ON APPLICATIONS OF THE MODEL SPACES TO THE CONSTRUCTION OF COCYCLIC PERTURBATIONS OF THE SEMIGROUP OF SHIFTS ON THE SEMIAXIS

G.G. AMOSOV, A.D. BARANOV, V.V. KAPUSTIN

Abstract

We describe a construction of cocyclic perturbations of the semigroup of shifts on the half-line by means of the theory of model spaces. It is shown that one can choose an inner function that determines the model space so that the elements of the perturbed semigroup have a prescribed spectral type and differ from the elements of the initial semigroup by operators from the Schatten-von Neumann class $\mathfrak{S}_{p}, p>1$. The case of the trace class \mathfrak{S}_{1} perturbations is considered separately.

Keywords: semigroup of shifts, inner function, Schatten-von Neumann classes.

1. Introduction

Let us assume that $\left(S_{t}, t \geq 0\right)$, and ($\left.\tilde{S}_{t}, t \in \mathbb{R}\right)$ are a semigroup of shifts in the space $H=L^{2}\left(\mathbb{R}_{+}\right)$, and a group of shifts (its unitary dilation) in the space $\tilde{H}=L^{2}(\mathbb{R})$, defined by formulae

$$
\left(S_{t} f\right)(x)=\left\{\begin{array}{ll}
f(x-t), & x>t, \\
0, & 0 \leq x \leq t,
\end{array} \quad f \in H\right.
$$

and

$$
\left(\tilde{S}_{t} g\right)(x)=g(x-t), \quad g \in \tilde{H},
$$

respectively. Sometimes it is convenient to consider that the multiplicative group of the algebra $B(H)$ of bounded operators in the space H is embedded in the multiplicative group of the algebra $B(\tilde{H})$ in such a way that elements $B(H)$ act on functions $f \in \tilde{H}$ with a carrier on a negative semiaxis as an identical mapping. In this case operators, acting in the space H, will be considered as operators in \tilde{H} as well. A strongly continuous family of unitary operators $\left(W_{t}, t \geq 0\right)$ in the space H is called a cocycle of a semigroup of shifts $\left(S_{t}, t \geq 0\right)$ if the condition

$$
\begin{equation*}
W_{t+s}=W_{t} \tilde{S}_{t} W_{s} \tilde{S}_{-t}, \quad t, s \geq 0, \quad W_{0}=I \tag{1}
\end{equation*}
$$

holds true (see [1). It follows from the condition (1) that the family of isometric operators ($V_{t}=W_{t} S_{t}, t \geq 0$) in the space H makes a semigroup (i.e. $V_{t+s}=V_{t} V_{s}, t, s \geq 0$), which will be called a cocyclic perturbation of a semigroup of shifts ($S_{t}, t \geq 0$).

It will be demonstrated in the given paper that any cocyclic perturbation of the semigroup $\left(S_{t}\right)$ is unitary equivalent to the orthogonal sum

$$
\begin{equation*}
\left(V_{t}\right) \cong\left(U_{t} \oplus S_{t}\right), \tag{2}
\end{equation*}
$$

where $\left(U_{t}, t \geq 0\right)$ is a semigroup of unitary operators, and the following two theorems hold true. Here and in what follows all semigroups under consideration are supposed to be strongly continuous; the symbol \mathfrak{S}_{p} denotes classes of the Schatten-von Neumann operators.

[^0]Theorem 1. For any semigroup of unitary operators ($U_{t}, t \geq 0$) possessing a spectral measure which is singular to the Lebesgue measure, there is a cocycle $\left(W_{t}, t \geq 0\right)$, satisfying the condition

$$
W_{t}-I \in \mathfrak{S}_{p}
$$

for all $p>1$, where (2) holds true for the cocyclic perturbations $\left(V_{t}=W_{t} S_{t}, t \geq 0\right)$, and

$$
\begin{equation*}
V_{t}-S_{t} \in \mathfrak{S}_{1}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

As a result, Theorem 1 leads to analogous results for an arbitrary (not necessarily singular) spectral measure.

Theorem 2. For any semigroup of unitary operators ($U_{t}, t \geq 0$) and for any $p>1$ there is a cocycle ($W_{t}, t \geq 0$), satisfying the condition

$$
W_{t}-I \in \mathfrak{S}_{p}
$$

for all $p>1$, when the correlation (2) holds true for the cocyclic perturbation ($V_{t}=W_{t} S_{t}, t \geq 0$).
In what follows it will be demonstrated (Proposition 10) that the condition $W_{t}-I \in \mathfrak{S}_{1}$ never holds true in the model of cocyclic perturbations. Thus, the results of the work are not improvable in a sense. It is natural to suppose, that this fact is also generalized for a general case.

Hypothesis. For any cocycle $\left(W_{t}, t \geq 0\right)$, such that $W_{t}-I \in \mathfrak{S}_{1}$ for all $t \geq 0$, the perturbated semigroup ($V_{t}=W_{t} S_{t}, t \geq 0$) is unitary equivalent to the initial one: $\left(V_{t}\right) \cong\left(S_{t}\right)$.

We should note that the problem of the Markov cocyclic perturbations of a group of unitary operators connected with the matter under consideration is set in [2], and the Markov cocycles possessing the property $W_{t}-I \in \mathfrak{S}_{2}, t \geq 0$ are considered in [3, 4]. The property (3) was considered in the article [5], where perturbations ($V_{t}, t \geq 0$) of semigroup shifts $\left(S_{t}, t \geq 0\right)$ such that $V_{t}-S_{t} \in \mathfrak{S}_{p}, p \geq 1$ were investigated. A distinguishing feature of the given paper is that perturbations considered possess additional cocyclic properties demanding consideration of unitary deletions of semigroups. The technique applied here is analogous to the one in paper [5].

