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THE EXACT BOUNDS OF THE TYPES OF ENTIRE FUNCTIONS

OF ORDER 𝜌 ∈ (0; 1) LESS THAN UNITY WITH THE ZEROS LOCATED

ON THE RAY

G.G. BRAICHEV

Abstract. This paper is a detailed account of the author’s report made during VI Ufa internatio-
nal conference Complex analysis and differential equations”, devoted to the 70-th anniversary of
Corresponding member of RAS V.V. Napalkov. Sharp lower estimates of an entire function type of
a finite order with respect to such well-known characteristics of the distribution of its zeros as the
density (conventional and average), step and lacunarity index. The solution of one new extremal
problem is also given.

Keywords: type of an entire function, the upper and lower (average) density of zeros, step and
lacunarity index of a sequence of zeros.

1. Introdiction

The success of the research of many analysis tasks depends on the accuracy of the integer function
growth characteristic, due to the distribution of its zeros on the plane. To such tasks we can refer, for
instance, the task of finding the radius of the exponents system completeness, numerical aspects of
analytic continuation of Taylor and Dirichlet series sums beyond the border of the convergence area
and others. That is why clearing-up of degree of the integer function growth influences the behavior
of its zeros, and contrariwise, defines one of the most important areas of development of the integer
functions theory.

The topic of the paper is a detailed discussion of lower estimates of an entire function type of a finite
order with respect to such well-known characteristics of the distribution of its zeros as conventional
and average density, step and lacunarity index. We shall cite the characteristics right away.

Let 𝑓(𝑧) be an entire function. The value of the type 𝑓(𝑧) with the order 𝜌 is defined by the equality
𝜎𝜌(𝑓) = lim

𝑅→+∞
𝑅−𝜌 ln max

|𝑧|=𝑅
|𝑓(𝑧)| .

Let further Λ = {𝜆𝑛}∞𝑛=1 be a sequence of complex numbers, sorted by the module increase, 0 <

|𝜆𝑛| ↗ +∞, 𝑛Λ(𝑡) =
∑︀

|𝜆𝑛|6𝑡

1 be a counting function of this sequence and 𝑁Λ(𝑟) =
𝑟∫︀
0

𝑛Λ(𝑡)

𝑡
𝑑𝑡 be its

average counting function (a Nevanlinna function).
The upper density Λ with the index 𝜌 (𝜌-density) is called

Δ 𝜌(Λ) = lim
𝑟→+∞

𝑛Λ(𝑟)

𝑟𝜌
,

and the upper average 𝜌-density is the value

Δ
*
𝜌(Λ) = lim

𝑟→+∞

𝑁Λ(𝑟)

𝑟𝜌
.

Replacement of these upper limits equalities to lower results in definitions of lower and average 𝜌-
densities Δ 𝜌(Λ) and Δ *

𝜌(Λ).
Let us call the 𝜌-step of the sequence Λ the characteristic

ℎ𝜌(Λ) := lim
𝑛→+∞

(|𝜆𝑛+1|𝜌 − |𝜆𝑛|𝜌),
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and let the lacunarity index be the value

𝑙(Λ) := lim
𝑛→+∞

|𝜆𝑛+1|
|𝜆𝑛|

.

As it was written above, we are interested in lower estimates of an entire function type 𝑓(𝑧) by
means of introduced characteristics of its zero set Λ = Λ𝑓 . With this we consider, that 0 /∈ Λ𝑓 , since
this condition does not change any of the asymptotic characteristics, studied here.

There is well-known inequality [1], set by Georges Valiron for any 𝜌 > 0 and Λ ⊂ C:

𝜎𝜌(𝑓) ≥
1

𝜌𝑒
Δ 𝜌(Λ). (1)

Constructed by B.Y. Levin in [2] the entire function of the order 𝜌 > 0

𝑓(𝑧) =
∞∏︁
𝑛=1

⎛⎝1−

(︃
𝑧

2
2𝑛

𝜌

)︃22
𝑛⎞⎠ (2)

fulfills the equality in the correlation (1).
In his book [3] R.P. Boas gives an estimate of the entire function type 𝑓 in case, when not only the

upper but also the lower 𝜌-density of its zeros is known Λ = Λ𝑓 :

