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ON APPLICATIONS OF THE MODEL SPACES

TO THE CONSTRUCTION OF COCYCLIC PERTURBATIONS

OF THE SEMIGROUP OF SHIFTS ON THE SEMIAXIS

G.G. AMOSOV, A.D. BARANOV, V.V. KAPUSTIN

Abstract. We describe a construction of cocyclic perturbations of the semigroup of shifts
on the half-line by means of the theory of model spaces. It is shown that one can choose
an inner function that determines the model space so that the elements of the perturbed
semigroup have a prescribed spectral type and differ from the elements of the initial semi-
group by operators from the Schatten–von Neumann class S𝑝, 𝑝 > 1. The case of the trace
class S1 perturbations is considered separately.
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1. Introduction

Let us assume that (𝑆𝑡, 𝑡 ≥ 0), and (𝑆𝑡, 𝑡 ∈ R) are a semigroup of shifts in the space
𝐻 = 𝐿2(R+), and a group of shifts (its unitary dilation) in the space 𝐻̃ = 𝐿2(R), defined by
formulae

(𝑆𝑡𝑓)(𝑥) =

{︃
𝑓(𝑥− 𝑡), 𝑥 > 𝑡,

0, 0 ≤ 𝑥 ≤ 𝑡,
𝑓 ∈ 𝐻,

and
(𝑆𝑡𝑔)(𝑥) = 𝑔(𝑥− 𝑡), 𝑔 ∈ 𝐻̃,

respectively. Sometimes it is convenient to consider that the multiplicative group of the algebra
𝐵(𝐻) of bounded operators in the space 𝐻 is embedded in the multiplicative group of the
algebra 𝐵(𝐻̃) in such a way that elements 𝐵(𝐻) act on functions 𝑓 ∈ 𝐻̃ with a carrier on
a negative semiaxis as an identical mapping. In this case operators, acting in the space 𝐻,
will be considered as operators in 𝐻̃ as well. A strongly continuous family of unitary operators
(𝑊𝑡, 𝑡 ≥ 0) in the space 𝐻 is called a cocycle of a semigroup of shifts (𝑆𝑡, 𝑡 ≥ 0) if the condition

𝑊𝑡+𝑠 = 𝑊𝑡𝑆𝑡𝑊𝑠𝑆−𝑡, 𝑡, 𝑠 ≥ 0, 𝑊0 = 𝐼 (1)

holds true (see [1]). It follows from the condition (1) that the family of isometric operators
(𝑉𝑡 = 𝑊𝑡𝑆𝑡, 𝑡 ≥ 0) in the space 𝐻 makes a semigroup (i.e. 𝑉𝑡+𝑠 = 𝑉𝑡𝑉𝑠, 𝑡, 𝑠 ≥ 0), which will be
called a cocyclic perturbation of a semigroup of shifts (𝑆𝑡, 𝑡 ≥ 0).

It will be demonstrated in the given paper that any cocyclic perturbation of the semigroup
(𝑆𝑡) is unitary equivalent to the orthogonal sum

(𝑉𝑡) ∼= (𝑈𝑡 ⊕ 𝑆𝑡), (2)

where (𝑈𝑡, 𝑡 ≥ 0) is a semigroup of unitary operators, and the following two theorems hold
true. Here and in what follows all semigroups under consideration are supposed to be strongly
continuous; the symbol S𝑝 denotes classes of the Schatten-von Neumann operators.
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Theorem 1. For any semigroup of unitary operators (𝑈𝑡, 𝑡 ≥ 0) possessing a spectral measure
which is singular to the Lebesgue measure, there is a cocycle (𝑊𝑡, 𝑡 ≥ 0), satisfying the condition

𝑊𝑡 − 𝐼 ∈ S𝑝

for all 𝑝 > 1, where (2) holds true for the cocyclic perturbations (𝑉𝑡 = 𝑊𝑡𝑆𝑡, 𝑡 ≥ 0), and

𝑉𝑡 − 𝑆𝑡 ∈ S1, 𝑡 ≥ 0. (3)

As a result, Theorem 1 leads to analogous results for an arbitrary (not necessarily singular)
spectral measure.

Theorem 2. For any semigroup of unitary operators (𝑈𝑡, 𝑡 ≥ 0) and for any 𝑝 > 1 there is
a cocycle (𝑊𝑡, 𝑡 ≥ 0), satisfying the condition

𝑊𝑡 − 𝐼 ∈ S𝑝

for all 𝑝 > 1, when the correlation (2) holds true for the cocyclic perturbation (𝑉𝑡 = 𝑊𝑡𝑆𝑡, 𝑡 ≥ 0).

In what follows it will be demonstrated (Proposition 10) that the condition 𝑊𝑡 − 𝐼 ∈ S1

never holds true in the model of cocyclic perturbations. Thus, the results of the work are not
improvable in a sense. It is natural to suppose, that this fact is also generalized for a general
case.

Hypothesis. For any cocycle (𝑊𝑡, 𝑡 ≥ 0), such that 𝑊𝑡−𝐼 ∈ S1 for all 𝑡 ≥ 0, the perturbated
semigroup (𝑉𝑡 = 𝑊𝑡𝑆𝑡, 𝑡 ≥ 0) is unitary equivalent to the initial one: (𝑉𝑡) ∼= (𝑆𝑡).

