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AN ALMOST EXPONENTIAL SEQUENCE OF

EXPONENTIAL POLYNOMIALS

A.S. KRIVOSHEYEV

Abstract. A special sequence of exponential polynomials, whose exponentials are divided
into relatively small groups, is studied in the article. It is proved that this sequence is
almost an exponential sequence for each convex domain of a complex plane. By means of
this result necessary and sufficient conditions for the considered sequence to be a basis in
a closed and invariant under differentiation subspace of the space of analytic functions in
a convex domain are obtained. Two methods of description of the whole class of bases in
an invariant subspace, whose elements are exponential polynomials, are given.

Keywords: exponential polynomial, invariant subspace, analytic function, convex domain,
basis.

Let 𝐷 be a convex domain in C and {𝐾𝑝}∞𝑝=1 be the sequence of convex compacts, exhausting
domain𝐷, i.e. the following holds true: 1)𝐾𝑝 ⊂ 𝑖𝑛𝑡𝐾𝑝+1 for all 𝑝 ≥ 1 (int defined a set interior),
2) 𝐷 =

⋃︀∞
𝑝=1𝐾𝑝. Let 𝐻𝑀(𝑧) define a support function of the set 𝑀 (to be exact, complex

conjugated with 𝑀 set):

𝐻𝑀(𝑧) = sup
𝑤∈𝑀

𝑅𝑒(𝑧𝑤), 𝑧 ∈ C.

Then it results from the condition 1) that for any 𝑝 ≥ 1 there is a number 𝛼𝑝 > 0 such that

𝐻𝐾𝑝(𝑧) + 𝛼𝑝|𝑧| 6 𝐻𝐾𝑝+1(𝑧), 𝑧 ∈ C. (1)

In paper [1] there was introduced the following notion. Sequence of functions {𝑒𝑚}∞𝑚=1,
analytical in the domain 𝐷, is called almost exponential, if there are numbers 𝜆𝑚 ∈ C, 𝑚 ≥ 1,
|𝜆𝑚| → ∞ with 𝑚 → ∞, for which the following two conditions hold true: 1) for any 𝑝 ≥ 1
there is a constant 𝑎 > 0 and a number 𝑠 such that

sup
𝑤∈𝐾𝑝

|𝑒𝑚(𝑤)| 6 𝑎 exp(𝐻𝐾𝑠(𝜆𝑚)), 𝑚 = 1, 2, . . . ;

2) for any 𝑝 ≥ 1 there is a constant 𝑏 > 0 and a number 𝑠 such that

𝑏 exp(𝐻𝐾𝑝(𝜆𝑚)) 6 sup
𝑤∈𝐾𝑠

|𝑒𝑚(𝑤)|, 𝑚 = 1, 2, . . .

Note, that the definition of an almost exponential sequence is bounded to a definite convex
domain 𝐷. Therefore, it is more correct to call such a sequence almost exponential in the do-
main 𝐷. Numbers 𝜆𝑚 ∈ C, 𝑚 ≥ 1 are called indexes of functions {𝑒𝑚}∞𝑚=1. Examples of such
almost exponential sequences can be sequences of exponents themselves, and also sequences of
exponential monomials {𝑧𝑛 exp(𝜆𝑚𝑧)}∞,𝑘𝑚

𝑚=1,𝑛=1 according to the condition 𝑘𝑚/|𝜆𝑚| → 0 (see [1]).
In paper [2] there was some more general sequence of functions {𝑒𝑚}∞𝑚=1 considered, compiled
of linear combinations of exponential monomials, which indexes are divided into so-called ”rel-
atively small groups”. Such sequences appear naturally during studying classical problems of
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functions representation from the space, which is invariant to the action of some linear oper-
ator, by means of its own and associated functions of this operator. In paper [2] there were
closed subspaces 𝑊 studied, which are invariant with respect to the operator of differentiation,
in the space 𝐻(𝐷) of functions, analytic in the convex domain 𝐷, with the topology of uniform
convergence on compact subsets from 𝐷. If 𝑊 is a nontrivial (𝑊 ̸= 𝐻(𝐷) and 𝑊 ̸= {0})
subspace in 𝐻(𝐷), then the spectrum of the differentiation operator in 𝑊 is not more that a
countable set {𝜆𝑘} (see [2]). Hence, if the spectrum is infinite, then its only accumulation point
is ∞. Therefore, eigenfunctions of the differentiation operator in 𝑊 are exponents with indexes
𝜆𝑘. Associated functions will be, correspondingly, exponential monomials 𝑧𝑛 exp(𝜆𝑘𝑧), where
𝑛 = 1, . . . , 𝑛𝑘 − 1 (the natural number 𝑛𝑘 can be defined as order of zero of some entire expo-
nential function, connected with the subspace 𝑊 [2]). In the case, when the set {𝜆𝑘} is finite,
the subspace 𝑊 coincides with the space of linear differential equations solutions with constant
coefficients (see, for instance, [3, chapter 4]). Then, according to the fundamental principle
of L. Euler, every solution of such an equation is a linear combination of eigenfunctions and
associated functions of the differentiation operator in 𝑊 . Due to this, it is expedient to consider
only invariant subspaces 𝑊 ⊂ 𝐻(𝐷), with an infinite spectrum {𝜆𝑘}∞𝑘=1. For such subspaces
we deal with an infinite system ℰ = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1

𝑘=1,𝑛=0 of eigenfunctions and associated func-
tions. If points of the spectrum are rather far from each other (see [4]), then in case of some
supplementary conditions of the spectrum {𝜆𝑘}∞𝑘=1 and natural numbers 𝑛𝑘, 𝑘 = 1, 2, . . ., (see
[4],[5]) in the subspace 𝑊 we also deal with the fundamental principle: every function from 𝑊
is represented close due to the system ℰ , which absolutely and uniformly converges on compacts
from the domain 𝐷. In case of spectrum points ”sticking” such a representation is impossible
[4]. However, even in this case in the subspace 𝑊 there can exist a basis, compiled from lin-
ear combinations of eigenfunctions and associated functions of a differentiation operator, the
indexes of which are divided into relatively small groups (see, for instance, [6]).

Let the sequence {𝜆𝑘} be divided into groups 𝑈𝑚, 𝑚 = 1, 2, . . .. Let us renumber the sequence
members. The points 𝜆𝑘, fallen in the group 𝑈𝑚, will be defined as 𝜆𝑚,𝑙, and their order (i.e.
the number 𝑛𝑘) as 𝑛𝑚,𝑙. The first index here 𝑚 coincides with the group number, and the
second index varies within the limits from 1 to 𝑀𝑚, where 𝑀𝑚 is a number of the spectrum
points, fallen into the group 𝑈𝑚. They say, that groups 𝑈𝑚, 𝑚 = 1, 2, . . ., are relatively small,
if the following holds true:

lim
𝑚→∞

max
16𝑗,𝑙6𝑀𝑚

|𝜆𝑚,𝑗 − 𝜆𝑚,𝑙|
|𝜆𝑚,1|

= 0.

Note, that the numbers 𝜆𝑚,1 can be replaced here by any other representatives 𝜆𝑚,𝑗 of groups
𝑈𝑚. It immediately results from the correlation

lim
𝑚→∞

max
16𝑗6𝑀𝑚

|𝜆𝑚,𝑗|
|𝜆𝑚,1|

6 lim
𝑚→∞

max
16𝑗6𝑀𝑚

|𝜆𝑚,𝑗 − 𝜆𝑚,1|
|𝜆𝑚,1|

+ lim
𝑚→∞

|𝜆𝑚,1|
|𝜆𝑚,1|

= 1.

In new symbols the system of eigenfunctions and associated functions looks the following way

ℰ = {𝑧𝑛 exp(𝜆𝑚,𝑙𝑧)}∞,𝑀𝑚,𝑛𝑚,𝑙−1

𝑚=1,𝑙=1,𝑛=0 . Let 𝑁𝑚 be a number of spectrum points, fallen into the group

𝑈𝑚, 𝑚 = 1, 2, . . ., according to their order, i.e. 𝑁𝑚 =
∑︀𝑀𝑚

𝑙=1 𝑛𝑚,𝑙. Let us construct the function

system ℰ̃ = {𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑝=1 according to the system ℰ . Assume, that

𝑒𝑚,𝑝(𝑧) =
(𝑝− 1)!

2𝜋𝑖

∫︁
|𝜆−𝜆𝑚,1|=1

𝑞𝑚(𝜆, 𝑧)𝑑𝜆

(𝜆− 𝜆𝑚,1)𝑝
, 𝑝 = 1, . . . , 𝑁𝑚, 𝑚 = 1, 2, . . . . (2)

Therein
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𝑞𝑚(𝜆, 𝑧) =
1

2𝜋𝑖

∫︁
Γ𝑚

exp(𝑧𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁, 𝑚 = 1, 2, . . . ,

Γ𝑚 is a contour, covering the points 𝜆𝑚,𝑙, 𝑙 = 1, 2, . . . ,𝑀𝑚, groups 𝑈𝑚, and 𝜔𝑚(𝜆) is a monomial
with these zeros with the account of their order and with the leading coefficient, is equal to 1,
i.e.

𝜔𝑚 =
𝑀𝑚∏︁
𝑙=1

(𝜆− 𝜆𝑚,𝑙)
𝑛𝑚,𝑙 , 𝑚 = 1, 2, . . .

From (2), applying the theorem of subtraction, we obtain the following equalities

𝑒𝑚,𝑝(𝑧) =
𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙−1∑︁
𝑛=0

𝑐𝑚,𝑝,𝑙,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑙𝑧), 𝑚 = 1, 2, . . . , 𝑝 = 1, 2, . . . , 𝑁𝑚. (3)

In paper [2] according to the condition, that the sequence ℰ̃ is almost exponential, we obtain

necessary and sufficient conditions of ℰ̃ = {𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑝=1 which is absolute and uniform basis
in the subspace 𝑊 . Under the same condition we can find description of all possible bases in
𝑊 of the form (3), constructed on the basis of relatively small groups 𝑈𝑚.

