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ON THE DISTRIBUTION OF INDICATORS OF

UNCONDITIONAL EXPONENTIAL BASES IN SPACES

WITH A POWER WEIGHT

K.P. ISAEV, K.V. TRUNOV

Abstract. In the present paper we consider the existence of unconditional exponential
bases in a space of locally integrable functions on a bounded interval of the real number
line 𝐼 satisfying

‖𝑓‖ :=

√︃∫︁
𝐼
|𝑓(𝑡)|2𝑒−2ℎ(𝑡) 𝑑𝑡 < ∞,

where ℎ(𝑡) is a convex function on this interval. The lower estimate was obtained for the
frequency of indicators of unconditional bases of exponentials when 𝐼 = (−1; 1), ℎ(𝑡) =
−𝛼 ln(1− |𝑡|), 𝛼 > 0.

Keywords: series of exponents, unconditional bases, Riesz bases, power weights, Hilbert
space.

1. Introduction

Let 𝐼 be a limited interval of a real axis, ℎ(𝑡) —a convex function on this interval and 𝐿2(𝐼, ℎ) —
a space of locally integrated functions on 𝐼, satisfying the condition

||𝑓 || :=

√︃∫︁
𝐼
|𝑓(𝑡)|2𝑒−2ℎ(𝑡) 𝑑𝑡 < ∞.

It is the Hilbert space with a scalar product

(𝑓, 𝑔) =

∫︁
𝐼
𝑓(𝑡)𝑔(𝑡)𝑒−2ℎ(𝑡) 𝑑𝑡.

The systems of element {𝑒𝑘, 𝑘 = 1, 2, ...} in the Hilbert space is called an unconditional base (see
[2]), if it is total and there are numbers 𝑐, 𝐶 > 0, such that for any group of numbers 𝑐1, 𝑐2, ..., 𝑐𝑛 the
following correlation holds true

𝑐

𝑛∑︁
𝑘=1

|𝑐𝑘|2||𝑒𝑘||2 ≤ ||
𝑛∑︁

𝑘=1

𝑐𝑘𝑒𝑘||2 ≤ 𝐶

𝑛∑︁
𝑘=1

|𝑐𝑘|2||𝑒𝑘||2.

It is known (see [3],[4]), that if the system {𝑒𝑘, 𝑘 = 1, 2, ...} is an unconditional base, then any element
of the space 𝐻 can be only presented in the form of the following row

𝑥 =

∞∑︁
𝑘=1

𝑥𝑘𝑒𝑘,

and

𝑐

∞∑︁
𝑘=1

|𝑥𝑘|2||𝑒𝑘||2 ≤ ||𝑥||2 ≤ 𝐶

∞∑︁
𝑘=1

|𝑥𝑘|2||𝑒𝑘||2.

In the paper [12] there was introduced the following characteristic for continuous functions on the
plane 𝑢, measuring deviation of the given function from harmonic functions. For the continuous
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function 𝑢, for 𝑧 ∈ C and the positive number 𝑝 we will define the supremum of all such 𝑟 > 0 by
𝜏(𝑢, 𝑧, 𝑝), when the following condition holds true

inf{ sup
𝑤∈𝐵(𝑧,𝑟)

|𝑢(𝑤)− ℎ(𝑤)|, ℎ harmonic in 𝐵(𝑧, 𝑟)} ≤ 𝑝.

Let us define the circle of the radius 𝑟 in the point 𝑧 by 𝐵(𝑧, 𝑟). It results right from the definition,
that if 𝜏(𝑢, 𝑧0, 𝑝) = ∞ for some point 𝑧0, then 𝜏(𝑢, 𝑧, 𝑝) ≡ ∞.

