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ITERATIONS OF THE ENTIRE TRANSCENDENTAL FUNCTIONS WITH

REGULAR BEHAVIOR OF THE MINIMUM OF THE MODULUS

A.M. GAISIN, ZH.G. RAKHMATULLINA

Abstract. In the paper the Fatou set of an entire transcendental function is considered, i.e. the
largest open set of the complex plane, where the family of iterations of the given function forms a
normal family according to Montel. The entire function is assumed to be of an infinite lower order.
The pair of conditions on the indices of the series providing that every component of the Fatou set
is bounded is found. This pair of conditions is optimal in a certain sense and is stronger than the
Fejér gap condition. The result under stronger sufficient conditions was proved earlier by Yu. Wang
and Zh. Rakhmatullina.
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1. Definitions and basic properties

Let 𝑓 be a nonlinear entire function of the complex variable 𝑧. Let us define the natural iterations
of the function 𝑓 by:

𝑓0(𝑧) = 𝑧, 𝑓1(𝑧) = 𝑓(𝑧), . . . , 𝑓𝑘+1(𝑧) = 𝑓(𝑓𝑘(𝑧)) (𝑘 = 1, 2, . . . ). (1)

Definition 1. The class 𝑁 of analytical functions in the domain 𝐷 of the complex plane C of a
function is called normal in 𝐷 (according to Montel), if the subsequence {𝑓𝑘𝑝} can be singled out of

any sequence {𝑓𝑘} of functions of 𝑁 with the property, when either {𝑓𝑘𝑝(𝑧)}, or
{︁ 1

𝑓𝑘𝑝(𝑧)

}︁
converge

everywhere in 𝐷, and uniformly on every compact subset of the domain 𝐷 [1]. It is said in this case,
that the sequence {𝑓𝑘𝑝} converges locally uniformly in 𝐷 [2].

Definition 2. The Fatou set ℱ(𝑓) (or the normality set) of the function 𝑓(𝑧) is the largest open
set of the complex plane where the family of iterations {𝑓𝑘} defined by the formula (1) forms a normal
family (according to Montel). The complement of the Fatou set is called the Julia set 𝒥 (𝑓) = C∖ℱ(𝑓).

Fatou and Julia sets of the entire function 𝑓 possess the following properties:

Property 1. The Fatou set of an entire function is open and the Julia set is closed.

Property 2. The sets ℱ(𝑓) and 𝒥 (𝑓) are completely invariant under 𝑓 (i.e. each of these sets
coincides both with its image, and with the complete counter image) [3], [4]:

1∘. 𝑓−1(ℱ(𝑓)) = 𝑓(ℱ(𝑓)) = ℱ(𝑓); 2∘. 𝑓−1(𝒥 (𝑓)) = 𝑓(𝒥 (𝑓)) = 𝒥 (𝑓).

Property 3. For any 𝑘 > 0 the Fatou (Julia) set of the function 𝑓𝑘 coincides with the the Fatou
(Julia) set of the function 𝑓 itself [3], [4]:

3∘. ℱ(𝑓𝑘) = ℱ(𝑓); 4∘. 𝒥 (𝑓𝑘) = 𝒥 (𝑓).

Let us remind one more definition. The component 𝐾 of the set𝐷 is any largest connected subset [5].
The following statement holds true: every set 𝐷 can be uniquely presented as a finite or infinite
unification of its components.

If 𝑓 is a polynomial of degree at least two, the set ℱ(𝑓) contains the component
𝐾 = {𝑧 : 𝑓𝑘(𝑧) → ∞}, which is unbounded and completely invariant [4]. For instance, the Julia set of
the function 𝑓(𝑧) = 𝑧2 is a unit circumference: 𝒥 (𝑓) = {𝑧 : |𝑧| = 1}; and the Fatou set consists of two
components: bounded one {𝑧 : |𝑧| < 1} and unbounded one {𝑧 : |𝑧| > 1}.
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If 𝑓 is a transcendental entire function, the set 𝒥 (𝑓) is always unbounded, and the set ℱ(𝑓) can
contain either infinitely many unbounded components, or exactly one component, or none at all [4].
And we have the following

Property 4. Any unbounded component of the set ℱ(𝑓) of the entire transcendental function 𝑓 is
simply connected [6].

