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EIGENFUNCTIONS OF ANNIHILATION OPERATORS

ASSOCIATED

WITH WIGNER’S COMMUTATION RELATIONS

V.E. KIM

Abstract. We consider linear continuous operators acting on the space of all entire
functions with the uniform convergence topology and satisfying Wigner’s commutation
relations. These operators are closely connected with the Dunkl generalized convolution
operators. We study the problem of description of eigenfunctions of these operators. It is
shown that under some conditions the eigenfunctions of the operator under study can be
described by Dunkl generalized translates of entire functions belonging to it’s kernel. We
also discuss the problem of completeness of the systems of eigenfunctions.
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1. Introduction

As usual, we will define creation and annihilation operators by 𝑎+ and 𝑎 correspondingly. By
means of 𝐼 we will define a single operator. For operators 𝐴,𝐵 we will consider the commutator
[𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴 and anticommutator [𝐴,𝐵]+ = 𝐴𝐵 +𝐵𝐴.

In 1950 Wigner [1] showed, that not only classical Heisenberg commutation relations [𝑎, 𝑎+] =
𝐼, but also relations of more general character can result from movement equations of quantum
mechanics, namely:

[𝑎, 𝑎+] = 𝐼 + 2𝛼𝑅, (1)

where 𝛼 ≥ 0 is some constant, 𝑅 is some abstract operator, satisfying conditions: [𝑅, 𝑎]+ =
0, [𝑅, 𝑎+]+ = 0, 𝑅2 = 1, 𝑅−1 = 𝑅. Let us define the space of entire functions with the
uniform convergence topology on the compacts by 𝐻(C). It is known (see, for instance, [2]),
commutation relations (1) can be realized in the space 𝐻(C) the following way:

𝑎+𝑓(𝑧) = 𝑧𝑓(𝑧), 𝑎𝑓(𝑧) = Λ𝛼𝑓(𝑧) = 𝑓 ′(𝑧) + 𝛼
(︁𝑓(𝑧) − 𝑓(−𝑧)

𝑧

)︁
, 𝑓 ∈ 𝐻(C). (2)

Note, that the operator Λ𝛼 is known as a Dunkl operator. Detailed information on Dunkl
operators can be found, for instance, in the review [3].

Let 𝜙(𝑧) =
∞∑︀
𝑛=0

𝑏𝑛𝑧
𝑛 be an arbitrary exponential entire function, 𝜙 ̸≡ const. In paper [4]

generalized convolution operators of the following form were studied:

𝑀𝛼,𝜙[𝑓 ](𝑧) =
∞∑︁
𝑛=0

𝑏𝑛Λ𝑛
𝛼[𝑓 ](𝑧), 𝑓 ∈ 𝐻(C). (3)

Convolution Dunkl operator (3) includes ordinary convolution operators on 𝐻(C), correspond-
ing the case 𝛼 = 0. Note, that [𝑀𝛼,𝜙,Λ𝛼] = 0. Consequently, commutation relations (1) can
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be realized in the space 𝐻(C) by the following operators:

𝑎+𝑓(𝑧) = Λ𝛼𝑓(𝑧), 𝑎𝑓(𝑧) = ̃︁𝑀𝛼,𝜙, 𝑓 ∈ 𝐻(C),

where ̃︁𝑀𝛼,𝜙𝑓(𝑧) = 𝑀𝛼,𝜙𝑓(𝑧) − 𝑧𝑓(𝑧). (4)

Operators (4) are linear continuous operators on 𝐻(C).
For 𝜆 ∈ C we will define by 𝑆𝜆 shift operators on 𝐻(C): 𝑆𝜆𝑓(𝑧) ≡ 𝑓(𝑧 + 𝜆). Note, that

operators of the form (4), corresponding the case 𝛼 = 0, possess the following interesting

properties: (A) if 𝑓 ∈ Ker ̃︁𝑀0,𝜙, 𝑓 ̸≡ 0, then the function 𝑆𝜆𝑓 is a eigenfunction of the operator̃︁𝑀0,𝜙, satisfying its own value 𝜆, i.e. the following holds true ̃︁𝑀0,𝜙𝑆𝜆𝑓 = 𝜆𝑆𝜆𝑓 , ∀𝜆 ∈ C; (B): if

𝑓 ∈ Ker ̃︁𝑀0,𝜙, 𝑓 ̸≡ 0, then the shift system {𝑆𝜆𝑓, 𝜆 ∈ Λ} is complete in 𝐻(C), where Λ ⊂ C is
any set, containing an accumulation point.