In this connection there appears a problem of conditions clearing-up, when the system ℰ̃ =
{𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑝=1 is an almost exponential sequence. The aim of this work is to show, that if
the equality

𝒩 = lim
𝑚→∞

𝑁𝑚

|𝜆𝑚,1|
= 0 (4)

holds true, the sequence ℰ̃ will be exponential.
It is proved (corollary from Lemma 5) in paper [2], that with 𝒩 = 0 for any 𝑗 ≥ 1 there is a

constant 𝐶𝑗 and a number 𝑠 > 𝑗 such that

sup
𝑤∈𝐾𝑗

|𝑒𝑚,𝑝(𝑤)| 6 𝐶𝑗 exp𝐻𝐾𝑠(𝜆𝑚,1), 𝑚 = 1, 2, . . . , 𝑝 = 1, . . . , 𝑁𝑚.

It means, that for the system ℰ̃ = {𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑝=1 item 1) holds true from the almost expo-

nential sequence. Further we will show, that with 𝒩 = 0 for ℰ̃ item 2) also holds true. To
prove this fact we will apply Theorem 1 from paper [2].

We will need some supplementary definitions and symbols. For a convex domain 𝐷 and every
𝑠 = 1, 2, . . . we will define a Banach space of entire exponential functions

𝑃𝑠 = {𝑓 ∈ 𝐻(C) : ‖𝑓‖𝑠 = sup
𝜆∈C

|𝑓(𝜆)| exp(−𝐻𝐾𝑠(𝜆)) <∞},

and by 𝒫𝐷 we will define an inductive limit of the spaces 𝒫𝑠. Note (see, for instance, [3]),
that the Laplace transform 𝐿(𝜇)(𝜆) = (𝜇, exp𝜆𝑧) sets algebraic and topological isomorphism
between the space 𝒫𝐷 and the space 𝐻*(𝐷) which are linear continuous functionals on 𝐻(𝐷).

For any 𝑠 = 1, 2, . . . we will introduce a Banach space of complex sequences

𝑅𝑠 = {𝑏 = {𝑏𝑚,𝑗} : ‖𝑏‖𝑠 = sup
𝑚,𝑗

(|𝑏𝑚,𝑗| exp(−𝐻𝐾𝑠(𝜆𝑚,1))) <∞}.

Therein 𝑚 = 1, 2, . . . and 𝑗 = 1, . . . , 𝑁𝑚. Let 𝑅(𝐷) be an inductive spaces limit 𝑅𝑠. For the
entire function 𝑓(𝜁) we will assume
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𝑞𝑚(𝜆, 𝑓) =
1

2𝜋𝑖

∫︁
Γ𝑚

𝑓(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁, 𝑚 = 1, 2, . . . ,

where the contour Γ𝑚 and the monomial 𝜔𝑚(𝜁) are similar to the described above. This formula
defines a known interpolation polynomial of the degree not more than 𝑁𝑚 − 1, which takes
values, coinciding with the corresponding function values 𝑓(𝜁) and its derivatives in points 𝜆𝑚,𝑙

together with its derivatives up to the order 𝑛𝑚,𝑙 − 1 inclusive, i.e.

𝑞(𝑛)𝑚 (𝜆𝑚,𝑙, 𝑓) = 𝑓 (𝑛)(𝜆𝑚,𝑙), 𝑙 = 1, 2, . . . ,𝑀𝑚, 𝑛 = 0, 1, . . . , 𝑛𝑚,𝑙 − 1.

Let us decompose 𝑞𝑚(𝜆, 𝑓) by monomials (𝜆− 𝜆𝑚,1)
𝑗:

𝑞𝑚(𝜆, 𝑓) =
𝑁𝑚−1∑︁
𝑗=0

𝑞𝑚,𝑗(𝑓)
(𝜆− 𝜆𝑚,1)

𝑗

𝑗!
, 𝑚 = 1, 2, . . .

It is shown in paper [2] (Lemma 5), that for any function 𝑓 from the space 𝒫𝐷 the sequence of

numbers 𝑞(𝑓) = {𝑞𝑚,𝑗−1(𝑓)}∞,𝑁𝑚

𝑚=1,𝑗=1 belongs to the space 𝑅(𝐷).
Let 𝐵(𝑧, 𝑟) and 𝑆(𝑧, 𝑟) define an open circle and a circumference with the center in the point

𝑧 and radius 𝑟 correspondingly. To apply Theorem 1 from paper [2], as it was pointed out
above, we need to prove the following auxiliary statements.

Lemma 1. Let ℎ(𝑧) be a positive uniform of the first order and continuous on the complex
plane function. For any 𝜀 > 0 there is 𝛿 > 0 such that the following inequality holds true

sup
𝜆∈𝐵(𝑧,𝛿|𝑧|)

ℎ(𝜆) 6 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

ℎ(𝜆) + 𝜀 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

|𝜆|, 𝑧 ∈ C.

Proof. Let us fix 𝜀 > 0. Due to the uniform function continuity ℎ(𝑧) on the circle 𝑆(0, 1)
there is 𝛿 ∈ (0, 1/2) such that for any 𝑧 ∈ 𝑆(0, 1) and all 𝜆,𝑤 ∈ 𝐵(𝑧, 𝛿) the following inequality
holds true

|ℎ(𝜆) − ℎ(𝑤)| 6 𝜀/2.

Hereof, considering the uniformity of the function ℎ(𝑧) we obtain:

sup
𝜆∈𝐵(𝑧,𝛿|𝑧|)

ℎ(𝜆) = |𝑧| sup
𝜆∈𝐵(𝑧/|𝑧|,𝛿)

ℎ(𝜆) 6 |𝑧| inf
𝜆∈𝐵(𝑧/|𝑧|,𝛿)

(ℎ(𝜆) + 𝜀/2) = |𝑧| inf
𝜆∈𝐵(𝑧/|𝑧|,𝛿)

ℎ(𝜆)+

+2−1𝜀|𝑧| 6 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

ℎ(𝜆) + 2−1(1 − 𝛿)−1𝜀 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

|𝜆| 6

6 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

ℎ(𝜆) + 𝜀 inf
𝜆∈𝐵(𝑧,𝛿|𝑧|)

|𝜆|, 𝑧 ∈ C.

The Lemma has been proved.

Lemma 2. Let 𝐷 be a convex domain, and sequence {𝜆𝑚,𝑙} be decomposed into relatively
small groups 𝑈𝑚. Suppose, that 𝑁𝑚/|𝜆𝑚,1| 6 2−𝑚 and |𝜆𝑚+1,1| ≥ 2|𝜆𝑚,1|, 𝑚 = 1, 2, . . . Then
for every sequence 𝑏 = {𝑏𝑚,𝑗} from the space 𝑅(𝐷) there is the function 𝑓 ∈ 𝒫𝐷 such that
𝑏𝑚,𝑗 = 𝑞𝑚,𝑗−1(𝑓), 𝑚 = 1, 2, . . ., 𝑗 = 1, . . . , 𝑁𝑚.

Proof. Let the sequence 𝑏 = {𝑏𝑚,𝑗} belong to 𝑅(𝐷). Then, according to the definition of
the space 𝑅(𝐷) there is a number 𝑠 such that

‖𝑏‖𝑠 = sup
𝑚,𝑗

(|𝑏𝑚,𝑗| exp(𝐻𝐾𝑠(𝜆𝑚,1))) <∞,
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i.e. for some constant 𝐶 > 0 the following inequalities hold true

|𝑏𝑚,𝑗| 6 𝐶 exp(−𝐻𝐾𝑠(𝜆𝑚,1)), 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚. (5)

The construction of an entire function, which existence is stated in the Lemma, will be
made in two stages. At the first stage we will construct a polynomial 𝑃𝑚 for every group 𝑈𝑚,
𝑚 = 1, 2, . . ., which will satisfy the necessary upper estimate and such that 𝑞𝑚,𝑗−1(𝑃𝑚) = 𝑏𝑚,𝑗,
𝑗 = 1, . . . , 𝑁𝑚. At the second stage, having improved the polynomials stated, we will ”stick”
them up to the needed entire function.

Let us proceed to the first stage. Assume

𝑃𝑚(𝜆) =
𝑁𝑚−1∑︁
𝑗=0

𝑏𝑚,𝑗+1
(𝜆− 𝜆𝑚,1)

𝑗

𝑗!
, 𝑚 = 1, 2, . . .

For every 𝑚 = 1, 2, . . . we have:

𝑞𝑚(𝜆, 𝑃𝑚) =
1

2𝜋𝑖

∫︁
Γ𝑚

𝑃𝑚(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁.

This equality defines the polynomial of the degree not more than 𝑁𝑚 − 1, which in the points
𝜆𝑚,𝑙 together with its derivatives up to the order 𝑛𝑚,𝑙−1 inclusive, takes values, coinciding with
the corresponding polynomial values 𝑃𝑚(𝜆) and its derivatives. Whereas 𝑃𝑚(𝜆) also possesses
a degree not more than 𝑁𝑚−1, and the number of points 𝜆𝑚,𝑙 in the group 𝑈𝑚 subject to their
order 𝑛𝑚,𝑙 is equal to 𝑁𝑚, then polynomials 𝑞𝑚(𝜆, 𝑃𝑚) and 𝑃𝑚(𝜆) coincide. Then it is easy to
obtain the following equalities from polynomial definitions 𝑃𝑚(𝜆) and numbers 𝑞𝑚,𝑗(𝑃𝑚)

𝑏𝑚,𝑗 = 𝑞𝑚,𝑗−1(𝑃𝑚), 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚. (6)

Now we will find upper estimates for all polynomial modules 𝑃𝑚(𝜆). According to the
condition 𝑎𝑚 = |𝜆𝑚,1|/𝑁𝑚 ≥ 2𝑚. Taking into account, that 𝑗! ≥ 𝑗𝑗/3𝑗 with all 𝑗 ≥ 1, and the
function 4𝑥−1 ln(3𝑥) decreases with 𝑥 > 1, for all 𝑚 = 1, 2, . . . and 4𝑗 = 0, 1, . . . , 𝑁𝑚 − 1 we
have:

ln(|𝜆𝑚,1|𝑗/𝑗!)
|𝜆𝑚,1|

6
ln(3𝑗|𝜆𝑚,1|𝑗/𝑗𝑗)

|𝜆𝑚,1|
=
𝑗 ln(3|𝜆𝑚,1|/𝑗)

|𝜆𝑚,1|
6
𝑁𝑚 ln(3|𝜆𝑚,1|/𝑁𝑚)

|𝜆𝑚,1|
=

ln(3𝑎𝑚)

𝑎𝑚
= 𝜀(𝑚),

where 𝜀(𝑚) → 0 with 𝑚→ ∞. Hereof we obtain

|𝜆𝑚,1|𝑗

𝑗!
6 exp(𝜀(𝑚)|𝜆𝑚,1|), 𝑚 = 1, 2, . . . , 𝑗 = 0, . . . , 𝑁𝑚 − 1.
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Therefore, for all 𝑚 = 1, 2, . . . and 𝜆 ∈ 𝐵(𝜆𝑚,1, |𝜆𝑚,1|) the following estimate holds true

|𝑃𝑚(𝜆)| 6
𝑁𝑚−1∑︁
𝑗=0

|𝑏𝑚,𝑗+1|
|(𝜆− 𝜆𝑚,1)

𝑗|
𝑗!