2. Review of the results

Fatou began to study the iterations of entire functions in 1926 [7]. Almost 40 years later, I. Baker in
his papers [6], [8]–[12] obtained results, which greatly influenced the development of the topic. Baker
proved the following

Theorem 1 ([13]). If for transcendental entire function 𝑓 there is an unbounded invariant compo-
nent of the Fatou set, then the growth of 𝑓 must exceed the order 1/2, minimal type.

It is shown in [13], that when positive values of parameter 𝑎 are quite large, the Fatou set ℱ(𝑔) of
the function

𝑔(𝑧) =
1

𝜎

(︂
sin

√
𝜎𝑧√

𝜎𝑧
+ 𝜎𝑧 + 𝑎

)︂
, 𝜎 > 0,

(of the order 𝜌 = 1/2 and the type 𝜎) contains an unbounded invariant component. There is another

example of this, it is the function 𝐹 (𝑧) = cos
√︁

𝜎2𝑧 + 9
4𝜋

2, 0 < 𝜎 <
√
3𝜋, of the order 1

2 and type 𝜎,

the Fatou set ℱ(𝐹 ) of which also contains an unbounded invariant component [13], [14].
In 1981 Baker raised a question [13] of whether every component of the set ℱ(𝑓) must be bounded if

the entire transcendental function 𝑓 is of sufficiently small growth. Due to Theorem 1 and the examples
given, it is natural to consider the Baker problem in the class of entire transcendental functions of the
order 𝜌 < 1/2.

Baker himself . . . Hinkkanen . . . under which the set F(f) does not contain unbounded components
in the given class of functions f. . . .

Baker himself [13], and later Stallard [15], Anderson and Hinkkanen [16] obtained different sufficient
conditions, under which the set ℱ(𝑓) does not contain unbounded components in the given class of
functions 𝑓 . These conditions are as follows:

1) Baker, 1981, [13]: when 𝑟 → ∞
ln𝑀(𝑟, 𝑓) = 𝑂{(ln 𝑟)𝑝} (1 < 𝑝 < 3),

where 𝑀(𝑟, 𝑓) = max
|𝑧|=𝑟

|𝑓(𝑧)|;

2) Stallard, 1993, [15]: there exists 𝜀 ∈ (0, 1), that when 𝑟 > 𝑟0

ln ln𝑀(𝑟, 𝑓) <
(ln 𝑟)1/2

(ln ln 𝑟)𝜀
;

3) Stallard, 1993, [15]: for the entire function 𝑓 of the order 𝜌 < 1/2

lim
𝑟→∞

ln𝑀(2𝑟, 𝑓)

ln𝑀(𝑟, 𝑓)
= 𝑐,

where 𝑐 = 𝑐(𝑓) is a finite constant, which depends only on 𝑓 (this theorem is sharp: the function
𝑔(𝑧) from the example given above [13] has the order 𝜌 = 1/2, Stallard condition is true with
the constant 𝑐 =

√
2 for it (when 𝜎 = 1). However, ℱ(𝑓) contains an unbounded component);

4) Anderson and Hinkkanen, 1998, [16]: for the entire function 𝑓 of the order 𝜌 < 1/2 there exists
𝑐 > 0, that with 𝑥 > 𝑥0

𝜙′(𝑥)

𝜙(𝑥)
>

1 + 𝑐

𝑥
, 𝜙(𝑥) = ln𝑀(𝑒𝑥, 𝑓).

The research of the class of the entire transcendental functions of the kind

𝑓(𝑧) =

∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 , 𝑝𝑛 ∈ N, 0 < 𝑝𝑛 ↑ ∞. (2)
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is of special interest, as existence of gaps in such functions specifies a number of additional properties,
allowing to consider the components of the set ℱ(𝑓) in case of any finite and even infinite increase
order.

The research of the Fatou set ℱ(𝑓) of functions of the kind (2) is closely related to a number of
classical problems. During the XX century there has appeared a lot of papers, concerning Picard,
Borel and asymptotic values, Julia lines, the problem of connection between maximum and minimum
modulus, and also distribution of values of entire functions with different gap conditions. Let us refer
to the results of studying the Fatou set of functions of the kind (2).

They say, that the entire function of the form (2) has Fabry gaps, if 𝑛 = 𝑜(𝑝𝑛) when 𝑛 → ∞, and
has Fejer gaps, if

∞∑︁
𝑛=1

1

𝑝𝑛
< ∞.

