
ISSN 2074-1863 Ufa mathematical journal. Volume 3. № 3 (2011). Pp. 116-121.

UDC 517.53

THE FATOU SET OF AN ENTIRE FUNCTION WITH THE
FEJÉR GAPS

ZH.G. RAKHMATULLINA

Abstract. The paper considers the Fatou set of an entire transcendental function, i.e. the
largest open set of the complex plane where the family of iterations of the given function
forms a normal family. We assume that the entire function, in general, is of an infinite order.
We give the sufficient condition on the indexes of the series (it is stronger than the Fejér
gap condition), under which every component of the Fatou set is bounded. The same result
under stronger restrictions was earlier obtained by Yu. Wang.
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1. Introduction

Let 𝑓 be a non-linear entire function of the complex variable 𝑧. Let us define natural iterations
of the function 𝑓 as follows:

𝑓 0(𝑧) = 𝑧, 𝑓 1(𝑧) = 𝑓(𝑧), . . . , 𝑓𝑘+1(𝑧) = 𝑓(𝑓𝑘(𝑧)) (𝑘 = 1, 2, . . . ). (1)

Following Montel [1], let us term a class 𝑁 of functions analytical in the domain 𝐷 of the
complex plane C as normal in 𝐷 if a subsequence {𝑓𝑘𝑝} can be singled out of any sequence {𝑓𝑘}
of functions from 𝑁 and if it has the following property: either {𝑓𝑘𝑝(𝑧)}, or {𝑓−1

𝑘𝑝
(𝑧)} converge

everywhere in 𝐷 and uniformly on every compact subset 𝑀 of the domain 𝐷. In this case the
sequence {𝑓𝑘𝑝} is said to be converging locally uniformly in 𝐷 [2].

The maximal open set of the complex plane, where the family of iterations {𝑓𝑘} determined
by (1) is normal (in Montel’s sense), is called the Fatou set ℱ(𝑓) of the function 𝑓(𝑧).
Complement of the Fatou set is called the Julia set 𝒥 (𝑓) = C ∖ ℱ(𝑓).

If 𝑓 is a polynomial of the power 2 or higher, the set ℱ(𝑓) contains a component
𝐾 = {𝑧 : 𝑓𝑘(𝑧) → ∞}, which is unbounded. For instance, the Fatou set of the function 𝑓(𝑧) = 𝑧2

contains an unbounded component {𝑧 : |𝑧| > 1}. If 𝑓 is a transcendental entire function, the
set 𝒥 (𝑓) is always unbounded, and the set ℱ(𝑓) can have either infinitely many unbounded
components, or exactly one, or none at all [3].

Investigation of iterations of entire functions was started in 1926 by P. Fatou [4] and then,
after almost 40 years, I. Baker (see the review in [3]) obtained results that influenced the topic
remarkably. The following theorem was proved by Baker.

Theorem 1 ([5]). If for transcendental entire 𝑓 there is an unbounded invariant component
of ℱ(𝑓), then the growth of 𝑓 must exceed order 1/2, minimal type.

It is demonstrated in [5] that when the parameter 𝑎 takes sufficiently large positive values,
the Fatou set ℱ(𝑓) of the function

𝑓(𝑧) =
sin

√
𝑧√

𝑧
+ 𝑧 + 𝑎
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contains an unbounded component 𝐷, containing a ray [𝑥0,∞), 𝑥0 > 0, and 𝑓(𝑧) has obviously
the order 𝜌 = 1/2 and a normal type.

In 1981 Baker posed the question [5]: will every component of the set ℱ(𝑓) be bounded
if the entire transcendental function 𝑓 has a sufficiently small growth order? By virtue of
Theorem 1 and the above example it is natural to consider the Baker problem in a class of
entire transcendental functions of the order 𝜌 < 1/2. Baker himself [5], and later Stallard [6],
Anderson and Hinkkanen [7] obtained various sufficient conditions providing that the set ℱ(𝑓)
in the indicated class of functions 𝑓 does not contain unbounded components.

Investigation of a class of entire transcendental functions of the form

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛

(︀
𝑝𝑛 ∈ N, 0 < 𝑝𝑛 ↑ ∞

)︀
(2)

is of special interest. Due to having gaps, entire functions of the form (2) possess a series of
additional properties, giving us a possibility to argue on components of the set ℱ(𝑓) in case of
any finite and even infinite growth order.

An entire function of the form (2) is said to have the Fabry gaps if 𝑛 = 𝑜(𝑝𝑛) when 𝑛 → ∞,
and the Fejér gaps if

∞∑︁
𝑛=1

1

𝑝𝑛
< ∞.

