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SYMMETRY PROPERTIES FOR SYSTEMS OF TWO

ORDINARY FRACTIONAL DIFFERENTIAL EQUATIONS

A.A. KASATKIN

Abstract. Lie point symmetries of two systems of ordinary fractional differential equa-
tions with the Riemann-Liouville derivatives are considered. Infinite algebra 𝐿 of equiva-
lence transformation operators is constructed. It is shown that all admitted operators gen-
erate some subalgebra in 𝐿 and classification of systems with respect to point symmetries
can be based on the optimal system of subalgebras. The optimal system of one-dimensional
𝐿 subalgebras and the complete normalized optimal system for its finite-dimensional part
𝐿6 are constructed.
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1. Introduction

During the last years the apparatus of fractional integro-differentiation [1] has been more in-
tensely used to construct mathematical models of different processes. Equations with fractional
derivatives of different types are used in modeling processes with complex non-local dependen-
cies, stochastic effects with the power distribution laws, in theory of automatic control, etc.

In papers [2, 3, 4] classical methods of group analysis of differential equations [5] are adapted
to study equations with Riemann-Liouville and Caputo fractional derivatives.

In particular, it is shown in [2], that unlike ordinary differential equations of the first order,
equations with the derivative of the order 0 < 𝛼 < 1 have finite-dimensional groups of admissible
transformations.

In paper [3], equations of the form 𝐷𝛼
𝑥𝑦(𝑥) = 𝑓(𝑥, 𝑦) are classified according to admitted

groups of point transformations and classes of exact solutions are constructed. The present
paper is devoted to investigation of systems of two equations of the same form{︃

𝐷𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑢, 𝑣),

𝐷𝛼𝑣(𝑡) = 𝑔(𝑡, 𝑢, 𝑣)

with a fractional derivative of the Riemann-Liouville type. Equivalence transformations of the
system are determined, and the problem of finding symmetries for given functions 𝑓, 𝑔 is also
solved here.

It is demonstrated that an algebra of admitted operators for the system (1) is a certain
subalgebra in the algebra of operators 𝐿, generating equivalence transformations. Therefore, the
problem of systems classification is reduced to construction of an optimal system of subalgebras
Θ(𝐿) [6, 7].
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2. Symmetries and equivalence transformations

The system of two differential equations with fractional derivatives{︃
𝐷𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑢, 𝑣),

𝐷𝛼𝑣(𝑡) = 𝑔(𝑡, 𝑢, 𝑣)
(1)

is considered in the paper.
Here 𝐷𝛼 is an operator of fractional Riemann-Liouville differentiation with respect to 𝑡:

𝐷𝛼𝑢(𝑡) ≡ 𝐷𝑚
(︀
𝐼𝑚−𝛼𝑢(𝑡)

)︀
=

1

Γ(𝑚− 𝛼)

𝑑𝑚

𝑑𝑡𝑚

𝑡∫︁
0

𝑢(𝜏)

(𝑡− 𝜏)𝛼+1−𝑚
𝑑𝜏 (2)

with 0 < 𝑚− 1 < 𝛼 6 𝑚,𝑚 ∈ N ([1]).
Substitution of the variables

𝑡 = Φ(𝑡, 𝑢, 𝑣), 𝑢̄ = Ψ𝑢(𝑡, 𝑢, 𝑣), 𝑣 = Ψ𝑣(𝑡, 𝑢, 𝑣) (3)

is an equivalence transformation for the system (2) if the system has the same form in the new
variables: {︃

𝐷𝛼𝑢̄(𝑡) = 𝑓(𝑡, 𝑢̄, 𝑣),

𝐷𝛼𝑣(𝑡) = 𝑔(𝑡, 𝑢̄, 𝑣).

The functions 𝑓, 𝑔 are new functions of the arguments 𝑡, 𝑢̄, 𝑣. If the functions remain unal-
tered, the transformation (3) is called an admitted transformation of the system (1).

One-parameter group of transformations can be described by its infinitesimal operator. For
the equivalence transformations it has the following form:

𝑋 = 𝜉(𝑡, 𝑢, 𝑣)
𝜕

𝜕𝑡
+ 𝜂𝑢(𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑢
+ 𝜂𝑣(𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑣
+ 𝜈𝑢(𝑡, 𝑢, 𝑣, 𝑓, 𝑔)

𝜕

𝜕𝑓
+ 𝜈𝑣(𝑡, 𝑢, 𝑣, 𝑓, 𝑔)

𝜕

𝜕𝑔
. (4)

According to the results [2], the action of infinitesimal transformations

𝑡 = 𝑡 + 𝑎𝜉 + 𝑜(𝑎), 𝑢̄ = 𝑢 + 𝑎𝜂𝑢 + 𝑜(𝑎), 𝑣 = 𝑣 + 𝑎𝜂𝑣 + 𝑜(𝑎)

on fractional derivatives is defined by the prolongation formula:

𝐷𝛼
𝑡 𝑢̄(𝑡) = 𝐷𝛼

𝑡 𝑢(𝑡) + 𝑎𝜁𝑢𝛼 + 𝑜(𝑎),

where 𝜁𝑢𝛼 can be written in the form of a series

𝜁𝑢𝛼 = 𝐷𝛼
𝑡 (𝜂𝑢) − 𝛼𝐷𝑡(𝜉)𝐷𝛼

𝑡 (𝑢) +
∞∑︁
𝑛=1

(︂
𝛼

𝑛

)︂
𝑛− 𝛼

𝑛 + 1
𝐷𝛼−𝑛

𝑡 (𝑢)𝐷𝑛+1
𝑡 (𝜉). (5)

Determining equations for finding coefficients of the infinitesimal operator (4) of equivalence
transformations have the following form

(𝜁𝑢𝛼 − 𝜈𝑢)|𝐷𝛼𝑢=𝑓,𝐷𝛼𝑣=𝑔 = 0,

(𝜁𝑣𝛼 − 𝜈𝑣)|𝐷𝛼𝑢=𝑓,𝐷𝛼𝑣=𝑔 = 0,

where 𝑓 and 𝑔 are considered to be independent variables.
By analogy to the algorithm for constructing coordinates of admitted operators, suggested

in [2, 3], let us find symmetries and equivalence transformations from the following class:

𝜉 = 𝜉(𝑡), 𝜉(0) = 0,

𝜂𝑢 = 𝑝𝑢𝑢(𝑡)𝑢 + 𝑝𝑢𝑣(𝑡)𝑣 + 𝑞𝑢(𝑡), 𝜂𝑣 = 𝑝𝑣𝑢(𝑡)𝑢 + 𝑝𝑣𝑣(𝑡)𝑣 + 𝑞𝑣(𝑡).
(6)

In this case, 𝐷𝛼(𝜂𝑢), 𝐷𝛼(𝜂𝑣) can be represented via fractional derivatives and integrals
𝐷𝛼−𝑛𝑢,𝐷𝛼−𝑛𝑣 in the prolongation formula (5) and its analogue for 𝜁𝑣𝛼 by means of the gener-
alized Leibniz rule (there are no compact chain rule formulae for fractional differentiation).
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As a result, the determining equations split with respect to the variables 𝐷𝛼−𝑛𝑢, 𝐷𝛼−𝑛𝑣.
Then, solving the resulting infinite system of equations, one obtains expressions for coordinates
of the operator (4):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜉 = (𝐶1 + 𝐶2𝑡)𝑡,