2. Cocyclic perturbations of the general form

For any strongly continuous semigroup of isometric operators ($V_{t}, t \geq 0$) in the Hilbert space H, the Wold-Kolmogorov decomposition is defined in the following form:

$$
\begin{gather*}
H=H_{0} \oplus H_{1} \\
V_{t}=U_{t} \oplus R_{t}, \quad t \geq 0, \tag{4}
\end{gather*}
$$

where $\left(U_{t}, t \geq 0\right)$ is a semigroup of unitary operators in H_{0}, and $\left(R_{t}, t \geq 0\right)$ is a semigroup of completely nonunitary isometric operators in H_{1}, i.e. lacking nontrivial invariant subspaces, where they act as unitary operators.

Proposition 3. Let the semigroup of isometric operators $\left(V_{t}, t \geq 0\right)$ be a cocyclic perturbation of the semigroup of shifts $\left(S_{t}, t \geq 0\right)$. Then the completely nonunitary part $\left(R_{t}, t \geq 0\right)$ in the Wold-Kolmogorov decomposition (4) is unitary equivalent to the semigroup of shifts $\left(S_{t}, t \geq 0\right)$.
Remark. This statement holds true for an arbitrary semigroup (not necessarily being a cocyclic perturbation) of isometric operators ($V_{t}, t \geq 0$), if we require that $V_{t}-S_{t} \in \mathfrak{S}_{p}, p \geq 1$ (see [5]).

Proof. Let us define elements $\xi_{t} \in H, t \geq 0$ by the formula

$$
\xi_{t}(x)= \begin{cases}1, & 0 \leq x \leq t \\ 0, & x>t\end{cases}
$$

Note, that the family $\left(\xi_{t}, t \geq 0\right)$ satisfies the so-called condition of an additive cocycle of the $\operatorname{semigroup}\left(S_{t}, t \geq 0\right)$, i.e.

$$
\xi_{t+s}=\xi_{t}+S_{t} \xi_{s}, \quad s, t \geq 0
$$

and the functions $\xi_{t_{1}}-\xi_{s_{1}}$ and $\xi_{t_{2}}-\xi_{s_{2}}$ are orthogonal, if $\left(s_{1}, t_{1}\right) \cap\left(s_{2}, t_{2}\right)=\emptyset$. Moreover, linear combinations of elements $\left(\xi_{s}, 0 \leq s \leq t\right)$ generate Ker S_{t}^{*}. Assume that $\tilde{\xi}_{t}=W_{t} \xi_{t}, t \geq 0$. To prove Proposition 3 it is sufficient to make sure that the family of elements $\tilde{\xi}_{t}$ has the following properties for the cocyclic perturbation ($V_{t}=W_{t} S_{t}, t \geq 0$):
(i) $\tilde{\xi}_{t+s}=\tilde{\xi}_{t}+V_{t} \tilde{\xi}_{s}, s, t \geq 0$,
(ii) $\tilde{\xi}_{t_{1}}-\tilde{\xi}_{s_{1}}$ and $\tilde{\xi}_{t_{2}}-\tilde{\xi}_{s_{2}}$ are orthogonal, if $\left(s_{1}, t_{1}\right) \cap\left(s_{2}, t_{2}\right)=\emptyset$,
(iii) linear combinations ($\left.\tilde{\xi}_{s}, 0 \leq s \leq t\right)$ generate $\operatorname{Ker} V_{t}^{*}$.

Indeed, in this case the contraction of the semigroup $\left(V_{t}, t \geq 0\right)$ to the subspace H_{0}, generated by $\operatorname{Ker} V_{t}^{*}, t \geq 0$, is unitary equivalent $\left(S_{t}, t \geq 0\right)$, but the contraction of $\left.V_{t}\right|_{H_{0}^{\perp}}$ will be a unitary operator, because $\left.\operatorname{Ker} V_{t}\right|_{H_{0}^{\perp}}=\{0\}, t \geq 0$.

We have

$$
\begin{equation*}
\tilde{\xi}_{t+s}=W_{t+s} \xi_{t+s}=W_{t} \tilde{S}_{t} W_{s} \tilde{S}_{-t} \xi_{t}+W_{t} \tilde{S}_{t}\left(W_{s}\right) \tilde{S}_{-t} S_{t} \xi_{s} \tag{5}
\end{equation*}
$$

Note, that

$$
\begin{equation*}
\tilde{S}_{t} W_{s} \tilde{S}_{-t} \xi_{s}=\xi_{s} \tag{6}
\end{equation*}
$$

whereas $W_{s} f=f$ for the function with the carrier $\operatorname{supp} f \subset \mathbb{R}_{-}$. On the other hand,

$$
\begin{equation*}
\tilde{S}_{t} W_{s} \tilde{S}_{-t} S_{t} \xi_{s}=\tilde{S}_{t} W_{s} \xi_{s}=S_{t} \tilde{\xi}_{s} \tag{7}
\end{equation*}
$$