We should note that the problem of the Markov cocyclic perturbations of a group of unitary
operators connected with the matter under consideration is set in [2], and the Markov cocycles
possessing the property 𝑊𝑡 − 𝐼 ∈ S2, 𝑡 ≥ 0 are considered in [3, 4]. The property (3) was
considered in the article [5], where perturbations (𝑉𝑡, 𝑡 ≥ 0) of semigroup shifts (𝑆𝑡, 𝑡 ≥ 0)
such that 𝑉𝑡 − 𝑆𝑡 ∈ S𝑝, 𝑝 ≥ 1 were investigated. A distinguishing feature of the given paper is
that perturbations considered possess additional cocyclic properties demanding consideration
of unitary deletions of semigroups. The technique applied here is analogous to the one in paper
[5].

2. Cocyclic perturbations of the general form

For any strongly continuous semigroup of isometric operators (𝑉𝑡, 𝑡 ≥ 0) in the Hilbert space
𝐻, the Wold-Kolmogorov decomposition is defined in the following form:

𝐻 = 𝐻0 ⊕𝐻1,

𝑉𝑡 = 𝑈𝑡 ⊕𝑅𝑡, 𝑡 ≥ 0, (4)

where (𝑈𝑡, 𝑡 ≥ 0) is a semigroup of unitary operators in 𝐻0, and (𝑅𝑡, 𝑡 ≥ 0) is a semigroup
of completely nonunitary isometric operators in 𝐻1, i.e. lacking nontrivial invariant subspaces,
where they act as unitary operators.

Proposition 3. Let the semigroup of isometric operators (𝑉𝑡, 𝑡 ≥ 0) be a cocyclic perturbation
of the semigroup of shifts (𝑆𝑡, 𝑡 ≥ 0). Then the completely nonunitary part (𝑅𝑡, 𝑡 ≥ 0) in the
Wold-Kolmogorov decomposition (4) is unitary equivalent to the semigroup of shifts (𝑆𝑡, 𝑡 ≥ 0).

Remark. This statement holds true for an arbitrary semigroup (not necessarily being a
cocyclic perturbation) of isometric operators (𝑉𝑡, 𝑡 ≥ 0), if we require that 𝑉𝑡 −𝑆𝑡 ∈ S𝑝, 𝑝 ≥ 1
(see [5]).

Proof. Let us define elements 𝜉𝑡 ∈ 𝐻, 𝑡 ≥ 0 by the formula

𝜉𝑡(𝑥) =

{︃
1, 0 ≤ 𝑥 ≤ 𝑡,

0, 𝑥 > 𝑡.
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Note, that the family (𝜉𝑡, 𝑡 ≥ 0) satisfies the so-called condition of an additive cocycle of the
semigroup (𝑆𝑡, 𝑡 ≥ 0), i.e.

𝜉𝑡+𝑠 = 𝜉𝑡 + 𝑆𝑡𝜉𝑠, 𝑠, 𝑡 ≥ 0,

and the functions 𝜉𝑡1 − 𝜉𝑠1 and 𝜉𝑡2 − 𝜉𝑠2 are orthogonal, if (𝑠1, 𝑡1)∩ (𝑠2, 𝑡2) = ∅. Moreover, linear

combinations of elements (𝜉𝑠, 0 ≤ 𝑠 ≤ 𝑡) generate Ker𝑆*
𝑡 . Assume that 𝜉𝑡 = 𝑊𝑡𝜉𝑡, 𝑡 ≥ 0. To

prove Proposition 3 it is sufficient to make sure that the family of elements 𝜉𝑡 has the following
properties for the cocyclic perturbation (𝑉𝑡 = 𝑊𝑡𝑆𝑡, 𝑡 ≥ 0) :

(i) 𝜉𝑡+𝑠 = 𝜉𝑡 + 𝑉𝑡𝜉𝑠, 𝑠, 𝑡 ≥ 0,

(ii) 𝜉𝑡1 − 𝜉𝑠1 and 𝜉𝑡2 − 𝜉𝑠2 are orthogonal, if (𝑠1, 𝑡1) ∩ (𝑠2, 𝑡2) = ∅,

(iii) linear combinations (𝜉𝑠, 0 ≤ 𝑠 ≤ 𝑡) generate Ker𝑉 *
𝑡 .

Indeed, in this case the contraction of the semigroup (𝑉𝑡, 𝑡 ≥ 0) to the subspace 𝐻0, generated
by Ker𝑉 *

𝑡 , 𝑡 ≥ 0, is unitary equivalent (𝑆𝑡, 𝑡 ≥ 0), but the contraction of 𝑉𝑡|𝐻⊥
0

will be a

unitary operator, because Ker𝑉𝑡|𝐻⊥
0

= {0}, 𝑡 ≥ 0.
We have

𝜉𝑡+𝑠 = 𝑊𝑡+𝑠𝜉𝑡+𝑠 = 𝑊𝑡𝑆𝑡𝑊𝑠𝑆−𝑡𝜉𝑡 + 𝑊𝑡𝑆𝑡(𝑊𝑠)𝑆−𝑡𝑆𝑡𝜉𝑠. (5)

Note, that

𝑆𝑡𝑊𝑠𝑆−𝑡𝜉𝑠 = 𝜉𝑠, (6)

whereas 𝑊𝑠𝑓 = 𝑓 for the function with the carrier supp 𝑓 ⊂ R−. On the other hand,