𝜂𝑢 = (𝛼− 1)𝐶2𝑡𝑢 + 𝐶3𝑢 + 𝐶4𝑣 + 𝑞𝑢(𝑡),

𝜂𝑣 = (𝛼− 1)𝐶2𝑡𝑣 + 𝐶5𝑢 + 𝐶6𝑣 + 𝑞𝑣(𝑡),

𝜈𝑢 = −𝛼𝑓𝐶1 − (𝛼 + 1)𝐶2𝑡𝑓 + 𝐶3𝑓 + 𝐶4𝑔 + 𝐷𝛼𝑞𝑢(𝑡),

𝜈𝑣 = −𝛼𝑔𝐶1 − (𝛼 + 1)𝐶2𝑡𝑔 + 𝐶5𝑓 + 𝐶6𝑔 + 𝐷𝛼𝑞𝑣(𝑡),

(7)

where 𝐶1, . . . , 𝐶6 are arbitrary constants, and 𝑞𝑢, 𝑞𝑣 are arbitrary functions of 𝑡.
In search of admitted operators

𝑋 = 𝜉(𝑡, 𝑢, 𝑣)
𝜕

𝜕𝑡
+ 𝜂𝑢(𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑢
+ 𝜂𝑣(𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑣
,

the determining equations take the following form

(𝜁𝑢𝛼 − 𝜉𝑓𝑡 − 𝜂𝑢𝑓𝑢 − 𝜂𝑣𝑓𝑣)|𝐷𝛼𝑢=𝑓(𝑡,𝑢,𝑣),𝐷𝛼𝑣=𝑔(𝑡,𝑢,𝑣) = 0,

(𝜁𝑣𝛼 − 𝜉𝑔𝑡 − 𝜂𝑢𝑔𝑢 − 𝜂𝑣𝑔𝑣)|𝐷𝛼𝑢=𝑓(𝑡,𝑢,𝑣),𝐷𝛼𝑣=𝑔(𝑡,𝑢,𝑣) = 0.

Solving them with the same restrictions on the class of symmetries (6), one obtains the
coordinates 𝜉, 𝜂𝑢, 𝜂𝑣 of the same form (7), but with additional conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝐶1 + 𝐶2𝑡)𝑡𝑓𝑡 + [(𝛼− 1)𝐶2𝑡𝑢 + 𝐶3𝑢 + 𝐶4𝑣 + 𝑞𝑢(𝑡)]𝑓𝑢+

+ [(𝛼− 1)𝐶2𝑡𝑣 + 𝐶5𝑢 + 𝐶6𝑣 + 𝑞𝑣(𝑡)]𝑓𝑣 =

= 𝐷𝛼
𝑡 𝑞

𝑢(𝑡) + (𝐶3 − 𝛼𝐶1 − (𝛼 + 1)𝐶2𝑡)𝑓 + 𝐶4𝑔,

(𝐶1 + 𝐶2𝑡)𝑡𝑔𝑡 + [(𝛼− 1)𝐶2𝑡𝑢 + 𝐶3𝑢 + 𝐶4𝑣 + 𝑞𝑢(𝑡)]𝑔𝑢+

+ [(𝛼− 1)𝐶2𝑡𝑣 + 𝐶5𝑢 + 𝐶6𝑣 + 𝑞𝑣(𝑡)]𝑔𝑣 =

= 𝐷𝛼
𝑡 𝑞

𝑣(𝑡) + (𝐶6 − 𝛼𝐶1 − (𝛼 + 1)𝐶2𝑡)𝑔 + 𝐶5𝑓.

(8)

Thus, when the functions 𝑓(𝑡, 𝑢, 𝑣), 𝑔(𝑡, 𝑢, 𝑣) are given, symmetries of the system (1) can be
found by solving the system (8). The admitted operators form a subalgebra in the Lie algebra
𝐿 = 𝐿6 + 𝐿∞, where the algebra 𝐿6, and the infinite-dimensional algebra 𝐿∞ are generated by
the basis operators

𝑋1 = 𝑡
𝜕

𝜕𝑡
, 𝑋2 = 𝑡2

𝜕

𝜕𝑡
+ (𝛼− 1)𝑡𝑢

𝜕

𝜕𝑢
+ (𝛼− 1)𝑡𝑣

𝜕

𝜕𝑣
,

𝑋3 = 𝑢
𝜕

𝜕𝑢
, 𝑋4 = 𝑣

𝜕

𝜕𝑢
, 𝑋5 = 𝑢

𝜕

𝜕𝑣
, 𝑋6 = 𝑣

𝜕

𝜕𝑣
,

(9)

and by operators of the form

𝑋𝑞𝑢 = 𝑞𝑢(𝑡)
𝜕

𝜕𝑢
, 𝑋𝑞𝑣 = 𝑞𝑣(𝑡)

𝜕

𝜕𝑣
, (10)

respectively.
Note, that in the our case all possible symmetries of the system (1) can be obtained from the

algebra 𝐿, generating equivalence transformations. Meanwhile, if two systems of the type (1)
are connected by an equivalence transformation, then their operators can be obtained from each
other by the same transformation (by substitution of variables in a differential operator). A set
of such transformations in the Lie algebra 𝐿 corresponds to a group of inner automorphisms of
this algebra [5].

Therefore, to solve the equations’ classification problems with respect to admitted trans-
formation groups (one-, two-parameter, etc.) it is sufficient to construct classes of dissimilar
subalgebras of the algebra 𝐿 with respect to equivalence transformations. In our case this is
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equivalent to the problem of construction of an optimal system of subalgebras of the algebra 𝐿
(finding dissimilar subalgebras with respect to inner automorphisms).

3. Optimal system of subalgebras

To construct an optimal system of subalgebras Θ(𝐿) it is convenient to introduce the basis

𝑌1 = 𝑋1, 𝑌2 = 𝑋2, 𝑌3 = 𝑋3 −𝑋6, 𝑌4 = 𝑋4 𝑌5 = 𝑋5 𝑌6 = 𝑋3 + 𝑋6.

The table of commutators has the following form

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌𝑞𝑢 𝑌𝑞𝑣

𝑌1 0 𝑌2 0 0 0 0
⟨︀
𝑡𝑞𝑢

⟩︀
𝑢

⟨︀
𝑡𝑞𝑣

⟩︀
𝑣

𝑌2 0 0 0 0 0
⟨︀
𝑡2𝑞𝑢 − (𝛼− 1)𝑡𝑞𝑢

⟩︀
𝑢

⟨︀
𝑡2𝑞𝑣 − (𝛼− 1)𝑡𝑞𝑣

⟩︀
𝑣

𝑌3 0 −2𝑌4 2𝑌5 0 ⟨−𝑞𝑢⟩𝑢 ⟨𝑞𝑣⟩𝑣
𝑌4 0 −𝑌3 0 0 ⟨−𝑞𝑣⟩𝑢
𝑌5 0 0 ⟨−𝑞𝑢⟩𝑣 0
𝑌6 0 ⟨−𝑞𝑢⟩𝑢 ⟨−𝑞𝑣⟩𝑣
𝑌𝜈𝑢 0 0
𝑌𝜈𝑣 0

The part of the table below the main diagonal is constructed due to skew-symmetry of the
commutator. An abbreviated notation of operators is used here

⟨𝑞⟩𝑢 = 𝑞
𝜕

𝜕𝑢
, ⟨𝑞⟩𝑣 = 𝑞

𝜕

𝜕𝑣
.