Substituting the relations (6) and (7) into the equality (5), we obtain the property (i).
Then,

$$
\begin{equation*}
W_{t+s} \xi_{t}=W_{t} \tilde{S}_{t}\left(W_{s}\right) \tilde{S}_{-t} \xi_{t}=W_{t} \xi_{t}, \quad s, t \geq 0 \tag{8}
\end{equation*}
$$

according to (6). Let $\tilde{t}=\max \left(t_{1}, t_{2}\right)$; then, taking into account (8), we obtain

$$
\begin{aligned}
\left(\tilde{\xi}_{t_{1}}-\tilde{\xi}_{s_{1}}, \tilde{\xi}_{t_{2}}-\tilde{\xi}_{s_{2}}\right) & =\left(W_{t_{1}} \xi_{t_{1}}-W_{s_{1}} \xi_{s_{1}}, W_{t_{2}} \xi_{t_{2}}-W_{s_{2}} \xi_{s_{2}}\right) \\
& =\left(W_{\tilde{t}} \xi_{t_{1}}-W_{\tilde{t}} \xi_{s_{1}}, W_{\tilde{t}} \xi_{t_{2}}-W_{\tilde{t}} \xi_{s_{2}}\right)=\left(\xi_{t_{1}}-\xi_{s_{1}}, \xi_{t_{2}}-\xi_{s_{2}}\right)=0
\end{aligned}
$$

if $\left(s_{1}, t_{1}\right) \cap\left(s_{2}, t_{2}\right)=\emptyset$. Thus, the property (ii) is defined as well.
Finally, let us consider the equation

$$
\begin{equation*}
V_{t}^{*} f=S_{t}^{*} W_{t}^{*} f=0 . \tag{9}
\end{equation*}
$$

It follows from (9) that the carrier supp $W_{t}^{*} f \subset[0, t]$. Hence, f belongs to the closure of the linear envelope of elements $\left(W_{t} \xi_{s}, 0 \leq s \leq t\right)$. Since $s \leq t$, we have $W_{t} \xi_{s}=W_{s} \xi_{s}=\tilde{\xi}_{s}$ for such elements by virtue of the relations (8). This completes the proof of the property (iii) and the proposition.

The next property is necessary for modelling cocycles.
Proposition 4. Let $\left(V_{t}, t \geq 0\right)$ be the cocyclic perturbation of the semigroup of shifts $\left(S_{t}, t \geq\right.$ $0)$ with the cocycle $\left(W_{t}, t \geq 0\right)$. Then, having determined the family of the unitary operators $\left(W_{-t}, t \geq 0\right)$ in the subspace \tilde{H} by the formula

$$
\begin{equation*}
W_{-t}=\tilde{S}_{-t} W_{t}^{*} S_{t}, \quad t \geq 0 \tag{10}
\end{equation*}
$$

we obtain that the family of operators $\left(\tilde{V}_{t}, t \in \mathbb{R}\right)$, where

$$
\tilde{V}_{t}=W_{t} \tilde{S}_{t}
$$

generates a group of unitary operators in the space \tilde{H}, and

$$
\tilde{V}_{t} f= \begin{cases}V_{t} f, & \operatorname{supp} f \subset \mathbb{R}_{+}, \\ \tilde{S}_{t} f, & t \geq 0 \\ \operatorname{supp} f \subset \mathbb{R}_{-}, & t \leq 0\end{cases}
$$

Proof. As usual, let us assume that actions of the unitary operators $W_{t}, t \geq 0$, fixed initially in the space H, are prolonged by the identical action on f with the carrier $\operatorname{supp} f \subset \mathbb{R}_{-}$. Then the formula 10 provides the prolongation of the family $\left(W_{t}, t \geq 0\right)$ of unitary operators in \tilde{H} for negative values of the parameter t. Meanwhile, the property of the cocycle

$$
W_{t+s}=W_{t} \tilde{S}_{t} W_{s} \tilde{S}_{-t}, \quad s, t \in \mathbb{R}
$$

holds, which follows from the formula

$$
I=W_{-t+t}=W_{-t} \tilde{S}_{-t} W_{t} \tilde{S}_{t}, \quad t \geq 0
$$

resulting from the definition (10). To complete the proof it should be noted, that if supp $f \subset \mathbb{R}_{-}$,

$$
\tilde{V}_{-t} f=W_{-t} \tilde{S}_{-t} f=\tilde{S}_{-t} W_{t}^{*} f=\tilde{S}_{-t} f, \quad t \geq 0
$$

3. Model of the cocyclic perturbation based on the cogenerator of the SEMIGROUP

We will need commonly known information from the theory of one-parameter semigroups (see [6]). A symmetric (probably unlimited) operator $A=s-\lim _{t \rightarrow 0+} \frac{V_{t}-I}{i t}$ is called a generator of a strongly continuous group of the isometric operators $\left(V_{t}, t \geq 0\right)$. An isometric operator $V=(A-i I)(A+i I)^{-1}$ is called a cogenerator of a semigroup. For an isometric operator to be a cogenerator of some isometric semigroup it is necessary and sufficient that the number 1 should not belong to its point spectrum. The initial semigroup will consist of unitary operators only if A is a self-adjoint operator, or when V is a unitary operator such that the point 1 does not belong to its point spectrum, which is the same. If we introduce the functions

$$
\begin{equation*}
\varphi_{t}(z)=\exp \left(t \frac{z+1}{z-1}\right), \quad t \geq 0 \tag{11}
\end{equation*}
$$

the semigroup is recovered according to the cogenerator V as follows: $V_{t}=\varphi_{t}(V), t \geq 0$. Let us note, that the functions φ_{t} are limited and analytical in the unit circle \mathbb{D}.

One can readily demonstrate that the cogenerator of the semigroup of shift operators ($S_{t}, t \geq$ 0) in the space H is unitary equivalent to the operator of the (one-sided) shift S in the Hardy space $K=H^{2}(\mathbb{D})$, consisting of analytical in the circle \mathbb{D} functions $f(z)=\sum_{n=0}^{+\infty} c_{n} z^{n}$, for which $\sum_{n=0}^{+\infty}\left|c_{n}\right|^{2}=\|f\|_{L^{2}(\mathbb{T})}^{2}<+\infty$. Therefore, the Hardy space inside the circle is naturally embedded in the space $\tilde{K}=L^{2}(\mathbb{T})$ of the circle \mathbb{T}. The operator of the shift S in the Hardy space is given by the formula

$$
\begin{equation*}
(S f)(z)=z f(z), \quad f \in K \tag{12}
\end{equation*}
$$

Likewise, the cogenerator of the group of shifts in the space \tilde{H} is unitary equivalent to the operator of the (double-sided) shift $(\tilde{S} f)(z)=z f(z)$ in the space \tilde{K}, with the operator \tilde{S}, apparently, being a unitary dilation of the operator S.

