THE SINGULAR STURM-LIOUVILLE OPERATORS WITH NONSMOOTH POTENTIALS IN A SPACE OF VECTOR FUNCTIONS

K.A. MIRZOEV, T.A. SAFONOVA

Abstract

This paper deals with the Sturm-Liouville operators generated on the semiaxis by the differential expression $l[y]=-\left(y^{\prime}-P y\right)^{\prime}-P\left(y^{\prime}-P y\right)-P^{2} y$, where ' is a derivative in terms of the theory of distributions and P is a real-valued symmetrical matrix with elements $p_{i j} \in L_{l o c}^{2}\left(R_{+}\right)(i, j=1,2, \ldots, n)$. The minimal closed symmetric operator L_{0} generated by this expression in the Hilbert space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$is constructed. Sufficient conditions of minimality and maximality of deficiency numbers of the operator L_{0} in terms of elements of a matrix P are presented. Moreover, it is established, that the condition of maximality of deficiency numbers of the operator L_{0} (in the case when elements of the matrix P are step functions with an infinite number of jumps) is equivalent to the condition of maximality of deficiency numbers of the operator generated by a generalized Jacobi matrix in the space l_{n}^{2}.

Keywords: Quasi-derivative, Sturm-Liouville operator, singular potential, distributions, generalized Jacobi matrices, deficiency numbers, deficiency index.

1. Introduction

Our goal is to construct a spectral theory of operators generated by an expression of the form

$$
\begin{equation*}
l[y]=-\left(y^{\prime}-P y\right)^{\prime}-P\left(y^{\prime}-P y\right)-P^{2} y, \tag{1}
\end{equation*}
$$

in the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$, where $n \in \mathcal{N}, R_{+}:=[0,+\infty), P:=\left(p_{i j}\right)_{i, j=1}^{n}$ is a real-valued symmetric matrix function with elements measurable on the R_{+}function and satisfying the condition $p_{i j}^{2} \in L_{l o c}^{1}\left(R_{+}\right), \mathcal{L}_{n}^{2}\left(R_{+}\right)$is the Hilbert space of all complex-valued, measurable n-component vector functions, whose sum of squares of components moduli is Lebesgue integrable on R_{+}. The expression (1) defines the minimal closed symmetric operator L_{0} with the domain of definition D_{0} in the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$. We provide a correct definition of the operator in section 2.

On the other hand, let us assume now that ' denotes a derivative in terms of the distribution theory namely, the generalized function $p^{\prime} \psi$, determined by the equality

$$
\left(p^{\prime} \psi\right)(\phi)=-\int_{0}^{+\infty} p(\psi \phi)^{\prime}
$$

for any infinitely differentiable finite function ϕ on $(0,+\infty)$ is considered as the product of the derivative p^{\prime} of the scalar function $p \in L_{l o c}^{2}\left(R_{+}\right)$by locally absolutely continuous scalar function ψ as usually. Then, let us define the product of the matrix P^{\prime}, whose elements are generalized functions $p_{i j}^{\prime}$, by the vector-function $y \in D_{0}$ as an n-component vector-function $P^{\prime} y$, whose coordinate of the number i equals $p_{i 1}^{\prime} y_{1}+p_{i 2}^{\prime} y_{2}+\ldots+p_{i n}^{\prime} y_{n}(i=1,2, \ldots, n)$. Then, in terms of

[^0]the distribution theory, the following natural equality becomes obvious: $(P y)^{\prime}=P^{\prime} y+P y^{\prime}$. Due to this equality the operator L_{0} generated by the expression (1) in the Hilbert space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$ can be understood as an operator generated by the expression
\[

$$
\begin{equation*}
l[y]=-y^{\prime \prime}+P^{\prime} y \tag{2}
\end{equation*}
$$

\]

in the same space.
The above definition of the operator L_{0} generated by the expression (2) with the matrix potential-distribution gives us a possibility to include it into the class of operators generated by quasi-differential expressions with locally summable coefficients in the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$and thus, it allows us to construct the spectral theory of this operator.

Note that problems connected with investigation of the scalar Sturm-Liouville operator with a short-range potential (δ-function type) appeared in physical literature. Mathematical investigation of such physical models was started in the 60 ies of the last century in the works [1], [2]. The modern state and new trends in developing spectral theory of such operators is described in the monographs [3], [4]. Meanwhile, the correct definition of the Sturm-Liouville operator with a scalar potential-distribution of the first order was given for the first time in the works [5], [6] apparently by several equivalent ways. Spectral properties of such operators were investigated rather thoroughly in the same works especially for the case of a finite interval. We used one of approaches suggested in these works while determining the operator L_{0} generated by the expression (2). It should also be mentioned that the recent works [7], [8] contain a detailed spectral analysis of operators generated by an expression of the form (2) for the case when $n=1$ and P is a step function with an infinite number of jumps on a semi-axis.

The present paper is devoted to construction of the spectral theory of the operator L_{0} in particular, to determining the deficiency numbers of the operator in terms of the elements $p_{i j}$ of the matrix P. Theorems 1 and 2 give sufficient conditions for realization of maximality and, accordingly, minimality of deficiency numbers of the operator L_{0}. Theorem 3 claims that the maximality condition for deficiency numbers of the operator L_{0} (in case when elements of the matrix P are step functions with an infinite number of jumps) is equivalent to the maximality condition of deficiency numbers of the operator generated by a generalized Jacobian matrix in the space l_{n}^{2}. Some corollaries of these theorems are given and the corresponding examples are constructed. Note that a part of the obtained results is new for the scalar case as well.

2. Quasi-DERIVATIVES and quasi-Differential operators. Deficiency indices.

Let us assume that real-valued functions $p_{i j}(i, j=1,2, \ldots, n)$, which are elements of the matrix-function P, are defined on the semi-axis R_{+}and satisfy the following conditions:
a) $p_{i j}=p_{j i}$;
b) $p_{i j}^{2} \in L^{1}(\alpha, \beta)$ for any $\alpha, \beta \in R_{+}$, i.e. $p_{i j}^{2}$ are locally absolutely integrable on $R_{+}\left(p_{i j}^{2} \in\right.$ $\left.L_{l o c}^{1}\left(R_{+}\right)\right)$.
Let us determine the first quasi-derivative of the given locally absolutely continuous vectorfunction $y(x)=\left(y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right)^{t}\left(y \in A C_{\text {loc }}\left(R_{+}\right) ; t\right.$ is the transportation symbol, assuming that $y_{P}^{[1]}=y^{\prime}-P y$. Then, regarding that the vector function $y_{P}^{[1]}$ is already defined and is locally absolutely continuous, let us determine the second quasi-derivative of the vectorfunction y, assuming that $y_{P}^{[2]}:=\left(y_{P}^{[1]}\right)^{\prime}+P y_{P}^{[1]}+P^{2} y$, and the quasi-differential expression:

$$
\begin{equation*}
l[y](x):=-y_{P}^{[2]}(x), \quad x \in R_{+} . \tag{3}
\end{equation*}
$$

Note that, the condition b) provides the validity of the existence and uniqueness theorem for solutions of the system of first-order differential equations

$$
Y^{\prime}=F Y,
$$

corresponding to equation $l[y]=0$, and the condition a) entails that the following matrix identity holds:

$$
\begin{equation*}
F=-J^{-1} F^{*} J, \tag{4}
\end{equation*}
$$

where the matrices F and J have the form $F:=\left(\begin{array}{cc}P & I \\ -P^{2} & -P\end{array}\right), J:=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ in the block representation, and $F^{*}=\left(\begin{array}{cc}P & -P^{2} \\ I & -P\end{array}\right)$ is a matrix conjugate to F, and I is a unit matrix of the order n here and in what follows.
Thus, the definition range Δ of the expression $l[y]$ is a set of all locally absolutely continuous vector-functions y on R_{+}such that the vector function $y_{P}^{[1]}$ ia also locally absolutely continuous on R_{+}. Now let us prove that the following lemma holds.