One can see that the set of operators {𝑌𝑞𝑢 , 𝑌𝑞𝑣} with arbitrary functions 𝑞𝑢(𝑡), 𝑞𝑣(𝑡) is an infinite
Abelian ideal 𝐿∞ in the algebra 𝐿, and the algebra has the following structure:

𝐿 = 𝐿∞ ⊕ {𝑌1, 𝑌2} ⊕ {𝑌3, 𝑌4, 𝑌5} ⊕ {𝑌6}.
Subalgebras {𝑌6} and {𝑌1, 𝑌2} are a center and an ideal in the algebra 𝐿6 = {𝑌1, . . . , 𝑌6},

respectively.
Every operator 𝑍 ∈ 𝐿 generates an inner automorphism of the algebra 𝐿 under consideration.

It can be constructed as a solution of the Cauchy problem

𝑑𝑌

𝑑𝑠
= [𝑍, 𝑌 ], 𝑌

⃒⃒
𝑠=0

= 𝑌, (11)

where operators are defined by their coordinates in the given basis:

𝑌 = 𝑘1𝑌1 + . . . + 𝑘6𝑌6 + 𝑌𝑞𝑢 + 𝑌𝑞𝑣 , 𝑘𝑖 = 𝑘𝑖(𝑠, 𝑘1, . . . , 𝑘6, 𝑞𝑢, 𝑞𝑣).

Note, that the inner automorphism, constructed for the operators 𝑍 from the center, is always
an identity transformation in 𝐿6.

Solving the system of equations (11) for 𝑌1, . . . , 𝑌5, one obtains inner automorphisms in the
form of operator coordinates transformations:

𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6

𝐴1 𝑘1 𝑎1𝑘
2 𝑘3 𝑘4 𝑘5 𝑘6

𝐴2 𝑘1 𝑘2 − 𝑎2𝑘
1 𝑘3 𝑘4 𝑘5 𝑘6

𝐴3 𝑘1 𝑘2 𝑘3 𝑎3𝑘
4 𝑘5/𝑎3 𝑘6

𝐴4 𝑘1 𝑘2 𝑘3 − 𝑎4𝑘
5 𝑘4 + 2𝑎4𝑘

3 − 𝑎4
2𝑘5 𝑘5 𝑘6

𝐴5 𝑘1 𝑘2 𝑘3 + 𝑎5𝑘
4 𝑘4 𝑘5 − 2𝑎5𝑘

3 − 𝑎5
2𝑘4 𝑘6

Here 𝑎𝑖 are arbitrary parameters. Taking discrete automorphisms (equivalence transformations
𝑢̄ = −𝑢) into account allows one to avoid imposing the limitation 𝑎3 > 0. The time reversal
transformation 𝑡 = −𝑡 changes the Riemann-Liouville operator and is not considered as a
discrete equivalence transformation. Hence, in what follows it is assumed that 𝑎1 > 0.
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The action of automorphisms 𝐴1 . . . 𝐴5, 𝐴6 on the coordinates 𝑞𝑢, 𝑞𝑣 looks as follows:

𝐴1 : 𝑞𝑢 = 𝑞𝑢(𝑎1𝑡), 𝑞𝑣 = 𝑞𝑣(𝑎1𝑡),

𝐴2 : 𝑞𝑢 = (1 − 𝑎2𝑡)
𝛼−1𝑞𝑢

(︂
𝑡

1 − 𝑎𝑡

)︂
, 𝑞𝑣 = (1 − 𝑎2𝑡)

𝛼−1𝑞𝑣
(︂

𝑡

1 − 𝑎𝑡

)︂
,

𝐴3 : 𝑞𝑢 = 𝑎̃3𝑞
𝑢, 𝑞𝑣 = 𝑞𝑣/𝑎̃3, (𝑎̃3 = ±

√︀
|𝑎3|, 𝑎̃3𝑎3 > 0),

𝐴4 : 𝑞𝑢 = 𝑞𝑢 − 𝑎4𝑞
𝑣, 𝑞𝑣 = 𝑞𝑣,

𝐴5 : 𝑞𝑢 = 𝑞𝑢, 𝑞𝑣 = 𝑞𝑣 − 𝑎5𝑞
𝑢,

𝐴6 : 𝑞𝑢 = 𝑎6𝑞
𝑢, 𝑞𝑣 = 𝑎6𝑞

𝑣, 𝑎6 > 0,

and the combination of automorphisms 𝐴𝜈𝑢 , 𝐴𝜈𝑣 has the form

𝑞𝑢 = 𝑞𝑢 − (𝑘1𝑡 + 𝑘2𝑡2)𝜈̇𝑢 + (𝑘3 + 𝑘6 + (𝛼− 1)𝑘2𝑡)𝜈𝑢 + 𝑘4𝜈𝑣,
𝑞𝑣 = 𝑞𝑣 + 𝑘5𝜈𝑢 − (𝑘1𝑡 + 𝑘2𝑡2)𝜈̇𝑣 + (−𝑘3 + 𝑘6 + (𝛼− 1)𝑘2𝑡)𝜈𝑣.

(12)

Peculiarities of constructing automorphisms and an optimal system of subalgebras for operators
with arbitrary functions are illustrated, e.g., in [7].

In accordance with the procedure [6], bases of the required 𝑟-dimensional subalgebras of the
algebra 𝐿 are written in the form of matrices, where the lines represent coordinates of the basis
of the subalgebra in the basis 𝑌 . Matrix elements should satisfy the subalgebra conditions,
i.e. the space should be closed under the commutation operation. The action of the group
of inner automorphisms 𝐴 (certain linear transformations of columns) and the group 𝐵 of
transformations of the subalgebra basis (all linear nondegenerate transformations of lines) is
considered on the set of matrices. Those matrices that are dissimilar with respect to these
transformations define elements of the optimal system Θ(𝐿). Classifying matrices by means of
transformations 𝐴,𝐵, one achieves the maximal possible number of zero coordinates and the
minimal number of arbitrary constants.

It is always possible to construct an optimal system, satisfying the additional requirement of
normalization. The largest subalgebra of the algebra 𝐿, for which 𝐾 is an ideal, i.e. [𝑋, 𝑌 ] ∈ 𝐾
holds for all 𝑋 ∈ 𝐾 and 𝑌 ∈ Nor𝐿𝐾, is termed as the normalizer Nor𝐿𝐾 of the subalgebra 𝐾
in 𝐿. Normalized optimal system should contain the normalizer Nor𝐿𝐾 ∈ Θ𝐴𝐿 together with
every subalgebra 𝐾 ∈ Θ𝐴𝐿.

