

Keywords: real analytic function, holomorphic extension, functions with the one - dimen-
sional holomorphic extension property

1. Preliminary results

The article contains some results, connected with the holomorphic extension of functions 𝑓 ,
given on the boundary of a bounded domain 𝐷 ⊂ C𝑛, 𝑛 > 1, in this domain. We will consider
functions with one-dimensional holomorphic extension property along complex lines.

Results of functions with one-dimensional holomorphic extension property are trivial on the
complex plane C. Therefore our results are significantly multidimensional.

The first result, relating to our topic, was obtained by M.L. Agranovsky and R.E. Valsky
in [1], who studied functions with the one-dimensional holomorphic extension property in a
ball. The proof was based on properties of group of the ball automorphisms.

Stout in [2], applying complex Radon transform, projected Agranovsky and Valsky theorem
on arbitrary limited domains with smooth boundary. An alternative proof of the Stout theorem
was obtained by A.M. Kytmanov (see [3]), who applied Bochner-Martinelli integral. The idea
of integral representations application (Bochner-Martinelli, Cauchy – Fantappie) proved to be
useful in study of functions with one-dimensional holomorphic extension property.

Let 𝐷 be a bounded domain in C𝑛, 𝑛 > 1, with a connected smooth boundary 𝜕𝐷 of the
class 𝐶2. Let us formulate the result of E.L. Stout [2].

We will consider complex lines of the form

𝑙 = {𝜁 ∈ C𝑛 : 𝜁𝑗 = 𝑧𝑗 + 𝑏𝑗𝑡, 𝑗 = 1, . . . , 𝑛, 𝑡 ∈ C}, (1)

passing through the point 𝑧 ∈ C𝑛 in the direction of the vector 𝑏 ∈ CP𝑛−1 (direction 𝑏 is defined
with the precision to multiplication by the complex number 𝜆 ̸= 0).

According to the Sard’s theorem, for almost all 𝑧 ∈ C𝑛 and almost all 𝑏 ∈ CP𝑛−1 the
meet 𝑙 ∩ 𝜕𝐷 corresponds to a set of the finite number of piecewise-smooth curves (excluding
the case of degeneracy, when 𝜕𝐷 ∩ 𝑙 = ∅).
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We will say, that the function 𝑓 ∈ 𝐶 (𝜕𝐷) possesses one-dimensional holomorphic extension
property along a complex line 𝑙 (𝑙 ∩ 𝜕𝐷 ̸= ∅), if there is the function 𝑓𝑙 with the following
properties:

1) 𝑓𝑙 ∈ 𝐶
(︀
𝐷 ∩ 𝑙

)︀
;

2) 𝑓𝑙 = 𝑓 in the set 𝜕𝐷 ∩ 𝑙;
3) function 𝑓𝑙 is holomorphic in internal (with respect to topology 𝑙) points of the set 𝐷 ∩ 𝑙.

Theorem 1 ([2]). If the function 𝑓 ∈ 𝐶 (𝜕𝐷) possesses one-dimensional holomorphic ex-
tension property along complex lines of the form (1), then 𝑓 is holomorphically extended in
𝐷.

Some more restricted family of complex lines, sufficient for holomorphic extension, was con-
sidered by M.L. Agranovsky and A.M. Semenov [4].

Let us consider the open set 𝑉 ⊂ 𝐷 and the family L𝑉 of complex lines, meeting this set.

Theorem 2 ([4]). If the function 𝑓 ∈ 𝐶 (𝜕𝐷) possesses one-dimensional holomorphic ex-
tension property along lines from the family L𝑉 for some open set 𝑉 ⊂ 𝐷, then the function 𝑓
is holomorphically extended in 𝐷.

Later some authors (see, for instance, papers [5] – [8]) considered different properties of
complex lines (for instance, the family of complex lines, meeting the germ of the generating
variety, passing through the germ of complex hypersurfaces and etc.), sufficient for holomorphic
extension of functions from different classes. Let us demonstrate the result from paper [7],
where it is stated, that the family of complex lines, passing through the boundary point of a
complex ball, is sufficient for holomorphic extension of real analytic functions, given on the ball
boundary.

Let B𝑛 be a ball in C𝑛, 𝜕B𝑛 be a sphere, 𝑧0 ∈ 𝜕B𝑛 and 𝐶𝑤 denotes a class of real analytic
functions.

Theorem 3 ([7]). Let the function 𝑓 ∈ 𝐶𝑤 (𝜕B𝑛) possess one-dimensional holomorphic ex-
tension property along all complex lines, passing trough 𝑧0. Then the function 𝑓 holomorphically
extends in B𝑛.

2. Two-dimensional case

Let us consider a two-dimensional complex space C2, points of which we will denote as
𝑤 = (𝑤1, 𝑤2), 𝑧 = (𝑧1, 𝑧2) and etc. Let 𝐷 be a bounded strictly convex domain in C2 with a real
analytic function boundary 𝜕𝐷, i.e. 𝐷 = {𝑤 | 𝜌 (𝑤) < 0}, where the function 𝜌 (𝑤1, 𝑤2) is real

analytic in some surrounding of the domain closure 𝐷. With all this 𝑔𝑟𝑎𝑑 𝜌 =

(︂
𝜕𝜌

𝜕𝑤1

,
𝜕𝜌

𝜕𝑤2

)︂
̸= 0

on 𝜕𝐷. Let the following condition hold true for all the points of the boundary(︂
𝜕𝜌

𝜕𝑤2

(𝑤)

)︂2
𝜕2𝜌

𝜕𝑤2
1

(𝑤) − 2
𝜕𝜌

𝜕𝑤1

(𝑤)
𝜕𝜌

𝜕𝑤2

(𝑤)
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

(𝑤) +

(︂
𝜕𝜌

𝜕𝑤1

(𝑤)

)︂2
𝜕2𝜌

𝜕𝑤2
2

(𝑤) = 0. (2)

We will also denote the family of complex lines, passing through the point 𝑤0, 𝑤0 ∈ 𝜕𝐷 by
L𝑤0 .

Theorem 4. Let the function 𝑓 ∈ 𝐶𝑤 (𝜕𝐷) possess one-dimensional holomorphic extension
property along all complex lines from L𝑤0, meeting 𝐷, then the function 𝑓 holomorphically
extends in 𝐷.

Remark 1. If the point 𝑤0 is fixed in advance, then the condition (2) can be satisfied only
in the point 𝑤0.
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Proof. Let us make a shift, for the point 𝑤0 ∈ 𝜕𝐷 to pass to 0 and make an orthogonal
transform

𝑤 = 𝐵𝑧,

given by the matrix

𝐵 =

⎛⎜⎝ 𝜕𝜌

𝜕𝑤2

(0) 𝑖
𝜕𝜌

𝜕�̄�1

(0)

− 𝜕𝜌

𝜕𝑤1

(0) 𝑖
𝜕𝜌

𝜕�̄�2

(0)

⎞⎟⎠ .

This transform is nonsingular, whereas |𝐵| ≠ 0. In case of such a transform real analytic
property of the function 𝜌 (𝐵𝑧) = 𝜌 (𝑧) remains. The component-like variant of the transform
will be as follows. ⎧⎪⎨⎪⎩

𝜕𝜌

𝜕𝑤2

(0) 𝑧1 + 𝑖
𝜕𝜌

𝜕�̄�1

(0) 𝑧2 = 𝑤1

− 𝜕𝜌

𝜕𝑤1

(0) 𝑧1 + 𝑖
𝜕𝜌

𝜕�̄�2

(0) 𝑧2 = 𝑤2.

