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ON THE DISTRIBUTION OF INDICATORS OF
UNCONDITIONAL EXPONENTIAL BASES IN SPACES
WITH A POWER WEIGHT

K.P. ISAEV, K.V. TRUNOV

Abstract. In the present paper we consider the existence of unconditional exponential
bases in a space of locally integrable functions on a bounded interval of the real number

line I satisfying
£ = \/ [1r@peode < s,
I

where h(t) is a convex function on this interval. The lower estimate was obtained for the
frequency of indicators of unconditional bases of exponentials when I = (—1;1), h(t) =
—aln(1l — [t]), a > 0.

Keywords: series of exponents, unconditional bases, Riesz bases, power weights, Hilbert
space.

1. INTRODUCTION

Let I be a limited interval of a real axis, h(t) —a convex function on this interval and L?(I,h) —
a space of locally integrated functions on I, satisfying the condition

1= \//1 |£(1)|2e=2h0) dt < 0.

It is the Hilbert space with a scalar product

(f,9) = /I F()gt)e M dt.

The systems of element {ex, k= 1,2,...} in the Hilbert space is called an unconditional base (see
[2]), if it is total and there are numbers ¢, C' > 0, such that for any group of numbers ¢y, ¢s, ..., ¢, the
following correlation holds true

n n n

2 2 2 2 2

e lelllenl® < 11D ewenll* < O lenl?llexl .

k=1 k=1 k=1

It is known (see [3],[4]), that if the system {eg, k= 1,2,...} is an unconditional base, then any element
of the space H can be only presented in the form of the following row

o
z=> e,
k=1
and

o o
e lzalllexl® < llzl* < C Y lzal?llexl .
k=1 k=1
In the paper [12] there was introduced the following characteristic for continuous functions on the
plane u, measuring deviation of the given function from harmonic functions. For the continuous
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function u, for z € C and the positive number p we will define the supremum of all such r > 0 by
7(u, z,p), when the following condition holds true
inf{ sup |u(w)— h(w)|, h harmonic in B(z,r)} < p.
weB(z,r)

Let us define the circle of the radius r in the point z by B(z,r). It results right from the definition,
that if 7(u, 29, p) = oo for some point zg, then 7(u, z,p) = oco.

It results from Lemma 1.1 in paper [6], that in the case, when u is a continuous subharmonic
function, the value 7 = 7(u, \,p) can be defined by the condition: if H(z) is the lowest harmonic
majorant of the function w in the circle B(A, 1), then

max (H(z) —u(z)) = 2p. (1)
zEB(A\,T)

The following theorem (Theorem 2.1) was proved in paper [5]

Theorem 1. If the system {e®' 321 is an unconditional base in the space Lo(I,h), then there is

an entire function L with simple zeros in the points zj, j = 1,2, ..., for which the following correlation
holds true
—K <Z APK () < PK(z),2€C (2)
\L’ 2] Plz =z ~ ’
where P is some positive constant and K( ) = [|e?t]|%.

The function In K(z) is subharmonic and continuous on all the plane.
In the continuation of the paper we will define the function 7(In K (w), z,In(5P)) by 7(z), where
P is a constant from the correlation (2). Hence,
inf{ sup |InK(z)— h(z)], his harmonic in B(\,7(\))} = In(5P),
2€B(\,7()\))

The following theorem was proved in [7] (see Theorem 3, Theorem 4 and its corollary).

Theorem 2. Let the system {exp(tz;), i = 1,2,...}, make an unconditional base in the space
Lo(I,h). Then

1) in any circle B(z,27(2)) there is at least one index z;.

2) suppose b = 20;3 . Then for any i,j, i # j, the following inequality holds true
2

|zi — zj] > 2bmax(7(2;),7(25)).

The first statement of this theorem limits the frequency of indexes z; below, and the second —
above. On the basis of these multidirectional estimates Theorem 5 was proved in paper [7], and being
applied to the situation considered in the paper, it can be formulated the following way.

Theorem 3. Let h(t) be a convex function on the interval I = (—1,1) and

h(z) = sup(xt — h(t))
tel
be a function, conjugate to it by Jung. Let us assume, that he C?(|z| > const) and for any positive
number ¢ the function s(x) = —=— satisfies the condition

min K (y) max  h'(y) - =1, |z| — oo. (3)
( ) (et )

y€B(x,cs(x)) yE€B(x,cs(x

Then there are no unconditional bases from exponents in the space Lo(1,h).