6
𝑁𝑚−1∑︁
𝑗=0

|𝑏𝑚,𝑗+1|
|𝜆𝑚,1|𝑗

𝑗!
6 exp(𝜀(𝑚)|𝜆𝑚,1|)

𝑁𝑚−1∑︁
𝑗=0

|𝑏𝑚,𝑗+1|.

Hereof, subject to (5) we obtain:

|𝑃𝑚(𝜆)| 6 𝐶𝑁𝑚 exp(𝐻𝐾𝑠(𝜆𝑚,1) + 𝜀(𝑚)|𝜆𝑚,1|), 𝑚 = 1, 2, . . . , 𝜆 ∈ 𝐵(𝜆𝑚,1, |𝜆𝑚,1|).
Whereas 𝑁𝑚/|𝜆𝑚,1| → 0, then we can consider, that for some number 𝑚0 the following inequal-
ities hold true

𝑁𝑚 6 exp(2−1𝛼𝑠|𝜆𝑚,1|), 𝑚 ≥ 𝑚0,

where 𝛼𝑠 is a constant from formula (1). Moreover, 𝜀(𝑚) → 0 with 𝑚→ ∞. Therefore, we can
also consider, that

2𝜀(𝑚) 6 𝛼𝑠, 𝑚 ≥ 𝑚0.

Consequently, from the written above and (1) we obtain:

|𝑃𝑚(𝜆)| 6 𝐶 exp(𝐻𝐾𝑠(𝜆𝑚,1) + 𝛼𝑠|𝜆𝑚,1|) 6 𝐶 exp(𝐻𝐾𝑠+1(𝜆𝑚,1)),

𝑚 ≥ 𝑚0, 𝜆 ∈ 𝐵(𝜆𝑚,1, |𝜆𝑚,1|).
Increasing the constant 𝐶 > 0 if it is necessary, we can consider, that

|𝑃𝑚(𝜆)| 6 𝐶 exp(𝐻𝐾𝑠+1(𝜆𝑚,1)), 𝑚 ≥ 1, 𝜆 ∈ 𝐵(𝜆𝑚,1, |𝜆𝑚,1|). (7)

Let us proceed to the second stage, as a result of which there will be the needed entire
function 𝑓 in the Lemma. First of all, let us note, that the series, made from inverse values of
points modules 𝜆𝑚,𝑙 subject to their orders 𝑛𝑚,𝑙, converge. Indeed, we have:

∞∑︁
𝑚=1

𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙

|𝜆𝑚,𝑙|
=

∞∑︁
𝑚=1

1

|𝜆𝑚,1|

𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙|𝜆𝑚,1|
|𝜆𝑚,𝑙|

6
∞∑︁

𝑚=1

1

|𝜆𝑚,1|

𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙

𝑏𝑚
=

=
∞∑︁

𝑚=1

1

|𝜆𝑚,1|𝑏𝑚

𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙 =
∞∑︁

𝑚=1

𝑁𝑚

|𝜆𝑚,1|𝑏𝑚
,

where 𝑏𝑚 = min16𝑙6𝑀𝑚 |𝜆𝑚,𝑙|/|𝜆𝑚,1|. Whereas groups 𝑈𝑚 are relatively small, then

𝑏𝑚 = min
16𝑙6𝑀𝑚

|𝜆𝑚,𝑙 − 𝜆𝑚,1 + 𝜆𝑚,1|
|𝜆𝑚,1|

≥ min
16𝑙6𝑀𝑚

|𝜆𝑚,1| − |𝜆𝑚,𝑙 − 𝜆𝑚,1|
|𝜆𝑚,1|

=

= min
16𝑙6𝑀𝑚

(︂
1 − |𝜆𝑚,𝑙 − 𝜆𝑚,1|

|𝜆𝑚,1|

)︂
= 1 − max

16𝑙6𝑀𝑚

|𝜆𝑚,𝑙 − 𝜆𝑚,1|
|𝜆𝑚,1|

≥ 1 − max
16𝑗,𝑙6𝑀𝑚

|𝜆𝑚,𝑗 − 𝜆𝑚,𝑙|
|𝜆𝑚,1|

=

= 1 − 𝛿(𝑚) → 1, 𝑚→ ∞.

Hereof, subject to the Lemma conditions we obtain:

∞∑︁
𝑚=1

𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙

|𝜆𝑚,𝑙|
6

∞∑︁
𝑚=1

𝑁𝑚

|𝜆𝑚,1|𝑏𝑚
6

∞∑︁
𝑚=1

1

2𝑚𝑏𝑚
<∞.

Convergence of this series means, that the canonical entire function 𝜙 of the set {𝜆𝑚,𝑙, 𝑛𝑚,𝑙}
possesses an exponential minimal type (see [7, Theorem 3.9]). This function transforms into
zero only in the points 𝜆𝑚,𝑙 with the order 𝑛𝑚,𝑙 and is defined by the formula



88 A.S. KRIVOSHEYEV

𝜙(𝜆) =
∞∏︁

𝑚=1

𝑀𝑚∏︁
𝑙=1

(︂
1 − 𝜆

𝜆𝑚,𝑙

)︂
(if some point 𝜆𝑘,𝑗 coincides with the origin of coordinates, then the factor (1 − 𝜆/𝜆𝑘,𝑗) in this
product should be replaced by the factor 𝜆𝑛𝑘,𝑗). Then according to Theorem 2.3 from paper
[7] density of the zero function set 𝜙(𝜆) is equal to zero. It results from here, that this set
is a correctly distributed one (see [7, ch. I, S 6, p. 3]). Note, that due to the function type
minimality 𝜙(𝜆), its indicatrix of growth (see [7, ch. I, S 5, p. 4]) is uniformly is equal to zero.
Hence, according to Theorem 6.2 from paper [7] the following correlation holds true

lim
|𝜆|→∞,𝜆/∈𝐸

ln |𝜙(𝜆)|
|𝜆|

= 0, (8)

where 𝐸 is a set of circles 𝐵(𝜉𝑝, 𝑟𝑝) of a zero linear density, i.e.

lim
𝑟→∞

1

𝑟

∑︁
|𝜉𝑝|<𝑟

𝑟𝑝 = 0. (9)

Note, that the set 𝐸 covers the zero function set 𝜙(𝜆), and the correlation (8) holds true on
its bounds. To construct a needed entire function we will require a similar cover, possessing
some supplementary property: every bounded component of the cover contains only one group
𝑈𝑚 of zeros 𝜙. We are going to start construction of such a set cover {𝜆𝑚,𝑙}.

First of all we should note, that the circles 𝐵(𝜆𝑚,1, 4
−1|𝜆𝑚,1|), 𝑚 = 1, 2, . . ., do not meet

pairwise. Indeed, due to the Lemma condition |𝜆𝑚+1,1| ≥ 2|𝜆𝑚,1|, 𝑚 = 1, 2, . . .. Therefore, the
distance between centers of neighboring circles has the following low estimate:

|𝜆𝑚+1,1 − 𝜆𝑚,1| ≥ |𝜆𝑚+1,1| − |𝜆𝑚,1| ≥
|𝜆𝑚+1,1|

4
+

6|𝜆𝑚,1|
4

− |𝜆𝑚,1| >
|𝜆𝑚+1,1|

4
− |𝜆𝑚,1|

4
.

It results from here, that these circles do not meet. Whereas the sequence of centers modules
is growing, then any two circles do not meet.

Let us now choose a growing sequence of natural numbers
𝑚(6) < 𝑚(7) < . . . < 𝑚(𝑘) < . . . such that the following two conditions hold true: 1) for any
𝑘 ≥ 6 the group 𝑈𝑚 with 𝑚 ≥ 𝑚(𝑘) is completely in the circle 𝐵(𝜆𝑚,1, 𝑘

−1|𝜆𝑚,1|), 2) for every
𝑘 ≥ 6 and all 𝑚 = 𝑚(𝑘),𝑚(𝑘) + 1, . . . ,𝑚(𝑘 + 1) − 1 there is a number 𝜏𝑚 from the segment
[𝑘−1, (𝑘 − 1)−1] such that the circle 𝑆(𝜆𝑚,1, 𝜏𝑚|𝜆𝑚,1|) does not meet the set 𝐸.

The first condition will be satisfied, as groups 𝑈𝑚 are relatively small, i.e.

max
16𝑙6𝑀𝑚

|𝜆𝑚,1 − 𝜆𝑚,𝑙|
|𝜆𝑚,1|

→ 0, 𝑚→ ∞.

The satisfying of the second condition is achieved by correlation (9). Indeed, the relative length
of the segment [𝑘−1|𝜆𝑚,1|, (𝑘 − 1)−1|𝜆𝑚,1|], i.e. the value

|(𝑘 − 1)−1|𝜆𝑚,1| − 𝑘−1|𝜆𝑚,1||
|𝜆𝑚,1|

=
1

𝑘 − 1
− 1

𝑘

for every fixed 𝑘 ≥ 6 is constant when 𝑚→ ∞. At the same time, according to (9), the relative
sum of all circles radiuses 𝐵(𝜉𝑝, 𝑟𝑝), having a nonempty meeting with the circle 𝐵(𝜆𝑚,1, (𝑘 −
1)−1|𝜆𝑚,1|), approaches to zero when 𝑚→ ∞.