In this connection, the following question raises some interest: will these properties remain
in the case 𝛼 > 0? It is proved in the paper, that with some supplementary limits, the analogue
of the property (A) takes place when 𝛼 > 0, namely: eigenfunctions of the operator (4) can be
described as generalized Dunkl shifts of entire functions from the operator kernel (4).

2. Systems of generalized shifts

It is known (see, for instance, [4]), that there is a single entire function 𝐸𝛼(𝑧) =
∞∑︀
𝑛=0

𝑐𝑛,𝛼𝑧
𝑛,

satisfying the conditions:

Λ𝛼𝐸𝛼 = 𝐸𝛼, 𝐸𝛼(0) = 1. (5)

Let us define the set of all positive numbers by Z+, and the set of all entire nonnegative numbers
by Z≥0 . It is clear from (2), that Λ𝛼[𝑧𝑛] = 𝜓(𝑛)𝑧𝑛−1, where 𝜓(𝑛) = 𝑛+ 𝛼(1− (−1)𝑛), ∀𝑧 ∈ C,
𝑛 ∈ Z≥0. Note, that the following relations hold true (see, for instance, [5]):

𝜓(0) = 0; 𝜓(𝑛) =
𝑐𝑛−1,𝛼

𝑐𝑛,𝛼
, 𝑛 ∈ Z+. (6)

therefore, the operator (2) acts the entire function 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑎𝑛𝑧
𝑛 the following way:

Λ𝛼[𝑓 ](𝑧) =
∞∑︁
𝑛=1

𝑎𝑛
𝑐𝑛−1,𝛼

𝑐𝑛,𝛼
𝑧𝑛−1. (7)

It is seen from (7), that the operator (2) is a particular case of the Gelfand-Leontiev generalized
differentiation operator [6].

It results from (5) and (6), that Taylor series coefficients of the function 𝐸𝛼(𝑧) have the
following form:

𝑐0,𝛼 = 1, 𝑐𝑛,𝛼 =
1

𝜓(1)𝜓(2) · · ·𝜓(𝑛)
, 𝑛 ∈ Z+.

With the help of operator (2) we will introduce on 𝐻(C) a generalized shift operator

𝑆𝛼,𝜆[𝑓 ](𝑧) =
∞∑︁
𝑛=0

𝑐𝑛,𝛼Λ𝑛
𝛼[𝑓 ](𝑧)𝜆𝑛, 𝑧, 𝜆 ∈ C. (8)

The operator (8) acts lineally and continuously from 𝐻(C) to 𝐻(C) (see, for instance, [4]).
Note, that 𝑆0,𝜆[𝑓 ](𝑧) ≡ 𝑓(𝑧 + 𝜆).

Let us prove the following statement.
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Theorem 1. Let arbitrary 𝛼 ≥ 0 be given. Let the entire function 𝑓 be so, that the following
equality holds true for it:

Λ𝑛
𝛼[𝑧𝑓(𝑧)] = 𝜓(𝑛)Λ𝑛−1

𝛼 [𝑓(𝑧)] + 𝑧Λ𝑛
𝛼[𝑓(𝑧)], ∀𝑛 ∈ Z≥0. (9)

Then the following holds true:̃︁𝑀𝛼,𝜙𝑆𝛼,𝜆𝑓 − 𝑆𝛼,𝜆
̃︁𝑀𝛼,𝜙𝑓 = 𝜆𝑆𝛼,𝜆𝑓, ∀𝜆 ∈ C. (10)

