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ABOUT THE UNIMPROVABILITY OF THE LIMITING
EMBEDDING THEOREM FOR DIFFERENT METRICS IN
THE LORENTZ SPACES WITH HERMITE’S WEIGHT

E.S. SMAILOV, A.I. TAKUADINA

Abstract. In this article we obtained inequality of different metrics in the Lorentz
spaces with Hermit’s weight for multiple algebraic polynomials. On this basis we estab-
lished a sufficient condition of embedding of different metrics in the Lorenz spaces with
Hermite’s weight. Its unimprobality is shown in terms of the "extreme function”. Let
f e Lyg(Ry;pp),1 < p < +00,1 < 0 < 400. The sequense {lk};if] C N is such that

+00
lo =1 and lpiq - l,;l >ap > 1,Vk € Zt. f(z) = > Ay, (f;Z) is some presentation
k=0

of the functions in the metric L, ¢(Ry; pn), where A;o,...,lo(f; z) =T 1,0, . (f;Z) =
Ty0,(@) =Ty, 1, (%), Yk € N. Here

lp—1 lp—1 n
_ Z : m;
Ek,...lk (.T) = E am1,...,mn Hxl =
m1=0 my,=0 =1

are algebraic polynomials for all k € Z™.
19. If the series

+oo n_n
A(f)po = Zlk(Qp 24) HAlkw-vlk(f)HLP’Q(Rn;pn)
k=0

converge under some q and 7: p < ¢ < +00, 0 < 7 < 400, then f € Ly (Ry;p,) and we
have the inequality

102 - @aipn) < Cpaprn X (A(f)p0)7-
20 The condition 1° is unimprovable in the sense that there exists a function fy €
Ly o(Rp; pn) and A(fo)pe diverges for it and fo ¢ Lg-(Rp; pn).
At the same time, the function fo € Ly—c - (Rp;pn) foralle >0:p < (¢g—¢) <q.

Keywords: Lorentz’s space, Hermitte’s weight, nonincreasing rearrangement, inequality
of different metrics, theorem in embedding, non improving.

1. INTRODUCTION

The embedding theorem for various metrics in the Lebesgue spaces L,[0,27], 1 < p < +oo first
appeared in 1958 in terms of inequalities in various metrics between trigonometric best approximations
in the work [1] of A.A. Konyushkov.
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136 E.S. SMAILOV, A.I. TAKUADINA

Theorem A. Let f € L,[0,27),1 < p < +o0.
“+o0o

If the series k‘%_%_lEk(f) converges for some q: p < g < 400, then f € L;[0,27) and the
k=1

inequality:

I 1 1
[ fllg < Cpq {Hf”p + Zk”_q_lEk(f)p}
k=1

holds. Here Cp; > 0 depends only on the mentioned parameters.

Later P.L. Ul’'yanov in 1968 improved the Konyushkov theorem cited here in terms continuity
modules [2], and in 1970 in terms of trigonometric best approximations [3]. Namely, in [3] the following
statement is established.

Theorem B. Let 1 < p < ¢ < +0o and the function f € L,[0,27). Then, the inequality | f]|; <

Cro {Hpr+ [2 k2 B(f) ] } holds,

Here C4 depends only on the indicated parameters.

P.L. Ul’yanov demonstrated unimprovability of the embedding theorem, which he established in
terms of continuity moduli in terms of the class H,;. The unimprovability of Theorem B was established
by V.I. Kolyada [4] in terms of the class E,()). Classes Hy and Ej(A), where the unimprovability of
P.L. Ul’'yanov sufficient embedding conditions are indicated, are sufficiently narrow classes that are
determined by a given majorant on the continuity module and on trigonometric best approximation
of the functions f € L,[0,2m). Since the set of functions from L,[0,27), satisfying the sufficient
embedding condition of P.L.. Ual’yanov, is significantly wider than the indicated classes, we believe
it is natural to demonstrate the unimprovability of the sufficient embedding condition of various
metrics by means of the "extreme function”. Namely, to construct a test function fy € L,[0,27),
1 < p < g < +oo such that it does not satisfy the condition of Theorem B and fo ¢ L4[0,27), whereas
for any indefinitely small ¢ > 0, fo € L;—[0,27). Since the works by P.L. Ul’yanov appeared, this
topic have been developing in various directions. In the present paper, we prove the B type theorem in
the Lorenz space with Hermitte’s weight L,g(R,,; py,). This space is quite a wide class of functions with
elements possibly tending to infinity, quicker than any algebraic polynomial of many variables when

n 2

|z| = { > xi} — 400. We also demonstrate the unimprovability of the theorem we established by
k=1

means of the extreme function principle.