Assume 𝑧1 = 𝑥1 + 𝑖𝑥2, 𝑧2 = 𝑥3 + 𝑖𝑥4.

Lemma 1. In case of complex-linear transform of coordinates 𝑤 = 𝐵𝑧 the condition (2) for
the function 𝜌 (𝑤1, 𝑤2), considered in the boundary point 𝑤0 = 0, takes the following form

𝜕2𝜙

𝜕𝑥1𝜕𝑥2
(0) = 0,

𝜕2𝜙

𝜕𝑥21
(0) =

𝜕2𝜙

𝜕𝑥22
(0) , (3)

where the implicit function 𝑥4 = 𝜙 (𝑥1, 𝑥2, 𝑥3), is defined by the equation 𝜌 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0,

and satisfies the conditions 𝜙 (0) = 0,
𝜕𝜙

𝜕𝑥𝑘
(0) = 0, 𝑘 = 1, 3.

Proof. Let us find connection between partial derivatives of functions 𝜌 (𝑧) and 𝜌 (𝑤), and
also conditions for the function 𝜌 (𝑧) . We will obtain

𝜕𝜌

𝜕𝑧1
=

𝜕𝜌

𝜕𝑤1

𝜕𝑤1

𝜕𝑧1
+

𝜕𝜌

𝜕�̄�1

𝜕�̄�1

𝜕𝑧1
+

𝜕𝜌

𝜕𝑤2

𝜕𝑤2

𝜕𝑧1
+

𝜕𝜌

𝜕�̄�2

𝜕�̄�2

𝜕𝑧1
=

𝜕𝜌

𝜕𝑤2

(0)
𝜕𝜌

𝜕𝑤1

− 𝜕𝜌

𝜕𝑤1

(0)
𝜕𝜌

𝜕𝑤2

.

𝜕𝜌

𝜕𝑧2
=

𝜕𝜌

𝜕𝑤1

𝜕𝑤1

𝜕𝑧2
+

𝜕𝜌

𝜕�̄�1

𝜕�̄�1

𝜕𝑧2
+

𝜕𝜌

𝜕𝑤2

𝜕𝑤2

𝜕𝑧2
+

𝜕𝜌

𝜕�̄�2

𝜕�̄�2

𝜕𝑧2
= 𝑖

𝜕𝜌

𝜕�̄�1

(0)
𝜕𝜌

𝜕𝑤1

+ 𝑖
𝜕𝜌

𝜕�̄�2

(0)
𝜕𝜌

𝜕𝑤2

.

It is clear from the above calculations, that

𝜕𝜌

𝜕𝑧1
(0) = 0,

and the value

𝜕𝜌

𝜕𝑧2
(0) = 𝑖

(︂
𝜕𝜌

𝜕�̄�1

(0)
𝜕𝜌

𝜕𝑤1

(0) +
𝜕𝜌

𝜕�̄�2

(0)
𝜕𝜌

𝜕𝑤2

(0)

)︂
= 𝑖

(︃⃒⃒⃒⃒
𝜕𝜌

𝜕𝑤1

(0)

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝜌

𝜕𝑤2

(0)

⃒⃒⃒⃒2)︃
̸= 0
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is simply imaginary.
Let us consider the partial derivative of the function 𝜌 (𝑧) of the second order.

𝜕2𝜌

𝜕𝑧21
=

𝜕𝜌

𝜕𝑤2

(0)

(︂
𝜕2𝜌

𝜕𝑤1𝜕𝑤1

𝜕𝑤1

𝜕𝑧1
+

𝜕2𝜌

𝜕𝑤1𝜕𝑤2

𝜕𝑤2

𝜕𝑧1

)︂
−

− 𝜕𝜌

𝜕𝑤1

(0)

(︂
𝜕2𝜌

𝜕𝑤2𝜕𝑤1

𝜕𝑤1

𝜕𝑧1
+

𝜕2𝜌

𝜕𝑤2𝜕𝑤2

𝜕𝑤2

𝜕𝑧1

)︂
=

=
𝜕𝜌

𝜕𝑤2

(0)

(︂
𝜕𝜌

𝜕𝑤2

(0)
𝜕2𝜌

𝜕𝑤2
1

− 𝜕𝜌

𝜕𝑤1

(0)
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

)︂
−

− 𝜕𝜌

𝜕𝑤1

(0)

(︂
𝜕𝜌

𝜕𝑤2

(0)
𝜕2𝜌

𝜕𝑤2𝜕𝑤1

− 𝜕𝜌

𝜕𝑤1

(0)
𝜕2𝜌

𝜕𝑤2
2

)︂
=

=

(︂
𝜕𝜌

𝜕𝑤2

(0)

)︂2
𝜕2𝜌

𝜕𝑤2
1

− 2
𝜕𝜌

𝜕𝑤1

(0)
𝜕𝜌

𝜕𝑤2

(0)
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

+

(︂
𝜕𝜌

𝜕𝑤1

(0)

)︂2
𝜕2𝜌

𝜕𝑤2
2

.

Considering the shift of coordinates made, when the boundary point 𝑤0 transformed to zero,
and the condition (2) to the boundary of the domain 𝐷, the latter equality means, that

𝜕2𝜌

𝜕𝑧21
(0) = 0.

Further for more convenience instead of function 𝜌 (𝑧), giving the boundary of the domain 𝐷,
we will write 𝜌 (𝑧). In other words,

𝜌 (𝑧1, 𝑧2) = 0 (4)

with the condition ⎧⎪⎨⎪⎩
𝜕𝜌

𝜕𝑧1
(0) = 0

𝜕2𝜌

𝜕𝑧21
(0) = 0,

(5)

and also with the condition, that the value
𝜕𝜌

𝜕𝑧2
(0) ̸= 0 is simply imaginary.

Partial derivatives in complex variables can be expressed via derivatives in real variables as
follows:

𝜕𝜌

𝜕𝑧1
=

1

2

(︂
𝜕𝜌

𝜕𝑥1
− 𝑖

𝜕𝜌

𝜕𝑥2

)︂
,

𝜕𝜌

𝜕𝑧2
=

1

2

(︂
𝜕𝜌

𝜕𝑥3
− 𝑖

𝜕𝜌

𝜕𝑥4

)︂
.

Thus, it results from the correlations of derivatives connection of complex and real variables,
and also from the system of conditions (5), that

𝜕𝜌

𝜕𝑥1
(0) = 0,

𝜕𝜌

𝜕𝑥2
(0) = 0,

𝜕𝜌

𝜕𝑥3
(0) = 0. (6)

Then we will write the second condition in the system (5) in real variables. We will obtain

𝜕

𝜕𝑥1
𝜌 =

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧1

)︂
𝜌,

𝜕

𝜕𝑥2
𝜌 = 𝑖

(︂
𝜕

𝜕𝑧1
− 𝜕

𝜕𝑧1

)︂
𝜌,
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𝜕2𝜌

𝜕𝑥21
=

𝜕

𝜕𝑥1

(︂
𝜕𝜌

𝜕𝑥1

)︂
=

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧1

)︂(︂
𝜕𝜌

𝜕𝑧1
+
𝜕𝜌

𝜕𝑧1

)︂
=
𝜕2𝜌

𝜕𝑧21
+

𝜕2𝜌

𝜕𝑧1𝜕𝑧1
+

+
𝜕2𝜌

𝜕𝑧1𝜕𝑧1
+
𝜕2𝜌

𝜕𝑧21
=
𝜕2𝜌

𝜕𝑧21
+
𝜕2𝜌

𝜕𝑧21
+ 2

𝜕2𝜌

𝜕𝑧1𝜕𝑧1
.