It results from Lemma 1.1 in paper [6], that in the case, when 𝑢 is a continuous subharmonic
function, the value 𝜏 = 𝜏(𝑢, 𝜆, 𝑝) can be defined by the condition: if 𝐻(𝑧) is the lowest harmonic
majorant of the function 𝑢 in the circle 𝐵(𝜆, 𝜏), then

max
𝑧∈𝐵(𝜆,𝜏)

(𝐻(𝑧)− 𝑢(𝑧)) = 2𝑝. (1)

The following theorem (Theorem 2.1) was proved in paper [5]

Theorem 1. If the system {𝑒𝑧𝑗𝑡}∞𝑗=1 is an unconditional base in the space 𝐿2(𝐼, ℎ), then there is
an entire function 𝐿 with simple zeros in the points 𝑧𝑗 , 𝑗 = 1, 2, ..., for which the following correlation
holds true

1

𝑃
𝐾(𝑧) ≤

∞∑︁
𝑗=1

|𝐿(𝑧)|2𝐾(𝑧𝑗)

|𝐿′(𝑧𝑗)|2|𝑧 − 𝑧𝑗 |2
≤ 𝑃𝐾(𝑧), 𝑧 ∈ C, (2)

where 𝑃 is some positive constant and 𝐾(𝑧) = ||𝑒𝑧𝑡||2.

The function ln𝐾(𝑧) is subharmonic and continuous on all the plane.
In the continuation of the paper we will define the function 𝜏(ln𝐾(𝑤), 𝑧, ln(5𝑃 )) by 𝜏(𝑧), where

𝑃 is a constant from the correlation (2). Hence,

inf
ℎ
{ sup
𝑧∈𝐵(𝜆,𝜏(𝜆))

| ln𝐾(𝑧)− ℎ(𝑧)|, h is harmonic in 𝐵(𝜆, 𝜏(𝜆))} = ln(5𝑃 ),

The following theorem was proved in [7] (see Theorem 3, Theorem 4 and its corollary).

Theorem 2. Let the system {exp(𝑡𝑧𝑖), 𝑖 = 1, 2, ...}, make an unconditional base in the space
𝐿2(𝐼, ℎ). Then

1) in any circle 𝐵(𝑧, 2𝜏(𝑧)) there is at least one index 𝑧𝑖.
2) suppose 𝑏 = 1

20𝑃
3
2
. Then for any 𝑖, 𝑗, 𝑖 ̸= 𝑗, the following inequality holds true

|𝑧𝑖 − 𝑧𝑗 | ≥ 2𝑏max(𝜏(𝑧𝑖), 𝜏(𝑧𝑗)).

The first statement of this theorem limits the frequency of indexes 𝑧𝑘 below, and the second —
above. On the basis of these multidirectional estimates Theorem 5 was proved in paper [7], and being
applied to the situation considered in the paper, it can be formulated the following way.

Theorem 3. Let ℎ(𝑡) be a convex function on the interval 𝐼 = (−1, 1) and̃︀ℎ(𝑥) = sup
𝑡∈𝐼

(𝑥𝑡− ℎ(𝑡))

be a function, conjugate to it by Jung. Let us assume, that ̃︀ℎ ∈ 𝐶2(|𝑥| > 𝑐𝑜𝑛𝑠𝑡) and for any positive
number 𝑐 the function 𝑠(𝑥) = 1√̃︀ℎ′′(𝑥)

satisfies the condition(︂
min

𝑦∈𝐵(𝑥,𝑐𝑠(𝑥))

̃︀ℎ′′(𝑦))︂(︂
max

𝑦∈𝐵(𝑥,𝑐𝑠(𝑥))

̃︀ℎ′′(𝑦))︂−1

≍ 1, |𝑥| −→ ∞. (3)

Then there are no unconditional bases from exponents in the space 𝐿2(𝐼, ℎ).

The estimate of the function growth results from condition (3)

lim
|𝑥|−→∞

|𝑥| − ̃︀ℎ(𝑥)
ln |𝑥|

= +∞,

which is equivalent to the correlation

lim
|𝑡|−→1

ℎ(𝑡)

− ln(1− |𝑡|)
= +∞,
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or for any 𝛼 > 0

(1− |𝑡|)𝛼 = 𝑂(𝑒ℎ(𝑡)), |𝑡| −→ 1.

In this paper we consider a problem of unconditional bases from exponents in spaces with not more
than power weights, i.e. according to the condition, that for some 𝛼 > 0

𝑒ℎ(𝑡) = 𝑂((1− |𝑡|)𝛼), |𝑡| −→ 1.