Lemma 1. (The Green formula) Let P be a quadratic matrix of the order $n(n \geq 1)$, satisfying the conditions a) and b). Then, for any two vector functions $u, v \in \Delta$ and for any two numbers α and β such that $0 \leq \alpha \leq \beta<\infty$, the formula

$$
\begin{equation*}
\int_{\alpha}^{\beta}\{(l[u](x), v(x))-(u(x), l[v](x))\} d x=[u(x), v(x)](\beta)-[u(x), v(x)](\alpha) \tag{5}
\end{equation*}
$$

holds. Here $(g, h)=\sum_{s=1}^{n} g_{s} \overline{h_{s}}$ is a scalar product of the vectors g and h, and the bilinear form $[u, v]$ is defined by the equality: $[u, v](x):=\left(u^{[1]}(x), v(x)\right)-\left(u(x), v^{[1]}(x)\right)$.

Proof. Let $u, v \in \Delta$. Then, there is a pair of vector-functions h, g with locally summable on R_{+}components such that

$$
\begin{equation*}
l[u]=g \quad \text { and } \quad l[v]=h . \tag{6}
\end{equation*}
$$

Conditions (6) can be written in the matrix form:

$$
\begin{equation*}
U^{\prime}=F U+G \quad \text { and } \quad V^{\prime}=F V+H \tag{7}
\end{equation*}
$$

where the matrix F is defined above and $2 n$-dimensional vector columns U, V, G, H have the form: $U:=\left(u, u^{[1]}\right)^{t}, V=:\left(v, v^{[1]}\right)^{t}, G=:(0, l[u])^{t}, H=:(0, l[v])^{t}$ (Recall that quasi-derivatives are determined by means of the matrix P).
Multiplying both equalities (7) in the left-hand side by the constant matrix J (see above) and invoking the symmetry condition (4), we obtain the following matrix equalities

$$
(J U)^{\prime}=-F^{*} J U+J G, \quad(J V)^{\prime}=-F^{*} J V+J H
$$

Then, let us differentiate the scalar product $(J U, V)$:

$$
\begin{gathered}
(J U, V)^{\prime}=\left((J U)^{\prime}, V\right)+\left(J U, V^{\prime}\right)= \\
\left(-F^{*} J U+J G, V\right)+(J U, F V+H)=(J G, V)+(J U, H),
\end{gathered}
$$

where

$$
\begin{gathered}
(J U, V)=\sum_{j=0}^{n}\left\{u_{j} \overline{v_{j}^{[1]}}-u_{j}^{[1]} \overline{v_{j}}\right\}=\left(u, v^{[1]}\right)-\left(u^{[1]}, v\right)=-[u, v], \\
(J G, V)=-\sum_{j=0}^{n} l_{j}[u] v_{j}=-(l[u], v)
\end{gathered}
$$

and

$$
(J U, H)=\sum_{j=0}^{n} u_{j} \overline{l_{j}[v]}=(u, l[v])
$$

where l_{j} is the j th component of the vector l. Thus, we have proved that

$$
(l[u], v)-(u, l[v])=[u, v]^{\prime} .
$$

It remains only to integrate the resulting equality. Lemma 1 is proved.
Due to the formula (5), the expression $l[y]$ is said to be a symmetric (formally conjugate) vector quasi-differential expression of the second order.

Let us denote by D_{0}^{\prime} the set of all complex valued vector functions from Δ that are finite on $(0,+\infty)$. Repeating the same reasoning as in the scalar case (see [9], p. 133), and applying the Green formula it is established that the set D_{0}^{\prime} is dense everywhere in $\mathcal{L}_{n}^{2}\left(R_{+}\right)$, and the expression l determines on the set D_{0}^{\prime} a symmetric (open) operator in $\mathcal{L}_{n}^{2}\left(R_{+}\right)$with the definition range D_{0}^{\prime} by the formula $L_{0}^{\prime}=l[y]$. Let us denote by the symbols L_{0}, and D_{0} the closure of this operator, and the range of its definition, respectively. Then, we denote by $n_{+}\left(n_{-}\right)$the maximal number of linearly independent solutions to the equation

$$
\begin{equation*}
l[y]=\lambda y \tag{8}
\end{equation*}
$$

that belong to the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$when $\Im \lambda>0(\Im \lambda<0)$. The numbers n_{+}and n_{-}coincide with the deficiency numbers of the minimal closed symmetric operator L_{0} (see [10]), preserve their values in semi-planes, are equal to each other and are enclosed between n and $2 n$.

Indeed, the fact that the numbers n_{+}and n_{-}cannot be smaller than n is proved similarly to Theorem 2 in [11] (this fact can also be established on the basis of S.A. Orlov's results [12]); and the fact that these numbers cannot be larger than $2 n$ is evident.

Now let us demonstrate that $n_{+}=n_{-}$. Let an n-component vector function y be a solution to Equation (8), belonging to the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$(for the sake of definiteness we assume that $\Im \lambda>0$). In the equality (8), let us turn to the conjugate equation

$$
\begin{equation*}
l[\bar{y}]=\lambda_{1} \bar{y}, \tag{9}
\end{equation*}
$$

where $\lambda_{1}=\bar{\lambda}$ and $\Im \lambda_{1}<0$. Since $\int_{0}^{+\infty}\|y(x)\|^{2} d x=\int_{0}^{+\infty}\|\bar{y}(x)\|^{2} d x$, it means that as soon as y is a solution to Equation (8) (with $\Im \lambda>0$), belonging to the space $\mathcal{L}_{n}^{2}\left(R_{+}\right), \bar{y}$ becomes a solution of the same equation (with $\Im \lambda<0$), belonging to $\mathcal{L}_{n}^{2}\left(R_{+}\right)$.

It follows from the above reasoning that the pair of numbers $\left(n_{+}, n_{-}\right)$, called the deficiency index of the operator L_{0}, can take one of their the values: $(n, n),(n+1, n+1), \ldots,(2 n, 2 n)$. By analogy to the spectral theory of scalar differential Sturm-Liouville operators on a semi-axis, it is said that for the operator L_{0} in the first case, and in the latter case the cases of the limit point, and of the limit circle are realized, respectively (see, e.g., [13]). Meanwhile, matrix circles on the set of real symmetric matrices of the order n appear to be analogues of the Weil circles on a complex plane (see [11]).