𝜕2𝜌

𝜕𝑥22
=

𝜕

𝜕𝑥2

(︂
𝜕𝜌

𝜕𝑥2

)︂
= 𝑖

(︂
𝜕

𝜕𝑧1
− 𝜕

𝜕𝑧1

)︂
𝑖

(︂
𝜕𝜌

𝜕𝑧1
− 𝜕𝜌

𝜕𝑧1

)︂
=

= −
(︂
𝜕2𝜌

𝜕𝑧21
− 𝜕2𝜌

𝜕𝑧1𝜕𝑧1
− 𝜕2𝜌

𝜕𝑧1𝜕𝑧1
+
𝜕2𝜌

𝜕𝑧21

)︂
= 2

𝜕2𝜌

𝜕𝑧1𝜕𝑧1
− 𝜕2𝜌

𝜕𝑧21
− 𝜕2𝜌

𝜕𝑧21
.

𝜕2𝜌

𝜕𝑥1𝜕𝑥2
=

𝜕

𝜕𝑥1

(︂
𝜕𝜌

𝜕𝑥2

)︂
=

(︂
𝜕

𝜕𝑧1
+

𝜕

𝜕𝑧1

)︂
𝑖

(︂
𝜕𝜌

𝜕𝑧1
− 𝜕𝜌

𝜕𝑧1

)︂
=

= 𝑖

(︂
𝜕2𝜌

𝜕𝑧21
− 𝜕2𝜌

𝜕𝑧1𝜕𝑧1
+

𝜕2𝜌

𝜕𝑧1𝜕𝑧1
− 𝜕2𝜌

𝜕𝑧21

)︂
= 𝑖

(︂
𝜕2𝜌

𝜕𝑧21
− 𝜕2𝜌

𝜕𝑧21

)︂
.

Therefore, taking into account the second condition of the system (5) and also real-analytic
property of the function 𝜌, it follows from the above results, that the conditions for func-
tion 𝜌 (𝑥1, 𝑥2, 𝑥3, 𝑥4) will have the form

𝜕2𝜌

𝜕𝑥21
(0) =

𝜕2𝜌

𝜕𝑥22
(0) ,

𝜕2𝜌

𝜕𝑥1𝜕𝑥2
(0) = 0. (7)

Due to its pass to real coordinates, the function, giving the boundary of the domain 𝐷, takes
the form

𝜌 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0.

Whereas the gradient of the function 𝜌 (𝑥1, . . . , 𝑥4) differs from zero, due to correlations (6)
𝜕𝜌

𝜕𝑥4
(0) ̸= 0. Then, according to the theorem of an implicit function (chapter 2, p. 26.1 from [9]),

the function, giving the boundary of the domain in some surrounding of the boundary point 0,
takes the form

𝑥4 = 𝜙 (𝑥1, 𝑥2, 𝑥3) , (8)

where

𝜕𝜙

𝜕𝑥𝑘
= − 𝜕𝜌

𝜕𝑥𝑘

(︁
𝑥1, 𝑥2, 𝑥3, 𝜙 (𝑥1, 𝑥2, 𝑥3)

)︁
/
𝜕𝜌

𝜕𝑥4

(︁
𝑥1, 𝑥2, 𝑥3, 𝜙 (𝑥1, 𝑥2, 𝑥3)

)︁
, 𝑘 = 1, 3.

The function 𝜙 satisfies the conditions 𝜙 (0) = 0,
𝜕𝜙

𝜕𝑥𝑘
(0) = 0, 𝑘 = 1, 3. Further, applying the

correlations (6) and (7), we will find conditions for the function 𝜙 (𝑥1, 𝑥2, 𝑥3). For this purpose

we will consider the derivative
𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥𝑗
, 𝑗 = 1, 3. We will obtain

𝜕

𝜕𝑥𝑗

𝜕𝜌

𝜕𝑥𝑘

(︁
𝑥1, 𝑥2, 𝑥3, 𝜙 (𝑥1, 𝑥2, 𝑥3)

)︁
=

𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥𝑗
+

𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥4

𝜕𝜙

𝜕𝑥𝑗
=

𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥𝑗
−

𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥4
𝜕𝜌

𝜕𝑥4

𝜕𝜌

𝜕𝑥𝑗
,

𝜕

𝜕𝑥𝑗

𝜕𝜌

𝜕𝑥4

(︁
𝑥1, 𝑥2, 𝑥3, 𝜙 (𝑥1, 𝑥2, 𝑥3)

)︁
=

𝜕2𝜌

𝜕𝑥4𝜕𝑥𝑗
+

𝜕2𝜌

𝜕𝑥4𝜕𝑥4

𝜕𝜙

𝜕𝑥𝑗
=

𝜕2𝜌

𝜕𝑥4𝜕𝑥𝑗
−

𝜕2𝜌

𝜕𝑥24
𝜕𝜌

𝜕𝑥4

𝜕𝜌

𝜕𝑥𝑗
.
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Therefore,

𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥𝑗
= −

(︂
𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥𝑗

𝜕𝜌

𝜕𝑥4
− 𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥4

𝜕𝜌

𝜕𝑥𝑗

)︂
𝜕𝜌

𝜕𝑥4
−
(︂

𝜕2𝜌

𝜕𝑥4𝜕𝑥𝑗

𝜕𝜌

𝜕𝑥4
− 𝜕2𝜌

𝜕𝑥24

𝜕𝜌

𝜕𝑥𝑗

)︂
𝜕𝜌

𝜕𝑥𝑘(︂
𝜕𝜌

𝜕𝑥4

)︂3 ,

and

𝜕2𝜙

𝜕𝑥2𝑘
= −

(︂
𝜕2𝜌

𝜕𝑥2𝑘

𝜕𝜌

𝜕𝑥4
− 𝜕2𝜌

𝜕𝑥𝑘𝜕𝑥4

𝜕𝜌

𝜕𝑥𝑘

)︂
𝜕𝜌

𝜕𝑥4
−
(︂

𝜕2𝜌

𝜕𝑥4𝜕𝑥𝑘

𝜕𝜌

𝜕𝑥4
− 𝜕2𝜌

𝜕𝑥24

𝜕𝜌

𝜕𝑥𝑘

)︂
𝜕𝜌

𝜕𝑥𝑘(︂
𝜕𝜌

𝜕𝑥4

)︂3 .

Taking into account conditions (6) and (7), it is easy to see, that

𝜕2𝜙

𝜕𝑥1𝜕𝑥2
(0) = 0,

𝜕2𝜙

𝜕𝑥21
(0) =

𝜕2𝜙

𝜕𝑥22
(0) . �

We will continue to prove the theorem. Further we will consider sections 𝐷𝑎 (𝜏) of the
domain 𝐷

𝐷𝑎 (𝜏) =

(︂
𝜏

1 + |𝑎|2
𝑎,

𝜏

1 + |𝑎|2

)︂
∀𝜏 ∈ ∆𝑎,

passing in the direction of the vector (𝑎, 1) ∈ C2. The domain ∆𝑎 of the parameter change 𝜏
is a domain on the complex plane with a real-analytic boundary (in the surrounding of the
boundary point 0).