2. DEFINITION AND AUXILIARY ASSUMPTIONS

Let us assume that 1 < p < 400, 0 < # < 400 and f(Z) is a function measurable in the Lebesgue

|z n 2
sense on Ry; pn(Z) =e” 2, 2 € Ry; 7] = (Z xi) , dT = dxq,... dzp.

Denote by F(|fpnl;t) a nonincreasing rearrangement of the functions
£ (Z)pn(Z)] on Ry, ¢ € [0; +00).
We consider that f € L, g(Ry; ppn), [5], if the following value is finite:

—+00 0

/ £ (F(\fonl;)0dt p for 0 <0 < 400,
0

0
1 F 2.6 Rnzon) = »

1
L1 Ry = SUD {2 (| fpnli )} for - 6 = +oc.
t>0

Let

mi1—1 mp—1

Poi,..m Z Z Aky .k HCL’

k1=0

be an algebraic polynomial of the order (my, —1) Wlth respect to the variable z;, my, € NJi=1,...,n.
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Let us introduce the notation Ay 1(Z) = P11, P11 € Rand

Amkv“'vmk (E) = Pmkv"'7mk (f) Pmk—la-" mk—l(f)7 k € N'
Lemma 1. Let 0 < p < ¢ < 400, 0 < 0 < 400,0 < 7 < +00. For an algebraic polynomial

P, ...m, (Z), the following inequalities of various metrics hold:
n 1
%%X‘P ( )pn(‘f)‘ < Cpnkl]lm]szPmHLpe(ann)’
||Pm||Lq,T(Rn;Pn pqn Hm 2q||P ||Lp B(ann)’

where the factors Cp,, > 0, Apgn > 0 depend only on the above parameters and m = (myq, ..., my).
[E:0

Proof. Since p,(Z) =e 2, then - |lim | P (Z)pn(Z)| = 0. Therefore, M = max | P (Z) pr(Z)] 18
T|—+00 zeRR

reached at some point Zo = (29, ..., 2%) with finite coordinates: | Py (Zo)pn(z0)| = M.
1

n 2
Let z € R,,, then |AZg| = <Z (zg — x%)) .
k=1

[P (%) pn ()] = [P (To) o (T)| — |(Pr(Zo) — P (T)) ()] - (1)
Since p,(Z) # 0, Vz € R,,, then

|(Pr(Zo) — Pa( ))Pni"|_”(z 83% >+0(Al’2)] X
<ontan)- 25 <
| 0| S 85l 0(870) ) ©)

Here Az =z, — 20, k=1,..,n

Let us enumerate the necessary properties of functions p,(Z):
a) 0 < pn(7) <1, Vz € Ry;

b) pn(Zo) # 0;

¢) pn(Z) € C(R,) and £2&) = 1.

(xO) F=7%o
Hence, Ve > 0 36, >0 such that Vz € Us_(Zo) = {Z € Ry, : |T — Tp| < -} the inequalities (1 —¢) <

% < (1 +¢) hold. Let us assume that ¢ = % then,

|Pr(Z0)pn (Z)| > | P (Z0) pn(Z0)| - = =
. According to [5],
2t

1 M
- VQ’:EU%(:EO). (3)

Let 0 < ' <6

1
2

D pn(Zo)| < Cy/mg |[Pa(Zo)pn(Zo)|, k=1,...n

as for a polynomial of the variable x; when the remaining variables are fixed.
Then, the inequality (2) can be extended as follows:

|(Pa(Z0) = P (Z)) pn ()] ZCF!P (on)!*!AJ«"oH

k=1

3 n
+o(|Azo) < 5C MY " mg -6+ o(|AZo)).
k=1
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Let us assume that ¢ = min{ } then,