We can consider, that the first number 𝑚(6) is chosen rather large, that the following in-
equality holds true

|𝜆𝑚(6),1|
5

+ 1 6
|𝜆𝑚(6),1|

4
.
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Then the circles 𝐵(𝜆𝑚,1, 1 + 𝜏𝑚|𝜆𝑚,1|), 𝑚 ≥ 𝑚(6), do not meet pairwise.
Suppose Ω𝑚 = 𝐵(𝜆𝑚,1, 𝜏𝑚|𝜆𝑚,1|), 𝑚 ≥ 𝑚(6). By its construction the set Ω𝑚 completely

contains the group 𝑈𝑚, and its swelling Ω𝑚 + 𝐵(0, 1) does not meet the set Ω𝑗 + 𝐵(0, 1) for
all 𝑗 ̸= 𝑚, 𝑗 ≥ 𝑚(6). In particular, Ω𝑚 + 𝐵(0, 1) does not possess points of any group 𝑈𝑗,
𝑗 ̸= 𝑚, 𝑗 ≥ 𝑚(6). While increasing the number, if it is needed, 𝑚(6), we can consider, that for
all 𝑚 ≥ 𝑚(6) the set Ω𝑚 + 𝐵(0, 1) also does not possess a single point of the group 𝑈𝑗 when
𝑗 < 𝑚(6). Then for any 𝑚 < 𝑚(6) we can choose an open set Ω𝑚 such that Ω𝑚 completely
contains the group 𝑈𝑚, and sets Ω𝑗, 𝑗 < 𝑚(6), which do not meet pairwise and have an empty
meeting with sets Ω𝑘 +𝐵(0, 1), 𝑘 ≥ 𝑚(6).

Let us fix an arbitrary number 𝜀 ∈ (0, 1). Whereas the bound 𝜕Ω𝑚 of the set Ω𝑚 for all
𝑚 ≥ 𝑚(6) does not possess points 𝐸, then, according to (8), there is a constant 𝑎 > 0 such
that

|𝜙(𝜆)| ≥ 𝑎 exp(−𝜀|𝜆|), 𝜆 ∈ 𝜕Ω𝑚, 𝑚 = 1, 2, . . . (10)

The function 𝜙(𝜆) is a minimal exponential one. Then, due to Theorem 1.2 from paper [7],
its derivative 𝜙′(𝜆) possesses the same property. Therefore, there is a constant 𝑏 > 0, for which
the following inequalities hold true

|𝜙(𝜆)| 6 𝑏 exp(𝜀|𝜆|), 𝜆 ∈ C. (11)

|𝜙′(𝜆)| 6 𝑏 exp(𝜀|𝜆|), 𝜆 ∈ C. (12)

Let 𝑤 ∈ 𝜕Ω𝑚 and 𝜆 ∈ 𝐵(𝑤, exp(−3𝜀|𝜆𝑚,1|)). According to the formula for the primitive,
taking into account (12), we obtain:

|𝜙(𝜆) − 𝜙(𝑤)| = |
𝜆∫︁

𝑤

𝜙′(𝜉)𝑑𝜉| 6 max
𝜉∈[𝑤,𝜆]

|𝜙′(𝜉)||𝜆− 𝑤| 6 𝑏 max
𝜉∈[𝑤,𝜆]

exp(𝜀|𝜉|)|𝜆− 𝑤| 6

6 𝑏 exp(𝜀(|𝑤| + 1)) exp(−3𝜀|𝜆𝑚,1|) = 𝑏 exp(𝜀(|𝑤| + 1 − 3|𝜆𝑚,1|)).
Hereof, due to (10) we have:

|𝜙(𝜆)| ≥ |𝜙(𝑤)| − 𝑏 exp(𝜀(|𝑤| + 1 − 3|𝜆𝑚,1|)) ≥ 𝑎 exp(−𝜀|𝑤|) − 𝑏 exp(𝜀(|𝑤| + 1 − 3|𝜆𝑚,1|)) =

= exp(−𝜀|𝑤|)(𝑎− 𝑏 exp(𝜀(2|𝑤| + 1 − 3|𝜆𝑚,1|)).
As to the construction, for all 𝑚 ≥ 𝑚(6) the following embedding holds true Ω𝑚 ⊂
𝐵(𝜆𝑚,1, 5

−1|𝜆𝑚,1|). Consequently, the inequality holds true |𝑤 − 𝜆𝑚,1| 6 5−1|𝜆𝑚,1|. Then,
from the described above we obtain:

|𝜙(𝜆)| ≥ exp(−𝜀|𝑤|)(𝑎− 𝑏 exp(𝜀(12|𝜆𝑚,1|/5 + 1 − 3|𝜆𝑚,1))) =

= exp(−𝜀|𝑤|)(𝑎− 𝑏 exp(𝜀(−3|𝜆𝑚,1|/5 + 1))), 𝜆 ∈ 𝐵(𝑤, exp(−3𝜀|𝜆𝑚,1|)),
where 𝑤 ∈ 𝜕Ω𝑚 and 𝑚 ≥ 𝑚(6). Choose the number 𝑚0 ≥ 𝑚(6) such that for all 𝑚 ≥ 𝑚0

the inequality holds true: 𝑏 exp(𝜀(−3|𝜆𝑚,1|/5 + 1)) 6 𝑎/2. Taking into account, that |𝜆−𝑤| 6
exp(−3𝜀|𝜆𝑚,1|) < 1 and 𝜀 ∈ (0, 1), we obtain:

|𝜙(𝜆)| ≥ (2𝑒)−1𝑎 exp(−𝜀|𝜆|), 𝜆 ∈ 𝐵(𝑤, exp(−3𝜀|𝜆𝑚,1|)), 𝑤 ∈ 𝜕Ω𝑚, 𝑚 ≥ 𝑚0.

According to construction, the sets Ω𝑚 +𝐵(0, exp(−3𝜀|𝜆𝑚,1|)), 𝑚 ≥ 𝑚(6), do not meet
pairwise and do not meet with the sets Ω𝑗, 𝑗 < 𝑚(6). Hence, there is a constant 𝛾 > 0 such

that the sets Ω𝑚 +𝐵(0, exp(−3𝜀|𝜆𝑚,1|)) do not meet pairwise for all 𝑚 ≥ 1. Whereas all zeros
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of the function 𝜙 are in the unification
⋃︀

𝑚≥1 Ω𝑚, then, decreasing the needed number 𝑎 > 0,
we can consider, that the following estimates hold true:

|𝜙(𝜆)| ≥ (2𝑒)−1𝑎 exp(−𝜀|𝜆|), 𝜆 ∈ 𝐵(𝑤, exp(−3𝜀|𝜆𝑚,1|)), 𝑤 ∈ 𝜕Ω𝑚, 𝑚 ≥ 1. (13)

For any 𝑚 = 1, 2, . . . we will define the function with the following properties by 𝛽𝑚: 1)
𝛽𝑚 ∈ 𝐶∞(C), 2) 0 6 𝛽𝑚(𝑧) 6 1, 𝑧 ∈ C, 3) 𝛽𝑚(𝑧) = 1, 𝑧 ∈ Ω𝑚, 4) 𝛽𝑚(𝑧) = 0, 𝑧 /∈ Ω𝑚 +
𝐵(0, 𝛾 exp(−3𝜀|𝜆𝑚,1|)), 5) |(𝑑𝛽𝑚(𝑧)/𝑑𝑧| 6 exp(3𝜀|𝜆𝑚,1|), 𝑧 ∈ C, where the constant 𝛼 > 0 does
not depend on the number 𝑚 ≥ 1 (information about such functions is presented, for instance,
in [8], Theorem 1.4.1 and Formula (1.4.2)).

Let us consider the function

𝛽(𝜆) =
∞∑︁

𝑚=1

𝛽𝑚(𝜆)𝑃𝑚(𝜆).

It is defined in all the complex plane, differs from zero only in sets Ω𝑚 +𝐵(0, 𝛾 exp(−3𝜀|𝜆𝑚,1|)),
𝑚 ≥ 1, and it coincides with the function 𝛽𝑚(𝜆)𝑃𝑚(𝜆) in each of these sets. Likewise, in the
set Ω𝑚 it coincides with the function 𝑃𝑚(𝜆). Therefore, due to analyticity 𝑃𝑚(𝜆), 𝑚 ≥ 1, the
function 𝑑𝛽(𝜆)/𝑑𝜆 differs from zero only in sets (Ω𝑚+𝐵(0, 𝛾 exp(−3𝜀|𝜆𝑚,1|)))∖Ω𝑚, 𝑚 ≥ 1, and

in each of these sets it coincides with the function 𝑃𝑚(𝜆)𝑑𝛽𝑚(𝜆)/𝑑𝜆. According to inequality
(7) and property 5 of functions 𝛽𝑚 we obtain the estimate:⃒⃒⃒⃒

𝑑𝛽(𝜆)

𝑑𝜆

⃒⃒⃒⃒
6 𝐶 exp(𝐻𝐾𝑠+1(𝜆𝑚,1) + 3𝜀|𝜆𝑚,1|), 𝜆 ∈ 𝐵(𝜆𝑚,1, |𝜆𝑚,1|), 𝑚 ≥ 1. (14)

Due to construction the set diameter Ω𝑚 approaches to zero, when 𝑚 → ∞. Consequently,
there is a number 𝑚1 such that for all 𝑚 ≥ 𝑚1 the following embedding holds true

Ω𝑚 +𝐵(0, 𝛾 exp(−3𝜀|𝜆𝑚,1|)) ⊂ 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|), (15)

where 𝛿 > 0 is defined by the number 𝜀 > 0 in Lemma 1. According to this Lemma, we have:

𝐻𝐾𝑠+1(𝜆𝑚,1) + 3𝜀|𝜆𝑚,1| 6 𝐻𝐾𝑠+1(𝜆) + 4𝜀|𝜆|, 𝜆 ∈ 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|), 𝑚 ≥ 1.

Therefore, due to (14) and (15), there is a constant 𝐶1 > 0, for which the following inequalities
hold true⃒⃒⃒⃒

𝑑𝛽(𝜆)

𝑑𝜆

⃒⃒⃒⃒
6 𝐶1 exp(𝐻𝐾𝑠+1(𝜆) + 4𝜀|𝜆|), 𝜆 ∈ Ω𝑚 +𝐵(0, 𝛾 exp(−3𝜀|𝜆𝑚,1|)), 𝑚 ≥ 1.