Investigation of the Fatou sets ℱ(𝑓) for functions of the form (2) is closely connected to
a series of classical problems (Picard’s value, Borel and asymptotic values, Julia’s directions,
maximum and minimum modulus, the Pólya problem, as well as distribution of values of entire
functions with different gap conditions). A review of such investigations is given in the work [8].

The present paper is devoted to investigation of the Fatou sets ℱ(𝑓) of functions 𝑓 of the
form (2) in the general case, namely for entire functions of an arbitrary growth (and of an
infinite order as well).

Let us use the following standard notation for the maximum modulus 𝑀(𝑟) and the minimum
modulus 𝑚(𝑟) of the function 𝑓 :

𝑀(𝑟) = max
|𝑧|=𝑟

|𝑓(𝑧)|, 𝑚(𝑟) = min
|𝑧|=𝑟

|𝑓(𝑧)|.

The starting point of investigation is the following Wang result.

Theorem 2 ([9]). Let an entire function 𝑓 of the form (2) satisfy the condition: there exists
𝑇0 > 1 such that

lim
𝑟→∞

ln𝑀(𝑟𝑇0)

ln𝑀(𝑟)
> 𝑇0. (3)

If for some 𝜂 > 0
𝑝𝑛 > 𝑛 ln𝑛(ln ln𝑛)2+𝜂 (𝑛 > 𝑛0), (4)

then every component of the set ℱ(𝑓) is bounded.

Note that for any entire function 𝑓 and for any 𝑇 > 1 (this follows from the Hadamard three
circle theorem, see, e.g., in [10])

lim
𝑟→∞

ln𝑀(𝑟𝑇 )

ln𝑀(𝑟)
> 𝑇. (5)

In Theorem 2 entire functions of an arbitrary growth are discussed therefore, one has to
postulate the realization of an estimate stronger than (5).

As for the condition (4), on this condition Hayman [11] demonstrated that for any entire
function 𝑓 of the form (2) when 𝑟 → ∞ outside a certain set of a logarithmic density, we have

ln𝑀(𝑟) = (1 + 𝑜(1)) ln𝑚(𝑟). (6)
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In proving Theorem 2 the given estimate is used essentially. Therefore, the Hayman condition
(4) in Theorem 2 is imposed by the very estimate (6). In fact, the condition (4) can be
substituted by a weaker one [12]: 𝑛 = 𝑜(𝑝𝑛) when 𝑛 → ∞, and

∞∑︁
𝑛=1

1

𝑝𝑛
ln

𝑝𝑛
𝑛

< ∞.

The aim of the article is to demonstrate that under this condition Theorem 2 remains valid.

2. Auxiliary facts. Main result

In order to prove the main result the following lemma is necessary. It is proved by Baker [5]
with the use of the Schottky theorem.

Lemma 1 ([5]). Lemma 1 ([5]). In a domain 𝐷 the analytic functions 𝑔 of the family 𝐺
omit the values 0, 1. 𝐷0 is a compact connected subset of 𝐷 on which the functions all satisfy
|𝑔(𝑧)| > 1. Then there exist constants 𝑈 , 𝑉, dependent only on 𝐷0 and 𝐷 such that for any 𝑧,
𝑧′ in 𝐷0 and any 𝑔 in 𝐺 we have

|𝑔(𝑧′)| < 𝑈 |𝑔(𝑧)|𝑉 .
Recall definitions of the measure, logarithmic measure, and upper logarithmic density of the

set 𝐸 ⊂ [0,∞):

mes𝐸 =

∫︁
𝐸

𝑑𝑡, ln -mes𝐸 =

∫︁
𝐸

𝑑𝑡

𝑡
, ln -dens𝐸 = lim

𝑟→∞

1

ln 𝑟

∫︁
𝐸∩(1,𝑟)

𝑑𝑡

𝑡
.

If there is a usual limit in the latter expression, the set 𝐸 is said to have the logarithmic density
ln -dens𝐸.

Theorem B from [12] (the formulation is given in connection with power series of the form (2))
will also be necessary.

Theorem 3 ([12]). Let 𝑛 = 𝑜(𝑝𝑛) when 𝑛 → ∞ and
∞∑︁
𝑛=1

1

𝑝𝑛
ln

𝑝𝑛
𝑛

< ∞. (7)

Then, there is a set 𝐸 ⊂ [0,∞) of a zero logarithmic density such that for any entire function
𝑓 of the form (2) when 𝑟 → ∞ outside 𝐸

ln𝑀(𝑟) = (1 + 𝑜(1)) ln𝑚(𝑟). (8)

Finally, let us enumerate the main properties of the Fatou and Julia sets. They are formulated
in a separate lemma.

