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THE SINGULAR STURM-LIOUVILLE OPERATORS WITH

NONSMOOTH POTENTIALS IN A SPACE OF VECTOR

FUNCTIONS

K.A. MIRZOEV, T.A. SAFONOVA

Abstract. This paper deals with the Sturm-Liouville operators generated on the semi-

axis by the differential expression 𝑙[𝑦] = −(𝑦′ − 𝑃𝑦)′ − 𝑃 (𝑦′ − 𝑃𝑦) − 𝑃 2𝑦, where ′ is a
derivative in terms of the theory of distributions and 𝑃 is a real-valued symmetrical matrix
with elements 𝑝𝑖𝑗 ∈ 𝐿2

𝑙𝑜𝑐(𝑅+) (𝑖, 𝑗 = 1, 2, . . . , 𝑛). The minimal closed symmetric operator
𝐿0 generated by this expression in the Hilbert space ℒ2

𝑛(𝑅+) is constructed. Sufficient
conditions of minimality and maximality of deficiency numbers of the operator 𝐿0 in terms
of elements of a matrix 𝑃 are presented. Moreover, it is established, that the condition
of maximality of deficiency numbers of the operator 𝐿0 (in the case when elements of
the matrix 𝑃 are step functions with an infinite number of jumps) is equivalent to the
condition of maximality of deficiency numbers of the operator generated by a generalized
Jacobi matrix in the space 𝑙2𝑛.

Keywords: Quasi-derivative, Sturm-Liouville operator, singular potential, distributions,
generalized Jacobi matrices, deficiency numbers, deficiency index.

1. Introduction

Our goal is to construct a spectral theory of operators generated by an expression of the form

𝑙[𝑦] = −(𝑦′ − 𝑃𝑦)′ − 𝑃 (𝑦′ − 𝑃𝑦) − 𝑃 2𝑦, (1)

in the space ℒ2
𝑛(𝑅+), where 𝑛 ∈ 𝒩 , 𝑅+ := [0,+∞), 𝑃 := (𝑝𝑖𝑗)

𝑛
𝑖,𝑗=1 is a real-valued symmetric

matrix function with elements measurable on the 𝑅+ function and satisfying the condition
𝑝2𝑖𝑗 ∈ 𝐿1

𝑙𝑜𝑐(𝑅+), ℒ2
𝑛(𝑅+) is the Hilbert space of all complex-valued, measurable 𝑛-component

vector functions, whose sum of squares of components moduli is Lebesgue integrable on 𝑅+. The
expression (1) defines the minimal closed symmetric operator 𝐿0 with the domain of definition
𝐷0 in the space ℒ2

𝑛(𝑅+). We provide a correct definition of the operator in section 2.
On the other hand, let us assume now that ′ denotes a derivative in terms of the distribution

theory namely, the generalized function 𝑝′𝜓, determined by the equality

(𝑝′𝜓)(𝜑) = −
+∞∫︁
0

𝑝(𝜓𝜑)′

for any infinitely differentiable finite function 𝜑 on (0,+∞) is considered as the product of the
derivative 𝑝′ of the scalar function 𝑝 ∈ 𝐿2

𝑙𝑜𝑐(𝑅+) by locally absolutely continuous scalar function
𝜓 as usually. Then, let us define the product of the matrix 𝑃 ′, whose elements are generalized
functions 𝑝′𝑖𝑗, by the vector-function 𝑦 ∈ 𝐷0 as an 𝑛-component vector-function 𝑃 ′𝑦, whose
coordinate of the number 𝑖 equals 𝑝′𝑖1𝑦1 + 𝑝′𝑖2𝑦2 + . . .+ 𝑝′𝑖𝑛𝑦𝑛 (𝑖 = 1, 2, . . . , 𝑛). Then, in terms of
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the distribution theory, the following natural equality becomes obvious: (𝑃𝑦)′ = 𝑃 ′𝑦+𝑃𝑦′. Due
to this equality the operator 𝐿0 generated by the expression (1) in the Hilbert space ℒ2

𝑛(𝑅+)
can be understood as an operator generated by the expression

𝑙[𝑦] = −𝑦′′ + 𝑃 ′𝑦 (2)

in the same space.
The above definition of the operator 𝐿0 generated by the expression (2) with the matrix

potential-distribution gives us a possibility to include it into the class of operators generated by
quasi-differential expressions with locally summable coefficients in the space ℒ2

𝑛(𝑅+) and thus,
it allows us to construct the spectral theory of this operator.

Note that problems connected with investigation of the scalar Sturm-Liouville operator with
a short-range potential (𝛿-function type) appeared in physical literature. Mathematical inves-
tigation of such physical models was started in the 60ies of the last century in the works [1], [2].
The modern state and new trends in developing spectral theory of such operators is described in
the monographs [3], [4]. Meanwhile, the correct definition of the Sturm-Liouville operator with
a scalar potential-distribution of the first order was given for the first time in the works [5], [6]
apparently by several equivalent ways. Spectral properties of such operators were investigated
rather thoroughly in the same works especially for the case of a finite interval. We used one
of approaches suggested in these works while determining the operator 𝐿0 generated by the
expression (2). It should also be mentioned that the recent works [7], [8] contain a detailed
spectral analysis of operators generated by an expression of the form (2) for the case when
𝑛 = 1 and 𝑃 is a step function with an infinite number of jumps on a semi-axis.

The present paper is devoted to construction of the spectral theory of the operator 𝐿0 in
particular, to determining the deficiency numbers of the operator in terms of the elements 𝑝𝑖𝑗
of the matrix 𝑃 . Theorems 1 and 2 give sufficient conditions for realization of maximality and,
accordingly, minimality of deficiency numbers of the operator 𝐿0. Theorem 3 claims that the
maximality condition for deficiency numbers of the operator 𝐿0 (in case when elements of the
matrix 𝑃 are step functions with an infinite number of jumps) is equivalent to the maximality
condition of deficiency numbers of the operator generated by a generalized Jacobian matrix in
the space 𝑙2𝑛. Some corollaries of these theorems are given and the corresponding examples are
constructed. Note that a part of the obtained results is new for the scalar case as well.

2. Quasi-derivatives and quasi-differential operators. Deficiency indices.

Let us assume that real-valued functions 𝑝𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), which are elements of the
matrix-function 𝑃, are defined on the semi-axis 𝑅+ and satisfy the following conditions:

a) 𝑝𝑖𝑗 = 𝑝𝑗𝑖;
b) 𝑝2𝑖𝑗 ∈ 𝐿1(𝛼, 𝛽) for any 𝛼, 𝛽 ∈ 𝑅+, i.e. 𝑝2𝑖𝑗 are locally absolutely integrable on 𝑅+ (𝑝2𝑖𝑗 ∈

𝐿1
𝑙𝑜𝑐(𝑅+)).