3. Asymptotic integration of systems of quasi-differential equations

Let the matrix $P^{(1)}:=\left(p_{i j}^{(1)}\right)$ possess the same properties as the matrix $P: p_{i j}=p_{j i}$ and $\left(p_{i j}^{(1)}\right)^{2} \in L_{l o c}^{1}\left(R_{+}\right)(i, j=1,2, \ldots, n)$, and n-component vector functions y and $y_{P(1)}^{[1]}:=y^{\prime}-P^{(1)} y$ be determined and be locally absolutely continuous on the semi-axis. The mentioned conditions allow us to define the symmetric quasi-differential expression

$$
\begin{equation*}
s[y]:=-\left(y_{P^{(1)}}^{[1]}\right)^{\prime}-P^{(1)} y_{P^{(1)}}^{[1]}-\left(P^{(1)}\right)^{2} y \tag{10}
\end{equation*}
$$

as well as in the case of the expression l. The expression (10) defines the minimal closed symmetric operator S_{0} in the Hilbert space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$. Let us denote by \mathcal{D}_{0} the definition range of the operator S_{0}.

Further, let us consider the symmetric quasi-differential vector equations

$$
\begin{equation*}
l[y]=-\left(y_{P}^{[1]}\right)^{\prime}-P y_{P}^{[1]}-P^{2} y=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
s[y]=-\left(y_{P^{(1)}}^{[1]}\right)^{\prime}-P^{(1)} y_{P^{(1)}}^{[1]}-\left(P^{(1)}\right)^{2} y=0 . \tag{12}
\end{equation*}
$$

Manifestly, every one of them is equivalent to the system of differential equations of the first order

$$
\binom{y}{y_{Q}^{[1]}}^{\prime}=\left(\begin{array}{cc}
Q & E \tag{13}\\
-Q^{2} & -Q
\end{array}\right)\binom{y}{y_{Q}^{[1]}},
$$

where $Q=P$ in case of Equation (11), and in case of Equation (12) $Q=P^{(1)}$, respectively.
The equivalence (11) (or (12)) and (13) is understood in the sense that if an n-component vector-function y is a solution (11) (or (12)), then a $2 n$-component vector function $Y=\left(y, y_{Q}^{[1]}\right)^{t}$ is a solution (13) and vice versa, if $Y:=\left(Y_{1}, Y_{2}, \ldots, Y_{2 n}\right)^{t}$ is a solution to the system (13), then $y:=y_{0}=\left(y_{1}^{0}, y_{2}^{0}, \ldots, y_{n}^{0}\right)$ is a solution to Equation (11) (or (12)) and

$$
Y_{k}= \begin{cases}y_{k}, & k=1,2, \ldots, n \\ \left(y_{k-n}\right)_{Q}^{[1]}, & k=n+1, n+2, \ldots, 2 n\end{cases}
$$

(for more details see, e.g., [14, Ch. V]).
Denote by T the fundamental matrix of the linear homogeneous system (13) with $Q=P^{(1)}$. Obviously, the columns of the matrix T are $2 n$-dimensional columns of the form $\left(u_{j}, u_{j}^{[1]}\right)^{t}$ ($j=1,2, \ldots, 2 n$), where u_{j} are linearly independent vector solutions of Equation (12) (recall that quasi-derivatives are determined by means of the matrix $P^{(1)}$). The following theorem holds.

Theorem 1. . Let the matrices $P, P^{(1)}$ and T be such that

$$
\int_{0}^{+\infty}\left\|T^{-1}\left(\begin{array}{cc}
P-P^{(1)} & 0 \tag{14}\\
-P^{2}+\left(P^{(1)}\right)^{2} & -P+P^{(1)}
\end{array}\right) T\right\|^{1}<+\infty .
$$

Then, for any complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}$, Equation (11) has the solution $\phi(x)$, satisfying the conditions:

$$
\begin{gather*}
\phi(x)=\sum_{j=1}^{2 n}\left[\alpha_{j}+a_{j}(x)\right] u_{j}, \\
\phi_{P}^{[1]}(x)=\sum_{j=1}^{2 n}\left[\alpha_{j}+a_{j}(x)\right]\left(u_{j}\right)_{P^{(1)}}^{[1]}(x), \tag{15}
\end{gather*}
$$

where $a_{i}(x) \rightarrow o$ when $x \rightarrow+\infty(i=1,2, \ldots, 2 n)$.
Proof. In the system (13) with $Q=P$ let us carry out the linear substitution

$$
\begin{equation*}
Y=T z, \tag{16}
\end{equation*}
$$

where the vector column z has the form $z=\left(z_{1}, z_{2}, \ldots, z_{2 n}\right)^{t}$, and differentiate

$$
Y^{\prime}=T^{\prime} z+T z^{\prime} .
$$

Then, take into account that the matrix T is a fundamental matrix of solutions of the system (13) with $Q=P^{(1)}$, namely:

$$
T^{\prime}=\left(\begin{array}{cc}
P^{(1)} & I \\
-\left(P^{(1)}\right)^{2} & -P^{(1)}
\end{array}\right) T
$$

[^1]As a result of the mentioned transformations the system takes the form:

$$
z^{\prime}=T^{-1}\left(\begin{array}{cc}
P-P^{(1)} & 0 \tag{17}\\
-P^{2}+\left(P^{(1)}\right)^{2} & -P+P^{(1)}
\end{array}\right) T z .
$$

By virtue of the assumption (14), one can apply the result of the problem 1.4 (c) from [15, Ch. X, $\S 1$, p. 331] to the system (17) namely, for any complex numbers $\alpha_{i}(\mathrm{i}=1,2, \ldots, 2 \mathrm{n})$ the system (17) has a unique solution, for which the following asymptotic formulae hold:

$$
\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{2 n}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1}+a_{1}(x) \\
\alpha_{2}+a_{2}(x) \\
\vdots \\
\alpha_{2 n}+a_{2 n}(x)
\end{array}\right)
$$

where $a_{i}(x) \rightarrow o$ when $x \rightarrow+\infty(i=1,2, \ldots, 2 n)$.
It remains only to take into account the relation (16) between the vector column z and the solution of the initial system ϕ. Theorem 1 is proved.

Remark 1. If we make the supplementary hypothesis, that the matrix T is determined by means of the initial data $T(0)=I_{2 n}$ then the inverse matrix to T is determined by the correlation

$$
T^{-1}(x)=-\left(J T^{*} J\right)(x)
$$

where $I_{2 n}$ is a unit matrix of the order $2 n$, and the constant matrix J is determined in (4).
Proof. Firs of all note that the symmetry of the matrix $P^{(1)}$ (as well as in case of the matrix $P)$ entails symmetry of the quasi-differential expression $s[y]$, namely:

$$
\begin{equation*}
F_{1}(x)=-J^{-1} F_{1}^{*}(x) J, \tag{18}
\end{equation*}
$$

where the matrix F_{1} and the matrix F_{1}^{*} conjugate to it have the following form in the block representation:

$$
F_{1}:=\left(\begin{array}{cc}
P^{(1)} & I \\
-\left(P^{(1)}\right)^{2} & -P^{(1)}
\end{array}\right), \quad F_{1}^{*}=\left(\begin{array}{cc}
P^{(1)} & -\left(P^{(1)}\right)^{2} \\
I & -P^{(1)}
\end{array}\right) .
$$