As model spaces we will consider the spaces 𝐿2(𝐼, ℎ) when 𝐼 = (−1; 1), ℎ(𝑡) = −𝛼 ln(1−|𝑡|) for 𝛼 > 0,
which we will define by 𝐿2(𝛼).

We are going to prove the following, more precise estimate of unconditional bases frequency below.

Theorem 4. Let the system {𝑒𝑧𝑘𝑡} make an unconditional base in the space 𝐿2(𝛼). Then there
are numbers 𝛿1 = 𝛿1(𝛼) ∈ (0, 1) and 𝛿2 = 𝛿2(𝛼) > 0, 𝑀 = 𝑀(𝛼) > 0, such that in case of sufficiently
large |𝑥0| for any 𝑦0 in every rectangle 𝑄 = {𝑧 = 𝑥+ 𝑖𝑦 : 𝛿1𝑥0 ≤ 𝑥 ≤ 𝛿2𝑥0, |𝑦 − 𝑦0| ≤ 𝑀 |𝑥0|} and −𝑄
there is at least one index 𝑧𝑘.

The fact, that this estimate is more precise as to p.1 of Theorem 2, results from the awareness, that
the value 𝜏(𝑧) in these spaces is comparable with |𝑅𝑒 𝑧|. When 𝛼 > 1

2 , the statement of this theorem
is proved in paper [13] some other way.

2. Preparatory statements

The system of exponents {𝑒𝜆𝑡}, 𝜆 ∈ C is total in the space 𝐿2(𝐼, ℎ), therefore, the transform of

Fourier-Laplace functionals 𝐿 : 𝑆 −→ ̂︀𝑆(𝜆), defined by the formulâ︀𝑆(𝜆) = 𝑆(𝑒𝜆𝑡), 𝜆 ∈ C,
sets mutually single-valued correlation between the conjugated space 𝐿*

2(𝐼, ℎ) and some linear manifold

of entire functions ̂︀𝐿2(𝐼, ℎ). In this linear manifold we will consider an induced structure of the Hilbert
space. Namely, if functionals 𝑆1, 𝑆2 ∈ 𝐿*

2(𝐼, ℎ) are generated by the functions 𝑓1, 𝑓2 ∈ 𝐿2(𝐼, ℎ), then
we suppose

(̂︀𝑆1(𝜆), ̂︀𝑆2(𝜆))̂︀𝐿*
2(𝐼,ℎ)

= (𝑓1, 𝑓2)𝐿2(𝐼,ℎ).

It is easy to assure, that the function

𝐾(𝜆, 𝑧) =

∫︁
𝐼
𝑒𝜆𝑡+𝑧𝑡−2ℎ(𝑡)𝑑𝑡, 𝜆, 𝑧 ∈ C

is a reproducing kernel in the space ̂︀𝐿2(𝐼, ℎ), i.e.

(𝐹 (𝜆),𝐾(𝜆, 𝑧)) = 𝐹 (𝑧), 𝐹 ∈ ̂︀𝐿2(𝐼, ℎ).

It was proved in paper [14], that in the space ̂︀𝐿2(𝐼, ℎ) the following equivalent norm can be introduced

||𝐹 ||2 =
∫︁
R

∫︁
R
|𝐹 (𝑥+ 𝑖𝑦)|2𝑒−2̃︀ℎ(𝑥)𝜌̃︀ℎ(𝑥)𝑑̃︀ℎ′(𝑥)𝑑𝑦, (4)

where ̃︀ℎ(𝑥) = sup
𝑡∈𝐼

(𝑥𝑡− ℎ(𝑡)), 𝑥 ∈ R,

is conjugated by Jung to the function ℎ(𝑡), and the number 𝜌 = 𝜌̃︀ℎ(𝑥) is defined as a supremum for
all 𝑡 > 0, for which ∫︁ 𝑥+𝑡

𝑥−𝑡
|̃︀ℎ′+(𝑦)− ̃︀ℎ′+(𝑥)|𝑑𝑦 ≤ 1.

It is shown in paper [5], that the norm of the space ̂︀𝐿2(𝐼, ℎ) can be also presented as

||𝐹 ||2 =
∫︁
R

∫︁
R

|𝐹 (𝑥+ 𝑖𝑦)|2

𝐾(𝑥)
𝑑̃︀ℎ′(𝑥)𝑑𝑦, (5)

where 𝐾(𝑧) = 𝐾(𝑧, 𝑧).