Assume, that E is an unconventional invariant subspace of the shift operator S, that is $S E \subset E$. Then, according to the Burling theorem (see [7]), $E=\theta H^{2}(\mathbb{D})$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$ (i.e. the function which is analytical and bounded in a unit circle \mathbb{D} with nontangent limiting values such that $|\theta(z)|=1$ is almost everywhere on $\mathbb{T})$. The orthogonal complement $K_{\theta}=H^{2}(\mathbb{D}) \ominus \theta H^{2}(\mathbb{D})=E^{\perp}$ is usually called a model space. The next proposition describes the model of cocyclic perturbation, applied in the given paper.

Proposition 5. A cogenerator of any cocyclic perturbation of the semigroup of shifts on a half-line is unitary equivalent to the isometric operator V in the space $K=H^{2}(\mathbb{D})$, for which there is an inner function θ, such that

$$
\begin{equation*}
V=\left.U \oplus S\right|_{E} \tag{13}
\end{equation*}
$$

where $\left.S\right|_{E}$ is a contraction of the operator of the shift S on the invariant space defined by the function θ, and U is a unitary operator in the model space K_{θ}, which is a cogenerator of the unitary part of the Wold-Kolmogorov decomposition of the cocyclic perturbation.

Proof. For the cogenerator of the cocyclic perturbation V in the space K, one has a determined Wold-Kolmogorov decomposition $K=K_{0} \oplus K_{1}$ such that $\left.V\right|_{K_{0}}$ is a unitary operator and the contraction $\left.V\right|_{K_{1}}$ is a completely nonunitary isometric operator. It results from Proposition 3 that the contraction $\left.V\right|_{K_{1}}$ is unitary equivalent to the shift operator S. Therefore, in our modeling situation, one can use the contraction $\left.S\right|_{E}$ on any invariant subspace E, selected so that the correlation $\operatorname{dim} K_{\theta}=\operatorname{dim} K_{0}$ holds true for the corresponding model space $K_{\theta}=E^{\perp}$, as $\left.V\right|_{K_{1}}$, which completes the proof.

The following statement results directly from Proposition 5.
Corollary 6. The cogenerator of the semigroup of unitary operators ($\tilde{V}_{t}, t \geq 0$), defining the cocycle according to Proposition 4, is unitary equivalent to the operator \tilde{V} in the space $\tilde{K}=L^{2}(\mathbb{T})$, possessing the properties

$$
\begin{aligned}
\tilde{V} f=V f, & f \in K=H^{2}(\mathbb{D}) \\
\left(\tilde{V}^{*} f\right)(z)=\bar{z} f(z), & f \in \tilde{K} \ominus K=L^{2}(\mathbb{T}) \ominus H^{2}(\mathbb{D}) .
\end{aligned}
$$

4. Perturbation model based on the Clark measures

Let U be a unitary part in the Wold-Kolmogorov decomposition (13) of the cogenerator of the cocyclic perturbation. In this section we will be interested in the case when U is unitary equivalent to the operator of multiplication by z in the space $L^{2}(\mu)$, with the measure μ being singular with respect to the Lebesgue measure. Note, that U a cogenerator of the semigroup according to the condition and therefore the number 1 does not belong to its point spectrum. Operators of multiplication by z in the spaces $L^{2}(\mu)$ and $L^{2}(\tilde{\mu})$ are unitary equivalent, if the measures $\tilde{\mu}$ and μ are mutually absolutely continuous. Multiplying the measure μ by a positive weight, one can make it satisfy the following auxiliary condition, taking an important part in what follows:

$$
\begin{equation*}
\int_{\mathbb{T}} \frac{d \mu(\xi)}{|1-\xi|^{q}}<+\infty \tag{14}
\end{equation*}
$$

for some $q>3$.
Let μ be the finite singular Borel measure on a unit circle. Define the inner function θ by the formula

$$
\begin{equation*}
\frac{1+\theta(z)}{1-\theta(z)}=\int_{\mathbb{T}} \frac{\xi+z}{\xi-z} d \mu(\xi) \tag{15}
\end{equation*}
$$

Then the operator Ω, given on $L^{2}(\mu)$ by the formula

$$
\begin{equation*}
(\Omega f)(z)=(1-\theta(z)) \int_{\mathbb{T}} \frac{f(\xi) d \mu(\xi)}{1-\bar{\xi} z} \tag{16}
\end{equation*}
$$

is a unitary operator from $L_{\tilde{U}}^{2}(\mu)$ on K_{θ}. Meanwhile the unitary operator U in $L^{2}(\mu)$ transforms into the unitary operator \tilde{U} in the model space K_{θ} such that

$$
\begin{equation*}
\tilde{U} f=\Omega U \Omega^{*} f=z f+(f, g)(1-\theta), f \in K_{\theta} \tag{17}
\end{equation*}
$$

where

$$
g(z)=\frac{\theta(z)-\theta(0)}{z(1-\theta(0))} \in K_{\theta}
$$

and therefore the operators U and \tilde{U} are unitary equivalent, see 8$]$.