𝜎𝜌(𝑓) ≥ exp
{︀
Δ 𝜌(Λ)/Δ 𝜌(Λ)

}︀ 1

𝜌𝑒
Δ 𝜌(Λ). (3)

It is apparent that Δ 𝜌(Λ) = 0 (3) results in (1).
If we apply the upper average 𝜌-density and Jensen formula

𝑁Λ(𝑟) =
1

2𝜋

2𝜋∫︁
0

ln |𝑓(𝑟𝑒𝑖𝜃)|𝑑𝜃,

we will obtain a simpler estimate
𝜎𝜌(𝑓) ≥ Δ

*
𝜌(Λ), (4)

which will amplify (1) due to the known inequality

Δ
*
𝜌(Λ) ≥

1

𝑒𝜌
Δ 𝜌(Λ).

An example of an infinite product (2) results in equality not only of the estimate (1), but also of
the estimate (4). The calculation of lower 𝜌-densities in this example gives Δ 𝜌(Λ) = Δ *

𝜌(Λ) = 0. But
it is not clear whether the condition Δ *

𝜌(Λ) > 0 is able to amplify the estimate (4) like (3) improves
(1), if Δ 𝜌(Λ) > 0. Therewith precision of the estimate (3) was unknown until recently. In his overview
A.U. Popov constructed examples of entire functions with equalities in correlations (3) and (4). In
addition, he showed, that taking into account the lower average 𝜌-density cannot amplify (4) unlike

the case with usual 𝜌-densities. Therefore, whatever the value can be Δ * ∈ [0;Δ
*
], there is an entire

function with zero set Λ = Λ𝑓 ⊂ C of given average 𝜌-densities Δ
*
𝜌(Λ) = Δ

*
and Δ*

𝜌(Λ) = Δ*, for
which the equality sign holds true in (4). This information is presented in the paper with A.U. Popov
kind permission.

The accuracy of the classical estimates (1), (3) and (4)proved, allows to consider the above results
as the solution of the following extremal sums from I to IV:

I. For fixed numbers 𝛽 > 0, 𝜌 > 0 to find

𝑆C(𝛽; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ C, Δ 𝜌(Λ) = 𝛽

}︀
.

II. For fixed numbers 𝛽 > 0, 𝛼 ∈ [0;𝛽], 𝜌 > 0 to find

𝑆C(𝛼 , 𝛽 ; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ C, Δ 𝜌(Λ) ≥ 𝛼, Δ 𝜌(Λ) = 𝛽

}︀
.

III. For fixed numbers 𝛽 * > 0, 𝜌 > 0 to calculate

𝑆 *
C(𝛽

*; 𝜌) := inf
{︁
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ C, Δ *

𝜌(Λ) = 𝛽 *
}︁
.
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IV. For fixed numbers 𝛽 * > 0, 𝛼 * ∈ [0;𝛽 *], 𝜌 > 0 to calculate

𝑆 *
C(𝛼

* , 𝛽 * ; 𝜌) := inf
{︁
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ C, Δ *

𝜌(Λ) ≥ 𝛼 *, Δ
*
𝜌(Λ) = 𝛽 *

}︁
.

Due to the written above, we know the least possible value of the type in every extremal sum from
I to IV. Namely,

𝑆C(𝛽; 𝜌) =
1

𝑒𝜌
𝛽, (5)

𝑆C(𝛼 , 𝛽 ; 𝜌) = 𝑒𝛼/𝛽
1

𝑒𝜌
𝛽, (6)

𝑆 *
C(𝛽

*; 𝜌) = 𝑆 *
C(𝛼

* , 𝛽 * ; 𝜌) = 𝛽 *. (7)

In connection with the applications a special interest is given to the case of an entire function zeroes
located on the ray, which results in the next extremal sums.

I+. For fixed numbers 𝛽 > 0, 𝜌 > 0 to find

𝑆R+(𝛽; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ 𝜌(Λ) = 𝛽

}︀
.

II+. For fixed numbers 𝛽 > 0, 𝛼 ∈ [0;𝛽], 𝜌 > 0 to find

𝑆R+(𝛼 , 𝛽 ; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ 𝜌(Λ) ≥ 𝛼, Δ 𝜌(Λ) = 𝛽

}︀
.