The definition provides that

$$
T^{-1}(x) T(x)=I_{2 n} .
$$

Differentiating the equality and invoking the fact that T is a fundamental matrix of solutions to the system (13) with $Q=P^{(1)}$, we express $\left(T^{-1}(x)\right)^{\prime}$

$$
\left(T^{-1}(x)\right)^{\prime}=-T^{-1}(x) F_{1}(x)
$$

Let us turn to conjugate matrices

$$
\begin{equation*}
\left(\left(T^{*}\right)^{-1}(x)\right)^{\prime}=-F_{1}^{*}(x)\left(T^{*}\right)^{-1}(x) \tag{19}
\end{equation*}
$$

take into account the condition (18) and assume that $\left(T^{*}\right)^{-1}(x)=J \Psi(x)$. This yields a matrix differential equation

$$
\Psi^{\prime}(x)=F_{1}(x) \Psi(x)
$$

Thus, the matrix $\Psi(x)$ defined above is a fundamental matrix of the linear homogeneous system (13) with $Q=P^{(1)}$ and is connected to the matrix $T(x)$ and some constant matrix C by the following equality

$$
\Psi(x)=T(x) C
$$

(see, e.g., [16],p. 82, Theorem 2.3).
On the other hand, by virtue of definition of the matrix $\Psi(x)$ we have:

$$
\left(T^{*}\right)^{-1}(x)=J T(x) C
$$

Meanwhile, the auxiliary initial condition $T(0)=I_{2 n}$ entails the matrix equality $C=J^{-1}$. Thus, we obtain that

$$
\left(T^{*}\right)^{-1}(x)=J T(x) J^{-1} .
$$

Further, the definition of the matrix J entails $J^{-1}=J^{*}=-J$. Hence,

$$
\left(T^{*}\right)^{-1}(x)=-J T(x) J .
$$

It remains to turn to conjugate matrices. Remark 1 is proved.
Corollary 1. Let us assume that conditions of Theorem 1 hold. Then, the limit circle case is realized for the operator L_{0} if and only if this case is realized for the operator S_{0} as well.

Proof. Let $k, j \in\{1,2, \ldots, 2 n\}$. Let us take $\alpha_{k}=\delta_{k j}$ (δ is the Kronecker symbol) from Theorem 1, as constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}$ and determine the vector-functions v_{j} assuming that $v_{j}=\phi(x)$. Then, by virtue of the formulae (15):

$$
v_{j}(x)=\left(1+a_{j}(x)\right) u_{j}(x)+\sum_{k=1, k \neq j}^{2 n} a_{k}(x) u_{k}(x),
$$

where $u_{j}(x)$ are linearly independent vector solutions of Equation (12) and $a_{j}(x)=o(1)$ when $x \rightarrow+\infty$.
Denote by $T^{(1)}$ the matrix with $2 n$-dimensional columns being the columns $\left(v_{j},\left(v_{j}\right)_{P}^{[1]}\right)^{t}(j=$ $1,2, \ldots, 2 n)$. Straightforward calculations demonstrate that

$$
\operatorname{det} T^{(1)}=\left(1+\sum_{k=1}^{2 n} a_{k}(x)\right) \operatorname{det} T,
$$

where $\operatorname{det} T \neq 0$. Thus, the system of vectors $v_{j}(j=1,2, \ldots, 2 n)$ is linearly independent. On the other hand, simple calculations show that

$$
\sum_{j=1}^{2 n}\left\|v_{j}\right\|^{2}=\sum_{j=1}^{2 n}\left\|u_{j}\right\|^{2}+o\left(\sum_{j=1}^{2 n}\left\|u_{j}\right\|^{2}\right)
$$

and hence,

$$
\lim _{x \rightarrow+\infty} \frac{\sum_{j=1}^{2 n}\left\|v_{j}\right\|^{2}}{\sum_{j=1}^{2 n}\left\|u_{j}\right\|^{2}}=1 .
$$

Thus, the improper integrals

$$
\int_{0}^{+\infty} \sum_{j=1}^{2 n}\left\|v_{j}\right\|^{2} \text { and } \int_{0}^{+\infty} \sum_{j=1}^{2 n}\left\|u_{j}\right\|^{2}
$$

converge or diverge simultaneously. Corollary (1) is proved.

4. Examples of realization of the limit circle case for the operator L_{0}

Let $n=2$ and $\alpha>2,0<\beta<\alpha$. We define the matrix $P^{(1)}$, assuming that

$$
P^{(1)}=\left(\begin{array}{cc}
-\frac{x^{\alpha+1}}{\alpha+1} & \frac{x^{\beta+1}}{\beta+1} \tag{20}\\
\frac{x^{\beta+1}}{\beta+1} & -\frac{x^{\alpha+1}}{\alpha+1}
\end{array}\right) .
$$

Then, the differential operator S_{0}, generated by the expression s in the Hilbert space $\mathcal{L}_{2}^{2}\left(R_{+}\right)$, can be treated as an operator generated by the expression

$$
-y^{\prime \prime}+\left(P^{(1)}\right)^{\prime} y
$$

in the same space $\mathcal{L}_{2}^{2}\left(R_{+}\right)$, where $\left(P^{(1)}\right)^{\prime}(x)=\left(p_{i j}^{1}\right)^{\prime}(x)(i, j=1,2)$ is a derivative matrix $P^{(1)}(x)$, and the homogeneous quasi-differential equation (12) coincides with the equation

$$
-y^{\prime \prime}-\left(\begin{array}{cc}
x^{\alpha} & -x^{\beta} \tag{21}\\
-x^{\beta} & x^{\alpha}
\end{array}\right) y=0
$$

The following lemma holds.
Lemma 2. Equation (21) has four linearly independent solutions $y^{j}(x)(j=1,2,3,4)$ such that the following asymptotic formulae hold when $x \rightarrow+\infty$:

$$
\begin{align*}
& y^{1}(x), y^{2}(x) \sim \psi_{1}(x) \exp \int_{x_{0}}^{x} \pm i\left(s^{\alpha}+s^{\beta}\right)^{1 / 2} d s \\
& y^{3}(x), y^{4}(x) \sim \psi_{2}(x) \exp \int_{x_{0}}^{x} \pm i\left(s^{\alpha}-s^{\beta}\right)^{1 / 2} d s \tag{22}
\end{align*}
$$

where $\psi_{1}(x)=\frac{1}{2\left(x^{\alpha}+x^{\beta}\right)^{1 / 4}}\binom{1}{-1}, \psi_{2}(x)=\frac{1}{2\left(x^{\alpha}-x^{\beta}\right)^{1 / 4}}\binom{1}{1}$.
Proof. Manifestly, the vector equation (21) is equivalent to the system of two scalar differential equations of the second order

$$
\left\{\begin{array}{r}
z^{\prime \prime}=\left(x^{\beta}-x^{\alpha}\right) z \tag{23}\\
t^{\prime \prime}=-\left(x^{\beta}+x^{\alpha}\right) t
\end{array}\right.
$$

where $z=y_{1}+y_{2}$ and $t=y_{1}-y_{2}$. For Equations (23) with $x \rightarrow+\infty$ asymptotic formulae of the Liouville-Green type (see, e.g., [17], p. 68) are well known, namely

$$
\begin{equation*}
z_{1}, z_{2} \sim\left(x^{\alpha}-x^{\beta}\right)^{-1 / 4} \exp \left(\pm i \int_{x_{o}}^{x}\left(s^{\alpha}-s^{\beta}\right)^{1 / 2} d s\right) \tag{24}
\end{equation*}
$$

and accordingly

$$
\begin{equation*}
t_{1}, t_{2} \sim\left(x^{\alpha}+x^{\beta}\right)^{-1 / 4} \exp \left(\pm i \int_{x_{o}}^{x}\left(s^{\alpha}+s^{\beta}\right)^{1 / 2} d s\right) \tag{25}
\end{equation*}
$$