Let us determine the first quasi-derivative of the given locally absolutely continuous vector-
function 𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥), . . . , 𝑦𝑛(𝑥))𝑡 (𝑦 ∈ 𝐴𝐶𝑙𝑜𝑐(𝑅+); 𝑡 is the transportation symbol, as-

suming that 𝑦
[1]
𝑃 = 𝑦′ − 𝑃𝑦. Then, regarding that the vector function 𝑦

[1]
𝑃 is already defined

and is locally absolutely continuous, let us determine the second quasi-derivative of the vector-

function 𝑦, assuming that 𝑦
[2]
𝑃 := (𝑦

[1]
𝑃 )′ + 𝑃𝑦

[1]
𝑃 + 𝑃 2𝑦, and the quasi-differential expression:

𝑙[𝑦](𝑥) := −𝑦[2]𝑃 (𝑥), 𝑥 ∈ 𝑅+. (3)

Note that , the condition b) provides the validity of the existence and uniqueness theorem for
solutions of the system of first-order differential equations

𝑌 ′ = 𝐹𝑌,
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corresponding to equation 𝑙[𝑦] = 0, and the condition a) entails that the following matrix
identity holds:

𝐹 = −𝐽−1𝐹 *𝐽, (4)

where the matrices 𝐹 and 𝐽 have the form 𝐹 :=

(︂
𝑃 𝐼

−𝑃 2 −𝑃

)︂
, 𝐽 :=

(︂
0 −𝐼
𝐼 0

)︂
in the block

representation, and 𝐹 * =

(︂
𝑃 −𝑃 2

𝐼 −𝑃

)︂
is a matrix conjugate to 𝐹, and 𝐼 is a unit matrix of the

order 𝑛 here and in what follows.
Thus, the definition range ∆ of the expression 𝑙[𝑦] is a set of all locally absolutely continuous

vector-functions 𝑦 on 𝑅+ such that the vector function 𝑦
[1]
𝑃 ia also locally absolutely continuous

on 𝑅+. Now let us prove that the following lemma holds.

Lemma 1. (The Green formula) Let 𝑃 be a quadratic matrix of the order 𝑛 (𝑛 ≥ 1),
satisfying the conditions 𝑎) and 𝑏). Then, for any two vector functions 𝑢, 𝑣 ∈ ∆ and for any
two numbers 𝛼 and 𝛽 such that 0 ≤ 𝛼 ≤ 𝛽 <∞, the formula

𝛽∫︁
𝛼

{(𝑙[𝑢](𝑥), 𝑣(𝑥)) − (𝑢(𝑥), 𝑙[𝑣](𝑥))}𝑑𝑥 = [𝑢(𝑥), 𝑣(𝑥)](𝛽) − [𝑢(𝑥), 𝑣(𝑥)](𝛼), (5)

holds. Here (𝑔, ℎ) =
𝑛∑︀

𝑠=1

𝑔𝑠ℎ𝑠 is a scalar product of the vectors 𝑔 and ℎ, and the bilinear form

[𝑢, 𝑣] is defined by the equality: [𝑢, 𝑣](𝑥) := (𝑢[1](𝑥), 𝑣(𝑥)) − (𝑢(𝑥), 𝑣[1](𝑥)).

Proof. Let 𝑢, 𝑣 ∈ ∆. Then, there is a pair of vector-functions ℎ, 𝑔 with locally summable
on 𝑅+ components such that

𝑙[𝑢] = 𝑔 and 𝑙[𝑣] = ℎ. (6)

Conditions (6) can be written in the matrix form:

𝑈 ′ = 𝐹𝑈 +𝐺 and 𝑉 ′ = 𝐹𝑉 +𝐻, (7)

where the matrix 𝐹 is defined above and 2𝑛-dimensional vector columns 𝑈 , 𝑉 , 𝐺, 𝐻 have the
form: 𝑈 := (𝑢, 𝑢[1])𝑡, 𝑉 =: (𝑣, 𝑣[1])𝑡, 𝐺 =: (0, 𝑙[𝑢])𝑡, 𝐻 =: (0, 𝑙[𝑣])𝑡 (Recall that quasi-derivatives
are determined by means of the matrix 𝑃 ).
Multiplying both equalities (7) in the left-hand side by the constant matrix 𝐽 (see above) and
invoking the symmetry condition (4), we obtain the following matrix equalities

(𝐽𝑈)′ = −𝐹 *𝐽𝑈 + 𝐽𝐺, (𝐽𝑉 )′ = −𝐹 *𝐽𝑉 + 𝐽𝐻.

Then, let us differentiate the scalar product (𝐽𝑈, 𝑉 ):

(𝐽𝑈, 𝑉 )′ = ((𝐽𝑈)′, 𝑉 ) + (𝐽𝑈, 𝑉 ′) =

(−𝐹 *𝐽𝑈 + 𝐽𝐺, 𝑉 ) + (𝐽𝑈, 𝐹𝑉 +𝐻) = (𝐽𝐺, 𝑉 ) + (𝐽𝑈,𝐻),

where

(𝐽𝑈, 𝑉 ) =
𝑛∑︁

𝑗=0

{𝑢𝑗𝑣[1]𝑗 − 𝑢
[1]
𝑗 𝑣𝑗} = (𝑢, 𝑣[1]) − (𝑢[1], 𝑣) = −[𝑢, 𝑣],

(𝐽𝐺, 𝑉 ) = −
𝑛∑︁

𝑗=0

𝑙𝑗[𝑢]𝑣𝑗 = −(𝑙[𝑢], 𝑣)

and

(𝐽𝑈,𝐻) =
𝑛∑︁

𝑗=0

𝑢𝑗𝑙𝑗[𝑣] = (𝑢, 𝑙[𝑣]),
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where 𝑙𝑗 is the 𝑗th component of the vector 𝑙. Thus, we have proved that

(𝑙[𝑢], 𝑣) − (𝑢, 𝑙[𝑣]) = [𝑢, 𝑣]′.

It remains only to integrate the resulting equality. Lemma 1 is proved.
Due to the formula (5), the expression 𝑙[𝑦] is said to be a symmetric (formally conjugate) vector
quasi-differential expression of the second order.

Let us denote by 𝐷′
0 the set of all complex valued vector functions from ∆ that are finite

on (0,+∞). Repeating the same reasoning as in the scalar case (see [9], p. 133), and applying
the Green formula it is established that the set 𝐷′

0 is dense everywhere in ℒ2
𝑛(𝑅+), and the

expression 𝑙 determines on the set 𝐷′
0 a symmetric (open) operator in ℒ2

𝑛(𝑅+) with the definition
range 𝐷′

0 by the formula 𝐿′
0 = 𝑙[𝑦]. Let us denote by the symbols 𝐿0, and 𝐷0 the closure of this

operator, and the range of its definition, respectively. Then, we denote by 𝑛+ (𝑛−) the maximal
number of linearly independent solutions to the equation

𝑙[𝑦] = 𝜆𝑦, (8)

that belong to the space ℒ2
𝑛(𝑅+) when ℑ𝜆 > 0 (ℑ𝜆 < 0). The numbers 𝑛+ and 𝑛− coincide

with the deficiency numbers of the minimal closed symmetric operator 𝐿0 (see [10]), preserve
their values in semi-planes, are equal to each other and are enclosed between 𝑛 and 2𝑛.