The construction starts with the algebra 𝐿4 = {𝑌3, 𝑌4, 𝑌5, 𝑌6}. Only automorphisms
𝐴3, 𝐴4, 𝐴5 act there. Expressions 𝑘6, 𝑘3𝑘3 + 𝑘4𝑘5 are invariant under the groups of inner au-
tomorphisms. Calculations carried out according to the above algorithm provide a normalized
optimal system of subalgebras Θ(𝐿4), given in Table 1. The abbreviations {4 − 5 + 6} =
{𝑌4 − 𝑌5 + 𝛾𝑌6} are used in the tables, the sign ,,=” in the column Nor indicates that the given
subalgebra is self-normalized.
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Table 1. Optimal system Θ(𝐿4)

No Subalgebra Nor
4.1 3, 4, 5, 6 =
3.1 3, 4, 6 =
3.2 3, 4, 5 4.1
2.1 3, 6 =
2.2 4 − 5, 6 =
2.3 4, 6 3.1
2.4 3 + 𝛽6, 4 3.1
1.1 3 + 𝛾6 2.1
1.2 6 4.1
1.3 4 + 6 2.3
1.4 4 3.1
1.5 4 − 5 + 𝛾6 2.2

𝛾 ≥ 0, 𝛽 ∈ R

The optimal system Θ(𝐿6) is constructed using the decomposition 𝐿6 = 𝐽⊕𝑁 , where 𝑁 = 𝐿4

is a subalgebra, 𝐽 = {𝑌1, 𝑌2} is an ideal. For any subalgebra 𝑁𝑝 from the optimal system
Θ𝐴𝑁

(𝑁) (in our case, from Table 1) there is a stabilizer 𝐴𝑝 ⊂ 𝐴 in 𝐿6, i.e. automorphisms 𝐿6,
which do not change this subalgebra (but can change the form of the corresponding matrix).
The stabilizer 𝐴𝑝 in this case includes 𝐴1, 𝐴2 and some combinations 𝐴3, 𝐴4, 𝐴5.

By means of transformations from 𝐴𝑝, the arbitrary subalgebra from 𝐽 ⊕𝑁𝑝 (𝑁𝑝 with opera-
tors from the ideal added arbitrarily) is simplified and the optimal system Θ𝐴𝑝(𝐽⊕𝑁𝑝) = {𝐾𝑝,𝑞}
is constructed. The set of all subalgebras obtained for different 𝑁𝑝 makes up the optimal system
Θ𝐴(𝐿6).

A normalized optimal system constructed is shown in Tables 2-5 together with corresponding
indices of 𝑁𝑝 and normalizers.

Decomposing the algebra 𝐿 into the ideal 𝐿∞ and the subalgebra 𝐿6, one can construct Θ(𝐿)
starting with the optimal system Θ(𝐿6) according to the same procedure. Automorphisms
𝐴𝜈𝑢 , 𝐴𝜈𝑣 of the form (12) change only the components ⟨𝑞𝑢⟩𝑢 and ⟨𝑞𝑣⟩𝑣 of the operator 𝑌 . If at
least one condition

𝑘1 ̸= 0, 𝑘2 ̸= 0,

(𝑘6)2 − (𝑘3)2 − 𝑘4𝑘5 ̸= 0

holds true for the operator coefficients, one can turn the arbitrary functions 𝑞𝑢, 𝑞𝑣 to zero by
the choice of the functions 𝜈𝑢(𝑡), 𝜈𝑣(𝑡). Thus, only elements 1.1 with 𝛾 = 1 and 1.4 of the
optimal system Θ(𝐿6) (and the zero subalgebra as well) generate new elements Θ(𝐿). The
corresponding subalgebras 1.18 − 1.20 are also given in Table 2.

Likewise, one can also construct subalgebras of a higher dimension, containing ⟨𝑞𝑢⟩𝑢 and
⟨𝑞𝑣⟩𝑣. Subalgebra conditions are written in the form of differential relations.

For every subalgebra 𝐾 from optimal system one can obtain all functions 𝑓(𝑡, 𝑢, 𝑣), 𝑔(𝑡, 𝑢, 𝑣)
such that the system (1) admits the given operators. This is done by solving equations (8)
with the known coefficients 𝐶1, . . . 𝐶6 and functions 𝑞𝑢(𝑡), 𝑞𝑣(𝑡) simultaneously. In this case
invariants of subalgebra 𝐾 will be arbitrary elements in these functions (as one can see from
the structure of equations (8)). All systems that have admitted algebras of operators similar
to 𝐾 can be reduced to this form by equivalence transformations.

The results of calculations are given in the corresponding columns of Tables 2-5, where 𝐹
and 𝐺 are arbitrary functions of invariants 𝐽𝑖. For the sake of convenience, polar coordinates
𝑟, 𝜑: 𝑢 = 𝑟 cos𝜑, 𝑢 = 𝑣 sin𝜑 are sometimes used in tables.
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4. Conclusion

Equivalence transformations of the system (1) are constructed, including a general nondegen-
erate linear transformation of unknown functions 𝑢 and 𝑣, dilation of the independent variable
𝑡, addition of fixed functions 𝑞(𝑡) to 𝑢 and 𝑣, and the projective transformation of a special
form.

It is shown that admitted operators of the system form a subalgebra of the algebra 𝐿 = 𝐿∞⊕
𝐿6, generating equivalence transformations, and the problem of classification of the systems (1)
with respect to admitted groups of point transformations is reduced to construction of an
optimal system of subalgebras Θ(𝐿).

Classical algorithms [6, 7] are applied to construct Θ(𝐿). As a result, a complete normalized
optimal system of subalgebras 𝐿6 and an optimal system of one-dimensional subalgebras 𝐿 are
calculated.

Symmetries of systems can also be used to obtain their solutions. System of the form (1)
also occur when constructing solutions of fractional order partial differential equations, e.g., by
the method of invariant subspaces [8].