III+. For fixed numbers 𝛽 * > 0, 𝜌 > 0 to calculate

𝑆 *
R+

(𝛽 *; 𝜌) := inf
{︁
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ

*
𝜌(Λ) = 𝛽 *

}︁
.

IV+. For fixed numbers 𝛽* > 0, 𝛼* ∈ [0;𝛽*], 𝜌 > 0 to calculate

𝑆 *
R+

(𝛼 * , 𝛽 * ; 𝜌) := inf
{︁
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ

*
𝜌(Λ) ≥ 𝛼 *, Δ

*
𝜌(Λ) = 𝛽 *

}︁
.

By now these sums are solved for the values 𝜌 ∈ (0; 1). This example is considered below.
The sum I+ was set up and solved by A.U. Popov in 2005 (see [4]):

𝑆R+(𝛽; 𝜌) = 𝛽 𝐶(𝜌), where 𝐶(𝜌) = max
𝑎>0

ln(1 + 𝑎)

𝑎𝜌
.

The sum formulated by him II+ was solved by V.B. Sherstukov in 2009 [5]:

𝑆R+(𝛼 , 𝛽 ; 𝜌) =
𝜋𝛼

sin𝜋𝜌
+max

𝑎>0

𝑎∫︁
𝑎(𝛼

𝛽
)1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

𝜏 + 1
𝑑𝜏.

The sum III+ was solved in the recent G.G. Braichev paper [6]:

𝑆 *
R+

(𝛽 * ; 𝜌) = 𝐶(𝜌)𝜌𝑒𝛽 *,

where 𝐶(𝜌) is the function of A.U.Popov from sum I.
The solution of sum IV+ was first found for quite a wide class of entire functions with discretely

measured zeros, determined by the condition of the limit existence lim
𝑛→∞

𝑁(|𝜆𝑛|)
|𝜆𝑛|𝜌

from the paper [7].

The complete solution of this sum is given in [6]:

𝑆 *
R+

(𝛼 * , 𝛽 * ; 𝜌) = 𝜌

⎛⎜⎜⎝ 𝜋𝛼 *

sin𝜋𝜌
+max

𝑏>0

𝑏𝑎
1/𝜌
2∫︁

𝑏𝑎
1/𝜌
1

𝛽 *𝑏−𝜌 − 𝛼 *𝜏−𝜌

𝜏 + 1
𝑑𝜏

⎞⎟⎟⎠ .

Here 𝑎1 and 𝑎2 are roots of the equation
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𝑎 ln
𝑒

𝑎
=

𝛼 *

𝛽 * , 0 6 𝑎1 6 1 6 𝑎2 6 𝑒. (8)

Like in the extremal sums from I to IV, in the sums from I+ to IV+ precise lower bounds are
obtained on some rather hard constructed sequences of entire functions zeros.

We should point out at the essential distinctions of the extremal sums for the samples Λ𝑓 ⊂ C and
Λ𝑓 ⊂ R+. It can be seen from the given formulae, that the dependance of the extremal sums type
on parameters is more difficult is sums for functions with zeros on the ray, than with zeros on all the
plane. That is why in the papers cited above there are given double-sided estimates of corresponding
values by elementary functions and some values studied earlier.

Values comparison in the extremal types of sums I, I+ and III, III+ with the consideration of the

obtained [4] inequality 𝐶(𝜌) >
1

𝜌𝑒
, 𝜌 ∈ (0; 1), allows to conclude, that 𝑆R+(𝛽; 𝜌) > 𝑆C(𝛽; 𝜌) and

𝑆 *
R+

(𝛽*; 𝜌) > 𝑆 *
C(𝛽

*; 𝜌).

As for sums II and IV+, we will cite only some asymptotic under 𝜌 → +0 functions, connected with
these sums. Thus, for instance, the following equalities hold true

𝑆R+(𝛼 , 𝛽 ; 𝜌) = 𝑒𝛼/𝛽
1

𝑒𝜌
+𝑂

(︁
𝑒
− 1

𝜌
(1−𝛼/𝛽)

)︁
, 𝛼 6 0.2𝛽;

𝑆 *
R+

(𝛼 * , 𝛽 * ; 𝜌) = 𝛽 * +𝑂
(︁
𝜌𝑎

−1/𝜌
2

)︁
, 𝜌 → +0,

where 𝑎2 = 𝑎2(
𝛼 *

𝛽 * ) is still the major root of equation (8).