U. Wang in the paper [17] proved the following theorems:

Theorem 2 ([17]). Let 𝑓 be an entire function of the form (2),

𝜌* = lim
𝑟→∞

ln ln𝑀(𝑟, 𝑓)

ln 𝑟
and 𝜌 = lim

𝑟→∞

ln ln𝑀(𝑟, 𝑓)

ln 𝑟

being its lower order and order correspondingly. If 0 < 𝜌* 6 𝜌 < ∞, and the function 𝑓 possesses
Fabry gaps, then every component of the set ℱ(𝑓) is limited.

Theorem 3 ([17]). Let the entire function 𝑓 of the form (2) satisfy the condition: there exists such
𝑇0 > 1 that

lim
𝑟→∞

ln𝑀(𝑟𝑇0 , 𝑓)

ln𝑀(𝑟, 𝑓)
> 𝑇0. (3)

If with some 𝜂 > 0

𝑝𝑛 > 𝑛 ln𝑛(ln ln𝑛)2+𝜂 (𝑛 > 𝑛0), (4)

then every component of the set ℱ(𝑓) is bounded.

Note, that in Theorem 2 the condition (3) does not appear obviously. This theorem requires
realization of conditions 0 < 𝜌* and 𝜌 < ∞. However, it is easy to check up, that the left part in

the estimate (3) in this case is equal to +∞. However, in Theorem 2 when 𝑇0 > 𝑞
𝜌

𝜌*
(𝑞 > 1) the

condition (3) is fulfilled automatically.
Further, for any entire function 𝑓 and any 𝑇 > 1 it results from Hadamard three-circle theorem

that [18]

lim
𝑟→∞

ln𝑀(𝑟𝑇 )

ln𝑀(𝑟)
> 𝑇. (5)

Theorem 3 considers the entire functions of arbitrary growth (the situations 𝜌* = 0 and 𝜌 = ∞ are
possible), hence, unlike Theorem 2 it is necessary to postulate the fulfillment of a stronger estimate
than (5).

As for the condition (4), using this condition Hayman showed in [19], that for any entire function 𝑓
of the form (2) when 𝑟 → ∞ outside some set of zero logarithmic density there holds the asymptotic
equality

ln𝑀(𝑟) = (1 + 𝑜(1)) ln𝑚(𝑟). (6)

In the proof of Theorem 3 this estimate is used substantially. Thus, the Hayman condition (4) in
Theorem 3 is stipulated by the estimate (6).

The condition (4) can be substituted by a weaker one. It is proved in paper [20] that

Theorem 4. Let 𝑓 be an entire transcendental function, given by the gap power series (2), for
which with some 𝑇0 > 1 the estimate (3) holds true. If 𝑛 = 𝑜(𝑝𝑛) when 𝑛 → ∞ and

∞∑︁
𝑛=1

1

𝑝𝑛
ln

𝑝𝑛
𝑛

< ∞, (7)

then every component of the set ℱ(𝑓) is bounded.
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The matter is that the equality (6) holds true even under the condition (7) [21]. In all other aspects
proofs of Theorems 3 and 4 are almost the same.

The aim of this paper is to show that Theorem 3 holds true in the most common situation, namely,
the condition (7) can be significantly weakened. It turns out that the latter condition can be replaced
by a pair of optimal conditions, under which the estimate of the type (6) holds true for any function
of the kind (2).

The given pair of conditions is necessary and sufficient for estimate of the form (6) and it consists
of Fejer condition and some condition for concentration of points 𝑝𝑛 in terms

𝛿𝑛 =

𝑝𝑛∫︁
1

𝜇(𝑝𝑛; 𝑡)

𝑡
𝑑𝑡,

where 𝜇(𝑝𝑛; 𝑡) is the number of points 𝑝𝑘 ̸= 𝑝𝑛 from the segment
{︀
𝑥 : |𝑝𝑛 − 𝑥| 6 𝑡

}︀
.

It turns out, the Fejer gap condition is also necessary for every component of the set ℱ(𝑓) of any
entire function 𝑓 of the kind (2) to be bounded.

To prove the main result we need the following lemma, proved by Baker [13] with the application
of Schottky theorem.