The estimate of the function growth results from condition (3)

—h
Tl el 1O NN
which is equivalent to the correlation
h(t)

B Tl
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or for any o > 0

(1= [t)* = O("), |t] — 1.
In this paper we consider a problem of unconditional bases from exponents in spaces with not more
than power weights, i.e. according to the condition, that for some a > 0

MO = O((1 = Jt)*), [t — 1.

As model spaces we will consider the spaces La(I, h) when I = (—1;1), h(t) = —aln(1 —[t|) for a > 0,
which we will define by La(«).
We are going to prove the following, more precise estimate of unconditional bases frequency below.

Theorem 4. Let the system {e**'} make an unconditional base in the space La(c). Then there
are numbers &1 = 01(a) € (0,1) and 62 = da() > 0, M = M(cx) > 0, such that in case of sufficiently
large |zo| for any yo in every rectangle Q = {z = + iy : 0120 < x < Jawo, |y — yo| < M|xo|} and —Q
there is at least one index zj,.

The fact, that this estimate is more precise as to p.1 of Theorem 2, results from the awareness, that
the value 7(z) in these spaces is comparable with [Re z|. When a > 3, the statement of this theorem
is proved in paper [13] some other way.

2. PREPARATORY STATEMENTS

The system of exponents {e*}, A\ € C is total in the space Lo(I,h), therefore, the transform of
Fourier-Laplace functionals L : S — S(\), defined by the formula

S(A) = S(eM), AeC,

sets mutually single-valued correlation between the conjugated space L3(1, h) and some linear manifold

of entire functions EQ(I , h). In this linear manifold we will consider an induced structure of the Hilbert
space. Namely, if functionals Sy, 52 € L5(I, h) are generated by the functions fi, fo € La(I, h), then
we suppose

(S1(N), §2()\))z

It is easy to assure, that the function

) = F1 S2) Larm)-

*
2

K(\ z2) = / MTE=2hM g\ 2 e C
I

is a reproducing kernel in the space EQ(I, h), i.e.
(F(N), K (X, 2)) = F(2), F € Lo(I, h).

It was proved in paper [14], that in the space EQ(I , h) the following equivalent norm can be introduced

|F|? = /R /R F(a + iy) e 20 o (2)d (2)dy, (4)

where

h(z) = ig)(xt —h(t)), z € R,

is conjugated by Jung to the function h(t), and the number p = p~h(ac) is defined as a supremum for
all t > 0, for which

T+t -
/ )~ @)y < 1.

It is shown in paper [5], that the norm of the space ZQ(I ,h) can be also presented as
F(x +iy)]? ~
F2=//’dh'xdy, 5
i) = [ | i (5)
where K(z) = K(z, 2).
Whereas the Fourier-Laplace transform sets an isomorphism of the space L(I,h) and Lo(1, h),
then the unconditional base of the exponent system {e'**} in the space Ls(I,h) is equivalent to the
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statement, that the set of indexes {zj} is the set of uniqueness for the space EQ(I ,h), and for any
function F' € Lo(I, h) the following correlation holds true

o0 Z 2 o0 Z 2
P Ry << Py R ®
k=1 k=1

where P is some positive constant.
Let us calculate the introduced above characteristics for the space La(a).

Lemma 1. If
1

Ka(z) _ Heth%Z(a) = Ku(z,2) = /162Rezt(1 _ ‘t’)%‘dt,

ha(t) = —aln(l = [t]), pa(2) = p; (), Ta(z,p) = (In Ka(w), 2,p),

then B
ho(z) = |z| — aln|z| + aq, |2| > X(a),
Ta(2,p) < |Rez| + 1, |Rez| — 00, pal(z) =\ 1— e_ﬁx, x> X(a),
In Ky () = 2|z| — 2o+ 1) In |x| + by + 0(1), |2| — o0,
where

1 [e.9] 9
— - «Q
bo‘_ln22a+1/0 ey Tdy.

Whereas the functions ﬁa(x),pa(x) are positive and contiguous, then, in particular, the following
correlations hold true N
ehe(®) < elel—an(zl+1) = c R

hy(z) = (2| +1)7%, = €R,

pal(z) < (2| +1), x € R,
Ka(:v) - e2|x\—(20¢+1)1n(\x|+1)’ reR.