It remains to take into account the relations between z, t and y. Lemma (2) is proved.
On the basis of the asymptotic formulae (22) and conditions on the coefficients α and β, one can make the conclusion that all solutions to Equation (21) belong to the space $\mathcal{L}_{2}^{2}\left(R_{+}\right)$, i.e. the limit circle case is realized for the operator S_{0}.

Let $x_{n}(n=0,1, \ldots)$ be an increasing sequence of positive numbers such that $x_{0}=$ $0, \lim _{n \rightarrow+\infty} x_{n}=+\infty$. Let us choose an arbitrary point $\nu_{k} \in\left[x_{k} ; x_{k+1}\right)$ and determine elements $p_{i j}(x)$ of the matrix P, assuming that: $p_{11}(x)=p_{22}(x)=-\frac{\nu_{k}^{\alpha+1}}{\alpha+1}, p_{12}(x)=p_{21}(x)=\frac{\nu_{k}^{\beta+1}}{\beta+1}$ when $x \in\left[x_{k}, x_{k+1}\right)$. The following lemma holds.

Lemma 3. Let us assume that the above conditions are satisfied and

$$
\begin{gather*}
\sum_{k=1}^{+\infty} x_{k+1}^{\alpha}\left(x_{k+1}-x_{k}\right)^{2}<+\infty, \tag{26}\\
\sum_{k=1}^{+\infty} \frac{x_{k+1}^{2 \alpha+1}}{\left(x_{k}^{\alpha}+x_{k}^{\beta}\right)^{1 / 2}}\left(x_{k+1}-x_{k}\right)^{2}<+\infty . \tag{27}
\end{gather*}
$$

Then, matrices P and $P^{(1)}$ satisfy the condition (14) of Theorem 1.
Proof. The asymptotic formulae for the matrix T and hence, for the matrix T^{-1} when $x \rightarrow+\infty$ are written out explicitly by virtue of the formulae (22). Meanwhile, easy but cumbersome calculations show that the convergence of the following integrals provides the convergence of the integral (14)
a) $\int_{x_{0}}^{+\infty}\left|p_{i j}(x)-p_{i j}^{(1)}(x)\right| d x, \quad i, j=1,2$,

ק) $\int_{x_{0}}^{+\infty} \frac{\left|p_{i j}^{2}(x)-\left(p_{i j}^{(1)}\right)^{2}(x)\right|}{\left(x^{\alpha}+x^{\beta}\right)^{1 / 2}} d x, \quad i, j=1,2$,
$\gamma) \int_{x_{0}}^{+\infty} \frac{\left|p_{i 2}\left(p_{11}+p_{22}\right)-p_{12}^{(1)}\left(p_{11}^{(1)}+p_{22}^{(1)}\right)\right|}{\left(x^{\alpha}+x^{\beta}\right)^{1 / 2}} d x$,
where $x_{0}>1$.
On the other hand, one can readily see that when $x, \nu_{k} \in\left[x_{k}, x_{k+1}\right)$ and with the above choice of the matrices P and $P^{(1)}$, the following inequalities hold

$$
\begin{gather*}
\left|p_{i j}(x)-p_{i j}^{(1)}(x)\right|=\left|p_{i j}^{(1)}\left(\nu_{k}\right)-p_{i j}^{(1)}(x)\right| \leqslant\left|p_{i j}^{(1)}\left(x_{k+1}\right)-p_{i j}^{(1)}\left(x_{k}\right)\right| \leqslant \\
\leqslant\left|\left(p_{i j}^{(1)}\right)^{\prime}\left(x_{k+1}\right)\right|\left(x_{k+1}-x_{k}\right)=\left\{\begin{array}{c}
x_{k+1}^{\alpha}\left(x_{k+1}-x_{k}\right), i=j \\
x_{k+1}^{\beta}\left(x_{k+1}-x_{k}\right), i \neq j
\end{array}\right. \tag{28}\\
\left|p_{i j}^{2}(x)-\left(p_{i j}^{(1)}\right)^{2}(x)\right| \leqslant\left|\left(\left(p_{i j}^{(1)}\right)^{2}\right)^{\prime}\left(x_{k+1}\right)\right|\left(x_{k+1}-x_{k}\right)=\left\{\begin{array}{c}
\frac{2 x_{k+1}^{2 \alpha+1}}{\alpha+1}\left(x_{k+1}-x_{k}\right), i=j \\
\frac{2 x_{k+1}^{2 \beta+1}}{\beta+1}\left(x_{k+1}-x_{k}\right), i \neq j
\end{array}\right. \tag{29}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|p_{12}\left(p_{11}+p_{22}\right)(x)-p_{12}^{(1)}\left(p_{11}^{(1)}+p_{22}^{(1)}\right)(x)\right| \leqslant \\
\leqslant\left|\left(p_{12}^{(1)}\left(p_{11}^{(1)}+p_{22}^{(1)}\right)\right)^{\prime}\left(x_{k+1}\right)\right|\left(x_{k+1}-x_{k}\right)=\frac{2(\alpha+\beta+2)}{(\alpha+1)(\beta+1)} x_{k+1}^{\alpha+\beta+1}\left(x_{k+1}-x_{k}\right) . \tag{30}
\end{gather*}
$$

Let us demonstrate now that convergence of the series (26) and (27) is provided by convergence of the integrals $\alpha), \beta), \gamma$). Note that convergence of the integrals $\alpha), \beta), \gamma$) is proved uniformly therefore, we limit ourselves by the Proof of convergence of the integral α) when $i=j=1$.
Indeed,
$\int_{x_{0}}^{+\infty}\left|p_{11}(x)-p_{11}^{(1)}(x)\right| d x \leqslant \sum_{k=k_{0}}^{+\infty} \int_{x_{k}}^{x_{k+1}} x_{k+1}^{\alpha}\left|x_{k+1}-x_{k}\right| \int_{x_{k}}^{x_{k+1}} 1 d x=\sum_{k=k_{0}}^{+\infty} x_{k+1}^{\alpha}\left(x_{k+1}-x_{k}\right)^{2}$. Lemma 3 is proved.

Thus, the statement of Corollary 1 holds for the matrices P and $P^{(1)}$, i.e. the deficiency index of the operator L_{0} is maximal and equals to $(4,4)$.