Lemma 1 ([13]). Let analytical in the domain 𝐷 function 𝑔 of the family 𝐺 omit the values 0 and
1. If 𝐷0 is a compact connected subset in 𝐷 on which |𝑔(𝑧)| > 1 for any 𝑔 ∈ 𝐺, then there exist
such constants 𝑈 , 𝑉 , depending only on 𝐷0 and 𝐷, that for every function 𝑔 ∈ 𝐺, 𝑧, 𝑧′ from 𝐷0 the
following estimate holds true

|𝑔(𝑧′)| < 𝑈 |𝑔(𝑧)|𝑉 .
We will also need the following theorem from [22] (the assertion is given in the context of power

series of the form (2) and in some simplified way).

Theorem 5 ([22]). Let the following conditions hold true:

1)

∞∑︁
𝑛=1

1

𝑝𝑛
< ∞; 2)

∞∫︁
1

𝑐(𝑡)

𝑡2
𝑑𝑡 < ∞, (8)

where

𝑐(𝑡) = max
𝑝𝑛6𝑡

𝑞𝑛, 𝑞𝑛 = − ln |𝑞′(𝑝𝑛)|, 𝑞(𝑧) =
∞∏︁
𝑘=1

(︂
1− 𝑧2

𝑝2𝑘

)︂
.

Then there exists such set 𝐸 ⊂ [0,∞) of a finite logarithmic measure, that for any circle 𝐶(𝑟) =
{𝑧 : |𝑧| = 𝑟} there exists a modified ¡¡circle¿¿ 𝐶*(𝑟) with the properties:

1. If mes 𝑒 is the arc length 𝑒 ⊂ 𝐶(𝑟), then

lim
𝑟→∞

mes
[︀
𝐶(𝑟) ∩ 𝐶*(𝑟)

]︀
𝑟

= 2𝜋;

2. lim
𝑟→∞

max
𝑧∈𝐶*(𝑟)

ln
𝑟

|𝑧|
= 0;

3. when 𝑟 → ∞ outside 𝐸
ln𝑀(𝑟, 𝑓) = (1 + 𝑜(1)) ln𝑚*(𝑟),

where 𝑚*(𝑟) = min
𝑧∈𝐶*(𝑟)

|𝑓(𝑧)|.

For Theorem 5 to hold true for any function 𝑓 , the conditions (8) are also necessary [23].
The main result of the paper is

Theorem 6. Let 𝑓 be an entire transcendental function, given by gap power series (2), for which
with some 𝑇0 > 1 the estimate (3) holds true. If the pair of conditions (8) holds true, then every
component of the set ℱ(𝑓) is limited.

It is shown, that for any entire function 𝑓 of the form (2), for which
∞∑︁
𝑛=1

1

𝑝𝑛
= ∞,

there exists a component of the set ℱ(𝑓), containing the ray [0,∞).
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3. Proof of Theorem 6

According to the condition (3) with some 𝑇1 > 𝑇0 > 1 the following estimate holds true

ln𝑀(𝑟𝑇0 , 𝑓)

ln𝑀(𝑟, 𝑓)
> 𝑇1, 𝑟 > 𝑥0. (9)

Let 𝑇0 < 𝑇 < 𝑇1, and 𝑞 > 1 be such that 𝑞𝑇 < 𝑇1. Then there exists 𝜀 > 0 such that (1−𝜀)𝑇1 > 𝑞𝑇.
According to Theorem 5 by the chosen this way 𝜀 > 0 there exists the set 𝐸 ⊂ [0,∞) of finite

logarithmic measure, that
𝑚*(𝑟) > 𝑀(𝑟, 𝑓)1−𝜀 (10)

when 𝑟 ∈ [0,∞) ∖ 𝐸, 𝑚*(𝑟) is minimum of the modulus 𝑓 of the function on the curve, close to the
circle |𝑧| = 𝑟 (in the sense of Theorem 5).

Further, the function 𝑓 is a transcendental one, therefore 𝑀(𝑟, 𝑓) increases faster then any degree
of 𝑟𝑁 . Let 𝑅1 > 0 be such number that

𝑀(𝑟, 𝑓) > 2𝑟𝑞𝑇 with 𝑟 > 𝑅1.

Considering this, let us regard the sequence {𝑅𝑛}, where 𝑅𝑛+1 = 𝑀(𝑅𝑛, 𝑓) (𝑛 > 1). It is definite,
that 𝑅𝑛 ↑ ∞ when 𝑛 → ∞, and 𝐽𝑛 ⊂ 𝐼𝑛, where

𝐽𝑛 = [𝑅𝑇
𝑛 ,

1
2𝑅

𝑞𝑇
𝑛 ], 𝐼𝑛 = [𝑅𝑛, 𝑅𝑛+1] (𝑞 > 1, 𝑇 > 1).