The correlations given demonstrate significant influence of the entire function roots arguments on
the lowest possible value of its 𝜌-type and show, that this influence decreases with the decrease of 𝜌,
and disappears in the limit with 𝜌 → +0.

In the theory of trigonometric series, Dirichlet series there very often used notions, similar to the
step of sequence and its lacunarity index (see, for instance, [8], [9]). We will show the way these notions
influence on the value of extremal type of entire functions.

Let us formulate the following extremal sums.
V+. For fixed numbers 𝛽 > 0, ℎ ∈

[︀
0;𝛽−1

]︀
, 𝜌 > 0 to calculate

𝑆R+(𝛽, ℎ; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ 𝜌(Λ) = 𝛽, ℎ𝜌(Λ) ≥ ℎ

}︀
.

VI+. For fixed numbers 𝛽 > 0, 𝛼 ∈ [0;𝛽], ℎ ∈
[︀
0;𝛽−1

]︀
, 𝜌 > 0 to calculate

𝑆R+(𝛼 , 𝛽 , ℎ; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ 𝜌(Λ) ≥ 𝛼, Δ 𝜌(Λ) = 𝛽, ℎ𝜌(Λ) ≥ ℎ

}︀
.

The limit on the parameter ℎ in these sums is natural, as it is the result of the easily checked
inequality ℎ𝜌(Λ)Δ 𝜌(Λ) 6 1, connecting the 𝜌-step with the upper 𝜌-density sequence Λ ⊂ C (for 𝜌 = 1
and Λ ⊂ R+ this correlation is cited in [9]).

The solution for the sum V+ with 𝜌 ∈ (0; 1) is found in the paper [10]:

𝑆R+(𝛽 , ℎ; 𝜌) =
1

ℎ
sup
𝑎>0

⎧⎪⎨⎪⎩𝑎−𝜌 ln
1 + 𝑎(︀

1 + 𝑎𝑠−1/𝜌
)︀𝑠 +

𝑎𝑠−1/𝜌∫︁
𝑎

𝜏−𝜌

𝜏 + 1
𝑑𝜏

⎫⎪⎬⎪⎭
= sup

𝑎>0

⎧⎪⎨⎪⎩𝛽𝑎−𝜌 ln(1 + 𝑎) +
1

ℎ

𝑎𝑠−1/𝜌∫︁
𝑎

𝜏−𝜌 − 𝑠𝑎−𝜌

𝜏 + 1
𝑑𝜏

⎫⎪⎬⎪⎭ ,

where 𝑠 = 1 − 𝛽ℎ. From the latest form of the solution it is easy to find the inequality which holds
true when ℎ > 0 :

𝑆R+(𝛽 , ℎ; 𝜌) > 𝑆R+(𝛽; 𝜌) = 𝛽max
𝑎>0

ln(1 + 𝑎)

𝑎𝜌
= 𝛽 𝐶(𝜌).

However, the case ℎ = 0, of the sum V+, considered as a limited one, gives the equality
𝑆R+(𝛽 , 0; 𝜌) = 𝑆R+(𝛽; 𝜌), which is apparent from the sum setting.
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Another borderline example, when ℎ = 𝛽−1, is again taken as a limited one, results in the equality

𝑆R+(𝛽 , 𝛽−1; 𝜌) =
𝜋𝛽

sin𝜋𝜌
. Hence, according to the known estimate 𝜎𝜌(𝑓) 6

𝜋Δ 𝜌(Λ𝑓 )

sin𝜋𝜌
, 𝜌 ∈ (0; 1), we

obtain a pure” equality 𝜎𝜌(𝑓) =
𝜋𝛽

sin𝜋𝜌
for any entire function 𝑓, where Λ𝑓 ⊂ R+, Δ 𝜌(Λ𝑓 ) = 𝛽 and

ℎ𝜌(Λ𝑓 ) = 𝛽−1. It was considered before, that such an equality is possible only for the entire function

𝑓 with a measurable sequence of positive zeros Λ𝑓 = (𝜆𝑛)
∞
𝑛=1, i.e. such, having the limit lim

𝑛→∞

𝑛

𝜆𝑝
𝑛
= 𝛽.