Summing up the above, it can be mentioned that we constructed examples of realization of the limit circle case for the operator L_{0}, generated by the quasi-differential expression (1) with the matrix P such that

$$
P^{\prime}(x)=\sum_{k=0}^{+\infty}\left(\begin{array}{ll}
\alpha_{k} & \beta_{k} \tag{31}\\
\beta_{k} & \gamma_{k}
\end{array}\right) \delta\left(x-x_{k}\right)
$$

where ' denotes a derivative in the sense of the distribution theory and the constants $\alpha_{k}, \beta_{k}, \gamma_{k}$ are determined by the equalities: $\alpha_{k}=\gamma_{k}=\frac{\nu_{k}^{\alpha+1}-\nu_{k+1}^{\alpha+1}}{\alpha+1}, \beta_{k}=\frac{\nu_{k+1}^{\beta+1}-\nu_{k}^{\beta+1}}{\beta+1}$.

Remark 2. One can take, e.g., a sequence with the general term $x_{k}=\ln k(k=1,2, \ldots)$ as a suitable sequence of the points x_{k}.

Proof. Convergence of the series (26) and (27) is proved likewise. Therefore, let us demonstrate that, e.g., the series (26) converges. Indeed,

$$
\sum_{k=1}^{+\infty} x_{k+1}^{\alpha}\left(x_{k+1}-x_{k}\right)^{2}=\sum_{k=1}^{+\infty} \ln ^{\alpha}(k+1) \ln ^{2} \frac{k+1}{k}
$$

and the latter series converges since $\ln ^{\alpha}(k+1) \ln ^{2} \frac{k+1}{k} \sim \frac{\ln ^{\alpha}(k+1)}{k^{2}}$ when $k \rightarrow+\infty$ and the series $\sum_{k=1}^{+\infty} \frac{\ln \alpha(k+1)}{k^{2}}<+\infty$.

5. The sufficient condition for realization of the limit point case FOR THE OPERATOR L_{0}

Let us denote by O a zero matrix of the order n. As usually, for real symmetric matrices A and B, the inequality $A \geq B$ means that for any $u \in R^{n}$ the inequality $(A u, u) \geq(B u, u)$ is satisfied. The following theorem holds.

Theorem 2. Let us assume that there exists a sequence of pairwise disjoint intervals $\left(a_{k}, b_{k}\right) \subset R_{+}(k=1,2, \ldots)$ such that

1. elements $p_{i j}(i, j=1,2, \ldots, n)$ of the matrix P are absolutely continuous on $\left[a_{k}, b_{k}\right]$;
2. $P^{\prime}(x) \geq O$ when $x \in\left[a_{k}, b_{k}\right]$;
3.

$$
\begin{equation*}
\sum_{k=1}^{+\infty}\left(b_{k}-a_{k}\right)^{2}=+\infty \tag{32}
\end{equation*}
$$

Then $n_{+}=n_{-}=n$.
Indeed, let the elements $p_{i j}$ of the matrix P satisfy the conditions mentioned in the beginning of Section 2 and the conditions $1-3$ of Theorem 2 on the intervals $\left[a_{k}, b_{k}\right]$. Then the quasidifferential expression $l[y]$ coincides with the ordinary vector differential expression (2) on the interval $\left[a_{k}, b_{k}\right]$ when k is fixed. Meanwhile, the Proof of Theorem 2 is conducted repeating almost word for word the reasoning from [18], which demonstrates that the conditions 1-3 provide the validity of this theorem independently of the behaviour of the elements $p_{i j}$ of the matrix P outside $\bigcup_{k=1}^{+\infty}\left[a_{k}, b_{k}\right]$, and is omitted here.
Example 1. Let $0=: x_{0}<x_{1}<x_{2}<\ldots$ and $\lim _{k \rightarrow+\infty} x_{k}=+\infty$. Suppose that $P(x)=C_{k}$ when $x \in\left[x_{k-1}, x_{k}\right)$, where C_{k} is a symmetric real numerical matrix and $\sum_{k=1}^{+\infty}\left(x_{k}-x_{k-1}\right)^{2}=+\infty$. Then, the deficiency index of the operator L_{0} equals (n, n).

Indeed, if $\left[x_{k-1}, x_{k}\right)$ is divided into three equal parts and the middle third of this interval is taken as $\left[a_{k}, b_{k}\right]$, then all conditions of Theorem 2 become satisfied.

6. Special case of the operator L_{0} and the generalized Jacobi matrix

Let us assume that x_{k} and C_{k} are the same as in Example 1, i.e. $x_{k}(k=0,1, \ldots)$ is an increasing sequence of positive numbers such that $x_{0}=0$ and $\lim _{n \rightarrow+\infty} x_{n}=+\infty, C_{k}$ is a symmetric real numerical matrix, and let $\mathcal{A}_{k}=\left(\alpha_{i j}^{k}\right)_{i, j=1}^{n}:=C_{k+1}-C_{k}$. In this case, the expression (2) takes the following form:

$$
\begin{equation*}
l[y]=-y^{\prime \prime}+\sum_{k=1}^{+\infty} \mathcal{A}_{k} \delta\left(x-x_{k}\right) y . \tag{33}
\end{equation*}
$$

The following theorem holds.
Theorem 3. Minimal closed symmetric operator L_{0}, generated by the expression (33) in the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$has the deficiency index $(2 n, 2 n)$ if and only if all solutions of the difference vector equation

$$
\begin{equation*}
-\frac{Z_{k+1}}{r_{k+1} r_{k+2} d_{k+1}}+\frac{1}{r_{k+1}^{2}}\left[\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right] Z_{k}-\frac{Z_{k-1}}{r_{k} r_{k+1} d_{k}}=0, \quad k=1,2, \ldots, \tag{34}
\end{equation*}
$$

where $d_{k}:=x_{k}-x_{k-1}, r_{k+1}:=\sqrt{d_{k+1}+d_{k}}$, belong to the space l_{n}^{2}.
Proof. Consider a homogeneous system of linear differential equations of the second order

$$
\begin{equation*}
-y^{\prime \prime}+\sum_{k=1}^{+\infty} \mathcal{A}_{k} \delta\left(x-x_{k}\right) y=0 \tag{35}
\end{equation*}
$$

Manifestly, the vector-functions $u_{k}^{1}(x), u_{k}^{2}(x), \ldots, u_{k}^{2 n}(x), x \in R_{+}$, when $x \in\left(x_{k-1}, x_{k}\right)$ determined by the equalities

$$
u_{k}^{i}=\frac{1}{\sqrt{d_{k}}} e_{i}, \quad u_{k}^{i+n}=\left[-\frac{\sqrt{3}}{\sqrt{d_{k}}}+\frac{2 \sqrt{3}}{d_{k} \sqrt{d_{k}}}\left(x-x_{k-1}\right)\right] e_{i}, \quad i=1,2, \ldots, n,
$$

where $x_{0}=0, e_{i}$ is a canonical basis of the space R^{n}, generate an orthonormal system of solutions to Equation (35). Therefore, an arbitrary solutions $y(x)$ to the system (35) is a locally absolutely continuous function on R_{+}and has the form

$$
y(x)=A_{k}^{1} u_{k}^{1}(x)+A_{k}^{2} u_{k}^{2}(x)+\ldots+A_{k}^{2 n} u_{k}^{2 n}(x)
$$

when $x \in\left(x_{k-1}, x_{k}\right)$. Hence,

$$
\begin{equation*}
\int_{0}^{+\infty}\|y(x)\|^{2} d x=\sum_{k=1}^{+\infty} \int_{x_{k-1}}^{x_{k}}\|y(x)\|^{2} d x=\sum_{k=1}^{+\infty}\left\{\left(A_{k}^{1}\right)^{2}+\left(A_{k}^{2}\right)^{2}+\ldots+\left(A_{k}^{2 n}\right)^{2}\right\} \tag{36}
\end{equation*}
$$