1
5% 79C> k1 VM

_ _ ., .3 = 1 )
|(Pr(Z0) = Pa(2)) pa(@)| < 5C - M; Vi g ST + o(|AZgl) =

Since the addend o(|AZg|) is an inﬁnitely small value when |AZzy| — 0, there is a number dy > 0:
0 < 8y < & such that o(|AZo|) < 3£, Vz € Us, (Zo. Thus, VZ € Us, (Zo):

(Pa(E0) ~ Pa®)) pu(@] < - (W

Then, the inequalities (1), (3), (4) VZ € Us,(Zo) provide: |Py(Z)pn(z)| > 2.
Hence, the nonincreasing rearrangement of functions | Py, (Z)p,(Z)| on the 1nterval A = [0, mes (Us,(Zo))]

has the estimate
M

S F(Papalit) < M,
/2 Y

r(2+1) 0

Let o, € (0, 1] be such a number that

where mes (Us,(Zo)) =

n/2
T —— <5y
9C Y py /g T (2+1)
Then, A’ = |0, 902;?7"%} C {0, e n/2 D (50] Therefore, Vt € A’ we have:
=1
1 1
M:4.%. <90221 Vrmf)p . {9/ tz_ldt}e <
4 Qo p ’

<4-(9Ca;")7 - (ﬁ[m) ,, {"/A,tfﬂ( (1Pl ;t>>9dt}9 <

1 n 1 0 +o0 0_q 0 %
< (scar ) [Tmd {9 [ 6t gl i) e}
0
Thus,

n 1
max | P (@) (@)] < Con [T 7 1Bl (2,10:0 < p < +00,0 < 0 < 0. (5)
k=1

We could write 6 = 400 here because the constant involved in the inequality is independent of 6
therefore, we can turn to the limit when 6 — +o0.

-1
n
Nowlet0<q<+oo,O<T<+ooandan:(H\/mk> .
k=1

T n 7
1Pl o) = / E L (F (| Prpn] 1) dit
0

+oo
4T [ E (Pl ) de = i+ (6)

an ~2q
Ji < MTT/ tatdt = M7 <H mk> <(5) <
q.Jo 1

T T

n 2p 2
Con (H mk> 1PRIIT o (Rson) - (7)
k=1
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Furthermore, for any ¢ > 0:

1 0 t 8_1q é
G (Papulit) = F (Papali0{ 7 [} <
0

S

0 [t o_
<{ [ ot 1<F<1Pmpnr;t>>9du} < 1Pl ®)

p
1 Tor oo T _T_1
Jy = | suptr F (| Pmpnl;t) .q/ dt < (8) <

t>0
~(z-7) _

g 1PmlIZ,q¢ an =

po Rnypn)

T T

q

p
= C;-q ’ (Z \ mk) HPm”EpG(ann) <
k=1

»a
pqn : <H vm ) ”P ||Lp9 (Rn;pn)* (9)
Then, (6), (7), (9) entail that

1Pl Ly (Ruipn) < Apgn H my, = | Pl (Rnson) s

0<p<g<+4+00,0<8<400,0<7T<400.
Here, as well as in the case (5), we pass to the limit when 7 — +o0.
Lemma 2[6]. Let f € L(Q2),Q C R, and « € [0, (€2)]. Then,

«

sup suwp /\f )|dz =/F(|f!;t)dt

0

Lemma 3[7]. Let the sequence {x(1)};"% be such that p(0) = 1, “g;lr)l) > >1,Vl €Z" then, the

inequalities

+o00 l q +o00
Sy (z ) oS <o
1=0 k=0 1=0
+o0 +o0 q +00
S0 (o) <X w0
=0 k=l =0

where ¢; > 0,7 = 1,2, depend only on the parameters «, r, ¢ for the numbers ¢ > 0 and {ak}::"?), ar > 0.
Lemma 4. Let 1 < p < 400, 1 < 0 < 400. There is a sequence of nonnegative algebraic polyno-

mials {P* (z)} %,z € Ry of the power not higher than (m — 1) such that C;)m_i < NPnllz,6R:0) <