Disintegrating the function 𝜙 (𝑥1, 𝑥2, 𝑥3) in the expression (8) in the surrounding of the
boundary point 0 into Taylor series, due to conditions for the function 𝜙 we will have

𝑥4 = 𝑇 (𝑥1, 𝑥2, 𝑥3) + 𝑜
(︁
|𝑥′|2

)︁
, |𝑥′| → 0, 𝑥′ = (𝑥1, 𝑥2, 𝑥3) , (9)

where 𝑇 (𝑥1, 𝑥2, 𝑥3) = 𝑐11𝑥
2
1 + 𝑐22𝑥

2
2 + 𝑐33𝑥

2
3 + 𝑐12𝑥1𝑥2 + 𝑐13𝑥1𝑥3 + 𝑐23𝑥2𝑥3 is a positively de-

fined (according to strict convexity of the function 𝜌) quadric form. The coefficient of the
form 𝑇 (𝑥1, 𝑥2, 𝑥3) due to conditions (3) for the function 𝜙 (𝑥1, 𝑥2, 𝑥3) holds true for the corre-
lations

𝑐12 = 0, 𝑐11 = 𝑐22.

Let us point out a real and imaginary part of variables 𝑧1, 𝑧2 and write the expressions
for 𝑥1, 𝑥2, 𝑥3, 𝑥4.

Assume 𝜏 = 𝑢+ 𝑖𝑣, 𝑎 = 𝑎1 + 𝑖𝑎2. Then

𝜏

1 + |𝑎|2
𝑎 =

(𝑢+ 𝑖𝑣) (𝑎1 + 𝑖𝑎2)

1 + |𝑎|2
=

(𝑢𝑎1 − 𝑣𝑎2) + 𝑖 (𝑢𝑎2 + 𝑣𝑎1)

1 + |𝑎|2
,

𝜏

1 + |𝑎|2
=

𝑢+ 𝑖𝑣

1 + |𝑎|2
.

Therefore,

𝑥1 =
𝑢𝑎1 − 𝑣𝑎2

1 + |𝑎|2
, 𝑥2 =

𝑢𝑎2 + 𝑣𝑎1

1 + |𝑎|2
, 𝑥3 =

𝑢

1 + |𝑎|2
, 𝑥4 =

𝑣

1 + |𝑎|2
.



106 V.I. KUZOVATOV

Let us write expressions for the quadric form 𝑇 (𝑥1, 𝑥2, 𝑥3).

𝑇 (𝑥1, 𝑥2, 𝑥3) = 𝑐11𝑥
2
1 + 𝑐11𝑥

2
2 + 𝑐33𝑥

2
3 + 𝑐13𝑥1𝑥3 + 𝑐23𝑥2𝑥3 =

=
1(︀

1 + |𝑎|2
)︀2[︁𝑐11 (︀𝑢2𝑎21 − 2𝑢𝑣𝑎1𝑎2 + 𝑣2𝑎22

)︀
+ 𝑐11

(︀
𝑢2𝑎22 + 2𝑢𝑣𝑎1𝑎2 + 𝑣2𝑎21

)︀
+

+ 𝑐33𝑢
2 + 𝑐13

(︀
𝑢2𝑎1 − 𝑢𝑣𝑎2

)︀
+ 𝑐23

(︀
𝑢2𝑎2 + 𝑢𝑣𝑎1

)︀]︁
=

1(︀
1 + |𝑎|2

)︀2×
×
[︁
𝑣2
(︀
𝑐11𝑎

2
2 + 𝑐11𝑎

2
1

)︀
+ 𝑣 (−2𝑐11𝑢𝑎1𝑎2 + 2𝑐11𝑢𝑎1𝑎2 − 𝑐13𝑢𝑎2 + 𝑐23𝑢𝑎1) +

+
(︀
𝑐11𝑢

2𝑎21 + 𝑐11𝑢
2𝑎22 + 𝑐33𝑢

2 + 𝑐13𝑢
2𝑎1 + 𝑐23𝑢

2𝑎2
)︀]︁

=
1(︀

1 + |𝑎|2
)︀2×

×
[︁
𝑣2
(︀
𝑐11𝑎

2
2 + 𝑐11𝑎

2
1

)︀
+ 𝑣 (−𝑐13𝑢𝑎2 + 𝑐23𝑢𝑎1) +

+
(︀
𝑐11𝑢

2𝑎21 + 𝑐11𝑢
2𝑎22 + 𝑐33𝑢

2 + 𝑐13𝑢
2𝑎1 + 𝑐23𝑢

2𝑎2
)︀]︁
.

Let us use the value obtained for 𝑥4 and 𝑇 (𝑥1, 𝑥2, 𝑥3) in the equation (9) and give similar
ones. We will obtain

𝑣2
(︀
𝑐11𝑎

2
2 + 𝑐11𝑎

2
1

)︀
+ 𝑣

(︀
−𝑐13𝑢𝑎2 + 𝑐23𝑢𝑎1 − 1 − |𝑎|2

)︀
+

+
(︀
𝑐11𝑢

2𝑎21 + 𝑐11𝑢
2𝑎22 + 𝑐33𝑢

2 + 𝑐13𝑢
2𝑎1 + 𝑐23𝑢

2𝑎2
)︀

+ 𝑜
(︀
|𝑎|2
)︀

= 0, |𝑎| → +∞.

Choosing |𝑎| rather large, i. e. replacing 𝑎 by 𝑡𝑎 with |𝑎| = 1, we will obtain

𝑣2
(︀
𝑐11𝑎

2
2𝑡

2 + 𝑐11𝑎
2
1𝑡

2
)︀

+ 𝑣
(︀
−𝑐13𝑢𝑎2𝑡+ 𝑐23𝑢𝑎1𝑡− 1 − |𝑎|2 𝑡2

)︀
+

+
(︀
𝑐11𝑢

2𝑎21𝑡
2 + 𝑐11𝑢

2𝑎22𝑡
2 + 𝑐33𝑢

2 + 𝑐13𝑢
2𝑎1𝑡+ 𝑐23𝑢

2𝑎2𝑡
)︀

+ 𝑜
(︀
|𝑡|2
)︀

= 0, 𝑡→ +∞.

Therefore, dividing to 𝑡2 and proceeding in the given expression to the limit with 𝑡→ +∞, we
will obtain

𝑣2
(︀
𝑐11𝑎

2
2 + 𝑐11𝑎

2
1

)︀
− 𝑣 |𝑎|2 + 𝑐11𝑢

2𝑎21 + 𝑐11𝑢
2𝑎22 = 0,

𝑐11𝑣
2 |𝑎|2 − 𝑣 |𝑎|2 + 𝑐11𝑢

2 |𝑎|2 = 0,

𝑐11𝑣
2 − 𝑣 + 𝑐11𝑢

2 = 0.

Let us write the given equality in a complex form. We will obtain

𝑐11

(︂
𝑣2 − 𝑣

𝑐11
+ 𝑢2

)︂
= 0,(︂

𝑣2 − 2𝑣
1

2𝑐11
+

1

4𝑐211

)︂
− 1

4𝑐211
+ 𝑢2 = 0,

𝑢2 +

(︂
𝑣 − 1

2𝑐11

)︂2

=

(︂
1

2𝑐11

)︂2

,⃒⃒⃒⃒
𝜏 − 𝑖

2𝑐11

⃒⃒⃒⃒2
=

(︂
1

2𝑐11

)︂2

. (10)

Hence, we have shown, that the domain ∆ of the change of parameter 𝜏 in the boundary

case, when |𝑎| → +∞, is a circle with the center in the point 𝜏0 =
𝑖

2𝑐11
and radius 𝑟0 =

1

2𝑐11
.