But, of course, the condition ℎ𝜌(Λ𝑓 ) = 1/Δ 𝜌(Λ𝑓 ) does not mean measurability of the sequence Λ𝑓

(examples of such sequences can be found in the thesis [11]).
We have acquainted the reader with the results of extremal sums for entire functions with zeros

on the ray, obtained recently or having been already published or are expecting to be published. The
solution of the sum VI+ was obtained by the author’s follower O.V. Sherstukova quite recently:

𝑆R+(𝛼 , 𝛽 , ℎ; 𝜌) =
𝜋𝛼

sin𝜋𝜌
+ sup

𝑎>0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎𝜈1/𝜌∫︁

𝑎
(︁

𝛼
𝛽

)︁1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

𝜏 + 1
𝑑𝜏 +

1

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜏−𝜌 − 𝑎−𝜌

𝜏 + 1
𝑑𝜏

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

=
𝜋𝛼

sin𝜋𝜌
+ sup

𝑎>0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎∫︁

𝑎
(︁

𝛼
𝛽

)︁1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

𝜏 + 1
𝑑𝜏 +

𝑠

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜈𝜏−𝜌 − 𝑎−𝜌

𝜏 + 1
𝑑𝜏

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where 𝜈 =
1− 𝛼ℎ

1− 𝛽ℎ
, 𝑠 = 1− 𝛽ℎ.

It is again of use to compare solutions of the extremal sums II+ and VI+:
𝑆R+(𝛼 , 𝛽 , ℎ; 𝜌) > 𝑆R+(𝛼 , 𝛽 , 𝜌) when ℎ > 0, 𝛼 < 𝛽.
The complete proof of the result is supposed to be published in this issue of the journal.
In the conclusion of the paper we will give the solution of a new extremal sum, where the influence

of the lacunarity index of zeros sequence on the value of the entire function type is taken into account.
The sum consists in finding the lower possible 𝜌-type of the entire function 𝑓(𝑧), if the lacunarity
index and sequence density of its zeros are given. Exactly, for the given numbers 𝛽 > 0 , 𝑙 ≥ 1 , 𝜌 > 0
it is necessary to calculate the values

𝑆C(𝛽 , 𝑙; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ C, Δ 𝜌(Λ) = 𝛽, 𝑙(Λ) = 𝑙

}︀
and

𝑆R+(𝛽 , 𝑙; 𝜌) := inf
{︀
𝜎𝜌(𝑓) : Λ𝑓 = Λ ⊂ R+, Δ 𝜌(Λ) = 𝛽, 𝑙(Λ) = 𝑙

}︀
.

Here, as before, for Λ𝑓 = {𝜆𝑛} holds true 𝑙 := 𝑙(Λ) = lim
𝑛→+∞

|𝜆𝑛+1|
|𝜆𝑛|

.

We are intended to apply the given above results and also some correlations, connecting the la-
cunarity index of the sequence with its upper and lower 𝜌-densities. Let us single out connections,
which are of interest for us, refusing for time saving the dependence on Λ𝑓 = Λ and 𝜌 in notations of

densities and the lacunarity index, i.e. we will simply write Δ, Δ, Δ
*
, Δ *, 𝑙.

Let Λ = {𝜆𝑛}∞𝑛=1 ⊂ C be written in the order of modules nondecreasing:

0 < |𝜆1| = . . . = |𝜆𝑛1 | < |𝜆𝑛1+1| = . . . = |𝜆𝑛2 | < . . . , |𝜆𝑛| ↗ +∞.

The counting function of this sequence is 𝑛Λ(𝑡) = 0 when 𝑡 ∈ [0; |𝜆1|) and 𝑛Λ(𝑡) = 𝑛𝑘 when 𝑡 ∈
[|𝜆𝑛𝑘

|; |𝜆𝑛𝑘+1|), 𝑘 = 1, 2, . . . . Therefore

Δ = lim
𝑛→∞

𝑛

|𝜆𝑛|𝜌
= lim

𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌
, Δ = lim

𝑛→∞

𝑛

|𝜆𝑛|𝜌
= lim

𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
.