Whereas the Fourier-Laplace transform sets an isomorphism of the space 𝐿*
2(𝐼, ℎ) and ̂︀𝐿2(𝐼, ℎ),

then the unconditional base of the exponent system {𝑒𝑡𝑧𝑘} in the space 𝐿2(𝐼, ℎ) is equivalent to the
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statement, that the set of indexes {𝑧𝑘} is the set of uniqueness for the space ̂︀𝐿2(𝐼, ℎ), and for any

function 𝐹 ∈ ̂︀𝐿2(𝐼, ℎ) the following correlation holds true

1

𝑃

∞∑︁
𝑘=1

|𝐹 (𝑧𝑘)|2

𝐾(𝑧𝑘)
≤ ||𝐹 ||2 ≤ 𝑃

∞∑︁
𝑘=1

|𝐹 (𝑧𝑘)|2

𝐾(𝑧𝑘)
, (6)

where 𝑃 is some positive constant.
Let us calculate the introduced above characteristics for the space 𝐿2(𝛼).

Lemma 1. If

𝐾𝛼(𝑧) = ||𝑒𝑧𝑡||2𝐿2(𝛼)
= 𝐾𝛼(𝑧, 𝑧) =

∫︁ 1

−1
𝑒2Re𝑧𝑡(1− |𝑡|)2𝛼𝑑𝑡,

ℎ𝛼(𝑡) = −𝛼 ln(1− |𝑡|), 𝜌𝛼(𝑥) = 𝜌̃︀ℎ𝛼
(𝑥), 𝜏𝛼(𝑧, 𝑝) = (ln𝐾𝛼(𝑤), 𝑧, 𝑝),

then ̃︀ℎ𝛼(𝑥) = |𝑥| − 𝛼 ln |𝑥|+ 𝑎𝛼, |𝑥| ≥ 𝑋(𝛼),

𝜏𝛼(𝑧, 𝑝) ≍ |Re𝑧|+ 1, |Re𝑧| −→ ∞, 𝜌𝛼(𝑥) =

√︁
1− 𝑒−

1
2𝛼+1𝑥, 𝑥 > 𝑋(𝛼),

ln𝐾𝛼(𝑥) = 2|𝑥| − (2𝛼+ 1) ln |𝑥|+ 𝑏𝛼 + 𝑜(1), |𝑥| −→ ∞,

where

𝑏𝛼 = ln
1

22𝛼+1

∫︁ ∞

0
𝑒−𝑦𝑦2𝛼𝑑𝑦.

Whereas the functions ̃︀ℎ𝛼(𝑥), 𝜌𝛼(𝑥) are positive and contiguous, then, in particular, the following
correlations hold true

𝑒
̃︀ℎ𝛼(𝑥) ≍ 𝑒|𝑥|−𝛼 ln(|𝑥|+1), 𝑥 ∈ R,̃︀ℎ′′𝛼(𝑥) ≍ (|𝑥|+ 1)−2, 𝑥 ∈ R,

𝜌𝛼(𝑥) ≍ (|𝑥|+ 1), 𝑥 ∈ R,
𝐾𝛼(𝑥) ≍ 𝑒2|𝑥|−(2𝛼+1) ln(|𝑥|+1), 𝑥 ∈ R.

Proof. The function 𝐾(𝑥) is even, therefore, we will make calculations for 𝑥 > 0. The asymptotic
representation for ln𝐾𝛼(𝑥) results from the correlation∫︁ 1

−1
𝑒2𝑥𝑡(1− |𝑡|)2𝛼𝑑𝑡 =

∫︁ 0

−1
𝑒2𝑥𝑡(1 + 𝑡)2𝛼𝑑𝑡+ 𝑒2𝑥

∫︁ 1

0
𝑒−2𝑥(1−𝑡)(1− 𝑡)2𝛼𝑑𝑡 =

= 𝑂(1) +
𝑒2𝑥

(2𝑥)2𝛼+1

∫︁ 2𝑥

0
𝑒−𝑦𝑦2𝛼𝑑𝑦 =

𝑒2𝑥+𝑏𝛼

𝑥2𝛼+1
(1 + 𝑜(1)), 𝑥 → ∞.