Indeed, the fact that the numbers 𝑛+ and 𝑛− cannot be smaller than 𝑛 is proved similarly
to Theorem 2 in [11] (this fact can also be established on the basis of S.A. Orlov’s results [12]);
and the fact that these numbers cannot be larger than 2𝑛 is evident.

Now let us demonstrate that 𝑛+ = 𝑛−. Let an 𝑛-component vector function 𝑦 be a solution
to Equation (8), belonging to the space ℒ2

𝑛(𝑅+) (for the sake of definiteness we assume that
ℑ𝜆 > 0). In the equality (8), let us turn to the conjugate equation

𝑙[𝑦] = 𝜆1𝑦, (9)

where 𝜆1 = 𝜆 and ℑ𝜆1 < 0. Since
+∞∫︀
0

||𝑦(𝑥)||2𝑑𝑥 =
+∞∫︀
0

||𝑦(𝑥)||2𝑑𝑥, it means that as soon as 𝑦 is

a solution to Equation (8) (with ℑ𝜆 > 0), belonging to the space ℒ2
𝑛(𝑅+), 𝑦 becomes a solution

of the same equation (with ℑ𝜆 < 0), belonging to ℒ2
𝑛(𝑅+).

It follows from the above reasoning that the pair of numbers (𝑛+, 𝑛−), called the deficiency
index of the operator 𝐿0, can take one of their the values: (𝑛, 𝑛), (𝑛+1, 𝑛+1), . . ., (2𝑛, 2𝑛). By
analogy to the spectral theory of scalar differential Sturm-Liouville operators on a semi-axis,
it is said that for the operator 𝐿0 in the first case, and in the latter case the cases of the limit
point, and of the limit circle are realized, respectively (see, e.g., [13]). Meanwhile, matrix circles
on the set of real symmetric matrices of the order 𝑛 appear to be analogues of the Weil circles
on a complex plane (see [11]).

3. Asymptotic integration of systems of quasi-differential equations

Let the matrix 𝑃 (1) := (𝑝
(1)
𝑖𝑗 ) possess the same properties as the matrix 𝑃 : 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and

(𝑝
(1)
𝑖𝑗 )2 ∈ 𝐿1

𝑙𝑜𝑐(𝑅+) (𝑖, 𝑗 = 1, 2, . . . , 𝑛), and 𝑛-component vector functions 𝑦 and 𝑦
[1]

𝑃 (1) := 𝑦′−𝑃 (1)𝑦
be determined and be locally absolutely continuous on the semi-axis. The mentioned conditions
allow us to define the symmetric quasi-differential expression

𝑠[𝑦] := −(𝑦
[1]

𝑃 (1))
′ − 𝑃 (1)𝑦

[1]

𝑃 (1) − (𝑃 (1))2𝑦 (10)

as well as in the case of the expression 𝑙. The expression (10) defines the minimal closed
symmetric operator 𝑆0 in the Hilbert space ℒ2

𝑛(𝑅+). Let us denote by 𝒟0 the definition range
of the operator 𝑆0.
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Further, let us consider the symmetric quasi-differential vector equations

𝑙[𝑦] = −(𝑦
[1]
𝑃 )′ − 𝑃𝑦

[1]
𝑃 − 𝑃 2𝑦 = 0 (11)

and
𝑠[𝑦] = −(𝑦

[1]

𝑃 (1))
′ − 𝑃 (1)𝑦

[1]

𝑃 (1) − (𝑃 (1))2𝑦 = 0. (12)

Manifestly, every one of them is equivalent to the system of differential equations of the first
order (︂

𝑦

𝑦
[1]
𝑄

)︂′

=

(︂
𝑄 𝐸

−𝑄2 −𝑄

)︂(︂
𝑦

𝑦
[1]
𝑄

)︂
, (13)

where 𝑄 = 𝑃 in case of Equation (11), and in case of Equation (12) 𝑄 = 𝑃 (1), respectively.
The equivalence (11) (or (12)) and (13) is understood in the sense that if an 𝑛-component

vector-function 𝑦 is a solution (11) (or (12)), then a 2𝑛-component vector function 𝑌 = (𝑦, 𝑦
[1]
𝑄 )𝑡

is a solution (13) and vice versa, if 𝑌 := (𝑌1, 𝑌2, . . . , 𝑌2𝑛)𝑡 is a solution to the system (13), then
𝑦 := 𝑦0 = (𝑦01, 𝑦

0
2, . . . , 𝑦

0
𝑛) is a solution to Equation (11) (or (12)) and

𝑌𝑘 =

{︃
𝑦𝑘, 𝑘 = 1, 2, . . . , 𝑛

(𝑦𝑘−𝑛)
[1]
𝑄 , 𝑘 = 𝑛+ 1, 𝑛+ 2, . . . , 2𝑛

(for more details see , e.g., [14, Ch. V]).
Denote by 𝑇 the fundamental matrix of the linear homogeneous system (13) with 𝑄 = 𝑃 (1).

Obviously, the columns of the matrix 𝑇 are 2𝑛-dimensional columns of the form (𝑢𝑗, 𝑢
[1]
𝑗 )𝑡

(𝑗 = 1, 2, . . . , 2𝑛), where 𝑢𝑗 are linearly independent vector solutions of Equation (12) (recall
that quasi-derivatives are determined by means of the matrix 𝑃 (1)). The following theorem
holds.

Theorem 1. . Let the matrices 𝑃 , 𝑃 (1) and 𝑇 be such that
+∞∫︁
0

⃦⃦⃦⃦
𝑇−1

(︂
𝑃 − 𝑃 (1) 0

−𝑃 2 + (𝑃 (1))2 −𝑃 + 𝑃 (1)

)︂
𝑇

⃦⃦⃦⃦
1 < +∞. (14)

Then, for any complex numbers 𝛼1, 𝛼2, . . . , 𝛼2𝑛, Equation (11) has the solution 𝜑(𝑥), satisfying
the conditions:

𝜑(𝑥) =
2𝑛∑︁
𝑗=1

[𝛼𝑗 + 𝑎𝑗(𝑥)]𝑢𝑗,

𝜑
[1]
𝑃 (𝑥) =

2𝑛∑︁
𝑗=1

[𝛼𝑗 + 𝑎𝑗(𝑥)](𝑢𝑗)
[1]

𝑃 (1)(𝑥),

(15)

where 𝑎𝑖(𝑥) → 𝑜 when 𝑥→ +∞ (𝑖 = 1, 2, . . . , 2𝑛).

Proof. In the system (13) with 𝑄 = 𝑃 let us carry out the linear substitution

𝑌 = 𝑇𝑧, (16)

where the vector column 𝑧 has the form 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧2𝑛)𝑡, and differentiate

𝑌 ′ = 𝑇 ′𝑧 + 𝑇𝑧′.