Hereof, taking into account (13) and everything said above about the function 𝑑𝛽(𝜆)/𝑑𝜆 we
obtain:

|𝑣(𝜆)| =

⃒⃒⃒⃒
1

𝜙(𝜆)

𝑑𝛽(𝜆)

𝑑𝜆

⃒⃒⃒⃒
6 𝐶2 exp(𝐻𝐾𝑠+1(𝜆) + 5𝜀|𝜆|), 𝜆 ∈ C,

where 𝐶2 = 2𝑒𝑎−1𝐶1. This implies, that∫︁
C

|𝑣(𝜆)|2 exp(−2𝐻𝐾𝑠+1(𝜆) − 11𝜀|𝜆|)𝑑𝜎(𝜆) = 𝐶3 <∞,

where 𝑑𝜎 is a planar Lebesgue measure. The function 𝐻𝐾𝑠+1(𝜆) is convex, and, consequently,
subharmonic. Then, as it is known (see, for instance, [9, ch. 3, S 6, p.2, Theorem 3.6.2]), in the
space of locally integrated with the square root of the function module in C there is an element
𝑔, which (in general) satisfies the equality



AN ALMOST EXPONENTIAL SEQUENCE . . . 91

𝑑𝑔/𝑑𝜆 = 𝑣 (16)

and, Moreover, the estimate∫︁
C

|𝑔(𝜆)|2 exp(−2𝐻𝐾𝑠+1(𝜆) − 12𝜀|𝜆|)𝑑𝜎(𝜆) = 𝐶4 <∞. (17)

Let us show, that it is an element of the space 𝑃𝐷. According to (16), the generalized
derivative 𝑓 on 𝜆 is equal to zero everywhere on the plane. It is well known, that it means
analyticity 𝑓 in all the complex plane. Let us find the upper estimate for the entire function
module 𝑓(𝜆). Due to the function subharmonicity |𝑓(𝜆)| we have:

|𝑓(𝜆)| 6 1

𝜋

∫︁
𝐵(𝜆,1)

|𝑓(𝑤)|𝑑𝜎(𝑤) 6
1

𝜋

∫︁
𝐵(𝜆,1)

|𝛽(𝑤)|𝑑𝜎(𝑤) +
1

𝜋

∫︁
𝐵(𝜆,1)

|𝜙(𝑤)𝑔(𝑤)|𝑑𝜎(𝑤). (18)

Applying (7), Lemma 1, and also properties of the functions 𝛽𝑚(𝜆) and sets Ω𝑚, as for the
function above 𝑑𝛽(𝜆)/𝑑𝜆, we obtain the inequality

|𝛽(𝑤)| 6 𝐶5 exp(𝐻𝐾𝑠+1(𝑤) + 𝜀|𝑤|), 𝑤 ∈ C,
where 𝐶5 is some positive constant. Then for all 𝜆 ∈ C

1

𝜋

∫︁
𝐵(𝜆,1)

|𝛽(𝑤)|𝑑𝜎(𝑤) 6 𝐶5 sup
𝑤∈𝐵(𝜆,1)

exp(𝐻𝐾𝑠+1(𝑤) + 𝜀|𝑤|) 6 𝐶6 exp(𝐻𝐾𝑠+1(𝜆) + 2𝜀|𝜆|).

In the latter inequality we again applied Lemma 1. Likewise, applying (11), we obtain:

sup
𝑤∈𝐵(𝜆,1)

|𝜙(𝑤)| 6 𝐶7 exp(2𝜀|𝜆|), 𝜆 ∈ C.

Therefore, subject to the previous inequality due to (18) we have:

|𝑓(𝜆)| 6 𝐶6 exp(𝐻𝐾𝑠+1(𝜆) + 2𝜀|𝜆|) + 𝐶7 exp(2𝜀|𝜆|) 1

𝜋

∫︁
𝐵(𝜆,1)

|𝑔(𝑤)|𝑑𝜎(𝑤). (19)

To estimate the last integral we will apply the Cauchy-Bunyakovsky inequality. Due to (17),
we obtain: ∫︁

𝐵(𝜆,1)

|𝑔(𝑤)|𝑑𝜎(𝑤) 6

⎛⎜⎝ ∫︁
𝐵(𝜆,1)

|𝑔(𝑤)|2 exp(−2𝐻𝐾𝑠+1(𝑤) − 128𝜀|𝑤|)𝑑𝜎
∫︁

𝐵(𝜆,1)

exp(2𝐻𝐾𝑠+1(𝑤) + 12𝜀|𝑤|)𝑑𝜎

⎞⎟⎠
1/2

6

6

⎛⎜⎝𝐶4

∫︁
𝐵(𝜆,1)

exp(2𝐻𝐾𝑠+1(𝑤) + 12𝜀|𝑤|)𝑑𝜎

⎞⎟⎠
1/2

6 𝜋
√︀
𝐶4 exp

(︃
sup

𝑤∈𝐵(𝜆,1)

(𝐻𝐾𝑠+1(𝑤) + 6𝜀|𝑤|)

)︃
6

6 𝜋𝐶8 exp(𝐻𝐾𝑠+1(𝜆) + 6𝜀|𝜆|), 𝜆 ∈ C,
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where 𝐶8 is some positive constant (while obtaining the last inequality we applied Lemma 1).
Thus, subject to (19) we obtain:

|𝑓(𝜆)| 6 𝐶6 exp(𝐻𝐾𝑠+1(𝜆) + 2𝜀|𝜆|) + 𝐶7𝐶8 exp(𝐻𝐾𝑠+1(𝜆) + 8𝜀|𝜆|) 6

6 𝐶9 exp(𝐻𝐾𝑠+1(𝜆) + 8𝜀|𝜆|), 𝜆 ∈ C.
Whereas the number 𝜀 > 0 can be arbitrarily small, then, due to (1), the following estimate
will hold true

|𝑓(𝜆)| 6 𝐶9 exp𝐻𝐾𝑠+2(𝜆), 𝜆 ∈ C,
which means, that the function 𝑓(𝜆) is an element of the space 𝑃𝐷.

It is remained to verify the equalities

𝑏𝑚,𝑗 = 𝑞𝑚,𝑗−1(𝑓), 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚.

By definition, the numbers 𝑞𝑚,𝑗−1(𝑓) are coefficients of the polynomial

𝑞𝑚(𝜆, 𝑓) =
1

2𝜋𝑖

∫︁
Γ𝑚

𝑓(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁,

decomposed on degrees 𝜆 − 𝜆𝑚,1. In the latter formula Γ𝑚 is an arbitrary contour, totally
covering the group 𝑈𝑚. Due to construction the set Ω𝑚 contains the group 𝑈𝑚. Hence, as a
contour Γ𝑚 we can take the frontier 𝜕Ω𝑚 of the set Ω𝑚. In the set Ω𝑚, and in its frontier,
𝜕Ω𝑚, the function 𝑓(𝜆) coincides with the function 𝑃𝑚(𝜆) − 𝜙(𝜆)𝑔(𝜆). Therefore, 𝑔(𝜆) =
(𝑃𝑚(𝜆) − 𝑓(𝜆))/𝜙(𝜆) is a function, analytical on Ω𝑚 and possibly having some poles in points
of the group 𝑈𝑚. However, existence of at least one such pole contradicts inequality (17).
Consequently, 𝑔(𝜆) does not possess special points in Ω𝑚. Then we obtain:

𝑞𝑚(𝜆, 𝑓) =
1

2𝜋𝑖

∫︁
𝜕Ω𝑚

𝑓(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁 =

1

2𝜋𝑖

∫︁
𝜕Ω𝑚

𝑃𝑚(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁−

− 1

2𝜋𝑖

∫︁
𝜕Ω𝑚

𝜙(𝜁)𝑔(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁.

The polynomial 𝜔𝑚(𝜁) transforms to zero only in the points of the group 𝑈𝑚. The function
𝜙(𝜁) also transforms to zero in these points. Therefore, 𝜙(𝜁)/𝜔𝑚(𝜁) is an entire function. The
fraction 𝜔𝑚(𝜁) − 𝜔𝑚(𝜆)/(𝜁 − 𝜆) is also an entire function. Hence, according to the Cauchy
theorem, the latter integral is equal to zero and we have:

𝑞𝑚(𝜆, 𝑓) =
1

2𝜋𝑖

∫︁
𝜕Ω𝑚

𝑓(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁 =

=
1

2𝜋𝑖

∫︁
𝜕Ω𝑚

𝑃𝑚(𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁 = 𝑞𝑚(𝜆, 𝑃𝑚).

Hereof, subject to (6) we obtain

𝑞𝑚,𝑗−1(𝑓) = 𝑞𝑚,𝑗−1(𝑃𝑚) = 𝑏𝑚,𝑗, 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚.

The Lemma has been proved.

Theorem 3. Let 𝐷 be a convex domain in C, the sequence {𝜆𝑚,𝑙} is divided into relatively

small groups 𝑈𝑚 so, that 𝒩 = 0, and sequence of functions ℰ̃ = {𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑝=1 is defined by
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formula (2). Then ℰ̃ is an almost exponential sequence in the domain 𝐷 with the index 𝜆𝑚,1

(to be more precise, with the indexes 𝜆′𝑚,𝑗, where 𝜆
′
𝑚,𝑗 = 𝜆𝑚,1, 𝑗 = 1, . . . , 𝑁𝑚).

Proof. As it was already said above, in paper [2] it was stated (corollary of Lemma 5), that
with 𝒩 = 0 for the system ℰ̃ the following item holds true 1) from the definition of an almost
exponential sequence. Let us show, that when 𝒩 = 0 for ℰ̃ item 2) also holds true.