The function ̃︀ℎ𝛼(𝑥) for large 𝑥 is calculated by the definition. Expressions for 𝜏𝛼, 𝜌𝛼 were calculated
in paper [13].

Lemma 2. For 𝛿1, 𝛿2,𝑀 > 0 and 𝑥0 ∈ R+ via 𝑄(𝑥0, 𝛿1, 𝛿2,𝑀) we will define the rectangle

𝑄 = {𝑥+ 𝑖𝑦 : 𝛿1𝑥0 ≤ 𝑥 ≤ 𝛿2𝑥0, |𝑦| ≤ 𝑀𝑥0}.
Then for any 𝜀 > 0 we can find quite a low number of 𝛿1 = 𝛿1(𝜀) > 0, and quite large numbers of
𝛿2 = 𝛿2(𝜀) > 0, 𝑀 = 𝑀(𝛿1, 𝛿2, 𝜀) > 0 so, that when 𝑥0 > 𝑋(𝛿1, 𝛿2, 𝜀) the following correlation will
hold true ∫︁

C∖𝑄(𝑥0,𝛿1,𝛿2,𝑀)
|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑̃︀ℎ′𝛼(𝑥)𝑑𝑦 ≤ 𝜀𝐾𝛼(𝑥0, 𝑥0).

Proof. Let us take positive 𝑥0 and present the X-axis in the form of gaps integration

𝐼1 = {𝑥 : 𝑥 > 𝛿2𝑥0}, 𝐼2 = {𝑥 : −𝛿1𝑥0 ≤ 𝑥 < 𝛿1𝑥0},
𝐼3 = {𝑥 : −2𝑥0 < 𝑥 < −𝛿1𝑥0}, 𝐼4 = {𝑥 : 𝑥 ≤ −2𝑥0},

𝐼 = {𝑥 : 𝛿1𝑥0 ≤ 𝑥 ≤ 𝛿2𝑥0}.
Then the supplement to the rectangle 𝑄(𝑥0, 𝛿1, 𝛿2,𝑀) will be expanded into two half-planes 𝑄1 =
𝐼1 × R and 𝑄4 = 𝐼4 × R, two vertical strips 𝑄2 = 𝐼2 × R and 𝑄3 = 𝐼3 × R and two semi-strips
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𝑄+ = 𝐼 × {𝑦 > 𝑀𝑥0}, 𝑄− = 𝐼 × {𝑦 < −𝑀𝑥0}. Note, that the function 𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0) is the Fourier

function transform 𝑒(𝑥+𝑥0)𝑡−2ℎ𝛼(𝑡) with fixed 𝑥 and, according to the Plancherel theorem∫︁ ∞

−∞
|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑑𝑦 = 2𝜋

∫︁ 1

−1
𝑒2(𝑥+𝑥0)𝑡−4ℎ𝛼(𝑡)𝑑𝑡.

As it was proved in paper [15], for any convex function 𝑢(𝑡) the following correlation holds true∫︁ 1

−1
𝑒𝑦𝑡−𝑢(𝑡)𝑑𝑡 ≍ 𝑒̃︀𝑢(𝑦)

𝜌̃︀𝑢(𝑦) , 𝑦 ∈ R.

Hence, according to Lemma 1 we have∫︁ ∞

−∞
|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑑𝑦 ≍ 𝑒4

̃︀ℎ𝛼(
𝑥+𝑥0

2
)

𝜌𝛼(
𝑥+𝑥0

2 )
≍ 𝑒4

̃︀ℎ𝛼(
𝑥+𝑥0

2
)

(|𝑥+ 𝑥0|+ 1)
,

therefore,∫︁ ∞

−∞
|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥) 𝑑𝑦 ≺ 𝑥0(|𝑥|+ 1)𝑒4

̃︀ℎ𝛼(
𝑥+𝑥0

2
)−2̃︀ℎ𝛼(𝑥)−2̃︀ℎ𝛼(𝑥0)

|𝑥+ 𝑥0|+ 1
𝐾𝛼(𝑥0).