Hence, we easily obtain
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Δ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
|𝜆𝑛𝑘+1

|𝜌

|𝜆𝑛𝑘
|𝜌

≥ Δ lim
𝑘→∞

|𝜆𝑛𝑘+1
|𝜌

|𝜆𝑛𝑘
|𝜌

= Δ 𝑙𝜌, ⇒

Δ ≥ Δ 𝑙𝜌. (9)

By analogy we deduce Δ
*
6 ̃︀Δ 𝑙𝜌, where ̃︀Δ = ̃︀Δ𝜌(Λ) := lim

𝑛→∞

𝑁Λ(|𝜆𝑛|)
|𝜆𝑛|𝜌

is the upper average discrete

𝜌-density of the sequence Λ.
The correlations between usual and average sequences Λ are described by the inequalities (see [12,

ch. 2, S2], [7]):

𝜌𝑎1Δ
*
6 Δ 6 𝜌̃︀𝑎1Δ*

, 𝜌̃︀𝑎2Δ *
6 Δ 6 𝜌𝑎2Δ

*
. (10)

Here, as before, 𝑎1 and 𝑎2 are roots of the equation 𝑎 ln
𝑒

𝑎
=

Δ*

Δ
* , whereas ̃︀𝑎1 and ̃︀𝑎2 are roots of

the equation 𝑎 ln
𝑒

𝑎
=
̃︀Δ
Δ

* , and 𝑎1 6 ̃︀𝑎1 6 1 6 ̃︀𝑎2 6 𝑎2 .

If ̃︀Δ = Δ *, it is apparent, that ̃︀𝑎1 = 𝑎1 and ̃︀𝑎2 = 𝑎2. Therefore, it results from (10) for such equality
sequences as

Δ = 𝜌𝑎1Δ
*
, Δ = 𝜌𝑎2Δ

*
. (11)

As we are intended to demonstrate now, the property ̃︀Δ = Δ * ensures equality in case (9) too.
The discretely measurable sequences are the ones, satisfying the condition of the limit existence

lim
𝑛→∞

𝑁(|𝜆𝑛|)
|𝜆𝑛|𝜌

= ̃︀Δ (i.e. ̃︀Δ = Δ *).

The class of discretely measurable sequences is, in fact, rather wide: for arbitrary numbers 𝜌 >
0, 𝛽 > 0 and 𝛼 ∈ [0;𝛽], as it is shown in [7], there are discretely measurable sequences Λ with
densities Δ 𝜌(Λ) = 𝛽 and Δ 𝜌(Λ) = 𝛼.

The following statement is ensured by the common results of the study [12, p.212, theorem 3].
Let 𝑓(𝑧) be an entire function of the finite order 𝜌 > 0 with the discretely measurable sequence of

zeros Λ and 𝑙 be the lacunarity index of the sequence Λ. Then

Δ
*
6 Δ * 𝑐

1
𝑐−1

𝑒 ln 𝑐
1

𝑐−1

, where 𝑐 = 𝑙𝜌. (12)

Relying on this result, let us proof the inequality, which is opposite to (9). For this purpose let us

find parametric representation of the roots 𝑎1, 𝑎2 of the equation 𝑎 ln
𝑒

𝑎
= 𝜃. Having defined

𝑎2
𝑎1

= 𝑞,

or 𝑎2 = 𝑞𝑎1 (𝑞 > 1), let us write

𝜃 = 𝑎1 ln
𝑒

𝑎1
= 𝑎2 ln

𝑒

𝑎2
= 𝑞𝑎1 ln

𝑒

𝑞𝑎1
= 𝑞𝑎1

(︂
ln

𝑒

𝑎1
− ln 𝑞

)︂
= 𝑞𝜃 − 𝑞𝑎1 ln 𝑞.

Hence, 𝑎1 = 𝜃
𝑞 − 1

𝑞 ln 𝑞
, 𝑎2 = 𝜃

𝑞 − 1

ln 𝑞
. Inserting the expression obtained for 𝑎2 into the equality 𝜃 =

𝑎2 ln
𝑒

𝑎2
, we obtain 𝜃 = 𝜃

𝑞 − 1

ln 𝑞
ln

𝑒 ln 𝑞

𝜃(𝑞 − 1)
, i.e. ln 𝑞

1
𝑞−1 = ln

𝑒 ln 𝑞

𝜃(𝑞 − 1)
. Therefore, 𝑞

1
𝑞−1 =

𝑒 ln 𝑞

𝜃(𝑞 − 1)
, i.e.