Let us assume, that item 2) is not valid. Then there is a number 𝑝 such that for any
𝑠 = 1, 2, . . . there are numbers 𝑚(𝑠) → ∞, when 𝑠→ ∞, and 𝑙(𝑠), when the following inequality
holds true

𝑠−1 exp(𝐻𝐾𝑝(𝜆𝑚,1)) > sup
𝑤∈𝐾𝑠

|𝑒(𝑚(𝑠),𝑙(𝑠)(𝑤)|. (20)

Thus, we obtain the sequence of functions {𝑒𝑚(𝑠),𝑙(𝑠)}∞𝑠=1, possessing properties (20). Whereas
|𝜆𝑚,1| unlimitedly grows with 𝑚 →, then, proceeding to the sequence, we can consider, that
|𝜆𝑚(𝑠)+1,1| ≥ 2|𝜆𝑚(𝑠),1|, 𝑠 = 1, 2, . . .. According to the condition 𝒩 = 0, i.e. 𝑁𝑚/|𝜆𝑚,1| → 0
when 𝑚 → ∞. Hence, we can also assume, that 𝑁𝑚(𝑠)/|𝜆𝑚(𝑠),1| 6 2−𝑠, 𝑠 = 1, 2, . . .. Then, due
to Lemma 2 for any sequence 𝑏 = {𝑏𝑠,𝑗} from the space 𝑅(𝐷) there is the function 𝑓 ∈ 𝒫𝐷 such
that 𝑏𝑠,𝑗 = 𝑞𝑚(𝑠),𝑗−1(𝑓), 𝑠 = 1, 2, . . ., 𝑗 = 1, . . . , 𝑁𝑚(𝑠).

Let 𝑊 ′ be a closure in the space 𝐻(𝐷) of the linear capsule of the system of functions

{𝑧𝑛 exp(𝜆𝑚(𝑠),𝑙𝑧)}∞,𝑀𝑚(𝑠),𝑛𝑚(𝑠),𝑙−1

𝑠=1,𝑙=1,𝑛=0 . Then, as it is easy to notice, 𝑊 ′ is closed and invariant
with respect to operator of the subspace differentiation in 𝐻(𝐷), and functions of the system

{𝑧𝑛 exp(𝜆𝑚(𝑠),𝑙𝑧)}∞,𝑀𝑚(𝑠),𝑛𝑚(𝑠),𝑙−1

𝑠=1,𝑙=1,𝑛=0 are eigenfunctions and associated functions of this operator
in 𝑊 ′. Due to construction the subspace 𝑊 is not empty and differs from 𝐻(𝐷). Indeed,
let 𝑧 be some point in the domain 𝐷 and number 𝑡 is such that the compact 𝐾𝑡 contains 𝑧.
Let us consider the function 𝜙(𝜆) = 𝜙(𝜆) exp(𝜆𝑧), 𝜆 ∈ C, where, like in Lemma 2, 𝜙(𝜆) is a
function, which transforms to zero only in the points 𝜆𝑚(𝑠),𝑗 with the order 𝑛𝑚(𝑠),𝑗, 𝑠 = 1, 2, . . .,
𝑗 = 1, . . . , 𝑁𝑚(𝑠). Due to (11) and the compact choice 𝐾𝑡, the following inequality holds true

|𝜙(𝜆)| 6 𝑏 exp(𝜀|𝜆| +𝑅𝑒(𝑧𝜆)) 6 𝑏 exp(𝜀|𝜆| +𝐻𝐾𝑡(𝜆)), 𝜆 ∈ C.
Whereas 𝜀 > 0 can be arbitrarily small, due to (1) we obtain:

|𝜙(𝜆)| 6 𝑏 exp𝐻𝐾𝑡+1(𝜆), 𝜆 ∈ C.
This estimate means, that the function 𝜙(𝜆) belongs to the space 𝒫𝐷. Then, as it was stated
above, there is a functional 𝜇 ∈ 𝐻*(𝐷), for which 𝜙(𝜆) is the Laplace transform: 𝜙(𝜆) =
(𝜇, exp𝜆𝑤). Differentiating the latter equality, we obtain:

0 = 𝜙(𝑛)(𝜆𝑚(𝑠),𝑙) = (𝜇, 𝑧𝑛 exp(𝜆𝑚(𝑠),𝑙𝑤), 𝑠 = 1, 2, . . . , 𝑙 = 1, . . . ,𝑀𝑚(𝑠), 𝑛 = 0, . . . , 𝑛𝑚(𝑠),𝑙−1.

Consequently, the zero functional 𝜇 transforms to zero in all system functions {𝑧𝑛 exp(𝜆𝑚(𝑠),𝑙𝑧)}∞,?𝑀𝑚(𝑠),𝑛𝑚(𝑠),𝑙−1

𝑠=1,𝑙=1,𝑛=0 ,
and it means, by linearity and continuity on all the subspace 𝑊 ′. Hence, 𝑊 ′ cannot coincide
with the space 𝐻(𝐷).

Therefore, all conditions of Theorem 1 from paper [2] are satisfied. According to this, exis-
tence of the pointed out entire function 𝑓 ∈ 𝒫𝐷 for every sequence 𝑏 = {𝑏𝑠,𝑙} from the space

𝑅(𝐷) is equivalent to the system of functions {𝑒𝑚(𝑠),𝑗}
∞,𝑁𝑚(𝑠)

𝑠=1,𝑗=1 is an almost exponential basis
in the subspace 𝑊 with indexes 𝜆𝑚(𝑠),1, 𝑠 = 1, 2, . . . (to be more precise, with indexes 𝜆′𝑚(𝑠),𝑗,

where 𝜆′𝑚(𝑠),𝑗 = 𝜆𝑚(𝑠),1, 𝑗 = 1, . . . , 𝑁𝑚(𝑠)). In particular, {𝑒𝑚(𝑠),𝑗}
∞,𝑁𝑚(𝑠)

𝑠=1,𝑗=1 is an almost exponen-

tial sequence in the domain 𝐷 with indexes 𝜆𝑚(𝑠),1, 𝑠 = 1, 2, . . .. Due to property 2) for such a
sequence for the number 𝑝 there is a constant 𝑐 > 0 and a number 𝑠(𝑝) such that
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𝑐 exp(𝐻𝐾𝑝(𝜆𝑚(𝑠),1)) 6 sup
𝑤∈𝐾𝑠(𝑝)

|𝑒𝑚(𝑠),𝑗(𝑤)|, 𝑠 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚(𝑠).

Whereas 𝐾𝑠 is a growing sequence of compacts, this implies, that

𝑐 exp(𝐻𝐾𝑝(𝜆𝑚(𝑠),1)) 6 sup
𝑤∈𝐾𝑠

|𝑒𝑚(𝑠),𝑙(𝑠)(𝑤)|, 𝑠 ≥ 𝑠(𝑝).

This inequality for all 𝑠 ≥ 𝑠(𝑝) such that 𝑠−1 < 𝑐, contradicts (20). Thus, our assumption, that
item 2) from the definition of an almost exponential sequence for the system ℰ̃ does not hold
true, is wrong. The theorem has been proved.

Remark. The condition 𝒩 = 0 in Theorem 3 is significant. To prove it we will consider the
following example. Let 𝜀 ∈ (0, 1) and {𝜆𝑚}∞𝑚=1 be an unlimitedly growing sequence of positive
numbers with orders 𝑛𝑚, is equal to integer parts [𝜀𝜆𝑚] of numbers 𝜀𝜆𝑚, 𝑚 = 1, 2, . . .. Let
us divide the sequence {𝜆𝑚}∞𝑚=1 into relatively small groups 𝑈𝑚 so, that every group 𝑈𝑚 will
contain only point 𝜆𝑚. Then 𝑁𝑚 = 𝑛𝑚, 𝑚 = 1, 2, . . ., and, therefore,

𝒩 = lim
𝑚→∞

𝑛𝑚

𝜆𝑚
= lim

𝑚→∞

[𝜀𝜆𝑚]

𝜆𝑚
= 𝜀 > 0.

In this case the system of functions ℰ̃ = {𝑒𝑚,𝑝(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 is easily defined. Indeed, for all
𝑚 = 1, 2, . . . we obtain: 𝜔𝑚(𝜁) = (𝜁 − 𝜆𝑚)𝑛𝑚 . Consequently, the function

𝑞𝑚(𝜆, 𝑧) =
1

2𝜋𝑖

∫︁
Γ𝑚

exp(𝑧𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁

with every fixed 𝑧 for the variable 𝜆 is a polynomial of the degree not more than 𝑛𝑚 − 1, 𝑗
derivative of which for all 𝑗 = 0, . . . , 𝑛𝑚 − 1 in the point 𝜆𝑚 coincides with the corresponding
derivative function exp(𝑧𝜆), calculated in the point 𝜆𝑚. The latter is equal to 𝑧𝑗 exp(𝜆𝑚𝑧).
By definition the function 𝑒𝑚,𝑗(𝑧) is (𝑗 − 1) derivative 𝑞𝑚(𝜆, 𝑧), calculated in the point 𝜆𝑚.
Therefore,

𝑒𝑚,𝑗(𝑧) = 𝑧𝑗−1 exp(𝜆𝑚𝑧), 𝑗 = 1, . . . , 𝑛𝑚, 𝑚 = 1, 2, . . . .

As a domain 𝐷 we will take a triangle with the vertex in the points (0, 0), (−1, 1) and (1,−1).
For all 𝑠 = 1, 2, . . ., 𝑚 = 1, 2, . . . and 𝑗 = 2, . . . , 𝑛𝑚 we have:

sup
𝑤∈𝐾𝑠

|𝑒𝑚,𝑗(𝑤)| 6 sup
𝑤∈𝐷

|𝑒𝑚,𝑗(𝑤)| = sup
𝑤∈𝐷

|𝑧𝑗−1 exp(𝜆𝑚𝑤)| =

= sup
𝑥∈(1,0)

exp((𝑗 − 1) ln(−
√

2𝑥) + 𝑥𝜆𝑚).