In the half-plane 𝑄1 we obtain the estimate when 𝛿2 −→ ∞ is uniform on 𝑥0∫︁
𝑄1

|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑𝑦𝑑̃︀ℎ′𝛼(𝑥) ≺ 𝐾𝛼(𝑥0)

∫︁ ∞

𝛿2

𝑑𝑦

(𝑦 + 1)𝑦
= 𝑜(𝐾𝛼(𝑥0)).

If 𝛿1 ≤ 1
2 and |𝑥| ≤ 𝛿1𝑥0, then we have

𝑥0(|𝑥|+ 1)𝑒4
̃︀ℎ𝛼(

𝑥+𝑥0
2

)−2̃︀ℎ𝛼(𝑥)−2̃︀ℎ𝛼(𝑥0)

|𝑥+ 𝑥0|+ 1
≺ 𝑥0(𝑥0 + 1)2𝛼(|𝑥|+ 1)2𝛼+1

(|𝑥+ 𝑥0|+ 1)4𝛼+1
≺ (|𝑥|+ 1)2𝛼+1

(|𝑥+ 𝑥0|+ 1)2𝛼
,

therefore,in the strip 𝑄2 we deal with 𝛿1 −→ 0, which is uniform on 𝑥0 > 1∫︁
𝑄2

|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑𝑦𝑑̃︀ℎ′𝛼(𝑥) ≺ 𝐾𝛼(𝑥0)

𝑥2𝛼0

∫︁ 𝛿1𝑥0

−𝛿1𝑥0

(|𝑥|+ 1)2𝛼−1𝑑𝑥 = 𝑜(𝐾𝛼(𝑥0)).

For the fixed 𝛿1 ≤ 1
2 for −2𝑥0 ≤ 𝑥 ≤ −𝛿1𝑥0 we obtain

𝑥0(|𝑥|+ 1)𝑒4
̃︀ℎ𝛼(

𝑥+𝑥0
2

)−2̃︀ℎ𝛼(𝑥)−2̃︀ℎ𝛼(𝑥0)

|𝑥+ 𝑥0|+ 1
≺ 𝑒−2𝛿1𝑥0(𝑥0 + 1)4𝛼+2,

hence, in the strip 𝑄3 with 𝑥0 −→ ∞ we have∫︁
𝑄3

|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑𝑦𝑑̃︀ℎ′𝛼(𝑥) ≺ 𝐾𝛼(𝑥0)𝑒
−2𝛿1𝑥0(𝑥0 + 1)4𝛼+3 = 𝑜(𝐾𝛼(𝑥0)).

With the fixed 𝛿1 ≤ 1
2 for 𝑥 ≤ −2𝑥0 we have

𝑥0(|𝑥|+ 1)𝑒4
̃︀ℎ𝛼(

𝑥+𝑥0
2

)−2̃︀ℎ𝛼(𝑥)−2̃︀ℎ𝛼(𝑥0)

|𝑥+ 𝑥0|+ 1
≺ 𝑒−4𝑥0(𝑥0 + 1)2𝛼+1(|𝑥|+ 1)−2𝛼,

therefore, in the strip 𝑄4 with 𝑥0 −→ ∞ the following estimate holds true∫︁
𝑄4

|𝐾𝛼(𝑥+𝑖𝑦, 𝑥0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑𝑦𝑑̃︀ℎ′𝛼(𝑥) ≺ 𝐾𝛼(𝑥0)𝑒
−4𝑥0(𝑥0+1)2𝛼+1

∫︁ +∞

2𝑥0

(|𝑥|+1)−2𝛼−2 𝑑𝑥 = 𝑜(𝐾𝛼(𝑥0)).