Then, take into account that the matrix 𝑇 is a fundamental matrix of solutions of the system
(13) with 𝑄 = 𝑃 (1), namely:

𝑇 ′ =

(︂
𝑃 (1) 𝐼

−(𝑃 (1))2 −𝑃 (1)

)︂
𝑇

1——.—— indicates the sum of absolute values of all elements of the matrix
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As a result of the mentioned transformations the system takes the form:

𝑧′ = 𝑇−1

(︂
𝑃 − 𝑃 (1) 0

−𝑃 2 + (𝑃 (1))2 −𝑃 + 𝑃 (1)

)︂
𝑇𝑧. (17)

By virtue of the assumption (14), one can apply the result of the problem 1.4 (c) from [15,
Ch. X, S1, p. 331] to the system (17) namely, for any complex numbers 𝛼𝑖 (i=1,2,. . . ,2n) the
system (17) has a unique solution, for which the following asymptotic formulae hold:⎛⎜⎜⎝

𝑧1
𝑧2
...
𝑧2𝑛

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛼1 + 𝑎1(𝑥)
𝛼2 + 𝑎2(𝑥)

...
𝛼2𝑛 + 𝑎2𝑛(𝑥)

⎞⎟⎟⎠ ,

where 𝑎𝑖(𝑥) → 𝑜 when 𝑥→ +∞ (𝑖 = 1, 2, . . . , 2𝑛).
It remains only to take into account the relation (16) between the vector column 𝑧 and the
solution of the initial system 𝜑. Theorem 1 is proved.

Remark 1. If we make the supplementary hypothesis, that the matrix 𝑇 is determined by
means of the initial data 𝑇 (0) = 𝐼2𝑛 then the inverse matrix to 𝑇 is determined by the correlation

𝑇−1(𝑥) = −(𝐽𝑇 *𝐽)(𝑥),

where 𝐼2𝑛 is a unit matrix of the order 2𝑛, and the constant matrix 𝐽 is determined in (4).

Proof. Firs of all note that the symmetry of the matrix 𝑃 (1) (as well as in case of the matrix
𝑃 ) entails symmetry of the quasi-differential expression 𝑠[𝑦], namely:

𝐹1(𝑥) = −𝐽−1𝐹 *
1 (𝑥)𝐽, (18)

where the matrix 𝐹1 and the matrix 𝐹 *
1 conjugate to it have the following form in the block

representation:

𝐹1 :=

(︂
𝑃 (1) 𝐼

−(𝑃 (1))2 −𝑃 (1)

)︂
, 𝐹 *

1 =

(︂
𝑃 (1) −(𝑃 (1))2

𝐼 −𝑃 (1)

)︂
.

The definition provides that

𝑇−1(𝑥)𝑇 (𝑥) = 𝐼2𝑛.

Differentiating the equality and invoking the fact that 𝑇 is a fundamental matrix of solutions
to the system (13) with 𝑄 = 𝑃 (1), we express (𝑇−1(𝑥))′

(𝑇−1(𝑥))′ = −𝑇−1(𝑥)𝐹1(𝑥).

Let us turn to conjugate matrices

((𝑇 *)−1(𝑥))′ = −𝐹 *
1 (𝑥)(𝑇 *)−1(𝑥), (19)

take into account the condition (18) and assume that (𝑇 *)−1(𝑥) = 𝐽Ψ(𝑥). This yields a matrix
differential equation

Ψ′(𝑥) = 𝐹1(𝑥)Ψ(𝑥).

Thus, the matrix Ψ(𝑥) defined above is a fundamental matrix of the linear homogeneous system
(13) with 𝑄 = 𝑃 (1) and is connected to the matrix 𝑇 (𝑥) and some constant matrix 𝐶 by the
following equality

Ψ(𝑥) = 𝑇 (𝑥)𝐶

(see, e.g., [16],p. 82, Theorem 2.3).
On the other hand, by virtue of definition of the matrix Ψ(𝑥) we have:

(𝑇 *)−1(𝑥) = 𝐽𝑇 (𝑥)𝐶.
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Meanwhile, the auxiliary initial condition 𝑇 (0) = 𝐼2𝑛 entails the matrix equality 𝐶 = 𝐽−1.
Thus, we obtain that

(𝑇 *)−1(𝑥) = 𝐽𝑇 (𝑥)𝐽−1.

Further, the definition of the matrix 𝐽 entails 𝐽−1 = 𝐽* = −𝐽 . Hence,

(𝑇 *)−1(𝑥) = −𝐽𝑇 (𝑥)𝐽.

It remains to turn to conjugate matrices. Remark 1 is proved.

Corollary 1. Let us assume that conditions of Theorem 1 hold. Then, the limit circle case
is realized for the operator 𝐿0 if and only if this case is realized for the operator 𝑆0 as well.

Proof. Let 𝑘, 𝑗 ∈ {1, 2, . . . , 2𝑛}. Let us take 𝛼𝑘 = 𝛿𝑘𝑗 (𝛿 is the Kronecker symbol) from
Theorem 1, as constants 𝛼1, 𝛼2, . . . , 𝛼2𝑛 and determine the vector-functions 𝑣𝑗 assuming that
𝑣𝑗 = 𝜑(𝑥). Then, by virtue of the formulae (15):

𝑣𝑗(𝑥) = (1 + 𝑎𝑗(𝑥))𝑢𝑗(𝑥) +
2𝑛∑︁

𝑘=1, 𝑘 ̸=𝑗

𝑎𝑘(𝑥)𝑢𝑘(𝑥),

where 𝑢𝑗(𝑥) are linearly independent vector solutions of Equation (12) and 𝑎𝑗(𝑥) = 𝑜(1) when
𝑥→ +∞.
Denote by 𝑇 (1) the matrix with 2𝑛-dimensional columns being the columns (𝑣𝑗, (𝑣𝑗)

[1]
𝑃 )𝑡 (𝑗 =

1, 2, . . . , 2𝑛). Straightforward calculations demonstrate that

𝑑𝑒𝑡𝑇 (1) = (1 +
2𝑛∑︁
𝑘=1

𝑎𝑘(𝑥))𝑑𝑒𝑡𝑇,

where 𝑑𝑒𝑡𝑇 ̸= 0. Thus, the system of vectors 𝑣𝑗 (𝑗 = 1, 2, . . . , 2𝑛) is linearly independent. On
the other hand, simple calculations show that

2𝑛∑︁
𝑗=1

||𝑣𝑗||2 =
2𝑛∑︁
𝑗=1

||𝑢𝑗||2 + 𝑜(
2𝑛∑︁
𝑗=1

||𝑢𝑗||2)

and hence,

lim
𝑥→+∞

2𝑛∑︀
𝑗=1

||𝑣𝑗||2

2𝑛∑︀
𝑗=1

||𝑢𝑗||2
= 1.