Coefficient 𝑐11 > 0 according to positive definiteness of the quadric form 𝑇 (𝑥1, 𝑥2, 𝑥3). The
correlation (10) sets the boundary 𝜕∆.

It should be noted, that the tangent to the boundary of the domain 𝐷, drawn in the boundary
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point 0, is the line Im 𝑧2 = 0. It is easy to see, that, when |𝑎| → +∞, sections 𝐷𝑎 (𝜏) become
closer to tangents of the boundary of the domain 𝐷 in the boundary point 0, whereas

Im 𝑧2 =
𝑣

1 + |𝑎|2
→ 0, when |𝑎| → +∞.

Moreover, when |𝑎| → +∞ of the section 𝐷𝑎 (𝜏) are in the surrounding of the point 𝑧0 = 0.
Namely, if 𝑧 ∈ 𝐷𝑎 (𝜏)

|𝑧 − 𝑧0|2 =

⃒⃒⃒⃒
𝜏

1 + |𝑎|2
𝑎

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜏

1 + |𝑎|2

⃒⃒⃒⃒2
=

|𝜏 |2 |𝑎|2(︀
1 + |𝑎|2

)︀2 +
|𝜏 |2(︀

1 + |𝑎|2
)︀2 =

|𝜏 |2

1 + |𝑎|2
→ 0,

when |𝑎| → +∞.
Applying real-analytic property of the function 𝜌 (𝑧1, 𝑧2, 𝑧1, 𝑧2), we will solve the equation (4)

with respect to the variable 𝑧2. Whereas 𝜌 (𝑧, 𝑧) is a real analytic function, then it is disinte-
grated into a series in the surrounding of the point (0, 0) ∈ C4 = C2 ×C2. Let us proceed from
coordinates 𝑧 to variables 𝜁, i. e. make a substitution

𝑧1 = 𝜁1, 𝑧2 = 𝜁2.

We will obtain the function ̂︀𝜌 (𝑧, 𝜁), analytic from 𝑧 and 𝜁 with conditions{︂ ̂︀𝜌 (𝑧, 𝜁) = 0,
𝜁 = 𝑧.

Whereas the gradient of the function ̂︀𝜌 (𝑧1, 𝑧2, 𝜁1, 𝜁2) differs from zero, then the derivative of

one of the variables differs from zero, for instance, the derivative
𝜕̂︀𝜌
𝜕𝜁2

̸= 0. Then, applying the

theorem about an implicit function for holomorphic functions (Theorem 3 from chapter 1, S4
from [10]), we will define the variable 𝜁2 by the rest of variables:⎧⎨⎩

𝜁2 = 𝜓 (𝑧1, 𝑧2, 𝜁1) ,
𝑧1 = 𝜁1,
𝑧2 = 𝜁2.

Then 𝑓 (𝑧1, 𝑧2, 𝑧1, 𝑧2) = 𝑓 (𝑧1, 𝑧2, 𝑧1, 𝜓 (𝑧1, 𝑧2, 𝜁1)) is a real analytic function, which disintegrates
into the series by variables 𝑧1, 𝑧2, 𝜁1 = 𝑧1, which converges in the neighborhood of the boundary
point (0, 0). Namely,

𝑓 (𝑧1, 𝑧1, 𝑧2) =
+∞∑︁
𝑙=0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚𝑧
ℎ
1 𝑧

𝑘
1𝑧

𝑚
2 ,

where we redefined the element in power degree (giving power 2 by 𝑧2).
Choosing |𝑎| rather large, we will consider moments 𝑁 on the sections 𝐷𝑎 (𝜏):

𝐺 (𝑎,𝑁) =

∫︁
𝜕Δ𝑎

𝜏𝑁𝑓
(︁
𝐷𝑎 (𝜏)

)︁
𝑑𝜏 =

=

∫︁
𝜕Δ𝑎

𝜏𝑁
+∞∑︁
𝑙=0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚

(︂
𝜏

1 + |𝑎|2
𝑎

)︂ℎ(︂
𝜏

1 + |𝑎|2
𝑎

)︂𝑘(︂
𝜏

1 + |𝑎|2

)︂𝑚

𝑑𝜏.

Let us prove, that the coefficients 𝑏ℎ,𝑘,𝑚 = 0 for 𝑘 > 0. Let 𝑙0 be the lowest power degree with
the property, that 𝑏ℎ,𝑘,𝑚 ̸= 0 for 𝑘 > 0 and 𝑘0 is the lowest degree by 𝑧1, for which it holds true.
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We obtain, that 𝐺 (𝑎,𝑁) = 0 for all 𝑁 and 𝑎, in particular, for 𝑡𝑎 with |𝑎| = 1 and 𝑡 → +∞.
Let us consider the limit

lim
𝑡→+∞

𝐺 (𝑡𝑎,𝑁) 𝑡𝑙0 =

= lim
𝑡→+∞

∫︁
𝜕Δ𝑎

𝜏𝑁
+∞∑︁
𝑙=𝑙0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚

(︂
𝜏

1 + |𝑡𝑎|2
𝑡𝑎

)︂ℎ(︂
𝜏

1 + |𝑡𝑎|2
𝑡𝑎

)︂𝑘

×

×
(︂

𝜏

1 + |𝑡𝑎|2

)︂𝑚

𝑡𝑙0𝑑𝜏 = lim
𝑡→+∞

∫︁
𝜕Δ𝑎

𝜏𝑁
+∞∑︁
𝑙=𝑙0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚𝜏
ℎ𝜏 𝑘𝜏𝑚𝑡ℎ𝑡𝑘𝑡𝑙0𝑎ℎ�̄�𝑘×

×

⎛⎜⎝ 1
1

𝑡2
+ |𝑎|2

⎞⎟⎠
ℎ

1

𝑡2ℎ

⎛⎜⎝ 1
1

𝑡2
+ |𝑎|2

⎞⎟⎠
𝑘

1

𝑡2𝑘

⎛⎜⎝ 1
1

𝑡2
+ |𝑎|2

⎞⎟⎠
𝑚

1

𝑡2𝑚
𝑑𝜏 =

= lim
𝑡→+∞

+∞∑︁
𝑙=𝑙0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚

∫︁
𝜕Δ𝑎

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 · 𝑡ℎ+𝑘+𝑙0−(2ℎ+2𝑘+2𝑚)𝑎ℎ�̄�𝑘×

×

⎛⎜⎝ 1
1

𝑡2
+ |𝑎|2

⎞⎟⎠
ℎ+𝑘+𝑚+𝑚−𝑚

= lim
𝑡→+∞

+∞∑︁
𝑙=𝑙0

∑︁
ℎ+𝑘+2𝑚=𝑙

𝑏ℎ,𝑘,𝑚

∫︁
𝜕Δ𝑎

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 · 𝑡𝑙0−𝑙×

×𝑎ℎ�̄�𝑘
(︂

1

𝑡2
+ |𝑎|2

)︂𝑚
1(︂

1

𝑡2
+ |𝑎|2

)︂𝑙
=
∑︁

ℎ+𝑘+2𝑚=𝑙0

𝑏ℎ,𝑘,𝑚

∫︁
𝜕Δ

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏
𝑎ℎ�̄�𝑘 |𝑎|2𝑚

|𝑎|2𝑙0
= 0,

where 𝜕∆ is defined by the correlation (10).