𝑆𝑡𝑊𝑠𝑆−𝑡𝑆𝑡𝜉𝑠 = 𝑆𝑡𝑊𝑠𝜉𝑠 = 𝑆𝑡𝜉𝑠. (7)

Substituting the relations (6) and (7) into the equality (5), we obtain the property (i).
Then,

𝑊𝑡+𝑠𝜉𝑡 = 𝑊𝑡𝑆𝑡(𝑊𝑠)𝑆−𝑡𝜉𝑡 = 𝑊𝑡𝜉𝑡, 𝑠, 𝑡 ≥ 0, (8)

according to (6). Let 𝑡 = max(𝑡1, 𝑡2); then, taking into account (8), we obtain

(𝜉𝑡1 − 𝜉𝑠1 , 𝜉𝑡2 − 𝜉𝑠2) = (𝑊𝑡1𝜉𝑡1 −𝑊𝑠1𝜉𝑠1 ,𝑊𝑡2𝜉𝑡2 −𝑊𝑠2𝜉𝑠2)

= (𝑊𝑡𝜉𝑡1 −𝑊𝑡𝜉𝑠1 ,𝑊𝑡𝜉𝑡2 −𝑊𝑡𝜉𝑠2) = (𝜉𝑡1 − 𝜉𝑠1 , 𝜉𝑡2 − 𝜉𝑠2) = 0,

if (𝑠1, 𝑡1) ∩ (𝑠2, 𝑡2) = ∅. Thus, the property (ii) is defined as well.
Finally, let us consider the equation

𝑉 *
𝑡 𝑓 = 𝑆*

𝑡𝑊
*
𝑡 𝑓 = 0. (9)

It follows from (9) that the carrier supp𝑊 *
𝑡 𝑓 ⊂ [0, 𝑡]. Hence, 𝑓 belongs to the closure of the

linear envelope of elements (𝑊𝑡𝜉𝑠, 0 ≤ 𝑠 ≤ 𝑡). Since 𝑠 ≤ 𝑡, we have 𝑊𝑡𝜉𝑠 = 𝑊𝑠𝜉𝑠 = 𝜉𝑠 for such
elements by virtue of the relations (8). This completes the proof of the property (iii) and the
proposition.

The next property is necessary for modelling cocycles.

Proposition 4. Let (𝑉𝑡, 𝑡 ≥ 0) be the cocyclic perturbation of the semigroup of shifts (𝑆𝑡, 𝑡 ≥
0) with the cocycle (𝑊𝑡, 𝑡 ≥ 0). Then, having determined the family of the unitary operators
(𝑊−𝑡, 𝑡 ≥ 0) in the subspace 𝐻̃ by the formula

𝑊−𝑡 = 𝑆−𝑡𝑊
*
𝑡 𝑆𝑡, 𝑡 ≥ 0, (10)

we obtain that the family of operators (𝑉𝑡, 𝑡 ∈ R), where

𝑉𝑡 = 𝑊𝑡𝑆𝑡,

generates a group of unitary operators in the space 𝐻̃, and

𝑉𝑡𝑓 =

{︃
𝑉𝑡𝑓, supp 𝑓 ⊂ R+, 𝑡 ≥ 0,

𝑆𝑡𝑓, supp 𝑓 ⊂ R−, 𝑡 ≤ 0.
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Proof. As usual, let us assume that actions of the unitary operators 𝑊𝑡, 𝑡 ≥ 0, fixed initially
in the space 𝐻, are prolonged by the identical action on 𝑓 with the carrier supp 𝑓 ⊂ R−. Then
the formula (10) provides the prolongation of the family (𝑊𝑡, 𝑡 ≥ 0) of unitary operators in 𝐻̃
for negative values of the parameter 𝑡. Meanwhile, the property of the cocycle

𝑊𝑡+𝑠 = 𝑊𝑡𝑆𝑡𝑊𝑠𝑆−𝑡, 𝑠, 𝑡 ∈ R
holds, which follows from the formula

𝐼 = 𝑊−𝑡+𝑡 = 𝑊−𝑡𝑆−𝑡𝑊𝑡𝑆𝑡, 𝑡 ≥ 0,

resulting from the definition (10). To complete the proof it should be noted, that if supp 𝑓 ⊂ R−,

𝑉−𝑡𝑓 = 𝑊−𝑡𝑆−𝑡𝑓 = 𝑆−𝑡𝑊
*
𝑡 𝑓 = 𝑆−𝑡𝑓, 𝑡 ≥ 0.

3. Model of the cocyclic perturbation based on the cogenerator of the
semigroup

We will need commonly known information from the theory of one-parameter semigroups
(see [6]). A symmetric (probably unlimited) operator 𝐴 = 𝑠− lim𝑡→0+

𝑉𝑡−𝐼
𝑖𝑡

is called a generator
of a strongly continuous group of the isometric operators (𝑉𝑡, 𝑡 ≥ 0). An isometric operator
𝑉 = (𝐴 − 𝑖𝐼)(𝐴 + 𝑖𝐼)−1 is called a cogenerator of a semigroup. For an isometric operator to
be a cogenerator of some isometric semigroup it is necessary and sufficient that the number 1
should not belong to its point spectrum. The initial semigroup will consist of unitary operators
only if 𝐴 is a self-adjoint operator, or when 𝑉 is a unitary operator such that the point 1 does
not belong to its point spectrum, which is the same. If we introduce the functions

𝜙𝑡(𝑧) = exp

(︂
𝑡
𝑧 + 1

𝑧 − 1

)︂
, 𝑡 ≥ 0, (11)

the semigroup is recovered according to the cogenerator 𝑉 as follows: 𝑉𝑡 = 𝜙𝑡(𝑉 ), 𝑡 ≥ 0. Let
us note, that the functions 𝜙𝑡 are limited and analytical in the unit circle D.