1 x
Cym~ 2, m € N. Here p(z) = ¢ 2, x € R and C,, > 0,C;) > 0 depend only on the indicated
parameters.
Proof. The sequence of nonnegative algebraic polynomials {P} (x)
such that Py (0) =1, A;m_% <Pl rip) < A;’m_%, 1<r<+4o0. Let 1 <r <p< +oo then, by
virtue of Lemma 1

ml’

+o0 was constructed in [8]

1Pl 2y mie) < Aprm® 5 | Pl ripy < By %
If 1 < p < q < +o0 then,
1Pl L) > Apim 2 | Pl i) > Cpgm 2.
Lemma 5. Let us assume that 1 <p<qg<r <4o0,1 <0< +00,1 <7 < +00 and the sequence
of positive numbers {y (1)} satisfying the condition u(0) = 1 is given
p(l+1)

>a>1,VliezZ"
(1)
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and

+00
T) =Y (T)
=0

in the sense of L'¢(R,,), where ¢;(z) € Lyg(Rp; pn) () Lro(Rn; pn). Then, the following inequality holds

1L gr Ripn) <

+o00 T(l_l> . T(l_l) -
< Cpgrorn Z p(l) e ||,¢lHLTg(Rn;pn) +p(l) \r e ||¢lHLpg(Rn;pn) .
=0
Here Cpgrorn, > 0 depends only on the above parameters.
Proof. Applying the Holder inequality, we obtain:
Y
1

Yy
- / F([dpals )dt = / Y7 B(|gpal; o)t
0

0
1
7

=
B

Yy Yy
/ yi Y E (s 1) dt / 1
0 0

400 +oo
Q—l 1—1
/ ys (P (pal )0t b < oy 3 10,0 i
=0

=

1—-1
pdY P

0
Likewise, in view of Lemma 2, by means of the Holder inequality Vk € N we obtain:

Y
oly) = / F(lpal;t)du = sup  sup / rsz 7)|dz <

ECRy p(E)=y
Z Ui(T

I=k+1

dz 4+ sup sup /
ECRn/—L

Z (] (E) Pn (E)

=0

Y k 4 +00
- / P> upnl: t)dt + / F(S dipals )it <

< sup sup /
ECR, p(E)=y

“+oo

k
1 ]
< Crpyt / BV FNS dipali )ty +
=0

0
“+o00
1-1 7—1
+Cpoy~ P F(] Z Yipnl;t)) <
0 I=k+1
k +o00

_1 1—1
< C;‘(le r Z le”Lrﬂ(R’rﬁpn) + C;Hy P Z le”Lpe(Rrupn)

=0 l=k+1

Further,
1L Roson) <

+o00 o 400

Yy
el . i L]
< /y yO/F<|wpn|,t>dt dy = CT, / [yeé(y)} dy <

0
“+o00

1
D/ygl Bcﬁ(y)} dy+/y51 BW/)] dr 3 = I + I.

1
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In view of (11), let us estimate I;:

too u(k)
- [1 !
B>} [ v Lfﬁ@] s
k=0 1
(k+1)
1
too  H® k
T_+1 _1
<> [ ui [y DX T
k=0 7 =0
n(ht1)
+oo !
1 =
P Z H¢6”LI,9(Rn;pn) <
I=k+1

T _+—1 -z
<GS [ (S +
=0 =0

1
pu(k+1)

o ( D Iellzp@aipn) ) }dy <

I=k+1

+00 T
< (01{;29)7 {Z( T(“f (Z 11 2,6 (Ronzon) ) +

+00 11 +00 T
+3 " (ulk + 1) q’<2 ||w||LT9<Rn;pn>> }<<Lemma 3) <

I=k+1

= F1_1 A1
< (Clha)” {Z ) NI, iy + 1) N, ) } |

k=0
We estimate the addend I by means of (10):