We will calculate the value of the integral

∫︁
𝜕Δ

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 , expressing 𝜏 as a fractional-linear

function from the correlation (10). We will obtain

⃒⃒⃒⃒
𝜏 − 𝑖

2𝑐11

⃒⃒⃒⃒2
=

(︂
𝜏 − 𝑖

2𝑐11

)︂(︂
𝜏 +

𝑖

2𝑐11

)︂
=

(︂
𝜏 − 𝑖

2𝑐11

)︂
𝜏 +

𝑖

2𝑐11
𝜏 +

1

4𝑐211
.

Then

(︂
𝜏 − 𝑖

2𝑐11

)︂
𝜏 +

𝑖

2𝑐11
𝜏 +

1

4𝑐211
=

1

4𝑐211
,

𝜏 =
− 𝑖

2𝑐11
𝜏

𝜏 − 𝑖

2𝑐11

.
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We will substitute the value obtained for 𝜏 into the subintegral expression. We will obtain∫︁
𝜕Δ

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 =

∫︁
𝜕Δ

𝜏𝑁+ℎ+𝑚𝜏 𝑘 𝑑𝜏 =

(︂
− 𝑖

2𝑐11

)︂𝑘 ∫︁
𝜕Δ

𝜏𝑁+ℎ+𝑚𝜏 𝑘(︂
𝜏 − 𝑖

2𝑐11

)︂𝑘
𝑑𝜏 =

=

(︂
− 𝑖

2𝑐11

)︂𝑘 ∫︁
𝜕Δ

𝜏𝑁+ℎ+𝑚+𝑘(︂
𝜏 − 𝑖

2𝑐11

)︂𝑘
𝑑𝜏.

∫︁
𝜕Δ

𝜏𝑁+ℎ+𝑚+𝑘(︂
𝜏 − 𝑖

2𝑐11

)︂𝑘
𝑑𝜏 = 2𝜋𝑖

1

(𝑘 − 1)!
lim
𝜏→𝜏0

𝑑𝑘−1

𝑑𝜏 𝑘−1
𝜏𝑁+ℎ+𝑚+𝑘 =

= 2𝜋𝑖
1

(𝑘 − 1)!
lim
𝜏→𝜏0

(𝑁 + ℎ+𝑚+ 𝑘)!

(𝑁 + ℎ+𝑚+ 1)!
𝜏𝑁+ℎ+𝑚+1 =

= 2𝜋𝑖
1

(𝑘 − 1)!

(𝑁 + ℎ+𝑚+ 𝑘)!

(𝑁 + ℎ+𝑚+ 1)!

(︂
𝑖

2𝑐11

)︂𝑁+ℎ+𝑚+1

.

Therefore,∫︁
𝜕Δ

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 =

(︂
− 𝑖

2𝑐11

)︂𝑘

2𝜋𝑖
1

(𝑘 − 1)!

(𝑁 + ℎ+𝑚+ 𝑘)!

(𝑁 + ℎ+𝑚+ 1)!

(︂
𝑖

2𝑐11

)︂𝑁+ℎ+𝑚+1

=

= (−1)𝑘
(︂

𝑖

2𝑐11

)︂𝑁+ℎ+𝑚+𝑘+1

2𝜋𝑖

(︂
𝑁 + ℎ+𝑚+ 𝑘

𝑘 − 1

)︂
.

Let us complete the proof of the theorem. Whereas∑︁
ℎ+𝑘+2𝑚=𝑙0

𝑏ℎ,𝑘,𝑚

∫︁
𝜕Δ

𝜏𝑁𝜏ℎ𝜏 𝑘𝜏𝑚 𝑑𝜏 · 𝑎
ℎ�̄�𝑘 |𝑎|2𝑚

|𝑎|2𝑙0
= 0,

then, substituting into the given expression the value of the integral obtained, we will have∑︁
ℎ+𝑘+2𝑚=𝑙0

𝑏ℎ,𝑘,𝑚 (−1)𝑘
(︂

𝑖

2𝑐11

)︂𝑁+ℎ+𝑚+𝑘+1

2𝜋𝑖

(︂
𝑁 + ℎ+𝑚+ 𝑘

𝑘 − 1

)︂
𝑎ℎ�̄�𝑘 |𝑎|2𝑚

|𝑎|2𝑙0
= 0.

Choosing 𝑁 = 𝑘0 − 1, we will obtain the following correlation for coefficients 𝑏ℎ,𝑘,𝑚∑︁
ℎ+𝑘0+2𝑚=𝑙0

(−1)𝑘0
(︂

𝑖

2𝑐11

)︂2𝑘0+ℎ+𝑚

2𝜋𝑖

(︂
2𝑘0 + ℎ+𝑚− 1

𝑘0 − 1

)︂
𝑏ℎ,𝑘0,𝑚𝑎

ℎ+𝑚�̄�𝑘0+𝑚 = 0.

Substituting 𝑎 = 𝑒𝑖𝜃, we will obtain∑︁
ℎ+𝑘0+2𝑚=𝑙0

(−1)𝑘0
(︂

𝑖

2𝑐11

)︂2𝑘0+ℎ+𝑚

2𝜋𝑖

(︂
2𝑘0 + ℎ+𝑚− 1

𝑘0 − 1

)︂
𝑏ℎ,𝑘0,𝑚𝑒

𝑖𝜃(ℎ−𝑘0) = 0,

that means, that 𝑏ℎ,𝑘0,𝑚 = 0 for ℎ + 𝑘0 + 2𝑚 = 𝑙0. Thus, for 𝑘 ≥ 1 we have 𝑏ℎ,𝑘,𝑚 = 0 for any
power degree 𝑙.

Therefore, we have shown, that the function 𝑓 is holomorphic in the surrounding of the
point 0. Due to the theorem condition, the function 𝑓 holomorphically extends to the meeting
of the domain 𝐷 with every complex line, passing through the boundary point 0. Consequently,
according to the Hartogs theorem about continuation (Theorem 1 from chapter 3, S11, p. 32
from [10]) and application of a fractional-linear transform (when the boundary point passes
to an infinite one, and lines, passing through the boundary point, pass to the parallel lines)
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the function 𝑓 will holomorphically extend along all the domain 𝐷 ⊂ C2. These consideration
complete the proof of the theorem in the two-dimensional case. �

3. Multidimensional case

Let us consider 𝑛-dimensional complex space C𝑛, points of which we will define by 𝑤 =
(𝑤1, . . . , 𝑤𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛) and etc. We should remind, that the domain 𝐷 is called strictly
convex, if the function 𝜌 (𝑤1, . . . , 𝑤𝑛), setting the boundary 𝜕𝐷 of the domain 𝐷, i. e. 𝐷 =
{𝑤 | 𝜌 (𝑤) < 0}, satisfies the condition

𝑛∑︁
𝑝,𝑗=1

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

(︀
𝑤0
)︀
𝜉𝑝𝜉𝑗 +

𝑛∑︁
𝑝,𝑗=1

𝜕2𝜌

𝜕�̄�𝑝𝜕�̄�𝑗

(︀
𝑤0
)︀
𝜉𝑝𝜉𝑗 +

𝑛∑︁
𝑝,𝑗=1

𝜕2𝜌

𝜕𝑤𝑝𝜕�̄�𝑗

(︀
𝑤0
)︀
𝜉𝑝𝜉𝑗 > 0

∀ 𝜉 ̸= 0, 𝑤0 ∈ 𝜕𝐷.
Let 𝐷 be a bounded strictly convex domain in C𝑛 (𝑛 > 1) with a real-analytic boundary 𝜕𝐷,

i.e. 𝐷 = {𝑤 | 𝜌 (𝑤) < 0}, where the function 𝜌 (𝑤1, . . . , 𝑤𝑛) is real-analytic in some neighbor-

hood of the domain closure 𝐷. With this, 𝑔𝑟𝑎𝑑 𝜌 =

(︂
𝜕𝜌

𝜕𝑤1

, . . . ,
𝜕𝜌

𝜕𝑤𝑛

)︂
̸= 0 on 𝜕𝐷. Further all

indexes 𝑝, 𝑗, 𝑟, 𝑠 ∈ {1, . . . , 𝑛}.
Let us assume, that for all points of the boundary the following conditions hold true:

1. 𝑝 < 𝑗, 𝑟 < 𝑠

4
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

− 2
𝜕𝜌

𝜕𝑤𝑠

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑗

−

−2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑝

− 2
𝜕𝜌

𝜕𝑤𝑠

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+ 4
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

= 0.