Thus, the improper integrals

+∞∫︁
0

2𝑛∑︁
𝑗=1

||𝑣𝑗||2 and

+∞∫︁
0

2𝑛∑︁
𝑗=1

||𝑢𝑗||2

converge or diverge simultaneously. Corollary (1) is proved.

4. Examples of realization of the limit circle case for the operator 𝐿0

Let 𝑛 = 2 and 𝛼 > 2, 0 < 𝛽 < 𝛼. We define the matrix 𝑃 (1), assuming that

𝑃 (1) =

(︃
−𝑥𝛼+1

𝛼+1
𝑥𝛽+1

𝛽+1
𝑥𝛽+1

𝛽+1
−𝑥𝛼+1

𝛼+1

)︃
. (20)
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Then, the differential operator 𝑆0, generated by the expression 𝑠 in the Hilbert space ℒ2
2(𝑅+),

can be treated as an operator generated by the expression

−𝑦′′ + (𝑃 (1))′𝑦,

in the same space ℒ2
2(𝑅+), where (𝑃 (1))′(𝑥) = (𝑝1𝑖𝑗)

′(𝑥) (𝑖, 𝑗 = 1, 2) is a derivative matrix

𝑃 (1)(𝑥), and the homogeneous quasi-differential equation (12) coincides with the equation

−𝑦′′ −
(︂
𝑥𝛼 −𝑥𝛽
−𝑥𝛽 𝑥𝛼

)︂
𝑦 = 0. (21)

The following lemma holds.

Lemma 2. Equation (21) has four linearly independent solutions 𝑦𝑗(𝑥) (𝑗 = 1, 2, 3, 4) such
that the following asymptotic formulae hold when 𝑥→ +∞ :

𝑦1(𝑥), 𝑦2(𝑥) ∼ 𝜓1(𝑥)𝑒𝑥𝑝

𝑥∫︁
𝑥0

±𝑖(𝑠𝛼 + 𝑠𝛽)1/2𝑑𝑠,

𝑦3(𝑥), 𝑦4(𝑥) ∼ 𝜓2(𝑥)𝑒𝑥𝑝

𝑥∫︁
𝑥0

±𝑖(𝑠𝛼 − 𝑠𝛽)1/2𝑑𝑠,

(22)

where 𝜓1(𝑥) = 1
2(𝑥𝛼+𝑥𝛽)1/4

(︂
1
−1

)︂
, 𝜓2(𝑥) = 1

2(𝑥𝛼−𝑥𝛽)1/4

(︂
1
1

)︂
.

Proof. Manifestly, the vector equation (21) is equivalent to the system of two scalar differ-
ential equations of the second order {︃

𝑧′′ = (𝑥𝛽 − 𝑥𝛼)𝑧

𝑡′′ = −(𝑥𝛽 + 𝑥𝛼)𝑡,
(23)

where 𝑧 = 𝑦1 + 𝑦2 and 𝑡 = 𝑦1 − 𝑦2. For Equations (23) with 𝑥 → +∞ asymptotic formulae of
the Liouville-Green type (see, e.g., [17], p. 68) are well known, namely

𝑧1, 𝑧2 ∼ (𝑥𝛼 − 𝑥𝛽)−1/4 exp(±𝑖
𝑥∫︁

𝑥𝑜

(𝑠𝛼 − 𝑠𝛽)1/2𝑑𝑠), (24)

and accordingly

𝑡1, 𝑡2 ∼ (𝑥𝛼 + 𝑥𝛽)−1/4 exp(±𝑖
𝑥∫︁

𝑥𝑜

(𝑠𝛼 + 𝑠𝛽)1/2𝑑𝑠). (25)

It remains to take into account the relations between 𝑧, 𝑡 and 𝑦. Lemma (2) is proved.

On the basis of the asymptotic formulae (22) and conditions on the coefficients 𝛼 and 𝛽, one
can make the conclusion that all solutions to Equation (21) belong to the space ℒ2

2(𝑅+), i.e.
the limit circle case is realized for the operator 𝑆0 .

Let 𝑥𝑛 (𝑛 = 0, 1, . . .) be an increasing sequence of positive numbers such that 𝑥0 =
0, lim

𝑛→+∞
𝑥𝑛 = +∞. Let us choose an arbitrary point 𝜈𝑘 ∈ [𝑥𝑘;𝑥𝑘+1) and determine elements

𝑝𝑖𝑗(𝑥) of the matrix 𝑃 , assuming that: 𝑝11(𝑥) = 𝑝22(𝑥) = −𝜈𝛼+1
𝑘

𝛼+1
, 𝑝12(𝑥) = 𝑝21(𝑥) =

𝜈𝛽+1
𝑘

𝛽+1
when

𝑥 ∈ [𝑥𝑘, 𝑥𝑘+1). The following lemma holds.
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Lemma 3. Let us assume that the above conditions are satisfied and

+∞∑︁
𝑘=1

𝑥𝛼𝑘+1(𝑥𝑘+1 − 𝑥𝑘)2 < +∞, (26)

+∞∑︁
𝑘=1

𝑥2𝛼+1
𝑘+1

(𝑥𝛼𝑘 + 𝑥𝛽𝑘)1/2
(𝑥𝑘+1 − 𝑥𝑘)2 < +∞. (27)

Then, matrices 𝑃 and 𝑃 (1) satisfy the condition (14) of Theorem 1.

Proof. The asymptotic formulae for the matrix 𝑇 and hence, for the matrix 𝑇−1 when
𝑥 → +∞ are written out explicitly by virtue of the formulae (22). Meanwhile, easy but
cumbersome calculations show that the convergence of the following integrals provides the
convergence of the integral (14)

𝛼)
+∞∫︀
𝑥0

|𝑝𝑖𝑗(𝑥) − 𝑝
(1)
𝑖𝑗 (𝑥)|𝑑𝑥, 𝑖, 𝑗 = 1, 2,

𝛽)
+∞∫︀
𝑥0

|𝑝2𝑖𝑗(𝑥)−(𝑝
(1)
𝑖𝑗 )2(𝑥)|

(𝑥𝛼+𝑥𝛽)1/2
𝑑𝑥, 𝑖, 𝑗 = 1, 2,

𝛾)
+∞∫︀
𝑥0

|𝑝𝑖2(𝑝11+𝑝22)−𝑝
(1)
12 (𝑝

(1)
11 +𝑝

(1)
22 )|

(𝑥𝛼+𝑥𝛽)1/2
𝑑𝑥,

where 𝑥0 > 1.
On the other hand, one can readily see that when 𝑥, 𝜈𝑘 ∈ [𝑥𝑘, 𝑥𝑘+1) and with the above choice
of the matrices 𝑃 and 𝑃 (1),the following inequalities hold

|𝑝𝑖𝑗(𝑥) − 𝑝
(1)
𝑖𝑗 (𝑥)| = |𝑝(1)𝑖𝑗 (𝜈𝑘) − 𝑝

(1)
𝑖𝑗 (𝑥)| 6 |𝑝(1)𝑖𝑗 (𝑥𝑘+1) − 𝑝

(1)
𝑖𝑗 (𝑥𝑘)| 6

6 |(𝑝(1)𝑖𝑗 )′(𝑥𝑘+1)|(𝑥𝑘+1 − 𝑥𝑘) =

{︃
𝑥𝛼𝑘+1(𝑥𝑘+1 − 𝑥𝑘), 𝑖 = 𝑗

𝑥𝛽𝑘+1(𝑥𝑘+1 − 𝑥𝑘), 𝑖 ̸= 𝑗
,

(28)

|𝑝2𝑖𝑗(𝑥) − (𝑝
(1)
𝑖𝑗 )2(𝑥)| 6 |((𝑝(1)𝑖𝑗 )2)′(𝑥𝑘+1)|(𝑥𝑘+1 − 𝑥𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑥2𝛼+1