Proof. Note, that the operator (3) satisfies (see, for instance, [4]) the following commutation
relations:

[𝑀𝛼,𝜙, 𝑆𝛼,𝜆] = 0, ∀𝜆 ∈ C. (11)

Let us take arbitrary 𝜆 ∈ C. From (6), (8) and (9) we obtain:

𝑆𝛼,𝜆[𝑧𝑓(𝑧)] =
∞∑︁
𝑛=0

𝑐𝑛,𝛼𝜓(𝑛)Λ𝑛−1
𝛼 [𝑓 ](𝑧)𝜆𝑛 + 𝑧

∞∑︁
𝑛=0

𝑐𝑛,𝛼Λ𝑛
𝛼[𝑓 ](𝑧)𝜆𝑛 =

= 𝜆
∞∑︁
𝑛=1

𝑐𝑛−1,𝛼Λ𝑛−1
𝛼 [𝑓 ](𝑧)𝜆𝑛−1 + 𝑧𝑆𝛼,𝜆[𝑓 ](𝑧) = (𝜆+ 𝑧)𝑆𝛼,𝜆[𝑓 ](𝑧).

Therefore,

𝑆𝛼,𝜆
̃︁𝑀𝛼,𝜙𝑓 = 𝑆𝛼,𝜆𝑀𝛼,𝜙𝑓 − (𝑧 + 𝜆)𝑆𝛼,𝜆𝑓,̃︁𝑀𝛼,𝜙𝑆𝛼,𝜆𝑓 = 𝑀𝛼,𝜙𝑆𝛼,𝜆𝑓 − 𝑧𝑆𝛼,𝜆𝑓.

(12)

From (11) and (12) we obtain (10).

Note, that when 𝛼 = 0 equality (9) holds true for any entire function 𝑓 . Therefore, it results

from Theorem 1, in particular, the property (A) for the operator ̃︁𝑀0,𝜙. When 𝛼 > 0 the
equality (12) will not hold true for the arbitrary entire function. in the following theorem we
set the class of entire functions, for which (9) holds true with any 𝛼 ≥ 0.

Theorem 2. Let 𝑓 ∈ 𝐻(C) be an even function. Then the relation (9) holds true for the
function 𝑓 with any 𝛼 ≥ 0.

Theorem 2 validity results from the following Lemma.

Lemma 1. Let 𝑓 ∈ 𝐻(C). Then with any 𝛼 ≥ 0 and for all 𝑛 ∈ Z≥0 the following relation
holds true

Λ𝑛
𝛼[𝑧𝑓(𝑧)] = 𝜓(𝑛)Λ𝑛−1

𝛼 [𝑓(𝑧)] + 𝑧Λ𝑛
𝛼[𝑓(𝑧)] − 𝛼(1 − (−1)𝑛)Λ𝑛−1

𝛼 [𝑓(𝑧) − 𝑓(−𝑧)].

Before we present the proof of Lemma 1, we will prove the following auxiliary Lemma.

Lemma 2. With any 𝑛, 𝑘 ∈ Z≥0 and 𝛼 > 0 the following holds true:

𝜓(𝑛+ 𝑘) = 𝜓(𝑛) + 𝜓(𝑘) − 𝛼(1 − (−1)𝑛)(1 − (−1)𝑘+𝑛−1). (13)