One can readily demonstrate that the cogenerator of the semigroup of shift operators (𝑆𝑡, 𝑡 ≥
0) in the space 𝐻 is unitary equivalent to the operator of the (one-sided) shift 𝑆 in the Hardy
space 𝐾 = 𝐻2(D), consisting of analytical in the circle D functions 𝑓(𝑧) =

∑︀+∞
𝑛=0 𝑐𝑛𝑧

𝑛, for

which
∑︀+∞

𝑛=0 |𝑐𝑛|2 = ‖𝑓‖2𝐿2(T) < +∞. Therefore, the Hardy space inside the circle is naturally

embedded in the space 𝐾̃ = 𝐿2(T) of the circle T. The operator of the shift 𝑆 in the Hardy
space is given by the formula

(𝑆𝑓)(𝑧) = 𝑧𝑓(𝑧), 𝑓 ∈ 𝐾. (12)

Likewise, the cogenerator of the group of shifts in the space 𝐻̃ is unitary equivalent to the
operator of the (double-sided) shift (𝑆𝑓)(𝑧) = 𝑧𝑓(𝑧) in the space 𝐾̃, with the operator 𝑆,
apparently, being a unitary dilation of the operator 𝑆.

Assume, that 𝐸 is an unconventional invariant subspace of the shift operator 𝑆, that is
𝑆𝐸 ⊂ 𝐸. Then, according to the Burling theorem (see [7]), 𝐸 = 𝜃𝐻2(D) for some inner
function 𝜃 ∈ 𝐻∞(D) (i.e. the function which is analytical and bounded in a unit circle D with
nontangent limiting values such that |𝜃(𝑧)| = 1 is almost everywhere on T). The orthogonal
complement 𝐾𝜃 = 𝐻2(D)⊖𝜃𝐻2(D) = 𝐸⊥ is usually called a model space. The next proposition
describes the model of cocyclic perturbation, applied in the given paper.

Proposition 5. A cogenerator of any cocyclic perturbation of the semigroup of shifts on a
half-line is unitary equivalent to the isometric operator 𝑉 in the space 𝐾 = 𝐻2(D), for which
there is an inner function 𝜃, such that

𝑉 = 𝑈 ⊕ 𝑆|𝐸, (13)
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where 𝑆|𝐸 is a contraction of the operator of the shift 𝑆 on the invariant space defined by the
function 𝜃, and 𝑈 is a unitary operator in the model space 𝐾𝜃, which is a cogenerator of the
unitary part of the Wold-Kolmogorov decomposition of the cocyclic perturbation.

Proof. For the cogenerator of the cocyclic perturbation 𝑉 in the space 𝐾, one has a deter-
mined Wold-Kolmogorov decomposition 𝐾 = 𝐾0⊕𝐾1 such that 𝑉 |𝐾0 is a unitary operator and
the contraction 𝑉 |𝐾1 is a completely nonunitary isometric operator. It results from Proposition
3 that the contraction 𝑉 |𝐾1 is unitary equivalent to the shift operator 𝑆. Therefore, in our
modeling situation, one can use the contraction 𝑆|𝐸 on any invariant subspace 𝐸, selected so
that the correlation dim𝐾𝜃 = dim𝐾0 holds true for the corresponding model space 𝐾𝜃 = 𝐸⊥,
as 𝑉 |𝐾1 , which completes the proof.

The following statement results directly from Proposition 5.

Corollary 6. The cogenerator of the semigroup of unitary operators (𝑉𝑡, 𝑡 ≥ 0), defining
the cocycle according to Proposition 4, is unitary equivalent to the operator 𝑉 in the space
𝐾̃ = 𝐿2(T), possessing the properties

𝑉 𝑓 = 𝑉 𝑓, 𝑓 ∈ 𝐾 = 𝐻2(D),

(𝑉 *𝑓)(𝑧) = 𝑧𝑓(𝑧), 𝑓 ∈ 𝐾̃ ⊖𝐾 = 𝐿2(T) ⊖𝐻2(D).

4. Perturbation model based on the Clark measures

Let 𝑈 be a unitary part in the Wold-Kolmogorov decomposition (13) of the cogenerator of
the cocyclic perturbation. In this section we will be interested in the case when 𝑈 is unitary
equivalent to the operator of multiplication by 𝑧 in the space 𝐿2(𝜇), with the measure 𝜇 being
singular with respect to the Lebesgue measure. Note, that 𝑈 a cogenerator of the semigroup
according to the condition and therefore the number 1 does not belong to its point spectrum.
Operators of multiplication by 𝑧 in the spaces 𝐿2(𝜇) and 𝐿2(𝜇̃) are unitary equivalent, if the
measures 𝜇̃ and 𝜇 are mutually absolutely continuous. Multiplying the measure 𝜇 by a positive
weight, one can make it satisfy the following auxiliary condition, taking an important part in
what follows: ∫︁