𝑘+1

𝛼 + 1
(𝑥𝑘+1 − 𝑥𝑘), 𝑖 = 𝑗

2𝑥2𝛽+1
𝑘+1

𝛽 + 1
(𝑥𝑘+1 − 𝑥𝑘), 𝑖 ̸= 𝑗

(29)

and

|𝑝12(𝑝11 + 𝑝22)(𝑥) − 𝑝
(1)
12 (𝑝

(1)
11 + 𝑝

(1)
22 )(𝑥)| 6

6 |(𝑝(1)12 (𝑝
(1)
11 + 𝑝

(1)
22 ))′(𝑥𝑘+1)|(𝑥𝑘+1 − 𝑥𝑘) =

2(𝛼 + 𝛽 + 2)

(𝛼 + 1)(𝛽 + 1)
𝑥𝛼+𝛽+1
𝑘+1 (𝑥𝑘+1 − 𝑥𝑘).

(30)

Let us demonstrate now that convergence of the series (26) and (27) is provided by convergence
of the integrals 𝛼), 𝛽), 𝛾). Note that convergence of the integrals 𝛼), 𝛽), 𝛾) is proved uniformly
therefore, we limit ourselves by the Proof of convergence of the integral 𝛼) when 𝑖 = 𝑗 = 1.
Indeed,
+∞∫︀
𝑥0

|𝑝11(𝑥) − 𝑝
(1)
11 (𝑥)|𝑑𝑥 6

+∞∑︀
𝑘=𝑘0

𝑥𝑘+1∫︀
𝑥𝑘

𝑥𝛼𝑘+1|𝑥𝑘+1 − 𝑥𝑘|
𝑥𝑘+1∫︀
𝑥𝑘

1𝑑𝑥 =
+∞∑︀
𝑘=𝑘0

𝑥𝛼𝑘+1(𝑥𝑘+1 − 𝑥𝑘)2. Lemma 3 is

proved.

Thus, the statement of Corollary 1 holds for the matrices 𝑃 and 𝑃 (1), i.e. the deficiency
index of the operator 𝐿0 is maximal and equals to (4, 4).
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Summing up the above, it can be mentioned that we constructed examples of realization of
the limit circle case for the operator 𝐿0, generated by the quasi-differential expression (1) with
the matrix 𝑃 such that

𝑃 ′(𝑥) =
+∞∑︁
𝑘=0

(︂
𝛼𝑘 𝛽𝑘
𝛽𝑘 𝛾𝑘

)︂
𝛿(𝑥− 𝑥𝑘), (31)

where ′ denotes a derivative in the sense of the distribution theory and the constants 𝛼𝑘, 𝛽𝑘, 𝛾𝑘

are determined by the equalities: 𝛼𝑘 = 𝛾𝑘 =
𝜈𝛼+1
𝑘 −𝜈𝛼+1

𝑘+1

𝛼+1
, 𝛽𝑘 =

𝜈𝛽+1
𝑘+1−𝜈𝛽+1

𝑘

𝛽+1
.

Remark 2. One can take, e.g., a sequence with the general term 𝑥𝑘 = ln 𝑘 (𝑘 = 1, 2, . . .) as
a suitable sequence of the points 𝑥𝑘.

Proof. Convergence of the series (26) and (27) is proved likewise. Therefore, let us demon-
strate that, e.g., the series (26) converges. Indeed,

+∞∑︁
𝑘=1

𝑥𝛼𝑘+1(𝑥𝑘+1 − 𝑥𝑘)2 =
+∞∑︁
𝑘=1

ln𝛼(𝑘 + 1) ln2 𝑘 + 1

𝑘
,

and the latter series converges since ln𝛼(𝑘 + 1) ln2 𝑘+1
𝑘

∼ 𝑙𝑛𝛼(𝑘+1)
𝑘2

when 𝑘 → +∞ and the series
+∞∑︀
𝑘=1

𝑙𝑛𝛼(𝑘+1)
𝑘2

< +∞.

5. The sufficient condition for realization of the limit point case
for the operator 𝐿0

Let us denote by 𝑂 a zero matrix of the order 𝑛. As usually, for real symmetric matrices 𝐴
and 𝐵, the inequality 𝐴 ≥ 𝐵 means that for any 𝑢 ∈ 𝑅𝑛 the inequality (𝐴𝑢, 𝑢) ≥ (𝐵𝑢, 𝑢) is
satisfied. The following theorem holds.

Theorem 2. Let us assume that there exists a sequence of pairwise disjoint intervals
(𝑎𝑘, 𝑏𝑘) ⊂ 𝑅+ (𝑘 = 1, 2, . . .) such that
1. elements 𝑝𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) of the matrix 𝑃 are absolutely continuous on [𝑎𝑘, 𝑏𝑘];
2. 𝑃 ′(𝑥) ≥ 𝑂 when 𝑥 ∈ [𝑎𝑘, 𝑏𝑘];
3.

+∞∑︁
𝑘=1

(𝑏𝑘 − 𝑎𝑘)2 = +∞. (32)

Then 𝑛+ = 𝑛− = 𝑛.

Indeed, let the elements 𝑝𝑖𝑗 of the matrix 𝑃 satisfy the conditions mentioned in the beginning
of Section 2 and the conditions 1-3 of Theorem 2 on the intervals [𝑎𝑘, 𝑏𝑘]. Then the quasi-
differential expression 𝑙[𝑦] coincides with the ordinary vector differential expression (2) on the
interval [𝑎𝑘, 𝑏𝑘] when 𝑘 is fixed. Meanwhile, the Proof of Theorem 2 is conducted repeating
almost word for word the reasoning from [18], which demonstrates that the conditions 1–3
provide the validity of this theorem independently of the behaviour of the elements 𝑝𝑖𝑗 of the

matrix 𝑃 outside
+∞⋃︀
𝑘=1

[𝑎𝑘, 𝑏𝑘], and is omitted here.

Example 1. Let 0 =: 𝑥0 < 𝑥1 < 𝑥2 < . . . and lim
𝑘→+∞

𝑥𝑘 = +∞. Suppose that 𝑃 (𝑥) = 𝐶𝑘

when 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘), where 𝐶𝑘 is a symmetric real numerical matrix and
+∞∑︀
𝑘=1

(𝑥𝑘−𝑥𝑘−1)
2 = +∞.