If we choose 𝛿1 and 𝛿2 the right way, we can proceed to estimates of integrals on semi-strips𝑄±. For this
we will apply the following representation for the reproducing kernel with 𝑧 = 𝑥+ 𝑖𝑦 ̸= 𝑤 = 𝑥0 + 𝑖𝑦0

𝐾𝛼(𝑧, 𝑤) =

∫︁ 1

−1
𝑒𝑧𝑡+𝑤𝑡−2ℎ𝛼(𝑡)𝑑𝑡 =

∫︁ 1

−1
𝑒2(𝑥𝑡−ℎ𝛼(𝑡))𝑑

𝑒(𝑤−𝑧)𝑡

𝑤 − 𝑧
=

=
2

𝑤 − 𝑧

∫︁ 1

−1
𝑒𝑧𝑡+𝑤𝑡−2ℎ𝛼(𝑡)(𝑥− ℎ′𝛼(𝑡))𝑑𝑡.

According to the Cauchy-Bunyakovsky inequality, we obtain

|𝐾𝛼(𝑧, 𝑤)|2 ≤
4

|𝑤 − 𝑧|2

∫︁ 1

−1
𝑒2𝑥𝑡−2ℎ𝛼(𝑡)|𝑥− ℎ′𝛼(𝑡)|𝑑𝑡 ·

∫︁ 1

−1
𝑒2𝑥0𝑡−2ℎ𝛼(𝑡)|𝑥0 − ℎ′𝛼(𝑡)|𝑑𝑡.
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The function ℎ′𝛼(𝑡) we change the sign only in the point 𝑡 = 0, therefore∫︁ 1

−1
𝑒2𝑥𝑡−2ℎ𝛼(𝑡)|𝑥− ℎ′𝛼(𝑡)|𝑑𝑡 ≤

∫︁ 1

−1
𝑒2𝑥𝑡−2ℎ𝛼(𝑡)|𝑥|𝑑𝑡− 1

2

∫︁ 1

0
𝑒2𝑥𝑡𝑑𝑒−2ℎ𝛼(𝑡) ≤

≤ |𝑥|𝐾𝛼(𝑥) + 1 + 𝑥𝐾𝛼(𝑥) ≤ 3𝐾𝛼(𝑥)|𝑥|,
when 𝐾𝛼(𝑥) ≥ 1. It results from the latter two estimates, that

|𝐾𝛼(𝑧, 𝑤)|2 ≤
36|𝑥||𝑥0|
|𝑤 − 𝑧|2

𝐾𝛼(𝑥)𝐾𝛼(𝑥0).

Hence, from the estimates in Lemma 1 we obtain∫︁
𝑄+

|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0)|2𝑒−
̃︀ℎ𝛼(𝑥)𝜌𝛼𝑑𝑦𝑑̃︀ℎ𝛼(𝑥) ≤

≤ 36𝐾𝛼(𝑥0)𝑥0

∫︁
𝐼

∫︁ ∞

𝑀𝑥0

𝑥

((𝑥− 𝑥0)2 + 𝑦2)(𝑥+ 1)2
𝑑𝑦𝑑𝑥 ≺ 1

𝑀
𝐾𝛼(𝑥0).

Therefore, choosing the number 𝑀 large enough, we can consider the integral on the strip 𝑄+ suffi-
ciently low. The same way we can estimate an integral on the semi-strip 𝑄−.

Lemma 2 has been proved. It is easy to see, that the following lemma has been proved the same way.

Lemma 3. For 𝛿1, 𝛿2,𝑀 > 0 and 𝑥0 ∈ R+, 𝑦0 ∈ R via 𝑄(𝑥0, 𝑦0, 𝛿1, 𝛿2,𝑀) we will define the
rectangle

𝑄 = {𝑥+ 𝑖𝑦 : 𝛿1𝑥0 ≤ 𝑥 ≤ 𝛿2𝑥0, |𝑦 − 𝑦0| ≤ 𝑀𝑥0}.
Then for any 𝜀 > 0 we can find quite a low number of 𝛿1 = 𝛿1(𝜀) > 0, and quite large numbers of
𝛿2 = 𝛿2(𝜀) > 0, 𝑀 = 𝑀(𝛿1, 𝛿2, 𝜀) > 0 so, that when 𝑥0 > 𝑋(𝛿1, 𝛿2, 𝜀), the following correlation will
hold true ∫︁

C∖𝑄(𝑥0,𝑦0,𝛿1,𝛿2,𝑀)
|𝐾𝛼(𝑥+ 𝑖𝑦, 𝑥0 + 𝑖𝑦0)|2𝑒−2̃︀ℎ𝛼(𝑥)𝜌𝛼(𝑥)𝑑̃︀ℎ′𝛼(𝑥)𝑑𝑦 ≤ 𝜀𝐾𝛼(𝑥0, 𝑥0).