Table 2. Optimal system Θ1(𝐿6 ⊕ 𝐿∞)
No Subalgebra Nor 𝑁𝑝 𝑓, 𝑔 Invariants

1.1 3 + 𝛾6 4.2 𝑓 = 𝑢𝐹 (𝑡, 𝑣1+𝛾𝑢1−𝛾) 𝐽1 = 𝑡
𝑔 = 𝑣𝐺(𝑡, 𝑣1+𝛾𝑢1−𝛾) 𝐽2 = 𝑣1+𝛾𝑢1−𝛾

1.2 6 6.1 𝑓 = 𝑢𝐹 (𝑡, 𝑣/𝑢) 𝐽1 = 𝑡
𝑔 = 𝑢𝐺(𝑡, 𝑣/𝑢) 𝐽2 = 𝑣/𝑢

1.3 4 + 6 4.4 𝑓 = 𝑣(𝐹 + 𝐺 ln 𝑣) 𝐽1 = 𝑡
𝑔 = 𝑣𝐺 𝐽2 = 𝑣𝑒−𝑢/𝑣

1.4 4 5.1 𝑓 = 𝐹 (𝑡, 𝑣) + 𝑢𝐺(𝑡, 𝑣) 𝐽1 = 𝑡
𝑔 = 𝑣𝐺(𝑡, 𝑣) 𝐽2 = 𝑣

1.5 4 − 5 + 𝛾6 4.3 𝑓 = 𝑢𝐹 − 𝑣𝐺 𝐽1 = 𝑡
𝑔 = 𝑣𝐹 + 𝑢𝐺 𝐽2 = 𝑟𝑒𝛾𝜑

1.6 1 5.3 0 𝑓 = 𝑡−𝛼𝐹 (𝑢, 𝑣) 𝐽1 = 𝑢
𝑔 = 𝑡−𝛼𝐺(𝑢, 𝑣) 𝐽2 = 𝑣

1.7 2 6.1 0 𝑓 = 𝑡−2𝛼𝑢𝐹 𝐽1 = 𝑢/𝑣
𝑔 = 𝑡−2𝛼𝑣𝐺 𝐽2 = 𝑣𝑡1−𝛼

1.8 𝑘1 + 3 + 𝛾6 3.8 1.1 𝑓 = 𝑡−𝛼𝑢𝐹 𝐽1 = 𝑢𝑘𝑡−1−𝛾

𝑔 = 𝑡−𝛼𝑣𝐺 𝐽2 = 𝑣𝑘𝑡1−𝛾

1.9 𝑘1 + 6 5.3 1.2 𝑓 = 𝑣1−𝛼𝑘𝐹 𝐽1 = 𝑣𝑡−1/𝑘

𝑔 = 𝑣1−𝛼𝑘𝐺 𝐽2 = 𝑢/𝑣
1.10 𝑘1 + 4 + 6 3.10 1.3 𝑓 = 𝑡−𝛼𝑣(𝐹 + 𝐺 ln 𝑡) 𝐽1 = 𝑣𝑡−1/𝑘

𝑔 = 𝑘𝑡−𝛼𝑣𝐺 𝐽2 = 𝑣𝑒−𝑢/𝑣

1.11 1 + 4 3.10 1.4 𝑓 = 𝑡−𝛼(𝐹 + 𝐺 ln 𝑡) 𝐽1 = 𝑣
𝑔 = 𝑡−𝛼𝐺 𝐽2 = 𝑢− 𝑣 ln 𝑡

1.12 𝑘1 + 𝛾6+ 3.9 1.5 𝑓 = 𝑡−𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽1 = 𝑡1/𝑘𝑒𝜑

+4 − 5 𝑔 = 𝑡−𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽2 = 𝑟𝑒𝛾𝜑

1.13 ±2 + 3 + 𝛾6 3.120,0 1.1 𝑓 = 𝑡−1−𝛼𝑒∓1/𝑡𝐹 𝐽1 = 𝑢𝑡1−𝛼𝑒±(𝛾+1)/𝑡

𝑔 = 𝑡−1−𝛼𝑒∓1/𝑡𝐺 𝐽2 = 𝑣𝑡1−𝛼𝑒±(𝛾−1)/𝑡
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No Subalgebra Nor 𝑁𝑝 𝑓, 𝑔 Invariants
1.14 ±2 + 6 5.40 1.2 𝑓 = 𝑡−2𝛼𝑢𝐹 𝐽1 = 𝑢𝑡1−𝛼𝑒±1/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺 𝐽2 = 𝑢/𝑣
1.15 ±2 + 4 + 6 3.150 1.3 𝑓 = 𝑡−2𝛼𝑣(𝐹 ∓𝐺/𝑡) 𝐽1 = 𝑢/𝑣 ± 1/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺 𝐽2 = 𝑣𝑡1−𝛼𝑒±1/𝑡

1.16 2 + 4 4.8−2,0 1.4 𝑓 = 𝑡−2𝛼𝑣(𝐹 −𝐺/𝑡) 𝐽1 = 𝑢/𝑣 + 1/𝑡
𝑔 = 𝑡−2𝛼𝑣𝐺 𝐽2 = 𝑣𝑡1−𝛼

1.17 ±2 + 𝛾6+ 3.130,0 1.5 𝑓 = 𝑡−2𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽1 = 𝜑∓ 1/𝑡
+4 − 5 𝑔 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽2 = 𝑟𝑡1−𝛼𝑒±𝛾/𝑡

1.18 ⟨𝑞𝑢⟩𝑢 + ⟨𝑞𝑣⟩𝑣 0 𝑓 = 𝑢
𝐷𝛼𝑞𝑢(𝑡)

𝑞𝑢(𝑡)
+ 𝐹 𝐽1 = 𝑡

𝑔 = 𝑢
𝐷𝛼𝑞𝑣(𝑡)

𝑞𝑢(𝑡)
+ 𝐺 𝐽2 = 𝑞𝑣(𝑡) − 𝑣𝑞𝑢(𝑡)

1.19 3 + 6 + ⟨𝑞𝑣⟩𝑣 1.11 𝑓 = 𝑢𝐹 𝐽1 = 𝑡
𝑔 = 1

2
𝐷𝛼(𝑞𝑣) ln |𝑢| + 𝐺 𝐽2 = 2𝑣 − 𝑞𝑣 ln |𝑢|

1.20 4 + ⟨𝑞𝑣⟩𝑣 1.4 𝑓 = 𝑢
𝐷𝛼𝑞𝑣(𝑡)

𝑞𝑣(𝑡)
+ 𝐹 + 𝑣

𝐺

𝑞𝑣
𝐽1 = 𝑡

𝑔 =
𝐷𝛼𝑞𝑣(𝑡)

𝑞𝑣(𝑡)
𝑣 + 𝐺 𝐽2 = 2𝑢𝑞𝑣(𝑡) − 𝑣2

𝑘 ̸= 0, 𝛾 ≥ 0, 4.8−2,0 is a subalgebra 4.8 when 𝛿 = −2, 𝛽 = 0.

Table 3. Optimal system Θ2(𝐿6)
No Subalgebra Nor 𝑁𝑝 𝑓, 𝑔 Invariants
2.1 3, 6 4.2 𝑓 = 𝑢𝐹 (𝑡) 𝐽1 = 𝑡

𝑔 = 𝑣𝐺(𝑡)
2.2 4 − 5, 6 4.3 𝑓 = 𝑢𝐹 (𝑡) − 𝑣𝐺(𝑡) 𝐽1 = 𝑡

𝑔 = 𝑣𝐹 (𝑡) + 𝑢𝐺(𝑡)
2.3 4, 6 5.1 𝑓 = 𝑢𝐹 (𝑡) + 𝑣𝐺(𝑡) 𝐽1 = 𝑡

𝑔 = 𝑣𝐹 (𝑡)