Proof. Let us take arbitrary 𝛼 > 0. There are 4 cases possible: 1) 𝑛 is an even number,
𝑘 is an uneven number; then 𝑛 + 𝑘 is an uneven number, 𝜓(𝑛) = 𝑛, 𝜓(𝑘) = 𝑘 + 2𝛼,
𝜓(𝑛+ 𝑘) = 𝑛+ 𝑘 + 2𝛼 = 𝜓(𝑛) + 𝜓(𝑘); 2) 𝑛 is uneven, 𝑘 is even; then 𝑛 + 𝑘 is uneven,
𝜓(𝑛) = 𝑛 + 2𝛼, 𝜓(𝑘) = 𝑘, 𝜓(𝑛 + 𝑘) = 𝑛 + 𝑘 + 2𝛼 = 𝜓(𝑛) + 𝜓(𝑘); 3) 𝑛 is even, 𝑘 is even;
then 𝑛 + 𝑘 is even, 𝜓(𝑛) = 𝑛, 𝜓(𝑘) = 𝑘, 𝜓(𝑛 + 𝑘) = 𝑛 + 𝑘 = 𝜓(𝑛) + 𝜓(𝑘); 4) 𝑛 is uneven, 𝑘 is
uneven; then 𝑛+𝑘 is even, 𝜓(𝑛) = 𝑛+2𝛼, 𝜓(𝑘) = 𝑘+2𝛼, 𝜓(𝑛+𝑘) = 𝑛+𝑘 = 𝜓(𝑛)+𝜓(𝑘)−4𝛼.
Therefore, if at least one of the numbers 𝑛 and 𝑘 is even, then 𝜓(𝑛+𝑘) = 𝜓(𝑛)+𝜓(𝑘), otherwise,
𝜓(𝑛+ 𝑘) = 𝜓(𝑛) + 𝜓(𝑘) − 4𝛼. On the basis of this, we obtain the following formula:

𝜓(𝑛+ 𝑘) = 𝜓(𝑛) + 𝜓(𝑘) − 𝛼(1 − (−1)𝑛)(1 − (−1)𝑘). (14)
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Let us demonstrate, that (14) is equivalent to (13). Indeed,

(1 − (−1)𝑛)(1 − (−1)𝑘) = (1 − (−1)𝑛)(1 − (−1)𝑘 · (−1)2𝑛) =

= (1 − (−1)𝑛)(1 − (−1)𝑘+𝑛 · (−1)𝑛) =

= 1 − (−1)𝑘+𝑛 · (−1)𝑛 − (−1)𝑛 + (−1)𝑘+𝑛 · (−1)2𝑛 =

= 1 − (−1)𝑛 + (−1)𝑘+𝑛(1 − (−1)𝑛) =

= (1 − (−1)𝑛)(1 + (−1)𝑘+𝑛) = (1 − (−1)𝑛)(1 − (−1)𝑘+𝑛−1).

Let us present the proof of Lemma 1.

Proof. Let 𝑓(𝑧) =
∞∑︀
𝑘=0

𝑎𝑘𝑧
𝑘. Then 𝑧𝑓(𝑧) =

∞∑︀
𝑘=1

𝑎𝑘−1𝑧
𝑘. From (6) and (7) we obtain:

Λ𝑛
𝛼[𝑧𝑓(𝑧)] =

∞∑︁
𝑘=𝑛

𝑎𝑘−1
𝑐𝑘−𝑛,𝛼

𝑐𝑘,𝛼
𝑧𝑘−𝑛 =

=
∞∑︁
𝑘=𝑛

𝑎𝑘−1𝑧
𝑘−𝑛𝜓(𝑘 − 𝑛+ 1)𝜓(𝑘 − 𝑛+ 2) · · ·𝜓(𝑘) =

=
∞∑︁
𝑘=0

𝑎𝑘+𝑛−1𝑧
𝑘𝜓(𝑘 + 1)𝜓(𝑘 + 2) · · ·𝜓(𝑘 + 𝑛).

From the latter equality and (13) we obtain:

Λ𝑛
𝛼[𝑧𝑓(𝑧)] = Σ1 + 𝜓(𝑛)Σ2 − 𝛼(1 − (−1)𝑛)Σ3, (15)

where Σ1 =
∞∑︀
𝑘=1

𝑎𝑘+𝑛−1𝑧
𝑘𝜓(𝑘)𝜓(𝑘 + 1) · · ·𝜓(𝑘 + 𝑛− 1),

Σ2 =
∞∑︁
𝑘=0

𝑎𝑘+𝑛−1𝑧
𝑘𝜓(𝑘 + 1)𝜓(𝑘 + 2) · · ·𝜓(𝑘 + 𝑛− 1),

Σ3 =
∞∑︁
𝑘=0

𝑎𝑘+𝑛−1𝑧
𝑘(1 − (−1)𝑘+𝑛−1)𝜓(𝑘 + 1)𝜓(𝑘 + 2) · · ·𝜓(𝑘 + 𝑛− 1).