Proof. The function K(x) is even, therefore, we will make calculations for > 0. The asymptotic
representation for In K, (z) results from the correlation

1 0 1
/ X (1 — [t])?dt = / X (1 4 t)2dt + 629”/ e 2= (1 — ¢)20qt =
—1 —1 0

6250 2 Y % e2x+ba
:o<1>+(2x)2a+1/0 ey = o (4 o)), oo

The function Ea(x) for large x is calculated by the definition. Expressions for 7, p, were calculated
in paper [13]. O
Lemma 2. For 61,092, M > 0 and xo € Ry via Q(xq, 01,2, M) we will define the rectangle
Q={z+iy: d1wg < < damwo, |y| < Muo}.

Then for any € > 0 we can find quite a low number of 61 = d1(¢) > 0, and quite large numbers of
da = 02(e) > 0, M = M(01,02,€) > 0 so, that when o > X (01,02,€) the following correlation will
hold true

| Ko (2 + iy, :L‘o)\ze_QEa(x)pa(x)dﬁg(x)dy < eKu(z0,20)-
C\Q(z0,01,02,M)

Proof. Let us take positive g and present the X-axis in the form of gaps integration
L ={x: x>0}, o ={x: —dzy <z <z},
Is={x: —2x¢0 <z < —b1xo}, Is ={z: v < -2z},
I={z: 010 <z < doxp}.

Then the supplement to the rectangle Q(zg, 01,02, M) will be expanded into two half-planes Q1 =
Ii xR and @4 = Iy x R, two vertical strips Q2 = Is X R and @3 = I3 X R and two semi-strips
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Qi =1x{y>Mzxy},Q- =1x{y<—Mzy}. Note, that the function K, (x + iy, xo) is the Fourier
z+20)t=2ha(t) with fixed z and, according to the Plancherel theorem

oo 1
/ | Ko (x + iy, 20)|2dy = 27r/ eH@tzo)t=4ha(t) gt

—0o0 -1

function transform e

As it was proved in paper [15], for any convex function wu(t) the following correlation holds true

1 Ul
/ pvi-ut) gy = , yeR.
1 pa(y)

Hence, according to Lemma 1 we have

= I S ETNC-
Ko(x 41y, xo)|"dy < = ,
ot iy = e <
therefore,
= o o7 -
00 . 5 + 1)64ha( 52 )—2ha(2)—2ha(z0)
K 2 —2hs(z) dy < zo(|| K .
[ VEata+ i) e (@) dy e (o)
In the half-plane (1 we obtain the estimate when do — oo is uniform on g
) _oF, ~ * d
/ | Ko (z + zy,xo)\2e 2h”‘(“?)pa(ac)dydh'a(:U) =< Ka(mo)/ YW o(Ka(xp)).
Ql 52 (y + 1)y
If §; < % and |z| < d1x9, then we have
zo(Jz] + 1)ethe T Tha@ Thal@) gy (g 4+ 1)%(J2] + )2 (ja| + 1)
|z + o] + 1 (lz + zo| + 1)da+? (lz + zo| + 1)2”

therefore,in the strip Q2 we deal with §; — 0, which is uniform on xg > 1

. 9 (% ~ K, (x 9120 o
/ |Ko( + iy, zo) [P po () dydhl, (x) < gaO) / (Je| + 1)** " dz = o(Ka(0)).

2 $0 7511‘0
For the fixed 1 < % for —2x5 < x < —d1xg we obtain

wo(|z] + 1)etha (752 =2ha(@)=2ha(w0)
|z + 20| + 1
hence, in the strip Q3 with xp — co we have

/ |Ka(w + iy, 70) %2 po (a)dydhl () < Ko(wo)e 210 (g + 1)173 = o(Ko(z0)).

3

= e—251$0(x0 + 1)40&4—2’

With the fixed §; < % for x < —2x( we have

zo(|z] + 1)etha(*52) = 2ha(2)2ha(z0)
|z + $0| +1
therefore, in the strip Q4 with xy¢ — oo the following estimate holds true

< e~ 40 (xo + 1)2°‘+1(]x\ + 1)_2a,

~ - +o00
/ |Ka(ariy, o) e pa (@) dydhi,(x) < Ka(wo)e " (zo+1)**+! / (Jz4+1)72* 2 da = o(Ka(x)).
Qa 2x0

If we choose d; and d- the right way, we can proceed to estimates of integrals on semi-strips (). For this

we will apply the following representation for the reproducing kernel with z = x 4+ iy # w = zg + Yo