Then, the deficiency index of the operator 𝐿0 equals (𝑛, 𝑛).
Indeed, if [𝑥𝑘−1, 𝑥𝑘) is divided into three equal parts and the middle third of this interval is

taken as [𝑎𝑘, 𝑏𝑘], then all conditions of Theorem 2 become satisfied.
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6. Special case of the operator 𝐿0 and the generalized Jacobi matrix

Let us assume that 𝑥𝑘 and 𝐶𝑘 are the same as in Example 1, i.e. 𝑥𝑘 (𝑘 = 0, 1, . . .) is an
increasing sequence of positive numbers such that 𝑥0 = 0 and lim

𝑛→+∞
𝑥𝑛 = +∞, 𝐶𝑘 is a symmetric

real numerical matrix, and let 𝒜𝑘 = (𝛼𝑘
𝑖𝑗)

𝑛
𝑖,𝑗=1 := 𝐶𝑘+1 − 𝐶𝑘. In this case, the expression (2)

takes the following form:

𝑙[𝑦] = −𝑦′′ +
+∞∑︁
𝑘=1

𝒜𝑘𝛿(𝑥− 𝑥𝑘)𝑦. (33)

The following theorem holds.

Theorem 3. Minimal closed symmetric operator 𝐿0, generated by the expression (33) in
the space ℒ2

𝑛(𝑅+) has the deficiency index (2𝑛, 2𝑛) if and only if all solutions of the difference
vector equation

− 𝑍𝑘+1

𝑟𝑘+1𝑟𝑘+2𝑑𝑘+1

+
1

𝑟2𝑘+1

[𝒜𝑘 + (
1

𝑑𝑘
+

1

𝑑𝑘+1

)𝐼]𝑍𝑘 −
𝑍𝑘−1

𝑟𝑘𝑟𝑘+1𝑑𝑘
= 0, 𝑘 = 1, 2, . . . , (34)

where 𝑑𝑘 := 𝑥𝑘 − 𝑥𝑘−1, 𝑟𝑘+1 :=
√︀
𝑑𝑘+1 + 𝑑𝑘, belong to the space 𝑙2𝑛.

Proof. Consider a homogeneous system of linear differential equations of the second order

−𝑦′′ +
+∞∑︁
𝑘=1

𝒜𝑘𝛿(𝑥− 𝑥𝑘)𝑦 = 0. (35)

Manifestly, the vector-functions 𝑢1𝑘(𝑥), 𝑢2𝑘(𝑥), . . . , 𝑢2𝑛𝑘 (𝑥), 𝑥 ∈ 𝑅+, when 𝑥 ∈ (𝑥𝑘−1, 𝑥𝑘) deter-
mined by the equalities

𝑢𝑖𝑘 =
1√
𝑑𝑘
𝑒𝑖, 𝑢𝑖+𝑛

𝑘 = [−
√

3√
𝑑𝑘

+
2
√

3

𝑑𝑘
√
𝑑𝑘

(𝑥− 𝑥𝑘−1)]𝑒𝑖, 𝑖 = 1, 2, . . . , 𝑛,

where 𝑥0 = 0, 𝑒𝑖 is a canonical basis of the space 𝑅𝑛, generate an orthonormal system of
solutions to Equation (35). Therefore, an arbitrary solutions 𝑦(𝑥) to the system (35) is a
locally absolutely continuous function on 𝑅+ and has the form

𝑦(𝑥) = 𝐴1
𝑘𝑢

1
𝑘(𝑥) + 𝐴2

𝑘𝑢
2
𝑘(𝑥) + . . .+ 𝐴2𝑛

𝑘 𝑢
2𝑛
𝑘 (𝑥)

when 𝑥 ∈ (𝑥𝑘−1, 𝑥𝑘). Hence,
+∞∫︁
0

||𝑦(𝑥)||2𝑑𝑥 =
+∞∑︁
𝑘=1

𝑥𝑘∫︁
𝑥𝑘−1

||𝑦(𝑥)||2𝑑𝑥 =
+∞∑︁
𝑘=1

{(𝐴1
𝑘)2 + (𝐴2

𝑘)2 + . . .+ (𝐴2𝑛
𝑘 )2}. (36)

On the other hand, arbitrary solution of the system (35) is a continuous piecewise linear func-
tion, i.e. 𝑦 = 𝑋𝑘 + 𝑌𝑘(𝑥− 𝑥𝑘−1) when 𝑥 ∈ (𝑥𝑘−1, 𝑥𝑘), where coordinates with the number 𝑖 of
vector columns 𝑋𝑘 and 𝑌𝑘 are determined by equalities

𝑋 𝑖
𝑘 =

1√
𝑑𝑘

(𝐴𝑖
𝑘 −

√
3𝐴𝑖+𝑛

𝑘 ), 𝑌 𝑖
𝑘 =

2
√

3

𝑑
3/2
𝑘

𝐴𝑖+𝑛
𝑘 , 𝑖 = 1, 2, . . . , 𝑛.

Now let us take into account the continuity condition of the vector function 𝑦 and the condition

of absolute continuity of its first quasi-derivative generated by means of the matrix 𝑃 , 𝑦
[1]
𝑃 =

𝑦′ − 𝑃𝑦, i.e. 𝑦(𝑥𝑘−) = 𝑦(𝑥𝑘+) = 𝑦(𝑥𝑘) and 𝑦
[1]
𝑃 (𝑥𝑘−) = 𝑦

[1]
𝑃 (𝑥𝑘+). Since 𝑦(𝑥𝑘−) = 𝑋𝑘 + 𝑌𝑘𝑑𝑘,

and 𝑦(𝑥𝑘+) = 𝑋𝑘+1 then, the first of the mentioned conditions is equivalent to the equality:

𝑋𝑘 + 𝑌𝑘𝑑𝑘 = 𝑋𝑘+1.

Likewise, the second condition is equivalent to the correlation

𝑦′(𝑥𝑘+) − 𝑦′(𝑥𝑘−) = 𝒜𝑘𝑦(𝑥𝑘).



VECTOR STURM-LIOUVILLE OPERATORS WITH SINGULAR POTENTIALS. . . 113

Hence, unifying the results one can make the conclusion that the vector columns 𝑋𝑘 and 𝑌𝑘
satisfy the system of equations{︂

𝑋𝑘 + 𝑌𝑘𝑑𝑘 = 𝑋𝑘+1

𝑌𝑘+1 − 𝑌𝑘 = 𝒜𝑘𝑋𝑘+1
𝑘 = 1, 2, ... .