3. Low estimate of frequency indexes. Proof of Theorem 4

Let the system {exp(𝑧𝑗𝑡)} make an unconditional base in the space 𝐿2(𝛼). Then, as it was already

pointed out in section 2, the system 𝐾𝛼(𝑧, 𝑧𝑗) makes an unconditional base in the space ̂︀𝐿2(𝛼), i.e.
for some 𝑃 correlation (6) holds true. In this correlation we can define the norm by formula (5). Let
us take sufficiently low positive 𝜀, the degree of infinitesimality we will define later. By this number 𝜀,
according to Lemma 3, we will find numbers 𝛿1 ∈ (0, 12), 𝛿2 and 𝑀 , for which the statement of Lemma
3 holds true.

Assume, that for some 𝑥0 ∈ R+, 𝑦0 in the rectangle
𝑄 := 𝑄(𝑥0, 𝑦0, 𝛿1 +

1
4 , 𝛿2 +

1
4 ,𝑀 + 1

4) there are no indexes 𝑧𝑗 .
According to Lemma 1, values 𝜏𝛼(𝑧) and 𝜌𝛼(𝑧) are comparable with |Re𝑧|+ 1. Considering item 1

of Theorem 2, we can assert, that there is a number 𝜎 > 0, such that circles 𝐵𝑗 = 𝐵(𝑧𝑗 , 𝜎(|Re𝑧𝑗 |+1))
do not cross pairwise and lie outside the rectangle 𝑄. According to the definition of the value 𝜏𝛼 in
every circle 𝐵𝑗 there is a harmonic function 𝐻𝑗 , which stands by from the function ln𝐾𝛼 for not more
than ln(5𝑃 ). According to the properties of subharmonic functions, for any entire function 𝐹 the
following inequality holds true

|𝐹 (𝑧𝑗)|2𝑒−2𝐻𝑗(𝑧𝑗) ≤ 1

𝜋𝜎2(|Re𝑧𝑗 |+ 1)2

∫︁
𝐵𝑗

|𝐹 (𝑧)|2𝑒−2𝐻𝑗(𝑧)𝑑𝑚(𝑧),

where 𝑑𝑚(𝑧) is the Lebesgue planar measure. Whereas in the circle 𝐵𝑗 |Re𝑧𝑗 |+ 1 ≍ |Re𝑧|+ 1, then

|𝐹 (𝑧𝑗)|2𝑒−2𝐻𝑗(𝑧𝑗) ≺
∫︁
𝐵𝑗

|𝐹 (𝑥+ 𝑖𝑦)|2

𝐾(𝑥)(|𝑥|+ 1)2
𝑑𝑥𝑑𝑦 ≺

∫︁
𝐵𝑗

|𝐹 (𝑥+ 𝑖𝑦)|2

𝐾(𝑥)
𝑑̃︀ℎ′(𝑥)𝑑𝑦.

Let us summarize these estimates by all 𝑗:∑︁
𝑗

|𝐹 (𝑧𝑗)|2

𝐾(𝑧𝑗)
≺

∫︁
C∖𝑄

|𝐹 (𝑥+ 𝑖𝑦)|2

𝐾(𝑥)
𝑑̃︀ℎ′(𝑥)𝑑𝑦.
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We will apply this estimate to the function 𝐹 (𝑧) = 𝐾𝛼(𝑧, 𝑥0 + 𝑖𝑦0). According to Lemma 3, we will
obtain, that due to the choice of the rectangle size 𝑄 the following inequality holds true∑︁

𝑗

|𝐹 (𝑧𝑗)|2

𝐾(𝑧𝑗)
≤ 𝜀𝐾𝛼(𝑥0, 𝑥0) = 𝜀||𝐾𝛼(𝑧, 𝑥0 + 𝑖𝑦0)||2.

If 𝜀 < 1
𝑃 , then it contradicts condition (6).

Theorem 4 has been proved.
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