On the other hand, arbitrary solution of the system (35) is a continuous piecewise linear function, i.e. $y=X_{k}+Y_{k}\left(x-x_{k-1}\right)$ when $x \in\left(x_{k-1}, x_{k}\right)$, where coordinates with the number i of vector columns X_{k} and Y_{k} are determined by equalities

$$
X_{k}^{i}=\frac{1}{\sqrt{d_{k}}}\left(A_{k}^{i}-\sqrt{3} A_{k}^{i+n}\right), \quad Y_{k}^{i}=\frac{2 \sqrt{3}}{d_{k}^{3 / 2}} A_{k}^{i+n}, \quad i=1,2, \ldots, n
$$

Now let us take into account the continuity condition of the vector function y and the condition of absolute continuity of its first quasi-derivative generated by means of the matrix $P, y_{P}^{[1]}=$ $y^{\prime}-P y$, i.e. $y\left(x_{k}-\right)=y\left(x_{k}+\right)=y\left(x_{k}\right)$ and $y_{P}^{[1]}\left(x_{k}-\right)=y_{P}^{[1]}\left(x_{k}+\right)$. Since $y\left(x_{k}-\right)=X_{k}+Y_{k} d_{k}$, and $y\left(x_{k}+\right)=X_{k+1}$ then, the first of the mentioned conditions is equivalent to the equality:

$$
X_{k}+Y_{k} d_{k}=X_{k+1}
$$

Likewise, the second condition is equivalent to the correlation

$$
y^{\prime}\left(x_{k}+\right)-y^{\prime}\left(x_{k}-\right)=\mathcal{A}_{k} y\left(x_{k}\right) .
$$

Hence, unifying the results one can make the conclusion that the vector columns X_{k} and Y_{k} satisfy the system of equations

$$
\left\{\begin{array}{r}
X_{k}+Y_{k} d_{k}=X_{k+1} \\
Y_{k+1}-Y_{k}=\mathcal{A}_{k} X_{k+1}
\end{array} \quad k=1,2, \ldots\right.
$$

Excluding Y_{k}, we obtain that the vector X_{k} satisfies the vector difference equation

$$
\begin{equation*}
\frac{1}{d_{k+1}} X_{k+2}-\left[\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right] X_{k+1}+\frac{1}{d_{k}} X_{k}=0, \quad k=1,2, \ldots \tag{37}
\end{equation*}
$$

Now, invoking the connection between X_{k}, Y_{k} and A_{k}, note that

$$
A_{k}^{i}=\frac{\sqrt{d}_{k}}{2}\left(X_{k+1}^{i}+X_{k}^{i}\right), \quad A_{k}^{i+n}=\frac{\sqrt{d}_{k}}{2 \sqrt{3}}\left(X_{k+1}^{i}-X_{k}^{i}\right), \quad i=1,2, \ldots, n, k=1,2, \ldots
$$

One can readily deduce from these formulae that

$$
\begin{align*}
\left(A_{k}^{1}\right)^{2}+\left(A_{k}^{2}\right)^{2} & +\ldots+\left(A_{k}^{2 n}\right)^{2}=\frac{d_{k}}{4}\left(\left\|x_{k}\right\|^{2}+\left\|x_{k+1}\right\|^{2}+2 \sum_{s=1}^{n} x_{k}^{s} \cdot x_{k+1}^{s}\right)+ \tag{38}\\
& +\frac{d_{k}}{12}\left(\left\|x_{k}\right\|^{2}+\left\|x_{k+1}\right\|^{2}-2 \sum_{s=1}^{n} x_{k}^{s} \cdot x_{k+1}^{s}\right)
\end{align*}
$$

The relation (38) entails immediately that the following inequalities hold

$$
\frac{d_{k}}{6}\left\{\left\|X_{k}\right\|^{2}+\left\|X_{k+1}\right\|^{2}\right\} \leq\left(A_{k}^{1}\right)^{2}+\left(A_{k}^{2}\right)^{2}+\ldots+\left(A_{k}^{2 n}\right)^{2} \leq \frac{d_{k}}{2}\left\{\left\|X_{k}\right\|^{2}+\left\|X_{k+1}\right\|^{2}\right\}
$$

Thus, the row in the right-hand side of the equality (36) converges if and only if the following series converges

$$
\sum_{k=1}^{+\infty} d_{k}\left(\left\|X_{k+1}\right\|^{2}+\left\|X_{k}\right\|^{2}\right)=d_{1}\left\|X_{1}\right\|^{2}+\sum_{k=1}^{+\infty}\left(d_{k}+d_{k+1}\right)\left\|X_{k+1}\right\|^{2}
$$

where X_{k} satisfies the vector equation (37).
Let us make the substitution

$$
Z_{k}=r_{k+1} X_{k+1}
$$

in the system of vector difference equations (37). As a result the latter system is reduced to the form:

$$
\begin{equation*}
\frac{Z_{k+1}}{r_{k+2} d_{k+1}}-\frac{1}{r_{k+1}}\left[\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right] Z_{k}+\frac{Z_{k-1}}{r_{k} d_{k}}=0, \quad k=1,2, \ldots \tag{39}
\end{equation*}
$$

Multiplying every equation of the system (39) by $-\frac{1}{r_{k+1}}$, we obtain the symmetric system (34).
Thus, any solution $y(x)$ of Equation (35) belongs to the space $\mathcal{L}_{n}^{2}\left(R_{+}\right)$if and only if any solution Z_{k} of the difference equation (34) belongs to the space l_{n}^{2}. Theorem 3 is proved.

Theorem 3 claims that for the operator L_{0}, generated by the expression (33), the limit circle case is realized if and only if the deficiency numbers of the difference operator, generated by the generalized Jacobian matrix of the form

$$
J=\left(\begin{array}{ccccc}
A_{0} & B_{0} & 0 & 0 & \ldots \\
B_{0}^{*} & A_{1} & B_{1} & 0 & \ldots \\
0 & B_{1}^{*} & A_{2} & B_{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

in the space l_{n}^{2}, where A_{0}, B_{0} are arbitrary quadratic real symmetric matrices of the order n, B^{-1} exists and

$$
\begin{equation*}
A_{k}=\frac{1}{r_{k+1}^{2}}\left[\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right], \quad B_{k}=-\frac{1}{r_{k+1} r_{k+2} d_{k+1}} I, \quad k=1,2, \ldots, \tag{40}
\end{equation*}
$$

are maximal, i.e. are equal to the number n. The generalized Jacobian matrices of the form J appear in connection with the matrix power moment problem suggested and developed by M.G. Krein (see, e.g., [19]) and are well investigated. In particular, in the works [20] - [22] maximality criteria for deficiency numbers and various criteria for realization of maximality and nonmaximality cases of deficiency numbers for the corresponding difference operators in terms of elements of the matrix J are indicated. Applying these criteria and Theorem 3 in the given case, one can obtain the maximality and nonmaximality conditions of deficiency numbers for the operator L_{0}, generated by the expression (33), in terms of \mathcal{A}_{k} and d_{k}. Namely, the following corollaries are valid.