By means of simple calculations we obtain, that the latter supremum is achieved in the point
𝑥 = (1− 𝑗)/𝜆𝑚, and it is equal to exp((𝑗−1) ln(

√
2((𝑗−1)/𝜆𝑚)) + 1− 𝑗). Hereof, with 𝑗 = 𝑛𝑚,

rather large 𝑚, and all 𝑠 = 1, 2, . . ., we obtain:

sup
𝑤∈𝐾𝑠

|𝑒𝑚,𝑛𝑚(𝑤)| 6 exp(([𝜀𝜆𝑚] − 1) ln(
√

2(([𝜀𝜆𝑚] − 1)/𝜆𝑚)) + 1 − [𝜀𝜆𝑚]) 6

6 exp(([𝜀𝜆𝑚] − 1) ln(
√

2(([𝜀𝜆𝑚] − 1)/𝜆𝑚)) + 1 − [𝜀𝜆𝑚]) 6 exp(1 − [𝜀𝜆𝑚]) 6

6 exp(2 − 𝜀𝜆𝑚) 6 9 exp(−𝜀𝜆𝑚). (21)

Let us choose the number 𝑝 so, that the following inequality holds true

𝐻𝐾𝑝(1) ≥ 𝐻𝐷(1) − 𝜀/2 = −𝜀/2.
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Then for all 𝑚 = 1, 2, . . . we have:

𝐻𝐾𝑝(𝜆𝑚) = 𝜆𝑚𝐻𝐾𝑝(𝜆𝑚/𝜆𝑚) = 𝜆𝑚𝐻𝐾𝑝(1) ≥ −𝜀𝜆𝑚/2.
Subject to (21) it means, that item 2) from the definition of an almost exponential sequence
does not hold true for the system ℰ̃ .

Let 𝑊 be a closure in the space 𝐻(𝐷) of the linear capsule of the functions system

{𝑧𝑛 exp(𝜆𝑚,𝑙𝑧)}∞,𝑀𝑚,𝑛𝑚,𝑙−1

𝑠=1,𝑙=1,𝑛=0 . Then, as it is easy to notice, 𝑊 is closed and invariant with respect
to the operator of subspace differentiation in 𝐻(𝐷). Further we will consider, that the subspace
𝑊 is nontrivial.

The following result follows directly from Theorem 3 and Theorem 1 in paper [2].

Theorem 4. Let 𝐷 be a convex domain in C, the sequence {𝜆𝑚,𝑙} is divided into relatively

small groups 𝑈𝑚 so, that 𝒩 = 0, and sequence of functions ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 is defined by
Formula (2). Then the following statements are equivalent:

1) the system of functions ℰ̃ is a basis in the space 𝑊 ;
2) for every sequence 𝑏 = {𝑏𝑚,𝑗} from the space 𝑅(𝐷) there is a function 𝑓 ∈ 𝒫𝐷 such that

𝑏𝑚,𝑝 = 𝑞𝑚,𝑗−1(𝑓), 𝑚 = 1, 2, . . ., 𝑗 = 1, . . . , 𝑁𝑚.

We will say (see[2]), that the system of functions ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 possesses a Kathe
group property, if for any number 𝑝 there is a number 𝑠 and a constant 𝐶, satisfying the
following condition: for every 𝑚 = 1, 2, . . . and every function ℎ𝑚 of the form

ℎ𝑚(𝑧) =
𝑁𝑚∑︁
𝑗=1

𝑎𝑚,𝑗𝑒𝑚,𝑗(𝑧)

the following inequality holds true

𝑁𝑚∑︁
𝑗=1

|𝑎𝑚,𝑗| sup
𝑧∈𝐾𝑝

|𝑒𝑚,𝑗(𝑧)| 6 𝐶 sup
𝑧∈𝐾𝑠

|ℎ𝑚(𝑧)|.

Theorem 5. Let 𝐷 be a convex domain in C, sequence {𝜆𝑚,𝑙} is divided into relatively

small groups 𝑈𝑚 so, that 𝒩 = 0, and sequence of functions ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 is defined by

Formula (2). Then ℰ̃ possesses a Kathe group property.
Proof. Assume, that the system ℰ̃ does not possess a Kathe group property. Then there is

a number 𝑝 such that for every 𝑠 = 1, 2, . . . there is a number 𝑚(𝑠) → ∞, when 𝑠 → ∞, and
the function ℎ𝑠 of the form

ℎ𝑠(𝑧) =

𝑁𝑚(𝑠)∑︁
𝑗=1

𝑎𝑚(𝑠),𝑗𝑒𝑚(𝑠),𝑗(𝑧),

for which the following inequality holds true

𝑁𝑚(𝑠)∑︁
𝑗=1

|𝑎𝑚(𝑠),𝑗| sup
𝑧∈𝐾𝑝

|𝑒𝑚(𝑠),𝑗(𝑧)| > 𝑠 sup
𝑧∈𝐾𝑠

|ℎ𝑠(𝑧)|. (22)

Whereas |𝜆𝑚,1| unlimitedly grows with 𝑚 → ∞, then, proceeding to the subsequence, we
can consider, that |𝜆𝑚(𝑠)+1,1| ≥ 2|𝜆𝑚(𝑠),1|, 𝑠 = 1, 2, . . .. According to the condition 𝒩 = 0,
i.e. 𝑁𝑚/|𝜆𝑚,1| → 0 when 𝑚 → ∞. Therefore, we can consider, that 𝑁𝑚(𝑠)/|𝜆𝑚(𝑠),1| 6 2−𝑠,
𝑠 = 1, 2, . . .. Then, due to Lemma 2 for every sequence 𝑏 = {𝑏𝑠,𝑗} from the space 𝑅(𝐷) there is
a function 𝑓 ∈ 𝒫𝐷 such that 𝑏𝑠,𝑗 = 𝑞𝑚(𝑠),𝑗−1(𝑓), 𝑠 = 1, 2, . . ., 𝑗 = 1, . . . , 𝑁𝑚(𝑠).
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Let 𝑊 ′ be a closure in the space 𝐻(𝐷) of a linear capsule of the system of functions

{𝑧𝑛 exp(𝜆𝑚(𝑠),𝑙𝑧)}∞,𝑀𝑚(𝑠),𝑛𝑚(𝑠),𝑙−1

𝑠=1,𝑙=1,𝑛=0 . Like in Theorem 3, all conditions of Theorem 1 from pa-

per [2] are satisfied. Then, according to this Theorem the system of functions {𝑒𝑚(𝑠),𝑗}
∞,𝑁𝑚(𝑠)

𝑠=1,𝑗=1

is an almost exponential basis in the subspace 𝑊 ′ with indexes 𝜆𝑚(𝑠),1, 𝑠 = 1, 2, . . ..
Whereas 𝑁𝑚(𝑠)/|𝜆𝑚(𝑠),1| 6 2−𝑠, 𝑠 = 1, 2, . . ., then the series

∞∑︁
𝑠=1

𝑁𝑚(𝑠)

|𝜆𝑚(𝑠),1|

converge. It results from here, that, the value 𝒥 (Λ), defined in paper [1], for the sequence
Λ = {𝜆𝑘}∞𝑘=1, consisting of points 𝜆𝑚(𝑠),1, 𝑠 = 1, 2, . . ., where every point 𝜆𝑚(𝑠),1 is applied in
it 𝑁𝑚(𝑠) times, is equal to zero. Then, according to the corollary of Theorem 3 in paper [1]

the system of functions {𝑒𝑚(𝑠),𝑗}
∞,𝑁𝑚(𝑠)

𝑠=1,𝑗=1 is a Kathe basis in 𝑊 ′. In particular, for the number 𝑝
there is a number 𝑠(𝑝) and a constant 𝐵 > 0 such that for any function 𝑔 ∈ 𝑊 ′ the following
inequality holds true

∞,𝑁𝑚(𝑠)∑︁
𝑠=1,𝑗=1

|𝑑𝑚(𝑠),𝑗| sup
𝑧∈𝐾𝑝

|𝑒𝑚(𝑠),𝑗(𝑧)| 6 𝐵 sup
𝑧∈𝐾𝑠(𝑝)

|𝑔(𝑧)|,

where

𝑔(𝑧) =

∞,𝑁𝑚(𝑠)∑︁
𝑠=1,𝑗=1

𝑑𝑚(𝑠),𝑗𝑒𝑚(𝑠),𝑗(𝑧), 𝑧 ∈ 𝐷.

Whereas 𝐾𝑠 is a growing sequence of compacts, it implies, that

∞,𝑁𝑚(𝑠)∑︁
𝑠=1,𝑗=1

|𝑑𝑚(𝑠),𝑗| sup
𝑧∈𝐾𝑝

|𝑒𝑚(𝑠),𝑗(𝑧)| 6 𝐵 sup
𝑧∈𝐾𝑠

|𝑔(𝑧)|, 𝑠 ≥ 𝑠(𝑝).

This inequality for all 𝑠 ≥ 𝑠(𝑝) such that 𝑠 > 𝐵, contradicts (22). Thus, our assumption,
that the system ℰ̃ does not possess a Kathe group property, is wrong. The Theorem has been
proved.

Alongside with the system ℰ̃ we will consider other systems of functions ℰ ′ = {𝑒′𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1.
Assume

𝑒′𝑚,𝑗(𝑧) =
𝑁𝑚∑︁
𝑘=1

𝑎𝑚,𝑗,𝑘𝑒𝑚,𝑘(𝑧), 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚. (23)

We will state, that the system ℰ̃ ′ is normalized, if for all 𝑚 = 1, 2, . . .

max
16𝑘6𝑁𝑚

|𝑎𝑚,𝑗,𝑘| = 1, 𝑗 = 1, . . . , 𝑁𝑚.

The following results were obtained directly from Theorems 3 and 5, and also Lemma 8 and
Theorem 2 in paper [2].

Theorem 6. Let 𝐷 be a convex domain in C, sequence {𝜆𝑚,𝑙} is divided into relatively small

groups 𝑈𝑚 so, that 𝒩 = 0. Then any normalized system ℰ̃ ′ = {𝑒′𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1, defined by
Formulae (23) and (2), is an almost exponential sequence in the domain 𝐷 with indexes 𝜆𝑚,1.
Theorem 7. Let 𝐷 be a convex domain in C, sequence {𝜆𝑚,𝑙} is divided into relatively small

groups 𝑈𝑚 so, that 𝒩 = 0, and the system ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 is defined by Formula (2). If

in the subspace 𝑊 there is a basis of the form (23), then the system ℰ̃ is also a basis in 𝑊 .
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Theorem 7 reduces the problem of the basis existence by relatively small groups in a subspace
𝑊 leads to verifying of the system basis ℰ̃ in this subspace. In conclusion, we will present
description of all possible bases in 𝑊 .