—+00

+oo T
T_1 1 1—1
I < ( ;"pQB)T / ya [y "y r Z Hd}eHLpg(Rn;Pn) dy =
=0

1

T
— (1< p<g<+00) = (Vo) (Z 9ell L (Ronson) ) -

The conditions, imposed on the sequence of numbers {u(k)}, give us a possibility to make the
following calculations:

1
(e.o] T

anenLPQ Ruion) < {Z 0 ellg, Rﬂ,m} x

1
7

+oo T +00 %
X{Z(um)“%q)} —CW{ZW))T( Migell?, W} :

=0
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3. MAIN RESULTS

This section provides a limiting embedding theorem for different metrics in the Lorenz spaces with
Hermite’s weight and demonstrates the unimprovability of conditions of the given theorem.

Theorem 1. 1 < p < +00, 1 < # < +00 and the sequence {l;};°5 C Z* is such that Iy = 1,
lgs1 - l,;l > ay > 1, Vk € ZT. Let f € Ly(Rp;pn) and the sequence of algebrac polynomials

{Bk,...,lk(f)};rz be such that the representation

+oo
2) =) Ay (7)
k=0

holds in the metrics of the space Lyg(R,; pp). If the series

L_i

Zl 2p 2q HAlk’ y

converges for some ¢ and 7: p < ¢ < 400, 1 <7 < 400 then, f € Ly (Ry; py) and the inequality

(Rmpn)

n T

R Ul
||f||LQ7T(Rann qe [Z Loyt G(Rnypn)

holds.
Proof. Let us introduce the notation b = l,f, k € Z*. Obviously, by = 1 and

—+00

b’““ > ao > 1,Vk € Z*. Let us apply Lemma 5 to the expansion f(z) = > Ay, whenr = +o0.
k=0

Then,

Hf‘|7[-,qT(Rn;pn) <

+00 |: ™ Tn(l

1
)
< o {32 [ 180 8 10 ] |
k=0

By means of the inequality of different metrics, provided in Lemma 1, the given expression can be
extended as follows :

o L
Hf||7l-1q7—(Rn;pn quan {Zl ’ ||Alk’ sl HZPG(RW.?PTL)} ’

Theorem 2. Let 1 <p < ¢ < +00,1 <0< +00, 1 <7< 400and f € Lyg(Rp; pn), {ls}120 C ZF:
lo =1, lpt1 - l;l > ag > 1. Let us assume that the sequence of multiple algebraic polynomlals

{I}kw’lk(j)};zz is such that the equality

+oo
Z) = Ay, (T)
k=0

holds in the metrics Lyg(Ry; pp).
Then, the inequality

- v
0
||f”Lp9(]Rn;pn = quTn {Zl ”Alk, vlk”Lqr(Rn;Pn)}

holds. Here Apzprn >0 depends only on the above parameters.

Proof. Let p+p' =pp, 0+60 = 00" and g € Lo (Ry; pn), and the sequence of algebraic polynomials
{1l o be a sequence of polynomials of the best approximation in the metrics Lyg (Ry,; pp) for
it:

—+o0
9@) ~ G114 D (Pt (@) = Bl ( ZAzm, (G T).
m=1
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Since

[ @@ @) < 17 ty00s000) 19111 5o

then,
11120 (Ruipn) = SUP{/f(ﬂf)g(iﬂ)p%(ﬂf)dw
Ry

’ sup taken with respect to all g € Lyg (Rp;pn) such that HQHL,,/@/(Rn;pn) < 1}

+o0 oo
= sup / (Z Alk,...,lk(faw)> : (Z Alm,...,lm(9;$)> pi(T)dz
. m=0 m=0

‘ sup taken with respect to all g € Ly (Rn;pn) such that |lgllz . ®.;p.) < 1

and / Ay (7)Ao 0 (g3 T)p2(F)dT = 0,k £ m p =
Rn

—+o00

1 1 n
=5 Sup {)\1 . Cq’p’@“r’n ST - Tl,...,l ' ¢1,...,1 : )\1 + Cq/p/e"r’n Z )‘kx
k=1