(11)

2. 𝑝 < 𝑗

2
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤2
𝑟

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑗

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+

+2

(︂
𝜕𝜌

𝜕𝑤𝑟

)︂2
𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

= 0.

(12)

3. 𝑝 < 𝑟 (︂
𝜕𝜌

𝜕𝑤𝑝

)︂2
𝜕2𝜌

𝜕𝑤2
𝑟

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+

(︂
𝜕𝜌

𝜕𝑤𝑟

)︂2
𝜕2𝜌

𝜕𝑤2
𝑝

= 0. (13)

Let us also define the family of complex lines, passing through the point 𝑤0, 𝑤0 ∈ 𝜕𝐷 by L𝑤0 .

Lemma 2. If boundaries of all two-dimensional sections of the domain 𝐷 satisfy the con-
dition (2), then in 𝑛 dimensional case the following group of correlations (11) – (13) holds
true.

Proof. In the equation

𝜌 (𝑤1, . . . , 𝑤𝑛) = 0

we will put the following parametrization⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤1 = 𝛼1𝜉 + 𝛽1𝜂
𝑤2 = 𝛼2𝜉 + 𝛽2𝜂

...
𝑤𝑛 = 𝛼𝑛𝜉 + 𝛽𝑛𝜂.
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We will obtain a two-dimensional section, defined by vectors 𝛼 = (𝛼1, . . . , 𝛼𝑛) and 𝛽 =
(𝛽1, . . . , 𝛽𝑛). The group of correlations (11) – (13) will be obtained from the fact, that the
boundary 𝜌 (𝜉, 𝜂) of the two-dimensional section should satisfy the condition (2) in variables 𝜉
and 𝜂 for any vectors 𝛼 and 𝛽, i.e. the following condition should hold true(︂

𝜕𝜌

𝜕𝜂
(𝜉, 𝜂)

)︂2
𝜕2𝜌

𝜕𝜉2
(𝜉, 𝜂) − 2

𝜕𝜌

𝜕𝜉
(𝜉, 𝜂)

𝜕𝜌

𝜕𝜂
(𝜉, 𝜂)

𝜕2𝜌

𝜕𝜉𝜕𝜂
(𝜉, 𝜂) +

(︂
𝜕𝜌

𝜕𝜉
(𝜉, 𝜂)

)︂2
𝜕2𝜌

𝜕𝜂2
(𝜉, 𝜂) = 0. (14)

Let us find derivatives, included in the equation (14). We will obtain

𝜕𝜌

𝜕𝜉
=

𝜕𝜌

𝜕𝑤1

𝜕𝑤1

𝜕𝜉
+

𝜕𝜌

𝜕𝑤2

𝜕𝑤2

𝜕𝜉
+ . . .+

𝜕𝜌

𝜕𝑤𝑛

𝜕𝑤𝑛

𝜕𝜉
=

= 𝛼1
𝜕𝜌

𝜕𝑤1

+ 𝛼2
𝜕𝜌

𝜕𝑤2

+ . . .+ 𝛼𝑛
𝜕𝜌

𝜕𝑤𝑛

=
𝑛∑︁

𝑟=1

𝜕𝜌

𝜕𝑤𝑟

𝛼𝑟.

𝜕𝜌

𝜕𝜂
=

𝜕𝜌

𝜕𝑤1

𝜕𝑤1

𝜕𝜂
+

𝜕𝜌

𝜕𝑤2

𝜕𝑤2

𝜕𝜂
+ . . .+

𝜕𝜌

𝜕𝑤𝑛

𝜕𝑤𝑛

𝜕𝜂
=

= 𝛽1
𝜕𝜌

𝜕𝑤1

+ 𝛽2
𝜕𝜌

𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕𝜌

𝜕𝑤𝑛

=
𝑛∑︁

𝑝=1

𝜕𝜌

𝜕𝑤𝑝

𝛽𝑝.

𝜕2𝜌

𝜕𝜉2
= 𝛼1

(︂
𝛼1

𝜕2𝜌

𝜕𝑤1𝜕𝑤1

+ 𝛼2
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

+ . . .+ 𝛼𝑛
𝜕2𝜌

𝜕𝑤1𝜕𝑤𝑛

)︂
+

+ 𝛼2

(︂
𝛼1

𝜕2𝜌

𝜕𝑤2𝜕𝑤1

+ 𝛼2
𝜕2𝜌

𝜕𝑤2𝜕𝑤2

+ . . .+ 𝛼𝑛
𝜕2𝜌

𝜕𝑤2𝜕𝑤𝑛

)︂
+ . . .+

+ 𝛼𝑛

(︂
𝛼1

𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤1

+ 𝛼2
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤2

+ . . .+ 𝛼𝑛
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤𝑛

)︂
=

𝑛∑︁
𝑟,𝑠=1

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

𝛼𝑟𝛼𝑠.

𝜕2𝜌

𝜕𝜂2
= 𝛽1

(︂
𝛽1

𝜕2𝜌

𝜕𝑤1𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤1𝜕𝑤𝑛

)︂
+

+ 𝛽2

(︂
𝛽1

𝜕2𝜌

𝜕𝑤2𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤2𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤2𝜕𝑤𝑛

)︂
+ . . .+

+ 𝛽𝑛

(︂
𝛽1

𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤𝑛

)︂
=

𝑛∑︁
𝑝,𝑗=1

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

𝛽𝑝𝛽𝑗.

𝜕2𝜌

𝜕𝜉𝜕𝜂
= 𝛼1

(︂
𝛽1

𝜕2𝜌

𝜕𝑤1𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤1𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤1𝜕𝑤𝑛

)︂
+

+ 𝛼2

(︂
𝛽1

𝜕2𝜌

𝜕𝑤2𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤2𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤2𝜕𝑤𝑛

)︂
+ . . .+

+ 𝛼𝑛

(︂
𝛽1

𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤1

+ 𝛽2
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤2

+ . . .+ 𝛽𝑛
𝜕2𝜌

𝜕𝑤𝑛𝜕𝑤𝑛

)︂
=

𝑛∑︁
𝑠,𝑗=1

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

𝛼𝑠𝛽𝑗.