2.4 3 + 𝛽6, 4 5.1 𝑓 = 𝑢𝐹 (𝑡) + 𝑣
𝛽+1
𝛽−1𝐺(𝑡) 𝐽1 = 𝑡

𝑔 = 𝑣𝐹 (𝑡)
(𝛽 = 1) 5.1 𝑓 = 𝑢𝐹 (𝑡, 𝑣) 𝐽1 = 𝑡

𝑔 = 𝑣𝐹 (𝑡, 𝑣) 𝐽2 = 𝑣
2.5 1, 2 6.1 0 𝑓 = 𝑡−𝛼𝑢1/(1−𝛼)𝐹 (𝑢/𝑣) 𝐽1 = 𝑢/𝑣

𝑔 = 𝑡−𝛼𝑢1/(1−𝛼)𝐺(𝑢/𝑣)
2.6 1, 3 + 𝛾6 3.8 1.1 𝑓 = 𝑡−𝛼𝑢𝐹 (𝑣1+𝛾𝑢1−𝛾) 𝐽1 = 𝑣1+𝛾𝑢1−𝛾

𝑔 = 𝑡−𝛼𝑣𝐺(𝑣1+𝛾𝑢1−𝛾)
2.7 1, 6 5.3 1.2 𝑓 = 𝑡−𝛼𝑢𝐹 (𝑢/𝑣) 𝐽1 = 𝑢/𝑣

𝑔 = 𝑡−𝛼𝑢𝐺(𝑢/𝑣)
2.8 1, 4 + 6 3.10 1.3 𝑓 = 𝑡−𝛼𝑣(𝐹 + 𝐺 ln 𝑣) 𝐽1 = 𝑣𝑒−𝑢/𝑣

𝑔 = 𝑡−𝛼𝑣𝐺
2.9 1, 4 4.6 1.4 𝑓 = 𝑡−𝛼(𝑢𝐹 (𝑣) + 𝐺(𝑣)) 𝐽1 = 𝑣

𝑔 = 𝑡−𝛼𝑣𝐹 (𝑣)
2.10 1, 4 − 5 + 𝛾6 3.9 1.5 𝑓 = 𝑡−𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽 = 𝑟𝑒𝛾𝜑

𝑔 = 𝑡−𝛼(𝑣𝐹 + 𝑢𝐺)
2.11 2, 𝛽1 + 3 + 𝛾6 4.2 1.1 𝑓 = 𝑡−2𝛼(𝑢/𝑣)𝛼𝛽/2𝑢𝐹 𝐽1 = 𝑢1−𝛾−𝛽+𝛼𝛽·

𝑔 = 𝑡−2𝛼(𝑢/𝑣)𝛼𝛽/2𝑣𝐺 ·𝑣1+𝛾+𝛽−𝛼𝛽
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No Subalgebra Nor 𝑁𝑝 𝑓, 𝑔 Invariants

2.12 2, 𝛽1 + 6 6.1 1.2 𝑓 = 𝑡−𝛼−𝛼
𝜆𝑢

𝛽+1
𝜆 𝐹 𝐽1 = 𝑢/𝑣

𝑔 = 𝑡−𝛼−𝛼
𝜆 𝑣

𝛽+1
𝜆 𝐺 𝜆 = 𝛽 + 1 − 𝛼𝛽

𝛽 = 1/(𝛼− 1) 𝑓 = 0, 𝑔 = 0

2.13 2, 𝛽1 + 4 + 6 4.4 1.3 𝑓 = 𝑡−𝛼−𝛼
𝜆 𝑣

𝛽+1
𝜆 (𝐹 + 𝑢𝐺/𝑣) 𝐽1 = 𝑢/𝑣

𝑔 = 𝑡−𝛼−𝛼
𝜆 𝑣

𝛽+1
𝜆 𝐺 𝜆 = 𝛽 + 1 − 𝛼𝛽

𝛽 = 1/(𝛼− 1) 𝑓 = 𝑡−2𝛼𝑒
𝛼𝑢

(𝛼−1)𝑣 (𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡1−𝛼

𝑔 = 𝑡−2𝛼𝑒
𝛼𝑢

(𝛼−1)𝑣 𝑣𝐺
2.14 2, 4 5.1 1.4 𝑓 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡1−𝛼

𝑔 = 𝑡−2𝛼𝑣𝐺
2.15 2, 1 + 4 4.4 1.4 𝑓 = 𝑡−2𝛼𝑒𝛼𝑢/𝑣(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡1−𝛼𝑒(𝛼−1)𝑢/𝑣

𝑔 = 𝑡−2𝛼𝑒𝛼𝑢/𝑣𝑣𝐺
2.16 2, 𝛽1 + 4 − 5 + 𝛾6 4.3 1.5 𝑓 = 𝑡−2𝛼𝑒−𝛼𝛽𝜑(𝑢𝐹 − 𝑣𝐺) 𝐽 = 𝑟𝑒𝛾𝜑

𝑔 = 𝑡−2𝛼𝑒−𝛼𝛽𝜑(𝑣𝐹 + 𝑢𝐺)
2.17 𝛾1 + 3, 𝛽1 + 6 3.8 2.1 𝑓 = 𝑡−𝛼𝑢𝐹 (𝑡2𝑢−𝛾−𝛽𝑣𝛾−𝛽) 𝐽1 = 𝑡2𝑢−𝛾−𝛽𝑣𝛾−𝛽

𝑔 = 𝑡−𝛼𝑣𝐺(𝑡2𝑢−𝛾−𝛽𝑣𝛾−𝛽)
2.18 3,±2 + 6 3.120,0 2.1 𝑓 = 𝑡−2𝛼𝑢𝐹 𝐽1 = 𝑢𝑣𝑡2−2𝛼𝑒±2/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺
2.19 2 + 3, 𝛽2 + 6 3.120,0 2.1 𝑓 = 𝑡−2𝛼𝑢𝐹 𝐽1 = 𝑢𝛽+1𝑣𝛽−1𝑡2𝛽(1−𝛼)𝑒2/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺
2.20 𝛾1 + 4 − 5, 𝛽1 + 6 3.9 2.2 𝑓 = 𝑡−𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽1 = 𝑡𝑟−𝛽𝑒𝛾𝜑

𝑔 = 𝑡−𝛼(𝑣𝐹 + 𝑢𝐺)
2.21 4 − 5,±2 + 6 3.130,0 2.2 𝑓 = 𝑡−2𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽1 = 𝑟𝑡1−𝛼𝑒1/(𝛽𝑡)

𝑔 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺)
2.22 2 + 4 − 5, 𝛽2 + 6 3.130,0 2.2 𝑓 = 𝑡−2𝛼(𝑢𝐹 − 𝑣𝐺) 𝐽1 = 𝑟𝛽𝑡𝛽(1−𝛼)𝑒−𝜑+1/𝑡

𝑔 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺)
2.23 4, 𝑘1 + 6 4.6 2.3 𝑓 = 𝑡−𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡−1/𝑘

𝑔 = 𝑡−𝛼𝑣𝐺
2.24 1 + 4, 𝛽1 + 6 3.10 2.3 𝑓 = 𝑡−𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑡𝑣−𝛽𝑒−𝑢/𝑣

𝑔 = 𝑡−𝛼𝑣𝐺
2.25 4,±2 + 6 4.80,0 2.3 𝑓 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡1−𝛼𝑒±1/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺
2.26 2 + 4,±2 + 6 3.150 2.3 𝑓 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡1−𝛼𝑒±(1/𝑡+𝑢/𝑣)