T

𝑑𝜇(𝜉)

|1 − 𝜉|𝑞
< +∞ (14)

for some 𝑞 > 3.
Let 𝜇 be the finite singular Borel measure on a unit circle. Define the inner function 𝜃 by the

formula
1 + 𝜃(𝑧)

1 − 𝜃(𝑧)
=

∫︁
T

𝜉 + 𝑧

𝜉 − 𝑧
𝑑𝜇(𝜉). (15)

Then the operator Ω, given on 𝐿2(𝜇) by the formula

(Ω𝑓)(𝑧) = (1 − 𝜃(𝑧))

∫︁
T

𝑓(𝜉)𝑑𝜇(𝜉)

1 − 𝜉𝑧
, (16)

is a unitary operator from 𝐿2(𝜇) on 𝐾𝜃. Meanwhile the unitary operator 𝑈 in 𝐿2(𝜇) transforms
into the unitary operator 𝑈̃ in the model space 𝐾𝜃 such that

𝑈̃𝑓 = Ω𝑈Ω*𝑓 = 𝑧𝑓 + (𝑓, 𝑔)(1 − 𝜃), 𝑓 ∈ 𝐾𝜃, (17)

where

𝑔(𝑧) =
𝜃(𝑧) − 𝜃(0)

𝑧(1 − 𝜃(0))
∈ 𝐾𝜃,

and therefore the operators 𝑈 and 𝑈̃ are unitary equivalent, see[8].
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The operator (17) is the contraction on the model space 𝐾𝜃 of the isometric operator 𝑉 ,
acting in the space 𝐾 by formula

(𝑉 𝑓)(𝑧) = 𝑧𝑓(𝑧) + (𝑓, 𝑔)(1 − 𝜃(𝑧)), 𝑓 ∈ 𝐾. (18)

The unitary delation of the operator (18) will be the operator

(𝑉 𝑓)(𝑧) = 𝑧𝑓(𝑧) + (𝑓, 𝑔)(1 − 𝜃(𝑧)) − (𝑓, 𝑧)(1 − 𝜃(1)𝜃(𝑧)), 𝑓 ∈ 𝐾̃. (19)

Note, that
(𝑉 *𝑓)(𝑧) = 𝑧𝑓(𝑧), 𝑓 ∈ 𝐾̃ ⊖𝐾.

Therefore, according to Proposition 5 and Corollary 6, the following statement is proved.

Proposition 7. The formulae (18), (19) define the model of the cocyclic perturbation cogene-
rator in the case, when the unitary part of the generator in the Wold-Kolmogorov decomposition
is unitary equivalent to the operator of multiplication by 𝑧 in the spaace 𝐿2(𝜇) with the measure
𝜇, which is singular to the Lebesgue measure.

5. Proximity of cocyclic perturbation

Let us apply the function (11) to the model cogenerator 𝑉 of the semigroup of isometric
operators (𝑉𝑡, 𝑡 ≥ 0). The isometric operator 𝑉 is the contraction of the unitary operator 𝑉
defined by the formula (19) on the space 𝐾 = 𝐻2. Recall that the symbols 𝑆 and 𝑆 define the
shift operators on 𝐾 and 𝐾̃, respectively. Then the cocycle (𝑊𝑡, 𝑡 ≥ 0) satisfies the equality

𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) = (𝑊𝑡 − 𝐼)𝑆𝑡, 𝑡 ≥ 0.

Therefore, inclusion of the difference 𝑊𝑡 − 𝐼 into the ideals S𝑝 proves to be equivalent to

the corresponding inclusion for the differences 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆). The properties of the operators
𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) are defined in their turn by properties of the spectral measure 𝜇 of the unitary
operator (17), i.e., by its smallness (smoothness) at the point 1.

We will need the following statement, proved in [5] (Proposition 7.2).

Proposition 8. Let the spectral measure of the unitary operator (17) satisfy the condition

M𝑞(𝜇) =

∫︁
T

𝑑𝜇(𝜉)

|1 − 𝜉|𝑞
< +∞ (20)

for some 𝑞 > 3. Then
𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S1, 𝑡 ≥ 0,

with
‖𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆)‖S1 ≤ 𝐶𝑞𝑡

1/2(M𝑞(𝜇))1/2,

where the constant 𝐶𝑞 depends only on 𝑞.

The key role in the proof of the Theorems 1 and 2 is played by the following proposition,
allowing one to estimate components of the unitary dilation. In this case we are not able to
obtain the inclusion of 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S1, but the difference may belong to the ideals S𝑝 for
all 𝑝 > 1.

Proposition 9. Let the spectral measure of the unitary operator (17) satisfy the condition
(20) for some 𝑞 > 3. Then

𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S𝑝, 𝑝 > 𝑞′ =
𝑞

𝑞 − 1
, 𝑡 ≥ 0,

with
‖𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆)‖Sp ≤ 𝜔(M𝑞(𝜇)),

where 𝜔 is a positive function such that 𝜔(𝑟) → 0 when 𝑟 ↘ 0.
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Proof. The proof of Proposition 9 consists of several stages. At the first stage we will con-
sider components of the operator 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) with respect to some canonical representation
of the space 𝐾̃ and will see that all the components, except one, belong to the ideal S1 due to
Proposition 8. Then, we will demonstrate that the remaining component is unitary equivalent
(after conformal transformation to the upper half-plane) to the operator of multiplication by a
certain function in the Paley–Wiener space. This will allow us to reduce the problem to the que-
stion of describing measures (weights), such that the embedding operator of the Paley–Wiener
space belongs to the ideal S𝑝. To complete the proof we apply a theorem due to O.G. Parfenov
[9].