Whereas when 𝑛 → ∞

ln -mes 𝐽𝑛 = ln
𝑅𝑞𝑇

𝑛

2𝑅𝑇
𝑛

= − ln 2 + (𝑞 − 1)𝑇 ln𝑅𝑛 → ∞,

and
∞∑︁
𝑛=1

ln -mes (𝐸 ∩ 𝐽𝑛) < ∞,

then
lim
𝑛→∞

ln -mes (𝐸 ∩ 𝐽𝑛) = 0.

It means, that when 𝑛 > 𝑛1 every segment 𝐽𝑛 contains a point 𝜌𝑛, which does not belong to 𝐸. Hence,
if we take into account the estimates (9), (10), we will obtain

𝑚*(𝜌𝑛) > 𝑀(𝜌𝑛, 𝑓)
1−𝜀 > [𝑀(𝑅𝑇

𝑛 , 𝑓)]
1−𝜀 > 𝑀(𝑅𝑛, 𝑓)

(1−𝜀)𝑇1 , 𝑛 > 𝑛1.

Whereas (1− 𝜀)𝑇1 > 𝑞𝑇 , then when 𝑛 > 𝑛1

𝑚*(𝜌𝑛) > 𝑀(𝑅𝑛, 𝑓)
𝑞𝑇 = 𝑅𝑞𝑇

𝑛+1, (11)

where 𝑞 > 1, 𝑇 > 1.
Our task is to show, that every component of the set ℱ(𝑓) is bounded. Let us assume the oppo-

site. Let ℱ(𝑓) contain an unbounded component 𝐷. Then, according to the property 4 it is simply
connected.

Then we will apply some Baker ideas. Whereas 𝐷 is a component of ℱ(𝑓), and it is unbounded,
then there is a number 𝑛2 > 𝑛1, such that 𝐷 ∩𝐴𝑛 ̸= ∅ with all 𝑛 > 𝑛2, where 𝐴𝑛 = {𝑧 : |𝑧| = 𝑅𝑛}.

Let us introduce in the consideration also circles

𝐶𝑛 = {𝑧 : |𝑧| = 𝜌𝑛}, 𝐵𝑛 = {𝑧 : |𝑧| = 𝑅𝑞𝑇
𝑛 } (𝑞 > 1, 𝑇 > 1).

Let us remind, that 𝑅𝑇
𝑛 6 𝜌𝑛 6 1

2𝑅
𝑞𝑇
𝑛 , 𝑅𝑛 < 𝑅𝑇

𝑛 < 𝑅𝑞𝑇
𝑛 < 𝑅𝑛+1.

Assume 𝑛 > 𝑛2. Whereas the set 𝐷 is connected, and 𝐷 ∩ 𝐴𝑛 ̸= ∅, then there is a curve 𝛾 in 𝐷,
connecting some point 𝑎𝑛 ∈ 𝐴𝑛 with some point 𝑏𝑛+1 ∈ 𝐵𝑛+1 (Fig. 1). Whereas 𝑚*(𝜌𝑛) → ∞ when
𝑛 → ∞ (it is definite from the estimate (11)), then 𝑓(𝐷) is an unbounded connected subset ℱ(𝑓),
containing continuum 𝑓(𝛾). Here

𝑚*(𝜌𝑛) = min
𝑧∈𝐶*

𝑛

|𝑓(𝑧)|,

where 𝐶*
𝑛 is a ”circle” close to 𝐶𝑛 (in the sense of Theorem 5). According to Theorem 5

𝜌𝑛
|𝑧|

→ 1 (12)

uniformly by 𝑧 from 𝐶*
𝑛 when 𝑛 → ∞.
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Figure 1. An unbounded component 𝐷 ⊂ ℱ(𝑓)

Let 𝑐𝑛 be a point on the curve 𝛾, trough which 𝐶*
𝑛 passes. It is definite, that when 𝑛 > 𝑛3 > 𝑛2 𝛾

also contains some point 𝑐𝑛+1 of a modified circle 𝐶*
𝑛+1, and |𝑐𝑛+1| < 𝑅𝑞𝑇

𝑛+1 (it results from 𝑅𝑇
𝑛+1 6

𝜌𝑛+1 6 1
2𝑅

𝑞𝑇
𝑛+1, if we consider (12)).