Note, that summarizing in Σ1 starts with 𝑘 = 1 according to 𝜓(0) = 0. We have:

Σ1 =
∞∑︁
𝑘=𝑛

𝑎𝑘𝑧
𝑘−𝑛+1𝜓(𝑘 − 𝑛+ 1)𝜓(𝑘 − 𝑛+ 2) · · ·𝜓(𝑘) = 𝑧Λ𝑛

𝛼[𝑓(𝑧)];

Σ2 =
∞∑︁

𝑘=𝑛−1

𝑎𝑘𝑧
𝑘−𝑛+1𝜓(𝑘 − 𝑛+ 2)𝜓(𝑘 − 𝑛+ 3) · · ·𝜓(𝑘) = Λ𝑛−1

𝛼 [𝑓(𝑧)];

Σ3 =
∞∑︁

𝑘=𝑛−1

𝑎𝑘(1 − (−1)𝑘)𝑧𝑘−𝑛+1𝜓(𝑘 − 𝑛+ 2) · · ·𝜓(𝑘) = Λ𝑛−1
𝛼 [𝑓(𝑧) − 𝑓(−𝑧)].

(16)

The Lemma statement results from (15) and (16).

Let us formulate the basic result of the article.

Theorem 3. Let the given arbitrary 𝛼 ≥ 0, 𝜆 ∈ C ∖ {0}. Let the function 𝑓 ∈ 𝐻(C) satisfy

the following conditions: 1) 𝑓 ∈ ker ̃︁𝑀𝛼,𝜙 for some 𝜙, 2) 𝑓 is an even function, 3) 𝑆𝛼,𝜆𝑓 ̸≡ 0.

Then the function 𝑆𝛼,𝜆𝑓 is an eigenfunctions of the operator ̃︁𝑀𝛼,𝜙, which is equivalent to its
own value 𝜆.
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Proof. Whereas 𝑓 is an even function, then it results from Theorems 1 and 2, that for 𝑓 the

following relation holds true (10). From (10), taking into account, that 𝑓 ∈ ker ̃︁𝑀𝛼,𝜙, we obtain:̃︁𝑀𝛼,𝜙𝑆𝛼,𝜆𝑓 = 𝜆𝑆𝛼,𝜆𝑓 .

Corollary 1. Let the given arbitrary 𝛼 ≥ 0, 𝜆 ∈ C ∖ {0}. Let the function 𝑓 ∈ 𝐻(C) satisfy
the conditions 1) and 2) of Theorem 3 and the condition 𝑓(𝜆) ̸= 0. Then the function 𝑆𝛼,𝜆𝑓 is

an eigenfunctions of the operator ̃︁𝑀𝛼,𝜙, which is equivalent to its own value 𝜆.

Proof. Let us prove, that condition 3) of Theorem 3 results from the condition 𝑓(𝜆) ̸= 0. Let
𝑓(𝜆) ̸= 0. Assume, that condition 3) of Theorem 3 does not hold true. Consequently, the
function 𝑓 satisfies the equation 𝑆𝛼,𝜆𝑓 ≡ 0. Then, according to [7, ch. III, S3] the function 𝑓
can be presented in the form:

𝑓(𝑧) = lim
𝑛→∞

∑︁
|𝜇𝑘|<𝑞𝑛

𝑚𝑘−1∑︁
𝑗=0

𝑝𝑘𝑗𝑧
𝑗𝐸(𝑗)

𝛼 (𝜇𝑘𝑧), (17)

where {𝜇𝑘} are zeros of the function 𝐸𝛼(𝜆𝑧), 𝑚𝑘 is the root order 𝜇𝑘, {𝑞𝑛} is a growing
sequence of positive numbers, 𝑝𝑘𝑗 are some constants. It follows from the representation (17),
that 𝑓(𝜆) = 0, that contradicts the initial assumption.