Excluding 𝑌𝑘, we obtain that the vector 𝑋𝑘 satisfies the vector difference equation

1

𝑑𝑘+1

𝑋𝑘+2 − [𝒜𝑘 + (
1

𝑑𝑘
+

1

𝑑𝑘+1

)𝐼]𝑋𝑘+1 +
1

𝑑𝑘
𝑋𝑘 = 0, 𝑘 = 1, 2, . . . . (37)

Now, invoking the connection between 𝑋𝑘, 𝑌𝑘 and 𝐴𝑘, note that

𝐴𝑖
𝑘 =

√
𝑑𝑘
2

(𝑋 𝑖
𝑘+1 +𝑋 𝑖

𝑘), 𝐴𝑖+𝑛
𝑘 =

√
𝑑𝑘

2
√

3
(𝑋 𝑖

𝑘+1 −𝑋 𝑖
𝑘), 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . .

One can readily deduce from these formulae that

(𝐴1
𝑘)2 + (𝐴2

𝑘)2 + . . .+ (𝐴2𝑛
𝑘 )2 =

𝑑𝑘
4

(||𝑥𝑘||2 + ||𝑥𝑘+1||2 + 2
𝑛∑︁

𝑠=1

𝑥𝑠𝑘·𝑥𝑠𝑘+1)+

+
𝑑𝑘
12

(||𝑥𝑘||2 + ||𝑥𝑘+1||2 − 2
𝑛∑︁

𝑠=1

𝑥𝑠𝑘·𝑥𝑠𝑘+1).

(38)

The relation (38) entails immediately that the following inequalities hold

𝑑𝑘
6

{︀
||𝑋𝑘||2 + ||𝑋𝑘+1||2

}︀
≤ (𝐴1

𝑘)2 + (𝐴2
𝑘)2 + . . .+ (𝐴2𝑛

𝑘 )2 ≤ 𝑑𝑘
2

{︀
||𝑋𝑘||2 + ||𝑋𝑘+1||2

}︀
.

Thus, the row in the right-hand side of the equality (36) converges if and only if the following
series converges

+∞∑︁
𝑘=1

𝑑𝑘(||𝑋𝑘+1||2 + ||𝑋𝑘||2) = 𝑑1||𝑋1||2 +
+∞∑︁
𝑘=1

(𝑑𝑘 + 𝑑𝑘+1)||𝑋𝑘+1||2,

where 𝑋𝑘 satisfies the vector equation (37).
Let us make the substitution

𝑍𝑘 = 𝑟𝑘+1𝑋𝑘+1

in the system of vector difference equations (37). As a result the latter system is reduced to
the form:

𝑍𝑘+1

𝑟𝑘+2𝑑𝑘+1

− 1

𝑟𝑘+1

[𝒜𝑘 + (
1

𝑑𝑘
+

1

𝑑𝑘+1

)𝐼]𝑍𝑘 +
𝑍𝑘−1

𝑟𝑘𝑑𝑘
= 0, 𝑘 = 1, 2, . . . . (39)

Multiplying every equation of the system (39) by − 1
𝑟𝑘+1

, we obtain the symmetric system (34).

Thus, any solution 𝑦(𝑥) of Equation (35) belongs to the space ℒ2
𝑛(𝑅+) if and only if any

solution 𝑍𝑘 of the difference equation (34) belongs to the space 𝑙2𝑛. Theorem 3 is proved.

Theorem 3 claims that for the operator 𝐿0, generated by the expression (33), the limit circle
case is realized if and only if the deficiency numbers of the difference operator, generated by
the generalized Jacobian matrix of the form

𝐽 =

⎛⎜⎜⎝
𝐴0 𝐵0 0 0 . . .
𝐵*

0 𝐴1 𝐵1 0 . . .
0 𝐵*

1 𝐴2 𝐵2 . . .
...

...
...

...
. . .

⎞⎟⎟⎠ ,
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in the space 𝑙2𝑛, where 𝐴0, 𝐵0 are arbitrary quadratic real symmetric matrices of the order 𝑛,
𝐵−1 exists and

𝐴𝑘 =
1

𝑟2𝑘+1

[𝒜𝑘 + (
1

𝑑𝑘
+

1

𝑑𝑘+1

)𝐼], 𝐵𝑘 = − 1

𝑟𝑘+1𝑟𝑘+2𝑑𝑘+1

𝐼, 𝑘 = 1, 2, . . . , (40)

are maximal, i.e. are equal to the number 𝑛. The generalized Jacobian matrices of the form
𝐽 appear in connection with the matrix power moment problem suggested and developed by
M.G. Krein (see, e.g., [19]) and are well investigated. In particular, in the works [20] – [22]
maximality criteria for deficiency numbers and various criteria for realization of maximality
and nonmaximality cases of deficiency numbers for the corresponding difference operators in
terms of elements of the matrix 𝐽 are indicated. Applying these criteria and Theorem 3 in the
given case, one can obtain the maximality and nonmaximality conditions of deficiency numbers
for the operator 𝐿0, generated by the expression (33), in terms of 𝒜𝑘 and 𝑑𝑘. Namely, the
following corollaries are valid.

Corollary 2. Let us assume that one of the following conditions is satisfied:

+∞∑︁
𝑘=1

𝑟𝑘+1𝑟𝑘+2𝑑𝑘+1 = +∞

or
+∞∑︁
𝑘=1

𝑟2𝑘+2𝑟𝑘+3𝑑𝑘+1𝑑𝑘+2

𝑟𝑘+1

||𝒜𝑘 +

(︂
1

𝑑𝑘
+

1

𝑑𝑘+1

)︂
𝐼|| = +∞.

Then, the limit circle case is not realized for the operator 𝐿0.

Indeed, the enumerated conditions is the result of application of Theorem 3 from [20] to
elements of the matrix 𝐽 , defined in (40), according to which a completely indeterminate case
is not realized for the matrix 𝐽, i.e. the deficiency index of the corresponding difference operator
is not maximal. Then, according to Theorem 3, the deficiency index of the differential operator
𝐿0 is not maximal as well.

Corollary 3. Let us assume that elements of the matrix 𝐽 satisfy the following conditions:
𝐼 𝑛4

𝑟𝑘𝑟𝑘+3𝑑𝑘𝑑𝑘+2
6 1

𝑟𝑘+1𝑟𝑘+2𝑑
2
𝑘+1

or 𝑛4

𝑟𝑘𝑟𝑘+3𝑑𝑘𝑑𝑘+2
≥ 1

𝑟𝑘+1𝑟𝑘+2𝑑
2
𝑘+1

for all 𝑘 = 1, 2, ...,

𝐼𝐼
+∞∑︀
𝑘=1

𝑟𝑘+1𝑟𝑘+2𝑑𝑘+1 < +∞, 𝐼𝐼𝐼
+∞∑︀
𝑘=1

𝑟𝑘+2𝑑𝑘+1

𝑟𝑘+1
||𝒜𝑘 +

(︁
1
𝑑𝑘

+ 1
𝑑𝑘+1

)︁
𝐼|| < +∞.

Then, the limit circle case is realized for the operator 𝐿0.

Indeed, as well as in Corollary 2, Conditions 1–3 are a result of the direct application of
Corollary 1 from [22] and Theorem 3 to the generalized Jacobian matrix 𝐽 , with matrix elements
defined in (40).
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