𝜃 =
𝑒 ln 𝑞

𝑞
1

𝑞−1 (𝑞 − 1)
= 𝑒

ln 𝑞
1

𝑞−1

𝑞
1

𝑞−1

. We finally approach to the correlations

𝜃 = 𝑒
ln 𝑞

1
𝑞−1

𝑞
1

𝑞−1

, 𝑎1 = 𝜃
𝑞 − 1

𝑞 ln 𝑞
= 𝑒 𝑞

𝑞
1−𝑞 , 𝑎2 = 𝜃

𝑞 − 1

ln 𝑞
= 𝑒 𝑞

1
1−𝑞 . (13)
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Considering that 𝜃 :=
Δ*

Δ
* ∈ (0; 1) and comparing (12) with (13), we obtain

𝜃 = 𝑒
ln 𝑞

1
𝑞−1

𝑞
1

𝑞−1

≥ 𝑒
ln 𝑐

1
𝑐−1

𝑐
1

𝑐−1

, 𝑐 = 𝑙𝜌.

Due to the function decreasing 𝐹 (𝑥) := 𝑒
ln𝑥

1
𝑥−1

𝑥
1

𝑥−1

on (1;+∞) means, that 𝑐 ≥ 𝑞. But from (10) we

obtain
Δ

Δ
6

𝑎2
𝑎1

= 𝑞 6 𝑐 = 𝑙𝜌. Therefore, Δ 6 Δ 𝑙𝜌, that together with (9) leads to the equality needed

Δ = Δ 𝑙𝜌 (and also 𝑞 = 𝑙𝜌). Applying this and also equalities (11) and (13), we can write for the
discretely measurable sequences, that

Δ = 𝑙−𝜌Δ,

Δ
*
=

Δ

𝜌𝑎2
=

Δ

𝜌𝑒
𝑞

1
𝑞−1 ,

Δ * = 𝜃Δ
*
=

Δ

𝜌

ln 𝑞

𝑞 − 1
.

It is convenient to collect all the information obtained into a separate statement.

Proposition. Let Λ be a discretely measurable sequences of complex numbers with the densities
Δ = 𝛽, Δ = 𝛼, Δ* = 𝛼*, Δ

*
= 𝛽* and 𝑙 be the lacunarity index of the sequence Λ. Then the following

equalities hold true

𝛼 = 𝑙−𝜌𝛽,

𝛽* =
𝛽

𝜌𝑒
𝑞

1
𝑞−1 , 𝛼* =

𝛽

𝜌

ln 𝑞

𝑞 − 1
,

𝑎1 = 𝑒 𝑞
𝑞

1−𝑞 , 𝑎2 = 𝑒 𝑞
1

1−𝑞 , where 𝑞 = 𝑙𝜌.

Relying on the proposition and extremal sums II and IV+ solved, we obtain the following result.

Theorem. Assume 𝛽 > 0, 𝑙 > 1, 𝜌 ∈ (0; 1). Let, further, 𝑆 *
R+

(𝛽 , 𝑙; 𝜌) and 𝑆 *
C(𝛽 , 𝑙; 𝜌) be precise

lower bounds 𝑆R+(𝛽 , 𝑙; 𝜌) and 𝑆C(𝛽 , 𝑙; 𝜌) correspondingly, taken by discretely measurable sequences.
Hence,

𝑆 *
R+

(𝛽 , 𝑙; 𝜌) = 𝛽𝐿

⎧⎨⎩ 𝜋

sin𝜋𝜌
+ sup

𝑎>0

𝑎∫︁
𝑎𝑙−1

𝐿−1𝑎−𝜌 − 𝜏−𝜌

𝜏 + 1
𝑑𝜏

⎫⎬⎭ , where 𝐿 =
ln 𝑙𝜌

𝑙𝜌 − 1
,

𝑆 *
C(𝛽 , 𝑙; 𝜌) ≥ 𝛽

𝜌𝑒
exp

{︀
𝑙−𝜌
}︀
.

Remark. The question about precision of the last estimate remains unanswered. As for the first
statement of the theorem, the choice of IV+ instead of II+ as a reference sum, is determined by the
fact that the extremal sequence in the sum II+ is not a discretely measurable one. Therefore, as it is
demonstrated in [7], application on this sum would result in trivially inexact conclusion.
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