Lemma 2. The following statements are true for the Fatou ℱ(𝑓) and Julia 𝒥 (𝑓) sets of the
entire function 𝑓 [3], [13]:

1. The set ℱ(𝑓) is open, and 𝒥 (𝑓) is closed;
2. The sets ℱ(𝑓) and 𝒥 (𝑓) are completely invariant under 𝑓 (i.e. every set coincides with

its image as well as with the complete preimage):
1∘. 𝑓−1(ℱ(𝑓)) = 𝑓(ℱ(𝑓)) = ℱ(𝑓);

2∘. 𝑓−1(𝒥 (𝑓)) = 𝑓(𝒥 (𝑓)) = 𝒥 (𝑓).

3. For any 𝑘 > 0, the Fatou (Julia) set of a 𝑘-multiple iteration of the function 𝑓 coincides
with the Fatou (Julia) set of the function 𝑓 itself:

3∘. ℱ(𝑓𝑘) = ℱ(𝑓);

4∘. 𝒥 (𝑓𝑘) = 𝒥 (𝑓).
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4. Any unbounded component of the set ℱ(𝑓) of an entire transcendental function 𝑓 is simply
connected.

5. The set 𝒥 (𝑓) of an entire transcendental function 𝑓 is unbounded.

The main result of the article is

Theorem 4. Let 𝑓 be an entire transcendental function, given by a gap power series (2),
and the estimate (3) hold for it when 𝑇0 > 1. If the condition (7) holds, then every component
of the set ℱ(𝑓) is bounded.

3. Proof of Theorem 4

According to the condition (3) with some 𝑇1 > 𝑇0 > 1 the following estimate holds:

ln𝑀(𝑟𝑇0)

ln𝑀(𝑟)
> 𝑇1, 𝑟 > 𝑥0. (9)

Let 𝑇0 < 𝑇 < 𝑇1, and 𝑞 > 1 such that 𝑞𝑇 < 𝑇1. Then (1− 𝜀)𝑇1 > 𝑞𝑇 for some 𝜀 > 0.
According to Theorem 3, by such choice of 𝜀 > 0 there exists a set 𝐸 ⊂ [0,∞) of a zero

logarithmic density such that
𝑚(𝑟) > 𝑀(𝑟)1−𝜀 (10)

when 𝑟 ∈ [0,∞) ∖ 𝐸.
Furthermore, the function 𝑓 is transcendental therefore, 𝑀(𝑟) grows quicker than any power

of 𝑟𝑁 . Let 𝑅1 > 0 such that
𝑀(𝑟) > 2𝑟𝑞𝑇 when 𝑟 > 𝑅1.

Taking this into account, let us consider the sequence {𝑅𝑛}, where 𝑅𝑛+1 = 𝑀(𝑅𝑛) (𝑛 > 1). It
is clear that 𝑅𝑛 ↑ ∞ when 𝑛 → ∞, and 𝐽𝑛 ⊂ 𝐼𝑛, where

𝐽𝑛 = [𝑅𝑇
𝑛 , 𝑅

𝑞𝑇
𝑛 ], 𝐼𝑛 = [𝑅𝑛, 𝑅𝑛+1] (𝑞 > 1, 𝑇 > 1).

Let us demonstrate that when 𝑛 > 𝑛1, the inequality (10) holds for all points of the interval
𝐽𝑛. Indeed, if there is a subsequence of intervals 𝐽𝑛𝑘

where (10) does not hold, one arrives at
the contradiction:

ln -dens𝐸 = ln -dens𝐸 > lim
𝑘→∞

1

ln𝑅𝑞𝑇
𝑛𝑘

∫︁
𝐸∩(1,𝑅𝑞𝑇

𝑛𝑘
)

𝑑𝑡

𝑡
> lim

𝑘→∞

1

𝑞𝑇 ln𝑅𝑛𝑘

𝑅𝑞𝑇
𝑛𝑘∫︁

𝑅𝑇
𝑛𝑘

𝑑𝑡

𝑡
= 1− 1

𝑞
.

Thus, when 𝑛 > 𝑛1 every interval 𝐽𝑛 contains a point 𝜌𝑛 that does not belong to 𝐸.
Thus, taking into account the estimates (9), (10), one obtains

𝑚(𝜌𝑛) > 𝑀(𝜌𝑛)
1−𝜀 > [𝑀(𝑅𝑇

𝑛 )]
1−𝜀 > 𝑀(𝑅𝑛)

(1−𝜀)𝑇1 , 𝑛 > 𝑛1.