The operator (17) is the contraction on the model space K_{θ} of the isometric operator V, acting in the space K by formula

$$
\begin{equation*}
(V f)(z)=z f(z)+(f, g)(1-\theta(z)), \quad f \in K \tag{18}
\end{equation*}
$$

The unitary delation of the operator (18) will be the operator

$$
\begin{equation*}
(\tilde{V} f)(z)=z f(z)+(f, g)(1-\theta(z))-(f, \bar{z})(1-\overline{\theta(1)} \theta(z)), \quad f \in \tilde{K} \tag{19}
\end{equation*}
$$

Note, that

$$
\left(\tilde{V}^{*} f\right)(z)=\bar{z} f(z), \quad f \in \tilde{K} \ominus K
$$

Therefore, according to Proposition 5 and Corollary 6, the following statement is proved.
Proposition 7. The formulae (18), (19) define the model of the cocyclic perturbation cogenerator in the case, when the unitary part of the generator in the Wold-Kolmogorov decomposition is unitary equivalent to the operator of multiplication by z in the spaace $L^{2}(\mu)$ with the measure μ, which is singular to the Lebesgue measure.

5. Proximity of cocyclic perturbation

Let us apply the function (11) to the model cogenerator V of the semigroup of isometric operators $\left(V_{t}, t \geq 0\right)$. The isometric operator V is the contraction of the unitary operator \tilde{V} defined by the formula (19) on the space $K=H^{2}$. Recall that the symbols S and \tilde{S} define the shift operators on K and K, respectively. Then the cocycle ($W_{t}, t \geq 0$) satisfies the equality

$$
\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})=\left(W_{t}-I\right) \tilde{S}_{t}, \quad t \geq 0
$$

Therefore, inclusion of the difference $W_{t}-I$ into the ideals \mathfrak{S}_{p} proves to be equivalent to the corresponding inclusion for the differences $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$. The properties of the operators $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ are defined in their turn by properties of the spectral measure μ of the unitary operator (17), i.e., by its smallness (smoothness) at the point 1 .

We will need the following statement, proved in [5] (Proposition 7.2).
Proposition 8. Let the spectral measure of the unitary operator (17) satisfy the condition

$$
\begin{equation*}
\mathfrak{M}_{q}(\mu)=\int_{\mathbb{T}} \frac{d \mu(\xi)}{|1-\xi|^{q}}<+\infty \tag{20}
\end{equation*}
$$

for some $q>3$. Then

$$
\varphi_{t}(V)-\varphi_{t}(S) \in \mathfrak{S}_{1}, \quad t \geq 0
$$

with

$$
\left\|\varphi_{t}(V)-\varphi_{t}(S)\right\|_{\mathfrak{G}_{1}} \leq C_{q} t^{1 / 2}\left(\mathfrak{M}_{q}(\mu)\right)^{1 / 2}
$$

where the constant C_{q} depends only on q.
The key role in the proof of the Theorems 1 and 2 is played by the following proposition, allowing one to estimate components of the unitary dilation. In this case we are not able to obtain the inclusion of $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{1}$, but the difference may belong to the ideals \mathfrak{S}_{p} for all $p>1$.

Proposition 9. Let the spectral measure of the unitary operator (17) satisfy the condition (20) for some $q>3$. Then

$$
\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{p}, \quad p>q^{\prime}=\frac{q}{q-1}, \quad t \geq 0
$$

with

$$
\left\|\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})\right\|_{\mathfrak{S}_{\mathfrak{p}}} \leq \omega\left(\mathfrak{M}_{q}(\mu)\right),
$$

where ω is a positive function such that $\omega(r) \rightarrow 0$ when $r \searrow 0$.

Proof. The proof of Proposition 9 consists of several stages. At the first stage we will consider components of the operator $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ with respect to some canonical representation of the space \tilde{K} and will see that all the components, except one, belong to the ideal \mathfrak{S}_{1} due to Proposition 8. Then, we will demonstrate that the remaining component is unitary equivalent (after conformal transformation to the upper half-plane) to the operator of multiplication by a certain function in the Paley-Wiener space. This will allow us to reduce the problem to the question of describing measures (weights), such that the embedding operator of the Paley-Wiener space belongs to the ideal \mathfrak{S}_{p}. To complete the proof we apply a theorem due to O.G. Parfenov [9].
Stage 1. Analysis of components of the unitary dilation. Let us consider the matrix of the operator $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ with respect to the expansion $\tilde{K}=H_{-}^{2} \oplus K_{\theta} \oplus \theta H^{2}$, where $H_{-}^{2}=L^{2}(\mathbb{T}) \ominus H^{2}$. One can readily see that all the components, except one, belong to the class \mathfrak{S}_{1}. Indeed, the statement results from Proposition 8 for the block $K_{\theta} \oplus \theta H^{2} \rightarrow K_{\theta} \oplus \theta H^{2}$. Proceeding to the conjugate operator, we come to the conclusion that the block $H_{-}^{2} \oplus K_{\theta} \rightarrow H_{-}^{2} \oplus K_{\theta}$ is also included into \mathfrak{S}_{1}. By its construction the component $H^{2} \rightarrow H_{-}^{2}$ is equal to the zero. Therefore, we only need to consider the component, corresponding to the operator $H_{-}^{2} \rightarrow \theta H^{2}$. Moreover, note that both operators $\varphi_{t}(\tilde{V})$ and $\varphi_{t}(\tilde{S})$ on the space $\bar{\varphi}_{t} H_{-}^{2}$ act as operators of multiplication by φ_{t}, and, consequently, $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})=0$ by $\bar{\varphi}_{t} H_{-}^{2}$. It remains only to study the action of the operator $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ on the subspace $\bar{\varphi}_{t} H^{2} \ominus H^{2}=\bar{\varphi}_{t} K_{\varphi_{t}}$. Let us denote the contraction of the operator $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ on the subspace $\bar{\varphi}_{t} K_{\varphi_{t}}$ by $Q: \bar{\varphi}_{t} K_{\varphi_{t}} \rightarrow H^{2}$.
Stage 2. Embedding the component Q into the ideals \mathfrak{S}_{p}. Let us show that for $v \in K_{\varphi_{t}}$ the following equality holds true

$$
\begin{equation*}
Q\left(\bar{\varphi}_{t} v\right)=-(1-\overline{\theta(1)} \theta) v \tag{21}
\end{equation*}
$$