𝑔 = 𝑡−2𝛼𝑣𝐺
2.27 2 + 4, 6 4.8−2,0 2.3 𝑓 = 𝑡−2𝛼(𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑢/𝑣 + 1/𝑡

𝑔 = 𝑡−2𝛼𝑣𝐺
2.28 𝑘1 + 3 + 𝛽6, 4 4.6 2.4 𝑓 = 𝑡−𝛼(𝑡2/𝑘𝑣𝐹 + 𝑢𝐺) 𝐽1 = 𝑣𝑡(1−𝛽)/𝑘

𝑔 = 𝑡−𝛼𝑣𝐺
2.29 ±2 + 3 + 𝛽6, 4 4.80,0 2.4 𝑓 = 𝑡−2𝛼(𝑒∓2/𝑡𝑣𝐹 + 𝑢𝐺)

𝑔 = 𝑡−2𝛼𝑣𝐺 𝐽1 = 𝑣𝑡1−𝛼𝑒±(𝛽−1)/𝑡

2.30 (−2)1 + 3 + 𝛽6, 3.17 2.4 𝑓 = 𝑡−𝛼−1
(︀
𝑢
𝑣

+ 1
𝑡

)︀𝛽−3
2

(︀(︀
𝑢
𝑣

+ 1
𝑡

)︀
𝐹 −𝐺/𝑡

)︀
2 + 4 𝑔 = 𝑡−𝛼−1

(︀
𝑢
𝑣

+ 1
𝑡

)︀𝛽−3
2 𝐺 𝐽1 = 𝑡2𝛼−2

𝑣2

(︀
𝑢
𝑣

+ 1
𝑡

)︀𝛽−3+2𝛼

𝑘 ̸= 0, 𝛾 ≥ 0
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Table 4. Optimal system Θ3(𝐿6)
No Subalgebra Nor 𝑁𝑝 𝑓, 𝑔
3.1 3, 4, 6 5.1 𝑓 = 𝑢𝐹 (𝑡), 𝑔 = 𝑣𝐹 (𝑡)
3.2 3, 4, 5 6.1 𝑓 = 𝑢𝐹 (𝑡), 𝑔 = 𝑣𝐹 (𝑡)

3.3 1, 2, 3 + 𝛾6 4.2 1.1 𝑓 = 𝑡−𝛼𝑢
1

1−𝛼𝐶1 (𝑢/𝑣)
𝛼(𝛾+1)
2(𝛼−1)

𝑔 = 𝑡−𝛼𝑣
1

1−𝛼𝐶2 (𝑢/𝑣)
𝛼(𝛾−1)
2(𝛼−1)

3.4 1, 2, 6 6.1 1.2 𝑓 = 0, 𝑔 = 0

3.5 1, 2, 4 + 6 4.4 1.3 𝑓 = 𝑡−𝛼𝑣
𝛼

1−𝛼 𝑒
𝛼

𝛼−1
𝑢
𝑣 (𝐶2𝑢 + 𝐶1𝑣)

𝑔 = 𝑡−𝛼𝑣
𝛼

1−𝛼 𝑒
𝛼

𝛼−1
𝑢
𝑣𝐶2𝑣

3.6 1, 2, 4 5.1 1.4 𝑓 = 𝑡−𝛼𝑣
𝛼

1−𝛼 (𝐶2𝑢 + 𝐶1𝑣)

𝑔 = 𝑡−𝛼𝑣
𝛼

1−𝛼𝐶2𝑣

3.7 1, 2, 4 − 5 + 𝛾6 4.3 1.5 𝑓 = 𝑡−𝛼(𝑟𝑒𝛾𝜑)
𝛼

1−𝛼 (𝐶1𝑢− 𝐶2𝑣)

𝑔 = 𝑡−𝛼(𝑟𝑒𝛾𝜑)
𝛼

1−𝛼 (𝐶1𝑣 + 𝐶2𝑢)
3.8 1, 3, 6 = 2.1 𝑓 = 𝐶1𝑡

−𝛼𝑢, 𝑔 = 𝐶2𝑡
−𝛼𝑣

3.9 1, 4 − 5, 6 = 2.2 𝑓 = 𝑡−𝛼(𝐶1𝑢− 𝐶2𝑣)
𝑔 = 𝑡−𝛼(𝐶2𝑢 + 𝐶1𝑣)

3.10 1, 4, 6 4.6 2.3 𝑓 = 𝑡−𝛼(𝐶2𝑢 + 𝐶1𝑣), 𝑔 = 𝑡−𝛼𝐶2𝑣

3.11 1, 3 + 𝛽6, 4 4.6 2.4 𝑓 = 𝑡−𝛼(𝐶2𝑢 + 𝐶1𝑣
𝛽+1
𝛽−1 ), 𝑔 = 𝑡−𝛼𝐶2𝑣

𝛽 = 1 𝑓 = 𝑢𝐹 (𝑣), 𝑔 = 𝑣𝐹 (𝑣)

3.12 2, 𝛾1 + 3, 𝛽1 + 6 4.2 2.1 𝑓 = 𝑡−𝛼
(︀
𝑡2𝑢−𝛾−𝛽𝑣𝛾−𝛽

)︀−𝛼/(𝛽+1−𝛼𝛽)/2
𝐶1𝑢

𝑔 = 𝑡−𝛼
(︀
𝑡2𝑢−𝛾−𝛽𝑣𝛾−𝛽

)︀−𝛼/(𝛽+1−𝛼𝛽)/2
𝐶2𝑣

𝛽 = 1/(𝛼− 1) 𝑓 = 0, 𝑔 = 0

3.13 2, 𝛾1 + 4 − 5, 𝛽1 + 6 4.3 2.2 𝑓 = 𝑡−𝛼
(︀
𝑡𝑟−𝛽𝑒𝛾𝜑

)︀−𝛼/(𝛽+1−𝛼𝛽)
(𝐶1𝑢− 𝐶2𝑣)

𝑔 = 𝑡−𝛼
(︀
𝑡𝑟−𝛽𝑒𝛾𝜑

)︀−𝛼/(𝛽+1−𝛼𝛽)
(𝐶1𝑣 + 𝐶2𝑢)

𝛽 = 1/(𝛼− 1) 𝑓 = 0, 𝑔 = 0
3.14 2, 1 + 4, 𝛽1 + 6 4.4 2.3 𝑓 = 𝑡−2𝛼(𝑣𝑡1−𝛼)𝛼𝛽/𝜆𝑒𝛼/𝜆·𝑢/𝑣(𝐶2𝑢 + 𝐶1𝑣)

𝑔 = 𝑡−2𝛼(𝑣𝑡1−𝛼)𝛼𝛽/𝜆𝑒𝛼/𝜆·𝑢/𝑣𝐶2𝑣, 𝜆 = 𝛽 + 1 − 𝛼𝛽
𝛽 = 1/(𝛼− 1) 𝑓 = 0, 𝑔 = 0

3.15 2, 4, 𝛽1 + 6 5.1 2.3 𝑓 = 𝑡−𝛼−𝛼/𝜆𝑣𝛼𝛽/𝜆(𝐶2𝑢 + 𝐶1𝑣)
𝑔 = 𝑡−𝛼−𝛼/𝜆𝑣𝛼𝛽/𝜆𝐶2𝑣, 𝜆 = 𝛽 + 1 − 𝛼𝛽