For every 𝑚 = 1, 2, . . . we will define the matrix, compiled from coefficients of function
disintegration 𝑒′𝑚,𝑗(𝑧) due to the system ℰ̃𝑚 = {𝑒𝑚,𝑗(𝑧)}𝑁𝑚

𝑗=1 by 𝒜𝑚 = (𝑎𝑚,𝑗,𝑘). Let 𝒜𝑚 be a

nongenerated and 𝒜−1
𝑚 = (𝑏𝑚,𝑗,𝑘) be a matrix, reciprocal to 𝒜𝑚. Assume

a(A) = lim
𝑚→∞

max
16𝑗,𝑘6𝑁𝑚

ln |𝑏𝑚,𝑗,𝑘|
|𝜆𝑚,1|

.

Note, that in the case, when 𝐷 is a limited convex domain, the value a(A) coincides with the
value a𝐷(A), introduced in paper [2].

Theorem 8. Let 𝐷 be a convex domain in C, sequence {𝜆𝑚,𝑙} is divided into relatively small

groups 𝑈𝑚 so, that 𝒩 = 0. Suppose, that the system ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1, defined by Formula

(2), is a basis in the subspace 𝑊 , and the system ℰ̃ ′ = {𝑒′𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1, defined by Formula
(32), is a normalized sequence. then the following statements are equivalent.

1) system ℰ̃ ′ is the basis in 𝑊 .
2) system ℰ̃ ′ possesses a Kathe group property.

If 𝐷 is a limited domain, statements 1) and 2) are equivalent.

3) a(A) = 0.
Proof. Equivalency of statements 1) and 3) is proved in Theorem 3 in paper [2]. Let us

prove equivalency of 1) and 2).
Assume, that the system ℰ̃ ′ is a basis in the subspace𝑊 . Whereas ℰ̃ ′ is a normalized sequence,

then due to Theorem 6 it is an almost exponential basis in 𝑊 with indexes 𝜆𝑚,1 (to be more
precise, with indexes 𝜆′𝑚,𝑗, where 𝜆′𝑚,𝑗 = 𝜆𝑚,1, 𝑗 = 1, . . . , 𝑁𝑚). According to nontriviality of the
subspace 𝑊 there is a non-zero functional 𝜇 ∈ 𝐻*(𝐷), which transforms to zero in all functions

from 𝑊 . In particular, it concerns functions of the system {𝑧𝑛 exp(𝜆𝑚,𝑙𝑧)}∞,𝑀𝑚,𝑛𝑚,𝑙−1

𝑠=1,𝑙=1,𝑛=0 . Let
𝜓(𝜆) be a Laplace transform of the functional 𝜇. Then the following equalities hold true

0 = 𝜓(𝑛)(𝜆𝑚,𝑙) = (𝜇, 𝑧𝑛 exp(𝜆𝑚,𝑙𝑤), 𝑚 = 1, 2, . . . , 𝑙 = 1, . . . ,𝑀𝑚, 𝑛 = 0, . . . , 𝑛𝑚,𝑙 − 1,

i.e. the function 𝜓(𝜆) vanishes in points 𝜆𝑚,𝑙 with the order not less than 𝑛𝑚,𝑙, 𝑚 = 1, 2, . . .,
𝑙 = 1, . . . ,𝑀𝑚. Whereas 𝜓(𝜆) is an entire exponential function, then due to Theorem 2.3 from
paper [7, ch. I] the density of its zero set is finite. According to the fact, that groups 𝑈𝑚

are relatively small, the sequence Λ = {𝜆𝑘}∞𝑘=1, compiled from points 𝜆𝑚,1, 𝑚 = 1, 2, . . . will
also have a finite density, and every point 𝜆𝑚,1 is applied in it 𝑁𝑚 times. It results from here,
that, the value J(𝜆), defined in paper [1], is equal to zero. Then, according to the corollary of
Theorem 3 in paper [1] the system of functions ℰ̃ ′ is a Kathe basis in 𝑊 , i.e. for every number
𝑝 there is a number 𝑠 and a constant 𝐵 > 0 such that for any function 𝑔 ∈ 𝑊 the following
inequality holds true

∞,𝑁𝑚∑︁
𝑠=1,𝑗=1

|𝑑𝑚,𝑗| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑗(𝑧)| 6 𝐵 sup
𝑧∈𝐾𝑠

|𝑔(𝑧)|,

where

𝑔(𝑧) =

∞,𝑁𝑚∑︁
𝑠=1,𝑗=1

𝑑𝑚,𝑗𝑒
′
𝑚,𝑗(𝑧), 𝑧 ∈ 𝐷.

In particular, for any number 𝑚 = 1, 2, . . . and any function ℎ𝑚 of the form
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ℎ𝑚(𝑧) =
𝑁𝑚∑︁
𝑗=1

𝑎𝑚,𝑗𝑒
′
𝑚,𝑗(𝑧)

the following inequality holds true

𝑁𝑚∑︁
𝑗=1

|𝑎𝑚,𝑗| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑗(𝑧)| 6 𝐵 sup
𝑧∈𝐾𝑠

|ℎ𝑚(𝑧)|. (24)

It means, that the system ℰ̃ ′ possesses a Kathe group property.
And, let the system ℰ̃ ′ possess a Kathe group property. Then for every 𝑚 = 1, 2, . . . matrix

𝒜𝑚 = (𝑎𝑚,𝑗,𝑘) is a nongenerated. Indeed, on the contrary, for some number 𝑚 = 1, 2, . . . there
is a set of coefficients 𝑎𝑚,1, . . . , 𝑎𝑚,𝑁𝑚 , which are not equal to zero simultaneously and such that

ℎ𝑚(𝑧) =
𝑁𝑚∑︁
𝑗=1

𝑎𝑚,𝑗𝑒
′
𝑚,𝑗(𝑧) ≡ 0.

Then for every 𝑝, 𝑠 = 1, 2, . . . we obtain:

𝑁𝑚∑︁
𝑗=1

|𝑎𝑚,𝑗| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑗(𝑧)| > 0 = sup
𝑧∈𝐾𝑠

|ℎ𝑚(𝑧)|.

This contradicts inequality (24).

According to the condition, the system ℰ̃ = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1 is a basis in the subspace 𝑊 ,

and due to Theorem 3 the system ℰ̃ will be an almost exponential basis in 𝑊 with indexes
𝜆𝑚,1. Then, like in the case with the system ℰ̃ ′, for any number 𝑝 there is a number 𝑠 and a
constant 𝐶 > 0 such that for any function 𝑔 ∈ 𝑊 the following inequality holds true

∞,𝑁𝑚∑︁
𝑠=1,𝑗=1

|𝑑𝑚,𝑗| sup
𝑧∈𝐾𝑝

|𝑒𝑚,𝑗(𝑧)| 6 𝐶 sup
𝑧∈𝐾𝑠

|𝑔(𝑧)|, (25)

where

𝑔(𝑧) =

∞,𝑁𝑚∑︁
𝑠=1,𝑗=1

𝑑𝑚,𝑗𝑒𝑚,𝑗(𝑧), 𝑧 ∈ 𝐷.

Let 𝒜−1
𝑚 = (𝑏𝑚,𝑗,𝑘) be matrix, reciprocal to 𝒜𝑚, 𝑚 = 1, 2, . . .. For any function 𝑔 ∈ 𝑊 we have:

𝑔(𝑧) =

∞,𝑁𝑚∑︁
𝑠=1,𝑗=1

𝑑𝑚,𝑗𝑒𝑚,𝑗(𝑧) =

∞,𝑁𝑚∑︁
𝑚=1,𝑗=1

𝑑𝑚,𝑗

𝑁𝑚∑︁
𝑘=1

𝑏𝑚,𝑗,𝑘𝑒
′
𝑚,𝑘(𝑧) =

=

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

𝑒′𝑚,𝑘(𝑧)
𝑁𝑚∑︁
𝑗=1

𝑑𝑚,𝑗𝑏𝑚,𝑗,𝑘 =

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

𝑑′𝑚,𝑘𝑒
′
𝑚,𝑘(𝑧), 𝑧 ∈ 𝐷. (26)

Therefore, we deal with the function disintegration 𝑔(𝑧) according to the system ℰ̃ ′. Whereas
𝑔(𝑧) is an arbitrary function from the subspace 𝑊 , then to set the system basis ℰ̃ ′ in 𝑊 it is
enough to prove, that the latter series uniformly converge on compacts in the domain 𝐷, and
the function disintegration 𝑔(𝑧) according to the system ℰ̃ ′ is unique.

Let us fix 𝑝 ≥ 1. We obtain:
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∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

|𝑑𝑚,𝑘| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)| =

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)|

⃒⃒⃒⃒
⃒
𝑁𝑚∑︁
𝑗=1

𝑑𝑚,𝑗𝑏𝑚,𝑗,𝑘

⃒⃒⃒⃒
⃒ 6

6
∞,𝑁𝑚∑︁

𝑚=1,𝑘=1

sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)|
𝑁𝑚∑︁
𝑗=1

|𝑑𝑚,𝑗𝑏𝑚,𝑗,𝑘| =

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

|𝑑𝑚,𝑗|
𝑁𝑚∑︁
𝑗=1

|𝑏𝑚,𝑗,𝑘| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)|.

According to the condition the system ℰ̃ ′ possesses a Kathe group property. Consequently, due
to (24), there is a number 𝑠 and a constant 𝐵 such that

𝑁𝑚∑︁
𝑘=1

|𝑏𝑚,𝑗,𝑘| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)| 6 𝐵 sup
𝑧∈𝐾𝑠

|𝑒𝑚,𝑗(𝑧)|, 𝑚 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁𝑚.

Hereof and from the above results, subject to (25) we obtain

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

|𝑑′𝑚,𝑘| sup
𝑧∈𝐾𝑝

|𝑒′𝑚,𝑘(𝑧)| 6 𝐵

∞,𝑁𝑚∑︁
𝑚=1,𝑘=1

|𝑑𝑚,𝑗| sup
𝑧∈𝐾𝑠

|𝑒𝑚,𝑗(𝑧)| 6 𝐶 sup
𝑧∈𝐾𝑟

|𝑔(𝑧)|.

It means, that the series under consideration uniformly converges on compacts 𝐾𝑝,
𝑝 = 1, 2, . . .. Whereas these compacts exhaust the domain 𝐷, then we obtain the needed state-
ment. Moreover, it results from the latter estimate, that the function 𝑔(𝑧), which is equivalent
to zero, possesses only trivial disintegration. Therefore, coefficients 𝑑′𝑚,𝑘 in (26) are defined
uniquely. The Theorem has been proved.
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