Stage 1. Analysis of components of the unitary dilation. Let us consider the matrix
of the operator 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) with respect to the expansion 𝐾̃ = 𝐻2

− ⊕ 𝐾𝜃 ⊕ 𝜃𝐻2, where
𝐻2

− = 𝐿2(T)⊖𝐻2. One can readily see that all the components, except one, belong to the class
S1. Indeed, the statement results from Proposition 8 for the block 𝐾𝜃⊕𝜃𝐻2 → 𝐾𝜃⊕𝜃𝐻2. Pro-
ceeding to the conjugate operator, we come to the conclusion that the block 𝐻2

−⊕𝐾𝜃 → 𝐻2
−⊕𝐾𝜃

is also included into S1. By its construction the component 𝐻2 → 𝐻2
− is equal to the zero.

Therefore, we only need to consider the component, corresponding to the operator 𝐻2
− → 𝜃𝐻2.

Moreover, note that both operators 𝜙𝑡(𝑉 ) and 𝜙𝑡(𝑆) on the space 𝜙𝑡𝐻
2
− act as operators of

multiplication by 𝜙𝑡, and, consequently, 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) = 0 by 𝜙𝑡𝐻
2
−. It remains only to study

the action of the operator 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) on the subspace 𝜙𝑡𝐻
2 ⊖𝐻2 = 𝜙𝑡𝐾𝜙𝑡 . Let us denote

the contraction of the operator 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) on the subspace 𝜙𝑡𝐾𝜙𝑡 by 𝑄 : 𝜙𝑡𝐾𝜙𝑡 → 𝐻2.

Stage 2. Embedding the component 𝑄 into the ideals S𝑝. Let us show that for 𝑣 ∈ 𝐾𝜙𝑡

the following equality holds true

𝑄(𝜙𝑡𝑣) = −(1 − 𝜃(1)𝜃)𝑣. (21)

If 𝑢 ∈ 𝐻2
−, then for the arbitrary function 𝜙 ∈ 𝐻∞ there is the equality

𝑃+𝜙(𝑉 )𝑢 = 𝜃(1)𝜃 · 𝑃+(𝜙𝑢), 𝑃−𝜙(𝑉 )𝑢 = 𝑃−(𝜙𝑢), (22)

where the symbols 𝑃+ and 𝑃− denote projectors in the space 𝐿2(T) on the subspace 𝐻2 and
𝐻2

−, respectively. Indeed, this equality is easily verified for the case when 𝜙(𝑧) = 𝑧𝑛, 𝑛 > 0,
and 𝑢(𝑧) = 𝑧𝑚, 𝑚 < 0. Due to its linearity and continuity the equality (22) holds true for all
𝑢 ∈ 𝐻2

− and 𝜙(𝑧) = 𝑧𝑛, 𝑛 > 0. Finally, due to its linearity and *-weak continuity, the equality
(22) holds for the arbitrary function 𝜙 ∈ 𝐻∞ as well.

Since 𝜙𝑡(𝑆)𝑢 = 𝜙𝑡𝑢, the equality (22) entails(︀
𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆)

)︀
𝑢 = (𝜃(1)𝜃 − 1) · 𝑃+(𝜙𝑡𝑢), 𝑢 ∈ 𝐻2

−.

Substituting 𝑢 = 𝜙𝑡𝑣, we obtain the equality (21).
Therefore, the inclusion of 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S𝑝 is equivalent to the inclusion of

𝑀1−𝜃(1)𝜃|𝐻2⊖𝜙𝑡𝐻2 ∈ S𝑝, (23)

where the symbol 𝑀𝑔 denotes the operator of multiplication by the function 𝑔 ∈ 𝐿∞(T).

Stage 3. Transformation into a half plane. It will be convenient to prove the inclusion
(23), making a “unitary transformation” from the single circle into the upper half plane C+ =
{𝑧 : Im 𝑧 > 0}. Let us assume that

Θ(𝑧) = 𝜃

(︂
𝑧 − 𝑖

𝑧 + 𝑖

)︂
.

Then Θ(𝑧) becomes an inner function in the upper half plane: Θ ∈ 𝐻∞(C+), and |Θ(𝑥)| = 1 for
almost every 𝑥 ∈ R, where the values of the function Θ on the straight line are considered as
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nontangent boundary values. Defining the measure 𝜈 on the real straight line by the condition

𝑑𝜇(𝜉) =
𝑑𝜈(𝑥)

𝜋(1 + 𝑥2)
, 𝜉 =

𝑥− 𝑖

𝑥 + 𝑖
,

we obtain
1 − Θ(𝑧)

1 + Θ(𝑧)
=

2

𝜋𝑖

∫︁
R

(︂
1

𝑥− 𝑧
− 𝑥

𝑥2 + 1

)︂
𝑑𝜈(𝑥).