Whereas 𝑎𝑛 is a point of 𝛾, |𝑎𝑛| = 𝑅𝑛, then |𝑓(𝑎𝑛)| 6 𝑀(𝑅𝑛, 𝑓) = 𝑅𝑛+1. On the other hand, it
results from (11), that

|𝑓(𝑐𝑛+1)| > 𝑚*(𝜌𝑛+1) > 𝑅𝑞𝑇
𝑛+2.

Consequently, the curve 𝑓(𝛾) contains an arc 𝛾(1), connecting some point 𝑎
(1)
𝑛+1 ∈ 𝐴𝑛+1 with the

point 𝑏
(1)
𝑛+2 of the circle 𝐵𝑛+2. With all this 𝛾(1) contains some point 𝑐

(1)
𝑛+2 of a modified circle 𝐶*

𝑛+2.

Continuing by induction, we will obtain, that 𝑓𝑘(𝐷) is an unbounded connected subset of ℱ(𝑓),

containing an arc 𝛾(𝑘) on the curve 𝑓𝑘(𝛾), which connects points 𝑎
(𝑘)
𝑛+𝑘 ∈ 𝐴𝑛+𝑘 and 𝑏

(𝑘)
𝑛+𝑘+1 ∈ 𝐵𝑛+𝑘+1

and contains a point 𝑐
(𝑘)
𝑛+𝑘+1 ∈ 𝐶*

𝑛+𝑘+1, where 𝑛 (𝑛 > 𝑛3) is fixed, 𝑘 > 1. Moreover,

min
𝑧∈𝛾(𝑘)

|𝑓𝑘(𝑧)| = |𝑓(𝑧𝑘)| > 𝑅𝑛+𝑘,

where 𝑧𝑘 is some point of 𝛾.
The family {𝑓𝑘} is normal in𝐷. Consequently, there is a subsequence {𝑓𝑘𝑝}, which converges locally

uniformly in 𝐷. Without loss of generality, we assume that 𝑧𝑘𝑝 → 𝑧0 ∈ 𝛾. Whereas |𝑓(𝑧𝑘𝑝)| → ∞
with 𝑘𝑝 → ∞, then the sequence {𝑓𝑘𝑝} converges to infinity uniformly on 𝛾. Hence, for any 𝑠 > 0
with 𝑘𝑝 > 𝑁(𝑠) > 𝑛3

min
𝑧∈𝛾

|𝑓𝑘𝑝(𝑧)| > 𝑠. (13)

Let us consider the family of functions 𝐺 = {𝑔𝑘𝑝}𝑘𝑝>𝑁 , where

𝑔𝑘𝑝(𝑧) =
𝑓𝑘𝑝(𝑧)− 𝑎

𝑏− 𝑎
,

𝑎, 𝑏 are arbitrary, but fixed points from the Julia set 𝒥 (𝑓), such that 𝑎 ̸= 𝑏. We will choose the value
𝑁 later.

Let us assure, that with some 𝑁 the family of functions 𝐺 satisfies the conditions of Lemma 1, if
we take the defined above unbounded component of the set ℱ(𝑓) as the domain 𝐷 and put 𝐷0 = 𝛾.

Whereas according to the properties 2, 3 for all 𝑘 > 1, for any 𝑎, 𝑏 ∈ 𝒥 (𝑓) with 𝑧 ∈ 𝐷 ⊂ ℱ(𝑓),
iterations 𝑓𝑘(𝑧) omit the values 𝑎, 𝑏, then the functions 𝑔𝑘𝑝(𝑧) omit the values 0 and 1 in 𝐷 with

all 𝑝 > 1. Moreover, if we choose in (13) 𝑠0 = 𝑠(𝑎,𝑏)
def
= |𝑎| + |𝑏 − 𝑎|, we will obtain, that with
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𝑘𝑝 > 𝑁(𝑠0) > 𝑛3

|𝑔𝑘𝑝(𝑧)| =
|𝑓𝑘𝑝(𝑧)− 𝑎|

|𝑏− 𝑎|
>

⃒⃒
|𝑓𝑘𝑝(𝑧)| − |𝑎|

⃒⃒
|𝑏− 𝑎|

> 1, 𝑧 ∈ 𝛾.