If $u \in H_{-}^{2}$, then for the arbitrary function $\varphi \in H^{\infty}$ there is the equality

$$
\begin{equation*}
P_{+} \varphi(\tilde{V}) u=\overline{\theta(1)} \theta \cdot P_{+}(\varphi u), \quad P_{-} \varphi(\tilde{V}) u=P_{-}(\varphi u), \tag{22}
\end{equation*}
$$

where the symbols P_{+}and P_{-}denote projectors in the space $L^{2}(\mathbb{T})$ on the subspace H^{2} and H_{-}^{2}, respectively. Indeed, this equality is easily verified for the case when $\varphi(z)=z^{n}, n>0$, and $u(z)=z^{m}, m<0$. Due to its linearity and continuity the equality (22) holds true for all $u \in H_{-}^{2}$ and $\varphi(z)=z^{n}, n>0$. Finally, due to its linearity and $*$-weak continuity, the equality (22) holds for the arbitrary function $\varphi \in H^{\infty}$ as well.

Since $\varphi_{t}(\tilde{S}) u=\varphi_{t} u$, the equality (22) entails

$$
\left(\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})\right) u=(\overline{\theta(1)} \theta-1) \cdot P_{+}\left(\varphi_{t} u\right), \quad u \in H_{-}^{2} .
$$

Substituting $u=\bar{\varphi}_{t} v$, we obtain the equality (21).
Therefore, the inclusion of $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{p}$ is equivalent to the inclusion of

$$
\begin{equation*}
\left.M_{1-\bar{\theta}(1) \theta}\right|_{H^{2} \theta \varphi_{t} H^{2}} \in \mathfrak{S}_{p}, \tag{23}
\end{equation*}
$$

where the symbol M_{g} denotes the operator of multiplication by the function $g \in L^{\infty}(\mathbb{T})$.
Stage 3. Transformation into a half plane. It will be convenient to prove the inclusion (23), making a "unitary transformation" from the single circle into the upper half plane $\mathbb{C}_{+}=$ $\{z: \operatorname{Im} z>0\}$. Let us assume that

$$
\Theta(z)=\theta\left(\frac{z-i}{z+i}\right) .
$$

Then $\Theta(z)$ becomes an inner function in the upper half plane: $\Theta \in H^{\infty}\left(\mathbb{C}_{+}\right)$, and $|\Theta(x)|=1$ for almost every $x \in \mathbb{R}$, where the values of the function Θ on the straight line are considered as
nontangent boundary values. Defining the measure ν on the real straight line by the condition

$$
d \mu(\xi)=\frac{d \nu(x)}{\pi\left(1+x^{2}\right)}, \quad \xi=\frac{x-i}{x+i}
$$

we obtain

$$
\frac{1-\Theta(z)}{1+\Theta(z)}=\frac{2}{\pi i} \int_{\mathbb{R}}\left(\frac{1}{x-z}-\frac{x}{x^{2}+1}\right) d \nu(x) .
$$

The condition (20) entails that

$$
\nu(\mathbb{R})<+\infty,
$$

and there is a limit $\lim _{y \rightarrow+\infty} \Theta(i y)$; let us denote it by $\Theta(\infty)$. We have $|\Theta(\infty)|=1$ and $1-\overline{\Theta(\infty)} \Theta \in$ $L^{2}(\mathbb{R})$, with

$$
\|1-\overline{\Theta(\infty)} \Theta\|_{L^{2}(\mathbb{R})}=|1-\Theta(\infty)| \cdot \sqrt{\nu(\mathbb{R})}
$$

The condition (20) is equivalent to

$$
\int_{\mathbb{R}}(1+|t|)^{q-2} d \nu(t)<\infty .
$$

The formula

$$
(L f)(x)=\frac{1}{\sqrt{\pi}(x+i)} f\left(\frac{x-i}{x+i}\right)
$$

carries out the unitary mapping of the space $L^{2}(\mathbb{T})$ to $L^{2}(\mathbb{R})$ such that the Hardy space $H^{2}(\mathbb{D})$ transforms to the Hardy space $H^{2}\left(\mathbb{C}_{+}\right)$. Such a transformation turns the inclusion (23) into the relation

$$
\begin{equation*}
M_{1-\overline{\Theta(\infty) \Theta}} \mid \mathcal{K} \in \mathfrak{S}_{p} \tag{24}
\end{equation*}
$$

where $\mathcal{K}=H^{2}\left(\mathbb{C}_{+}\right) \ominus e^{i t z} H^{2}\left(\mathbb{C}_{+}\right)$. The Paley-Wiener space $\mathcal{P} W_{a}$ consists of all the entire functions of the exponential type not higher than a, the contraction of which on the real straight line belongs to $L^{2}(\mathbb{R})$; and, according to the classical Paley-Wiener theorem, $\mathcal{P} W_{a}=$ $e^{-i a z} H^{2}\left(\mathbb{C}_{+}\right) \ominus e^{i a z} H^{2}\left(\mathbb{C}_{+}\right)$. In this case the inclusion (24) is equivalent to the question, whether the transformation of the Paley-Wiener space $\mathcal{P} W_{t / 2}$ into the space $L^{2}(\mathbb{R}, w(t) d t)$ on the straight line with the weight $w(t)=|1-\overline{\Theta(\infty)} \Theta(t)|^{2}$ belongs to \mathfrak{S}_{p}. This problem was solved in the paper [9, with the following result obtained:

Theorem (O.G. Parfenov). For any $p>0$ the embedding operator \mathcal{J} of the space $\mathcal{P} W_{a}, a>0$ into the space $L^{2}(\mathbb{R}, w(t) d t)$ belongs to the class \mathfrak{S}_{p} if and only if

$$
\begin{equation*}
\mathfrak{N}_{p}(w)=\sum_{k}\left(\int_{k}^{k+1} w(x) d x\right)^{p / 2}<\infty \tag{25}
\end{equation*}
$$

The following estimate follows immediately from the proof of the Parfenov theorem (see also [10], where a similar result is obtained for the general model spaces):

$$
\|\mathcal{J}\|_{\mathfrak{S}_{p}}^{p} \leq \mathfrak{N}_{p}(w)
$$

Stage 4. Application of the Parfenov theorem. It results from the embedding $(1-\xi)^{-q} \in$ $L^{1}(\mu)$ that the functional Φ,

$$
\Phi(g)=\int_{\mathbb{T}}\left(\frac{1-\overline{\theta(1)} \theta(\xi)}{1-\xi}\right)^{q} g(\xi) d \xi, \quad g \in K_{\theta}
$$

is limited on K_{θ}, and $|\Phi(g)| \leq C(q) \mathfrak{M}_{q}(\mu)\|g\|_{2}$. Note that for $q \in \mathbb{N}$ the value $\Phi(g)$ coincides with the radial limit $g^{(q-1)}(1)$ of the derivative of the order $q-1$ of the function g at the point $z=1$.

Thus, the limited functional Φ on K_{θ} is generated by the function $\left(\frac{1-\overline{\theta(1)} \theta(\xi)}{1-\xi}\right)^{q} \in H^{2}(\mathbb{D})$. Strictly speaking, the function $\left(\frac{1-\overline{\theta(1) \theta(\xi)}}{1-\xi}\right)^{q}$ does not belong to the space K_{θ}, but one can readily demonstrate that the norm of its projection to the subspace θH^{2} is estimated via the norm of its projection to K_{θ}. Therefore,

$$
\begin{equation*}
\int_{\mathbb{T}}\left|\frac{1-\overline{\theta(1)} \theta(\xi)}{1-\xi}\right|^{2 q} d m(\xi) \leq \omega\left(\mathfrak{M}_{q}(\mu)\right) \tag{26}
\end{equation*}
$$

where $\omega(r) \rightarrow 0$ when $r \searrow 0$ (indeed $\omega(r) \leq C(q) r$, but the explicit form of the function ω is not important for us). Substituting the variable, we obtain

$$
\int_{\mathbb{R}}|1-\overline{\Theta(\infty)} \Theta(t)|^{2 q}(|t|+1)^{2 q-2} d t<\infty
$$

Apply Holder's inequality, we obtain

$$
\begin{aligned}
\int_{k}^{k+1} \mid & -\left.\overline{\Theta(\infty)} \Theta(t)\right|^{2} d t \\
& \leq\left(\int_{k}^{k+1}|1-\overline{\Theta(\infty)} \Theta(t)|^{2 q}(|t|+1)^{2 q-2} d t\right)^{1 / q}\left(\int_{k}^{k+1} \frac{d t}{(|t|+1)^{2}}\right)^{1 / q^{\prime}} \\
& \leq \frac{C^{1 / q}}{(|k|+1)^{2 / q^{\prime}}}
\end{aligned}
$$

Let us assume that $p>q^{\prime}$; then

$$
\sum_{k \in \mathbb{Z}}\left(\int_{k}^{k+1}|1-\overline{\Theta(\infty)} \Theta(t)|^{2} d t\right)^{p / 2} \leq C^{p / 2 q} \sum_{k \in \mathbb{Z}} \frac{1}{(|k|+1)^{p / q^{\prime}}}<\infty .
$$

Thus, invoking the estimate (26) when $p>q^{\prime}$, we obtain

$$
\sum_{k \in \mathbb{Z}}\left(\int_{k}^{k+1}|1-\overline{\Theta(\infty)} \Theta(t)|^{2} d t\right)^{p / 2} \leq \omega\left(\mathfrak{M}_{q}(\mu)\right)
$$

with some function $\omega, \omega(r) \searrow 0$ when $r \searrow 0$. Then, applying the Parfenov theorem, we obtain the inclusion (24). Proposition 9 is been proved completely.

In the model of cocyclic perturbation considered here, the relation $W_{t}-I \in \mathfrak{S}_{p}$ is equivalent to the inclusion $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{p}$. In conclusion to the section note that the difference $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S})$ cannot belong to the class of kernel operators \mathfrak{S}_{1} for all $t \geq 0$ simultaneously.

Proposition 10. For the class of cocyclic perturbations described in Proposition 5, the inclusion $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{1}$ entails that θ is a unimodular constant for all $t \geq 0$.

Proof. It results from Proposition 9, that the inclusion $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{1}$ is equivalent to $\mathfrak{N}_{1}\left(|1-\overline{\Theta(\infty)} \Theta(t)|^{2}\right)<\infty($ see 25$)$. It would result in

$$
\int_{\mathbb{R}}|1-\overline{\Theta(\infty)} \Theta(t)| d t \leq \sum_{k \in \mathbb{Z}}\left(\int_{k}^{k+1}|1-\overline{\Theta(\infty)} \Theta(t)|^{2} d t\right)^{1 / 2}<\infty
$$

and therefore the function $1-\overline{\Theta(\infty)} \Theta$ should belong to the Hardy space H^{1}. But then $\int_{\mathbb{R}}(1-$ $\overline{\Theta(\infty)} \Theta(t)) d t=0$, which is impossible since $\operatorname{Re}(1-\overline{\Theta(\infty)} \Theta)>0$ almost everywhere on \mathbb{R} for any nonconstant inner function Θ.