1 _ 1 o(@—2)t
Ka(z,w):/ 6zt+wt—2ha(t)dt:/ 2et—ha(t) g _
1 1

w—z

1
_ 2 / e#tHWt—2ha (t) (:I:' _ h; (t))dt.
-1

Wz
According to the Cauchy-Bunyakovsky inequality, we obtain
4 1 1
Kalevw)? < 2 [ 30— olar [ 2Oy — g (0)ar

jw—=z* /4
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The function Al (t) we change the sign only in the point ¢t = 0, therefore

1 1 1
/ eta—Qha(t)‘w o h; (t)‘dt < / eth—Zha (t) |x\dt - % / eQ:ctde—Zha (t) <
-1 0

< |z|Ko(z) + 1+ 2Ko(z) < 3Ky (x)|z],
when K, (z) > 1. It results from the latter two estimates, that

Ka Ka .
lw— z|? () Ka(zo)

|Ka(z,w)* <
Hence, from the estimates in Lemma 1 we obtain

. 2 —ha(z) 7
a s L0 « a =
/ | Ko(z + iy, z0)| e pPadydhy(z) <
Q+

o0 T 1
§36Ka:1:x// dydx < — K, (xg).
@lao | | =P+ )@+ 12 YT < g Kel0)

Therefore, choosing the number M large enough, we can consider the integral on the strip Q4 suffi-
ciently low. The same way we can estimate an integral on the semi-strip )_. O

Lemma 2 has been proved. It is easy to see, that the following lemma has been proved the same way.

Lemma 3. For 61,02, M > 0 and xg € Ry, yo € R via Q(xo,yo, 1,02, M) we will define the
rectangle
Q={z+iy: diwo <z < oo, |y —yo| < Mao}.
Then for any € > 0 we can find quite a low number of 61 = d1(¢) > 0, and quite large numbers of
do = 02(g) > 0, M = M(01,02,&) > 0 so, that when xy > X (01,0d2,¢), the following correlation will
hold true

/ | Ko (z + iy, x0 + iyo)|2672’~la(”§)pa(:c)dﬁ;(x)dy < eKq(zo,x0)-
(C\Q(xoryo’alv&Q:M)

3. LOW ESTIMATE OF FREQUENCY INDEXES. PROOF OF THEOREM 4

Let the system {exp(z;t)} make an unconditional base in the space La(c). Then, as it was already

pointed out in section 2, the system K,(z,2;) makes an unconditional base in the space EQ(a), Le.
for some P correlation (6) holds true. In this correlation we can define the norm by formula (5). Let
us take sufficiently low positive €, the degree of infinitesimality we will define later. By this number ¢,
according to Lemma 3, we will find numbers d; € (0, %), 09 and M, for which the statement of Lemma
3 holds true.

Assume, that for some xo € R, 90 in the rectangle
Q = Q(x0,90,01 + %,52 + %,M + i) there are no indexes z;.

According to Lemma 1, values 7,(z) and p,(z) are comparable with |Rez| + 1. Considering item 1
of Theorem 2, we can assert, that there is a number o > 0, such that circles B; = B(z;,0(|Rez;j| +1))
do not cross pairwise and lie outside the rectangle Q. According to the definition of the value 7, in
every circle B; there is a harmonic function H;, which stands by from the function In K, for not more
than In(5P). According to the properties of subharmonic functions, for any entire function F' the
following inequality holds true

|F(z)[2e 210G < !

F 2 72H'(Z)d
< A 77 Jp P (),

where dm(z) is the Lebesgue planar measure. Whereas in the circle B; |Rez;| + 1 < |[Rez| + 1, then

CoH (e F(x +1dy)|? |F(z +iy)|* ~
F(z)|?e 2i(z) < |—dmdy =< / =2 dh (x)dy.
)l 5. K(@)(la] + 12 s K@ )

Let us summarize these estimates by all j:

J

2

|[F ()] [E(+wy)l® 5
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We will apply this estimate to the function F'(z) = K4 (z,x0 + iyo). According to Lemma 3, we will
obtain, that due to the choice of the rectangle size Q) the following inequality holds true

If

10.

11.

12.

13.

14.

15.

)|
V4

7
2 K

e < 3, then it contradicts condition (6).
Theorem 4 has been proved.

< eKo (w0, o) = €| |[Ka(z, 0 + iyo)||>.
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