Since (1− 𝜀)𝑇1 > 𝑞𝑇 then
𝑚(𝜌𝑛) > 𝑀(𝑅𝑛)

𝑞𝑇 = 𝑅𝑞𝑇
𝑛+1, (11)

where 𝑞 > 1, 𝑇 > 1, when 𝑛 > 𝑛1.
Our aim is to demonstrate that every component of the set ℱ(𝑓) is bounded. Let s assume

the converse. Let ℱ(𝑓) have an unbounded component 𝐷. Then, according to Lemma 2 it is
simply connected.

Then, let us use some Baker ideas. Since 𝐷 is a component of ℱ(𝑓) and it is unbounded,
there is a number 𝑛2 > 𝑛1 such that 𝐷 ∩ 𝐴𝑛 ̸= ∅ for all 𝑛 > 𝑛2, where 𝐴𝑛 = {𝑧 : |𝑧| = 𝑅𝑛}.

Let us also introduce the circles

𝐶𝑛 = {𝑧 : |𝑧| = 𝜌𝑛}, 𝐵𝑛 = {𝑧 : |𝑧| = 𝑅𝑞𝑇
𝑛 } (𝑞 > 1, 𝑇 > 1).

Recall that 𝑅𝑇
𝑛 6 𝜌𝑛 6 𝑅𝑞𝑇

𝑛 , 𝑅𝑛 < 𝑅𝑇
𝑛 < 𝑅𝑞𝑇

𝑛 < 𝑅𝑛+1.
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Let 𝑛 > 𝑛2. Since the set 𝐷 is connected and 𝐷 ∩ 𝐴𝑛 ̸= ∅, then there is a curve 𝛾 in 𝐷,
that connects a certain point 𝑎𝑛 ∈ 𝐴𝑛 with a certain point 𝑏𝑛+1 ∈ 𝐵𝑛+1. Let 𝑐𝑛+1 be a point of
the curve 𝛾, via which 𝐶𝑛+1 passes, and |𝑐𝑛+1| = 𝜌𝑛+1. Since 𝑚(𝜌𝑛+1) → ∞ when 𝑛 → ∞ (it is
clear from the estimate (11)), then 𝑓(𝐷) is an unlimited connected subset of ℱ(𝑓), containing
a continuum 𝑓(𝛾).

Since 𝑎𝑛 is a point of 𝛾, |𝑎𝑛| = 𝑅𝑛 then |𝑓(𝑎𝑛)| 6 𝑀(𝑅𝑛) = 𝑅𝑛+1. On the other hand, it
follows from (11) that

|𝑓(𝑐𝑛+1)| > 𝑚(𝜌𝑛+1) > 𝑅𝑞𝑇
𝑛+2.

Hence, the curve 𝑓(𝛾) contains the arc 𝛾(1), connecting a certain point 𝑎
(1)
𝑛+1 ∈ 𝐴𝑛+1 with a

certain point 𝑏(1)𝑛+2 of the circle 𝐵𝑛+2. Meanwhile, 𝛾(1) contains a certain point 𝑐(1)𝑛+2 of the circle
𝐶𝑛+2. Continuing the induction argument, one obtains that 𝑓𝑘(𝐷) is an unlimited connected
subset of ℱ(𝑓), containing the arc 𝛾(𝑘) of the curve 𝑓𝑘(𝛾), connecting the points 𝑎

(𝑘)
𝑛+𝑘 ∈ 𝐴𝑛+𝑘

and 𝑏
(𝑘)
𝑛+𝑘+1 ∈ 𝐵𝑛+𝑘+1 and containing the point 𝑐

(𝑘)
𝑛+𝑘+1 ∈ 𝐶𝑛+𝑘+1, where 𝑛 (𝑛 > 𝑛2) is fixed,

𝑘 > 1. Moreover,
min
𝑧∈𝛾(𝑘)

|𝑓𝑘(𝑧)| = |𝑓(𝑧𝑘)| > 𝑅𝑛+𝑘,

where 𝑧𝑘 is a certain point 𝛾.
The family {𝑓𝑘} is normal in 𝐷. Hence, there is a subsequence {𝑓𝑘𝑝}, converging locally

uniformly in 𝐷. Without loss of generality, one can assume that 𝑧𝑘𝑝 → 𝑧0 ∈ 𝛾. Since |𝑓(𝑧𝑘𝑝)| →
∞ when 𝑘𝑝 → ∞, the sequence {𝑓𝑘𝑝} converges to infinity uniformly on 𝛾. Hence,

min
𝑧∈𝛾

|𝑓𝑘𝑝(𝑧)| > 𝑠 (12)

for any 𝑠 > 0 when 𝑘𝑝 > 𝑁(𝑠) > 𝑛3.
Consider a family of functions 𝐺 = {𝑔𝑘𝑝}𝑘𝑝>𝑁 , where

𝑔𝑘𝑝(𝑧) =
𝑓𝑘𝑝(𝑧)− 𝑎

𝑏− 𝑎
,

𝑎, 𝑏 are arbitrary, but fixed points from the Julia set 𝒥 (𝑓) such that 𝑎 ̸= 𝑏. The value 𝑁 will
be chosen later.