The condition (20) entails that

𝜈(R) < +∞,

and there is a limit lim
𝑦→+∞

Θ(𝑖𝑦); let us denote it by Θ(∞). We have |Θ(∞)| = 1 and 1−Θ(∞)Θ ∈
𝐿2(R), with

‖1 − Θ(∞)Θ‖𝐿2(R) = |1 − Θ(∞)| ·
√︀
𝜈(R).

The condition (20) is equivalent to∫︁
R

(1 + |𝑡|)𝑞−2𝑑𝜈(𝑡) < ∞.

The formula

(𝐿𝑓)(𝑥) =
1√

𝜋(𝑥 + 𝑖)
𝑓

(︂
𝑥− 𝑖

𝑥 + 𝑖

)︂
carries out the unitary mapping of the space 𝐿2(T) to 𝐿2(R) such that the Hardy space 𝐻2(D)
transforms to the Hardy space 𝐻2(C+). Such a transformation turns the inclusion (23) into the
relation

𝑀1−Θ(∞)Θ|𝒦 ∈ S𝑝, (24)

where 𝒦 = 𝐻2(C+) ⊖ 𝑒𝑖𝑡𝑧𝐻2(C+). The Paley-Wiener space 𝒫𝑊 𝑎 consists of all the entire
functions of the exponential type not higher than 𝑎, the contraction of which on the real
straight line belongs to 𝐿2(R); and, according to the classical Paley-Wiener theorem, 𝒫𝑊 𝑎 =
𝑒−𝑖𝑎𝑧𝐻2(C+)⊖𝑒𝑖𝑎𝑧𝐻2(C+). In this case the inclusion (24) is equivalent to the question, whether
the transformation of the Paley-Wiener space 𝒫𝑊 𝑡/2 into the space 𝐿2(R, 𝑤(𝑡)𝑑𝑡) on the straight

line with the weight 𝑤(𝑡) = |1 − Θ(∞)Θ(𝑡)|2 belongs to S𝑝. This problem was solved in the
paper [9], with the following result obtained:

Theorem (O.G. Parfenov). For any 𝑝 > 0 the embedding operator 𝒥 of the space
𝒫𝑊 𝑎, 𝑎 > 0 into the space 𝐿2(R, 𝑤(𝑡)𝑑𝑡) belongs to the class S𝑝 if and only if

N𝑝(𝑤) =
∑︁
𝑘

(︂ 𝑘+1∫︁
𝑘

𝑤(𝑥)𝑑𝑥

)︂𝑝/2

< ∞. (25)

The following estimate follows immediately from the proof of the Parfenov theorem (see also
[10], where a similar result is obtained for the general model spaces):

‖𝒥 ‖𝑝S𝑝
≤ N𝑝(𝑤).

Stage 4. Application of the Parfenov theorem. It results from the embedding (1− 𝜉)−𝑞 ∈
𝐿1(𝜇) that the functional Φ,

Φ(𝑔) =

∫︁
T

(︂
1 − 𝜃(1)𝜃(𝜉)

1 − 𝜉

)︂𝑞

𝑔(𝜉)𝑑𝜉, 𝑔 ∈ 𝐾𝜃,
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is limited on 𝐾𝜃, and |Φ(𝑔)| ≤ 𝐶(𝑞)M𝑞(𝜇)‖𝑔‖2. Note that for 𝑞 ∈ N the value Φ(𝑔) coincides
with the radial limit 𝑔(𝑞−1)(1) of the derivative of the order 𝑞− 1 of the function 𝑔 at the point
𝑧 = 1.

Thus, the limited functional Φ on 𝐾𝜃 is generated by the function
(︀1−𝜃(1)𝜃(𝜉)

1−𝜉

)︀𝑞 ∈ 𝐻2(D).

Strictly speaking, the function
(︀1−𝜃(1)𝜃(𝜉)

1−𝜉

)︀𝑞
does not belong to the space 𝐾𝜃, but one can readily

demonstrate that the norm of its projection to the subspace 𝜃𝐻2 is estimated via the norm of
its projection to 𝐾𝜃. Therefore,∫︁

T

⃒⃒⃒⃒
1 − 𝜃(1)𝜃(𝜉)

1 − 𝜉

⃒⃒⃒⃒2𝑞
𝑑𝑚(𝜉) ≤ 𝜔(M𝑞(𝜇)), (26)

where 𝜔(𝑟) → 0 when 𝑟 ↘ 0 (indeed 𝜔(𝑟) ≤ 𝐶(𝑞)𝑟, but the explicit form of the function 𝜔 is
not important for us). Substituting the variable, we obtain∫︁

R

|1 − Θ(∞)Θ(𝑡)|2𝑞(|𝑡| + 1)2𝑞−2𝑑𝑡 < ∞.

Apply Holder’s inequality, we obtain

𝑘+1∫︁
𝑘

|1−Θ(∞)Θ(𝑡)|2𝑑𝑡

≤
(︂ 𝑘+1∫︁

𝑘

|1 − Θ(∞)Θ(𝑡)|2𝑞(|𝑡| + 1)2𝑞−2𝑑𝑡

)︂1/𝑞(︂ 𝑘+1∫︁
𝑘

𝑑𝑡

(|𝑡| + 1)2

)︂1/𝑞′

≤ 𝐶1/𝑞

(|𝑘| + 1)2/𝑞′
.