{)\lk};j) : and) Cq’p’T’H’nﬂ'% |o1,..1] < Ar;
b)Cq/p/T/G/nHAlk,...Jk (g)HLq’q—’(RHZPn) < )\lk,Vk S N,
1
o

+oo

0 (507 —507)
Zlk 2q 2p )\le;] < 1 =
k=0

in)

sup taken with respect to

—+o00
=%p%m{ZMM@AM%%M ,,,,,
k=1

all possible {\;, };. {Zl W )\ } <1y =

+00
37~ 3,7) (35— 325)
—quT/gl sup{Zl 24 2 AL (P Ly, Ry - 1" 77| sup taken
k=0
o
with respect to all possibe {)\lk {Zl 2 %) )\ } <1l =

n

1
n ﬂ) ‘
qu’H' {Zl » ||Alk ..... k(f)H%qr(Rn%pn)} ’

which was to be proved.
On the third unit of inequalities, we took into account the validity of the inequality:

n

/ o’
HgHprel(Rn;pn) < Cypriom [|¢1, A1 s Zl ||A1,c AAAAA k”L o Rmpn)] <
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n

[Zzl 5 )\

Theorem 3. Let 1 < p < ¢ < +00, 1 <0 < 400, 1 <7 < +oo and {Ix};25 C Z* be such that
lo=1, lgy1 - l,;l > ag > 1,Vk € ZT. Theorem 1 is unimprovable in the sense that there is a function
fo € Ly g(Ry; pp) for which the series

<1

Zl |Alk, L (fO)HL o(Rp;pon)

diverges and fo ¢ Lq -(Ry; pn), but for any positive number
e>0: p<(q—e¢)<q the function fy € Ly—cr(Ry; pn).

Proof. Consider the series
“+o0 n n
pLE | RHEH!
k=0 =1

where the polynomials Pl’;(xz) are from Lemma 4.
By means of Lemma 4, we obtain

N , n
2 P ) <
—M =1 Lp,o(Rp;pn)
N N (E—3%)
7 " T
Z k }'PlkHLp’g(ann)g( p@)n Zlk P q —)07
k=M =M

and min(N, M) — +oo.
Whence, there is a function fy € Lyg(Ry; pn) such that the equality

oo , n
= Z l;?q HPIZ (i)
k=0  i=1
holds in the meaning of convergence of the space Lyg(Rp;pn),1 <p < 400, 1 < 0 < +o0.
If we introduce the notation Tj,, ;.. (T) = > 1, llz% [Tz, P (i) then,

n
Iyl (f07 llquPlu(lL‘i),VEZ-i_.
i=1

The following chain of inequalities holds by virtue of Lemma 4:

n n

= (Qp 2q> = T(%_Q’L‘J 2q
Zl HAlk, , f0>HLp9(Rn7pn Zlk HPlkHLpg Rn,pn) >
k=0 k=0

N n_n (R
> (Cpm R, < (N 1) v,

when N — +4o00. Thus, the series in left-hand side of the given relations diverges on the function
fo € Lpg(Ry; pn). According to Theorem 2, for the same function one has:

T

M
(-
> quan {Zl; 4q 2q lgq HPlkHL2q9 Rmpn)} >
k=0

M n N
S IEAC)
=0 =1

LqT (]R'rﬁpn)

> Clron {Z l,jqz;‘*q} = Clgn(M + 1)7 — 400,
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when M — +o0. It means that fo ¢ Lo (Rp;pn), 1 <p < g < +00. Let € > 0 be an arbitrary positive
number such that p < (¢ —¢) < ¢ < +00,1 <0 < 00,1 < 7 < +00. Then, according to Lemma 4:

M n n

Z ZT(%—Q(q—e)
k

k=0

) T
HAlkv"vlk (fo) ”Lpg(Rn;pn) <

-rnZl (q a) 2q HPlkHLpg Boipn) S <

1

1
S5-3)
'” ™ E l (G- "2 < +o00,Vm € N.

Hence, according to Theorem 1: fy € Lq_87T(Rn; pn), 1 < T < 400, which proves the theorem.
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