Let us verify that the family of functions 𝐺 for some 𝑁 satisfies the conditions of Lemma 1
if we take the considered unbounded component of the set ℱ(𝑓) as the domain 𝐷 and assume
that 𝐷0 = 𝛾.

Since according to Lemma 2 for all 𝑘 > 1, for all 𝑎, 𝑏 ∈ 𝒥 (𝑓) when 𝑧 ∈ 𝐷 ⊂ ℱ(𝑓) iterations
𝑓𝑘(𝑧) omit the values 𝑎, 𝑏 then, functions 𝑔𝑘𝑝(𝑧) omit the values 0 and 1 in 𝐷 with any 𝑝 > 1.
Moreover, choosing 𝑠0 = |𝑎|+ |𝑏− 𝑎| in (12), one obtains that when 𝑘𝑝 > 𝑁(𝑠0) > 𝑛3

|𝑔𝑘𝑝(𝑧)| =
|𝑓𝑘𝑝(𝑧)− 𝑎|

|𝑏− 𝑎|
>

⃒⃒
|𝑓𝑘𝑝(𝑧)| − |𝑎|

⃒⃒
|𝑏− 𝑎|

> 1, 𝑧 ∈ 𝛾.

Thus, the family of functions 𝐺 satisfies the conditions of Lemma 1 when 𝑁 = 𝑁(𝑠0).
Therefore, there are constants 𝑈 , 𝑉 , depending only on 𝛾 and 𝐷, such that

|𝑔𝑘𝑝(𝑧′)| < 𝑈 |𝑔𝑘𝑝(𝑧)|𝑉 (13)

for all 𝑧, 𝑧′ ∈ 𝛾.
It is verified that for all 𝑧 ∈ 𝛾

𝐴|𝑓𝑘𝑝(𝑧)| 6 |𝑔𝑘𝑝| 6 𝐵|𝑓𝑘𝑝(𝑧)|,
where

𝐴 =
1

𝑠0
, 𝐵 =

|𝑎|+ 𝑠0
𝑠0|𝑏− 𝑎|

, 𝑠0 = |𝑎|+ |𝑏− 𝑎|. (14)
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Hence, for all 𝑧, 𝑧′ ∈ 𝛾 when 𝑘𝑝 > 𝑁

|𝑓𝑘𝑝(𝑧′)| < 𝑈*|𝑓𝑘𝑝(𝑧)|𝑉 , 𝑈* =
𝑈𝐵𝑉

𝐴
.

Let 𝑘𝑝 > 𝑁 , 𝑧, 𝑧′ be points of 𝛾 such that:

1) 𝑓𝑘𝑝(𝑧) = 𝑎
(𝑘𝑝)
𝑛+𝑘𝑝

, 𝑎
(𝑘𝑝)
𝑛+𝑘𝑝

∈ 𝐴𝑛+𝑘𝑝 ;

2) 𝑓𝑘𝑝(𝑧′) = 𝑐
(𝑘𝑝)
𝑛+𝑘𝑝+1, 𝑐

(𝑘𝑝)
𝑛+𝑘𝑝+1 ∈ 𝐶𝑛+𝑘𝑝+1.

Then, for 𝑘𝑝 > 𝑁

𝑀(𝑅𝑛+𝑘𝑝) = 𝑅𝑛+𝑘𝑝+1 < |𝑐(𝑘𝑝)𝑛+𝑘𝑝+1| = |𝑓𝑘𝑝(𝑧′)| <

< 𝑈*|𝑓𝑘𝑝(𝑧)|𝑉 = 𝑈*|𝑎(𝑘𝑝)𝑛+𝑘𝑝
|𝑉 = 𝑈*𝑅𝑉

𝑛+𝑘𝑝 ,

which contradicts the fact that 𝑓 is a transcendental function since 𝑅𝑛+𝑘𝑝 → ∞ when 𝑘𝑝 → ∞.
The theorem is proved.
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