Thus, the family of functions 𝐺 satisfies the conditions of Lemma 1 with 𝑁 = 𝑁(𝑠0). Therefore,
there exist constants 𝑈 , 𝑉 , depending only on 𝛾 and 𝐷, that

|𝑔𝑘𝑝(𝑧′)| < 𝑈 |𝑔𝑘𝑝(𝑧)|𝑉 (14)

for all 𝑧, 𝑧′ ∈ 𝛾.
It can be checked, that for all 𝑧 ∈ 𝛾

𝐴|𝑓𝑘𝑝(𝑧)| 6 |𝑔𝑘𝑝 | 6 𝐵|𝑓𝑘𝑝(𝑧)|,
where

𝐴 =
1

𝑠0
, 𝐵 =

|𝑎|+ 𝑠0
𝑠0|𝑏− 𝑎|

, 𝑠0 = |𝑎|+ |𝑏− 𝑎|. (15)

Consequently, for all 𝑧, 𝑧′ ∈ 𝛾 with 𝑘𝑝 > 𝑁

|𝑓𝑘𝑝(𝑧′)| < 𝑈*|𝑓𝑘𝑝(𝑧)|𝑉 , 𝑈* =
𝑈𝐵𝑉

𝐴
.

Let 𝑘𝑝 > 𝑁 , 𝑧, 𝑧′ be such points of 𝛾 that:

1) 𝑓𝑘𝑝(𝑧) = 𝑎
(𝑘𝑝)
𝑛+𝑘𝑝

, 𝑎
(𝑘𝑝)
𝑛+𝑘𝑝

∈ 𝐴𝑛+𝑘𝑝 ;

2) 𝑓𝑘𝑝(𝑧′) = 𝑐
(𝑘𝑝)
𝑛+𝑘𝑝+1, 𝑐

(𝑘𝑝)
𝑛+𝑘𝑝+1 ∈ 𝐶*

𝑛+𝑘𝑝+1.

Then with 𝑘𝑝 > 𝑁

𝑀(𝑅𝑛+𝑘𝑝 , 𝑓) = 𝑅𝑛+𝑘𝑝+1 < |𝑐(𝑘𝑝)𝑛+𝑘𝑝+1| = |𝑓𝑘𝑝(𝑧′)| < 𝑈*|𝑓𝑘𝑝(𝑧)|𝑉 = 𝑈*|𝑎(𝑘𝑝)𝑛+𝑘𝑝
|𝑉 = 𝑈*𝑅𝑉

𝑛+𝑘𝑝 ,

that contradicts the fact, that 𝑓 is a transcendental function, as 𝑅𝑛+𝑘𝑝 → ∞ with 𝑘𝑝 → ∞.
The theorem has been proved.

4. On considerable Fejer condition

The condition 1) from (8) is also necessary necessary for the truth of Theorem 6. Actually, for any
sequence {𝑝𝑛}, such that

∞∑︁
𝑛=1

1

𝑝𝑛
= ∞,

there is an entire function

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛

with real coefficients, bounded on the real axis [24], [25]. Hence, there is an open connected set 𝐷 ⊃ R,
on which the function 𝑓 is also bounded. Let |𝑓(𝑧)| 6 1 with 𝑧 ∈ 𝐷. Whereas all iterations 𝑓𝑘(𝑥) for
real 𝑥 are real, then |𝑓𝑘(𝑥)| 6 1, 𝑥 ∈ R. It is obvious,

𝑎 =
∞∑︁
𝑛=1

|𝑎𝑛| < ∞.

Let 𝐾 be any compact from 𝐷. Then for 𝑧 ∈ 𝐾 we have:

|𝑓(𝑧)| 6 1,

|𝑓2(𝑧)| =
⃒⃒ ∞∑︀
𝑛=1

𝑎𝑛[𝑓(𝑧)]
𝑝𝑛
⃒⃒
6

∞∑︀
𝑛=1

|𝑎𝑛||𝑓(𝑧)|𝑝𝑛 6 𝑎,

. . . . . . . . .

|𝑓𝑘(𝑧)| =
⃒⃒ ∞∑︀
𝑛=1

𝑎𝑛[𝑓
𝑘−1(𝑧)]𝑝𝑛

⃒⃒
6 𝑎.

Therefore, the family {𝑓𝑘} is normal in 𝐷. This implies, that R ⊂ 𝐷 ⊂ ℱ(𝑓). It means, that the
set ℱ(𝑓) contains an unbounded component.
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