Let us assume that 𝑝 > 𝑞′; then

∑︁
𝑘∈Z

(︂ 𝑘+1∫︁
𝑘

|1 − Θ(∞)Θ(𝑡)|2𝑑𝑡
)︂𝑝/2

≤ 𝐶𝑝/2𝑞
∑︁
𝑘∈Z

1

(|𝑘| + 1)𝑝/𝑞′
< ∞.

Thus, invoking the estimate (26) when 𝑝 > 𝑞′, we obtain

∑︁
𝑘∈Z

(︂ 𝑘+1∫︁
𝑘

|1 − Θ(∞)Θ(𝑡)|2𝑑𝑡
)︂𝑝/2

≤ 𝜔(M𝑞(𝜇)),

with some function 𝜔, 𝜔(𝑟) ↘ 0 when 𝑟 ↘ 0. Then, applying the Parfenov theorem, we obtain
the inclusion (24). Proposition 9 is been proved completely.

In the model of cocyclic perturbation considered here, the relation 𝑊𝑡− 𝐼 ∈ S𝑝 is equivalent

to the inclusion 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S𝑝. In conclusion to the section note that the difference

𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) cannot belong to the class of kernel operators S1 for all 𝑡 ≥ 0 simultaneously.

Proposition 10. For the class of cocyclic perturbations described in Proposition 5, the in-
clusion 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S1 entails that 𝜃 is a unimodular constant for all 𝑡 ≥ 0.

Proof. It results from Proposition 9, that the inclusion 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S1 is equivalent to

N1(|1 − Θ(∞)Θ(𝑡)|2) < ∞ (see (25)). It would result in∫︁
R

|1 − Θ(∞)Θ(𝑡)| 𝑑𝑡 ≤
∑︁
𝑘∈Z

(︂∫︁ 𝑘+1

𝑘

|1 − Θ(∞)Θ(𝑡)|2 𝑑𝑡
)︂1/2

< ∞,
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and therefore the function 1−Θ(∞)Θ should belong to the Hardy space 𝐻1. But then
∫︀
R

(︀
1−

Θ(∞)Θ(𝑡)
)︀
𝑑𝑡 = 0, which is impossible since Re (1 − Θ(∞)Θ) > 0 almost everywhere on R for

any nonconstant inner function Θ.

6. The case of an arbitrary spectral multiplicity

Let 𝑈 be a unitary part in the Wold-Kolmogorov decomposition (13) of the arbitrary coge-
nerator of the cocyclic perturbation. Any unitary operator 𝑈 can be presented in the form of
not more than a countable sum

𝑈 = ⊕𝑘𝑈𝑘,

where the operators 𝑈𝑘 are unitary equivalent to the operators of multiplication in the appro-
priate spaces 𝐿2(𝜇𝑘), where 𝜇𝑘 are measures on the circle T,

(𝑈𝑘𝑓)(𝑧) = 𝑧𝑓(𝑧), 𝑓 ∈ 𝐿2(𝜇𝑘).

Multiply by positive weights, decreasing rapidly when getting close to point 1, we can choose
measures 𝜇𝑘 such that the condition∑︁

𝑘

(︂∫︁
T

𝑑𝜇𝑘(𝜉)

|1 − 𝜉|𝑞

)︂1/𝑞

< ∞ (27)

holds for all 𝑞 > 0. Let us define the inner functions 𝜃𝑘, connected with the measures 𝜇𝑘 by the
formula (15). Condition (27) provides that the product

∏︀
𝑘 𝜃𝑘 to converge to the inner function

𝜃. Let us assume that

𝜃𝑛 =
𝑛−1∏︁
𝑘=1

𝜃𝑘

and evaluate the cogenerator 𝑉 by the formula

𝑉 = 𝑆 +
∑︁
𝑛

(·, 𝜃𝑛𝑔𝑛)𝜃𝑛(1 − 𝜃𝑛) − (·, 𝑧)(1 − 𝜃(1)𝜃),

where

𝑔𝑛(𝑧) =
𝜃𝑛(𝑧) − 𝜃(0)

𝑧(1 − 𝜃𝑛(0))
.

Proof of Theorem 1. The operator 𝑉 = 𝑉 |𝐾 is diagonal with respect to the orthogonal

decomposition 𝐾 = ⊕𝑘𝜃𝑘𝐾𝜃𝑘 ⊕ 𝜃𝐾. Condition (27) and Proposition 8 entail that

𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S1, 𝑡 ≥ 0.

The same condition (27) and Proposition 9 provide the inclusion

𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S𝑝, 𝑡 ≥ 0,

for 𝑝 > 𝑞′. Since the condition (27) holds for any arbitrarily large values 𝑞 according to the
choice of measures, we have 𝜙𝑡(𝑉 ) − 𝜙𝑡(𝑆) ∈ S𝑝 for any 𝑝 > 1.

Proof of Theorem 2. Let 𝑈 be a cogenerator of an arbitrary semigroup of unitary operators,
being a unitary part in the Wold-Kolmogorov decomposition of the cocyclic perturbation. Then,
there is an operator ∆, belonging to all classes S𝑝 for 𝑝 > 1, that the perturbation 𝑈 + ∆ has
a singular spectrum (see [11]). While

𝜙𝑡(𝑈 + ∆) − 𝜙𝑡(𝑈) ∈ S𝑝, 𝑡 ≥ 0.

A detailed proof of the latest statement is given in [5] (proof of Theorem 1.3). To complete the
proof it is sufficient to apply Theorem 1.
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