Let us give some examples, satisfying conditions of Theorem 3.

Example 1. Let 𝜙(𝑧) = 𝑧. In this case ̃︁𝑀𝛼,𝜙 = Λ𝛼 − 𝑧𝐼. Then the function 𝑓(𝑧) = 𝑒𝑧
2/2

satisfies conditions 1) and 2) of Theorem 3. Moreover, according to corollary 1, the function 𝑓
satisfies conditions 3) of Theorem 3 with any 𝜆 ∈ C.

Example 2. Let 𝜙(𝑧) = 𝑧3. In this case ̃︁𝑀𝛼,𝜙 = Λ3
𝛼− 𝑧𝐼. Let us find an even entire solution

𝑓 of the equation Λ3
𝛼[𝑓 ](𝑧)−𝑧𝑓(𝑧) = 0. Whereas 𝑓 is an even function, then the latter equation

can be substituted by the following differential equation:

𝑓 ′′′(𝑧) + 2𝛼
𝑧𝑓 ′′(𝑧) − 𝑓 ′(𝑧)

𝑧2
− 𝑧𝑓(𝑧) = 0.

Then, as a desired solution we can take, for instance, a generalized hypergeometric function
𝑓(𝑧) = 0𝐹2({}, {1

2
, 3
4

+ 𝛼
2
}, 𝑧4

64
). The function satisfies conditions 1) and 2) of Theorem 3. Also,

according to corollary 1, the function 𝑓 satisfies conditions 3) of Theorem 3 at least for those
𝜆 ∈ C, when 𝑓(𝜆) ̸= 0.

3. Notice on completeness of eigenfunctions

As it has already been said the the introduction, in the case 𝛼 = 0 the operator ̃︁𝑀𝛼,𝜙 possesses
the property of eigenfunctions completeness (property (B)). This property was proved by the
author in paper [8]. According to Godefroy-Shapiro criterion [9, p. 6], hypercyclicity of the

operator results from this property ̃︁𝑀0,𝜙. Let us remind, that the linear continuous operator Φ
on the topological vector space 𝑋 is called hypercyclic, if there is such an element 𝑥 ∈ 𝑋, that
its orbit {Φ𝑛𝑥, 𝑛 = 0, 1, 2, ...} is complete in 𝑋. A more detailed description of hypercyclic
operators theory can be found, for instance, in monograph [9].

Note, that the analogue of the property (B) takes place for the case 𝜙(𝑧) = 𝑧 and with 𝛼 > 0.
Indeed, for this case the property (B) implies completeness in 𝐻(C) of the generalized shifts

system {𝑆𝜆,𝛼𝑒
𝑧2/2, 𝜆 ∈ Λ}, where Λ ⊂ C is any set, containing an accumulation point. The

latter, as it is easy to see, is equivalent to completeness in 𝐻(C) of the system {Λ𝑛
𝛼(𝑒𝑧

2/2), 𝑛 =

0, 1, · · · }. Note, that Λ𝑛
𝛼(𝑒𝑧

2/2) = 𝑒𝑧
2/2𝑃𝑛,𝛼(𝑧), where 𝑃𝑛,𝛼 is a polynomial of the degree 𝑛.

The system of polynomials 𝑃𝑛,𝛼, is obviously, complete in 𝐻(C). Consequently, the system

{Λ𝑛
𝛼(𝑒𝑧

2/2), 𝑛 = 0, 1, · · · } is also complete. Hence, according to Godefroy-Shapiro criterion, the

operator ̃︁𝑀𝛼,𝜙 is a hypercyclic operator in the space 𝐻(C) for the case 𝜙(𝑧) = 𝑧.
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In connection with the written above, let us formulate the following unsolved problem: to

study the problem of the operator eigenfunctions completeness ̃︁𝑀𝛼,𝜙 for other functions 𝜙.
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