Then, taking into account the above results,(︂
𝜕𝜌

𝜕𝜂

)︂2

=
𝑛∑︁

𝑝,𝑗=1

𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝛽𝑝𝛽𝑗.(︂
𝜕𝜌

𝜕𝜉

)︂2

=
𝑛∑︁

𝑟,𝑠=1

𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝛼𝑟𝛼𝑠.
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Therefore, (︂
𝜕𝜌

𝜕𝜂

)︂2
𝜕2𝜌

𝜕𝜉2
=

𝑛∑︁
𝑝,𝑗,𝑟,𝑠=1

𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠,

𝜕𝜌

𝜕𝜉

𝜕𝜌

𝜕𝜂

𝜕2𝜌

𝜕𝜉𝜕𝜂
=

𝑛∑︁
𝑝,𝑗,𝑟,𝑠=1

𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠,(︂
𝜕𝜌

𝜕𝜉

)︂2
𝜕2𝜌

𝜕𝜂2
=

𝑛∑︁
𝑝,𝑗,𝑟,𝑠=1

𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠.

Let us substitute values of derivatives in the correlation (14). We will obtain, that for any
vectors 𝛼 and 𝛽 the following condition should be satisfied

𝑛∑︁
𝑝,𝑗,𝑟,𝑠=1

(︂
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

+
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

)︂
𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠 = 0.

Further we will consider the similar ones in the given sum, with the indexes
𝑝, 𝑗, 𝑟, 𝑠 ∈ {1, . . . , 𝑛}. We will obtain∑︁

𝑝<𝑗
𝑟,𝑠

(︂
2
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑝

+

+ 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

)︂
𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠+

+
∑︁
𝑝=𝑗
𝑟,𝑠

(︃(︂
𝜕𝜌

𝜕𝑤𝑝

)︂2
𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑝

+
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤2
𝑝

)︃
𝛽2
𝑝𝛼𝑟𝛼𝑠 = 0.

∑︁
𝑝<𝑗
𝑟<𝑠

(︂
4
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑗

− 2
𝜕𝜌

𝜕𝑤𝑠

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑗

−

−2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑝

− 2
𝜕𝜌

𝜕𝑤𝑠

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+ 4
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

)︂
𝛽𝑝𝛽𝑗𝛼𝑟𝛼𝑠+

+
∑︁
𝑝<𝑗
𝑟=𝑠

(︂
2
𝜕𝜌

𝜕𝑤𝑝

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤2
𝑟

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑗

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑗

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+

+2

(︂
𝜕𝜌

𝜕𝑤𝑟

)︂2
𝜕2𝜌

𝜕𝑤𝑝𝜕𝑤𝑗

)︃
𝛽𝑝𝛽𝑗𝛼

2
𝑟 +

∑︁
𝑝=𝑗
𝑟<𝑠

(︃
2

(︂
𝜕𝜌

𝜕𝑤𝑝

)︂2
𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑠

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑠𝜕𝑤𝑝

−

−2
𝜕𝜌

𝜕𝑤𝑠

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+ 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑠

𝜕2𝜌

𝜕𝑤2
𝑝

)︂
𝛽2
𝑝𝛼𝑟𝛼𝑠+

+
∑︁
𝑝=𝑗
𝑟=𝑠

(︃(︂
𝜕𝜌

𝜕𝑤𝑝

)︂2
𝜕2𝜌

𝜕𝑤2
𝑟

− 2
𝜕𝜌

𝜕𝑤𝑟

𝜕𝜌

𝜕𝑤𝑝

𝜕2𝜌

𝜕𝑤𝑟𝜕𝑤𝑝

+

(︂
𝜕𝜌

𝜕𝑤𝑟

)︂2
𝜕2𝜌

𝜕𝑤2
𝑝

)︃
𝛽2
𝑝𝛼

2
𝑟 = 0.

Whereas the given equality is satisfied for any vectors 𝛼 and 𝛽 and there are given the
similar ones (all sums consist of different components), then the equality to zero means, that
all expressions with sum signs are equal to zero. Note, that the second and the third sums in
the latter correlation are obtained from each other by means of indexes transforms. Therefore,
we have shown the validity of the correlations (11) – (13). �
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Theorem 5. Let the function 𝑓 ∈ 𝐶𝑤 (𝜕𝐷) possess one-dimensional holomorphic extension
property along all the complex lines from L𝑤0, meeting 𝐷, then the function 𝑓 holomorphically
extends in 𝐷.

Remark 2. If the point 𝑤0 is fixed in advance, then the condition (11) – (13) can be satisfied
only in the point 𝑤0.

Proof. We will make a two-dimensional section of the domain 𝐷, passing through the
boundary point 𝑤0 and the point 0, being in the domain 𝐷. The function, setting the boundary
of such a two-dimensional section, will satisfy the condition (2), hence the function 𝑓 accord-
ing to the previous item, will holomorphically extend in the interior of such two-dimensional
sections and define the function 𝐹 in them. Whereas holomorphic extension of function 𝑓
in two-dimensional sections is given by a two-dimensional the Bochner-Martinelli integral 𝐹 ,
then in all two-dimensional sections holomorphic extensions coincide. These two-dimensional
sections cover all the domain 𝐷. Hence, the function 𝐹 is defined in all the domain 𝐷.

Whereas holomorphic extension of function 𝑓 in two-dimensional sections is set by the
Bochner-Martinelli integral, depending real-analytically on vectors 𝛼 and 𝛽, then holomor-
phic extension of the function 𝑓 is a real analytic function. Therefore, the function 𝐹 belongs
to the class 𝐶∞ in the neighborhood of the point 0.

Whereas the two-dimensional section is defined by two complex lines, then the function 𝐹 ,
being holomorphic in all the two-dimensional section, will also be holomorphic on complex
lines, lying in the same section. Thus, the function 𝐹 will be holomorphic in the meeting of
the domain 𝐷 with every complex line, passing through the point 0.

Thus, we have shown, that the function 𝐹 belongs to the class 𝐶∞ in the neighborhood of
the point 0 and is holomorphic in the meeting of the domain 𝐷 with every complex line, passing
through the point 0. We are in the condition of the Forelli theorem (Theorem 4.4.5 from [11])
and, applying this theorem, we will obtain, that the function 𝐹 will be holomorphic in some
surrounding of the point 0.

Whereas the function 𝐹 is holomorphic in some surrounding of the point 0 and in the meeting
of the domain 𝐷 with every complex line, passing through the given point, then, according to
the Hartogs theorem on extension (Theorem 1 from chapter 3, S11, p. 32 from [10]) by analogy
to the previous item, it is holomorphic in al the domain 𝐷. �

4. Examples

In the given item we consider examples of domains, for which the following theorem holds
true 5.

Example 1. 𝐷 = B𝑛 is a ball with the center in the zero of the radius 𝑅, i. e. 𝐷 = {𝜁 :
|𝜁| < 𝑅}.

Example 2. Let 𝜁𝑗 =
𝐿𝑗 (𝑤)

𝐿 (𝑤)
, 𝑗 = 1, . . . , 𝑛, where 𝐿𝑗 (𝑤), 𝐿 (𝑤) are linear functions, then

the image of the ball B𝑛 with the given mapping (if it is not singular) is a domain, for which
the following theorem holds true 5.

Example 3. Let the function 𝜌, setting the domain boundary 𝐷, have the form

𝜌 (𝑤1, . . . , 𝑤𝑛) = |𝑤1|2 + . . .+ |𝑤𝑛|2 −𝑅2 +
∑︁
𝑗

|𝐿𝑗 (𝑤)|2 ,

where 𝐿𝑗 (𝑤) are linear functions. Then for the domain 𝐷 = {𝑤 | 𝜌 (𝑤) < 0} the following
conditions of the theorem hold true 5.
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Example 4. Let the function 𝜌 (𝑤, �̄�) lineally depending on 𝑤 and on �̄� is arbitrary . Then
the domain 𝐷 = {𝑤 | 𝜌 (𝑤) < 0} satisfies the theorem conditions 5.
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