6. The case of an arbitrary spectral multiplicity

Let U be a unitary part in the Wold-Kolmogorov decomposition (13) of the arbitrary cogenerator of the cocyclic perturbation. Any unitary operator U can be presented in the form of not more than a countable sum

$$
U=\oplus_{k} U_{k}
$$

where the operators U_{k} are unitary equivalent to the operators of multiplication in the appropriate spaces $L^{2}\left(\mu_{k}\right)$, where μ_{k} are measures on the circle \mathbb{T},

$$
\left(U_{k} f\right)(z)=z f(z), \quad f \in L^{2}\left(\mu_{k}\right)
$$

Multiply by positive weights, decreasing rapidly when getting close to point 1, we can choose measures μ_{k} such that the condition

$$
\begin{equation*}
\sum_{k}\left(\int_{\mathbb{T}} \frac{d \mu_{k}(\xi)}{|1-\xi|^{q}}\right)^{1 / q}<\infty \tag{27}
\end{equation*}
$$

holds for all $q>0$. Let us define the inner functions θ_{k}, connected with the measures μ_{k} by the formula (15). Condition (27) provides that the product $\prod_{k} \theta_{k}$ to converge to the inner function θ. Let us assume that

$$
\hat{\theta}_{n}=\prod_{k=1}^{n-1} \theta_{k}
$$

and evaluate the cogenerator \tilde{V} by the formula

$$
\tilde{V}=\tilde{S}+\sum_{n}\left(\cdot, \hat{\theta}_{n} g_{n}\right) \hat{\theta}_{n}\left(1-\theta_{n}\right)-(\cdot, \bar{z})(1-\overline{\theta(1)} \theta)
$$

where

$$
g_{n}(z)=\frac{\theta_{n}(z)-\theta(0)}{z\left(1-\theta_{n}(0)\right)}
$$

Proof of Theorem 1. The operator $V=\left.\tilde{V}\right|_{K}$ is diagonal with respect to the orthogonal decomposition $K=\oplus_{k} \hat{\theta}_{k} K_{\theta_{k}} \oplus \theta K$. Condition 27) and Proposition 8 entail that

$$
\varphi_{t}(V)-\varphi_{t}(S) \in \mathfrak{S}_{1}, \quad t \geq 0
$$

The same condition (27) and Proposition 9 provide the inclusion

$$
\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{p}, \quad t \geq 0
$$

for $p>q^{\prime}$. Since the condition (27) holds for any arbitrarily large values q according to the choice of measures, we have $\varphi_{t}(\tilde{V})-\varphi_{t}(\tilde{S}) \in \mathfrak{S}_{p}$ for any $p>1$.

Proof of Theorem 2. Let U be a cogenerator of an arbitrary semigroup of unitary operators, being a unitary part in the Wold-Kolmogorov decomposition of the cocyclic perturbation. Then, there is an operator Δ, belonging to all classes \mathfrak{S}_{p} for $p>1$, that the perturbation $U+\Delta$ has a singular spectrum (see [11]). While

$$
\varphi_{t}(U+\Delta)-\varphi_{t}(U) \in \mathfrak{S}_{p}, t \geq 0
$$

A detailed proof of the latest statement is given in [5] (proof of Theorem 1.3). To complete the proof it is sufficient to apply Theorem 1.

BIBLIOGRAPHY

1. W. Arveson Continuous analogues of Fock space // Mem. Amer. Math. Soc. V. 80. 1989. P. 1-66.
2. Amosov G.G. On Markov perturbations of unitary operators group, associated with random stationary increments // Probability theory and its applications. V. 49. 2004. P. 145--155. In Russian.
3. Amosov G.G., Baranov A.D. Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line // Math. Notes. V. 79. 2006. P. 3-18. In Russian.
4. Amosov G.G., Baranov A.D. Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line, II // Math. Notes. V. 79. 2006. P. 779-780. In Russian.
5. Amosov G.G., Baranov A.D., Kapustin V.V. On Perturbations of the Isometric Semigroup of Shifts on the Half-line // Algebra and analysis. V. 22. 2010. P. 1-20. In Russian.
6. Bela Szokefalvi-Nagy, Ciprian Foias Fourier analysis of operators in the Hilbert space Mir. Moscow. 1970. 431 P. In Russian.
7. Nikolsky N.K. Lectures about the shift operator Nauka. Moscow. 1980. 383 P. In Russian.
8. D.N. Clark One-dimensional perturbations of restricted shifts // J. Anal. Math. V. 25. 1972. P. 169-191.
9. Parfenov O.G. Weight estimates of the Fourier transform // Notes of scientific seminars of POMI. V. 222. 1995. P. 151-162. In Russian.
10. Baranov A.D. Inclusions of model subspaces of the Hardy class: compaction and ideals of Schattenvon Neumann // Izvestia of RAS. Section. math. V. 73:6. 2009. P. 3-28. In Russian.
11. Tosio Kato Perturbation Theory for Linear Operators, Mir. Moscow. 1972. 740 P. In Russian.

Grigory Gennadievich Amosov, Steklov Mathematical Institute of RAS,
Gubkin Str., 8,
119991, Moscow, Russia
E-mail: gramos@mi.ras.ru
Anton Dmitrievich Baranov,
St. Petersburg State University,
Old Peterhof, University pr., 28,
198504, St. Petersburg, Russia
E-mail: anton.d.baranov@gmail.com
Vladimir Vladimirovich Kapustin,
St. Petersburg department
Steklov Mathematical Institute of RAS,
Fontanka levee, 27,
191023, St. Petersburg, Russia
E-mail: kapustin@pdmi.ras.ru

[^0]: © G.G. Amosov, A.D. Baranov, V.V. Kapustin 2012.
 The work is supported by the program of RAS Mathematical basics of management" and the grant of Russian Foundation for Basic Research 11-01-00584-a.

 Submitted on 20 December 2011.