𝛽 = 1/(𝛼− 1) 𝑓 = 0, 𝑔 = 0
3.16 2, 4, 𝛿1 + 3 + 𝛽6 5.1 2.4 𝑓 = 𝑡−2𝛼(𝐶1𝑢 + 𝐶2𝑣(𝑣𝑡1−𝛼)2/𝜆)(𝑣𝑡1−𝛼)𝛼𝛿/𝜆

𝑔 = 𝑡−2𝛼𝐶2𝑣(𝑣𝑡1−𝛼)𝛼𝛿/𝜆

𝛽 = 1, 𝛿 = 0 𝑓 = 𝑡−2𝛼𝑢𝐹 (𝑣𝑡1−𝛼), 𝑔 = 𝑡−2𝛼𝑣𝐹 (𝑣𝑡1−𝛼)
𝛽 = −1 + 2/𝛼, 𝛿 = −2/𝛼 𝑓 = 𝑡−2𝛼𝑣𝐹 (𝑣𝑡1−𝛼), 𝑔 = 0

𝛽 = 1 + 𝛼𝛿 − 𝛿 𝑓 = 0, 𝑔 = 0
3.17 (−2)1 + 3, 2 + 4, 6 = 3.1 𝑓 = 𝑡−𝛼−1(𝑣 + 𝑡𝑢)−𝛼(𝐶1𝑣

𝛼(𝑣 + 𝑡𝑢) − 𝐶2𝑣
𝛼+1)

𝑔 = 𝐶2𝑡
−𝛼𝑣𝛼+1(𝑣 + 𝑡𝑢)−𝛼

3.18 𝛿1 + 3, 4, 𝛽1 + 6 4.6 3.1 𝑓 = 𝑡−𝛼
(︁
𝐶1𝑡

2
𝛿+𝛽 𝑣

𝛿−𝛽
𝛿+𝛽 + 𝐶2𝑢

)︁
, 𝑔 = 𝑡−𝛼𝐶2𝑣

𝛿 + 𝛽 = 0 𝑓 = 𝑡−𝛼𝑢𝐹 (𝑡𝑣−𝛽), 𝑔 = 𝑡−𝛼𝑣𝐹 (𝑡𝑣−𝛽)
3.19 3, 4,±2 + 6 4.80,0 3.1 𝑓 = 𝑡−2𝛼𝐶1𝑢 + 𝐶2𝑒

±2/𝑡/(𝑣𝑡2)
𝑔 = 𝑡−2𝛼𝐶1𝑣

3.20 ±2 + 3, 4, 𝛽2 + 6 4.80,0 3.1 𝑓 = 𝑡−2𝛼
(︁
𝐶1𝑢 + 𝐶2𝑣

(︀
𝑣−𝛽𝑡(𝛼−1)𝛽𝑒−1/𝑡

)︀ 2
𝛽±1

)︁
𝑔 = 𝑡−2𝛼𝐶1𝑣

𝛽 = ±1 𝑓 = 𝑡−𝛼𝑢𝐹 (𝑣𝑡1−𝛼𝑒∓1/𝑡)
𝑔 = 𝑡−𝛼𝑣𝐹 (𝑣𝑡1−𝛼𝑒∓1/𝑡)
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Table 5. Optimal system Θ4,5,6(𝐿6)
No Subalgebra Nor 𝑁𝑝 𝑓 𝑔
4.1 3, 4, 5, 6 6.1 𝑓 = 𝑢𝐹 (𝑡) 𝑔 = 𝑣𝐹 (𝑡)
4.2 1, 2, 3, 6 = 2.1 𝑓 = 0 𝑔 = 0
4.3 1, 2, 4 − 5, 6 = 2.2 𝑓 = 0 𝑔 = 0
4.4 1, 2, 4, 6 5.1 2.3 𝑓 = 0 𝑔 = 0
4.5 1, 2, 3 + 𝛽6, 4 5.1 2.4 𝑓 = 0 𝑔 = 0

𝛽 = 1 𝑓 = 𝐶𝑡−𝛼𝑢𝑣𝛼/(1−𝛼) 𝑔 = 𝐶𝑡−𝛼𝑣1/(1−𝛼)

𝛽 = 2/𝛼− 1 𝑓 = 𝐶𝑡−𝛼𝑣1/(1−𝛼) 𝑔 = 0
4.6 1, 3, 4, 6 4.6 3.1 𝑓 = 𝐶𝑡−𝛼𝑢 𝑔 = 𝐶𝑡−𝛼𝑣
4.7 1, 3, 4, 5 5.3 3.2 𝑓 = 𝐶𝑡−𝛼𝑢 𝑔 = 𝐶𝑡−𝛼𝑣
4.8 2, 𝛿1 + 3, 4, 𝛽1 + 6 5.1 3.1 𝑓 = 0 𝑔 = 0

𝛿 = −𝛽 𝑓 = 𝐶𝑡−𝛼−𝛼/𝜆𝑣𝛼𝛽/𝜆 𝑔 = 𝐶𝑡−𝛼−𝛼/𝜆𝑢𝑣(𝛽+1)/𝜆

𝛿 = 𝛽 − 2(𝛽 + 1)/𝛼 𝑓 = 𝐶𝑡−𝛼−𝛼/𝜆𝑣(𝛽+1)/𝜆 𝑔 = 0, 𝜆 = 𝛽 + 1 − 𝛼𝛽
4.9 2, 3, 4, 5 6.1 3.2 𝑓 = 𝐶𝑡−2𝛼𝑢 𝑔 = 𝐶𝑡−2𝛼𝑣
4.10 𝑘1 + 6, 3, 4, 5 5.3 4.1 𝑓 = 𝐶𝑡−𝛼𝑢 𝑔 = 𝐶𝑡−𝛼𝑣
4.11 ±2 + 6, 3, 4, 5 5.40 4.1 𝑓 = 𝐶𝑡−2𝛼𝑢 𝑔 = 𝐶𝑡−2𝛼𝑣
5.1 1, 2, 3, 4, 6 = 3.1 𝑓 = 0 𝑔 = 0
5.2 1, 2, 3, 4, 5 6.1 3.2 𝑓 = 0 𝑔 = 0
5.3 1, 3, 4, 5, 6 = 4.1 𝑓 = 𝐶𝑡−𝛼𝑢 𝑔 = 𝐶𝑡−𝛼𝑣
5.4 𝛽1 + 6, 2, 3, 4, 5 6.1 4.1 𝑓 = 0 𝑔 = 0

(𝛽 = 0) 𝑓 = 𝐶𝑡−2𝛼𝑢 𝑔 = 𝐶𝑡−2𝛼𝑣
6.1 1, 2, 3, 4, 5, 6 = 4.1 𝑓 = 0 𝑔 = 0
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