Corollary 2. Let us assume that one of the following conditions is satisfied:

$$
\sum_{k=1}^{+\infty} r_{k+1} r_{k+2} d_{k+1}=+\infty
$$

or

$$
\sum_{k=1}^{+\infty} \frac{r_{k+2}^{2} r_{k+3} d_{k+1} d_{k+2}}{r_{k+1}}\left\|\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right\|=+\infty
$$

Then, the limit circle case is not realized for the operator L_{0}.
Indeed, the enumerated conditions is the result of application of Theorem 3 from [20] to elements of the matrix J, defined in (40), according to which a completely indeterminate case is not realized for the matrix J, i.e. the deficiency index of the corresponding difference operator is not maximal. Then, according to Theorem 3, the deficiency index of the differential operator L_{0} is not maximal as well.

Corollary 3. Let us assume that elements of the matrix J satisfy the following conditions: $I \frac{n^{4}}{r_{k} r_{k+3} d_{k} d_{k+2}} \leqslant \frac{1}{r_{k+1} r_{k+2} d_{k+1}^{2}}$ or $\frac{n^{4}}{r_{k} r_{k+3} d_{k} d_{k+2}} \geq \frac{1}{r_{k+1} r_{k+2} d_{k+1}^{2}}$ for all $k=1,2, \ldots$, II $\sum_{k=1}^{+\infty} r_{k+1} r_{k+2} d_{k+1}<+\infty$, III $\sum_{k=1}^{+\infty} \frac{r_{k+2} d_{k+1}}{r_{k+1}}\left\|\mathcal{A}_{k}+\left(\frac{1}{d_{k}}+\frac{1}{d_{k+1}}\right) I\right\|<+\infty$.
Then, the limit circle case is realized for the operator L_{0}.
Indeed, as well as in Corollary 2, Conditions $1-3$ are a result of the direct application of Corollary 1 from [22] and Theorem 3 to the generalized Jacobian matrix J, with matrix elements defined in (40).

REFERENCES

1. Berezin F.A., Fadeev L.D. Remarks o the Shrödinger equation with a singlular potential // DAN SSSR. 1961. V. 137. No. 7. P. 1011-1014. In Russian.
2. Minlos R.A., Fadeev L.D. On pointwise interaction for systems of three particles in quantuum mechanics // DAN SSSR. 1961. V. 141. No. 6. C. 1335-1338. In Russian.
3. S. Albeverio, F. Gestezy, R. Hoegh-Krohn, H. Holden Some exactly solvable models in quantum mechanics Springer-Verlag. 1988.
4. S. Albeverio, P. KurasovSingular perturbation of differential operators London Math. Society Lecture Rems Series. Cambridge Univ. Press. 2001. 271 p.
5. Savchuk A. M., Shkalikov A.A. Sturm-Liouville operators with singular potentials//Matematicheskie zametki 1999. V. 66. No.. 6. P. 897-912. In Russian.
6. Savchuk A. M., Shkalikov A. A. Sturm-Liouville operators with distribution potentials//Trudy MMO. 2003. V. 64. P. 159-212. In Russian.
7. Kostenko A.S, Malamud M.M. On one-dimensional Shrödinger operator with δ interactions//Functional analysis and its applications. 2010. V. 44. No. 2. P. 87-91. In Russian.
8. Kostenko A.S, Malamud M. M. 1-D Schrödinger operators with local point interactions on a discrete set//Journal of Differential Equations. 2010. V. 249. P.P. 253-304. In Russian.
9. W. N. Everitt, L. Marcus Boundary Value Problems and Sympletic Algebra for Ordinary Differential and Quasi-Differentrial Operators//AMS. Mathematical Surveys and Monographs. 1999. V. 61. P.P. 1-187.
10. Levitan B.M. Eigenfunctions expansions of differential second-order equiations. M.-L., Gostekhizdat. 1950. In Russian.
11. Birger E.S., Kalyabin G.A. Theory of Weil circles in case of a nonsselfadjoint system of differential equations of the second order// Differential equations. 1976. V. 12. No. 9. P. 1531-1540. In Russian.
12. Orlov S.A.On the deficiency index of linear differential operators// DAN. 1953. V. 92. No. 3. P. 483-486. In Russian.
13. R.L.Anderson Limit-point and limit-circle criteria for a class of singular symmetric differential operators// Canad. J. Math. 1976. 28. No 5. P.P. 905-914.
14. Naimark M.A. Linear differential operators 2nd ed., revisedand enlarged. M.:Nauka. 1969. 526 P. In Russian.
15. Hartman F. Ordinary differential equations M.:Mir. 1970. 720 P. In Russian.
16. Koddington E.A., Levinson N. Theory of ordinary differential equations 2nd ed., revised. M.: Izdatel'stvi LKI. 2007. 472 P.In Russian.
17. M.S.P. Eastham The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theoreme Oxford: Clarendon Press. 1989. 241 P.
18. Serebryakov V.P. On a number of solutions with an integrable square of a system of differential equations of the Sturm-Liouille type//Differential equations. 1988. V. 24. No. 10. P. 1732-1738.
19. Krein M. G. Infinite J-matrices and a matrix moment problem//DAN SSSR. 1949. V. 69. No. 2. P. 125-128. In Russian.
20. Kostyuchenko A. G., Mirzoev K. A. Three term recurrent relations with matrix coefficients. The completely indefinite case.//Matem. zametki. 1998. V. 63. No. 5. P.709-716. In Russian.
21. Kostyuchenko A.G., Mirzoev K.A. Generalized Jacobi matrices and deficiency numbers of ordinary differential operators with polynomial coefficients// Functional analysis and its applications. 1999. V. 33. No.. 1. P. 30-45. English version in Functional Analysis and Its Applications, 1999, 33:1, 25-37
22. Kostyuchenko A.G., Mirzoev K.A. Complete Indefiniteness Tests for Jacobi Matrices with Matrix Entries//Funkts. Anal. Prilozh., 2001. V. 35. No. 4. P. 32-37. English version in Functional Analysis and Its Applications, 2001, 35:4, 265-269.

Karakhan Agakhan ogly Mirzoev,
Lomonosov Moscow State Univercity,
Leninskie Gory, 1,
119991, Moscow, Russia
E-mail: mirzoev.karahan@mail.ru
Tatjana Anatol'evna Safonova,
Northern (Arctic) Federal University,
Severnaya Dvina Emb. 17,
163002, Arkhangelsk, Russia
E-mail: tanya.strelkova@rambler.ru
Translated from Russian by E.D. Avdonina.

[^0]: (c) K.A. Mirzoev, T.A. Safonova 2011.

 The work is supported by RFBR (grant 11-01-00790-a) and by the Analytical Departmental Target Program (project 2.1.1/10641).

 Submitted on 14 July 2011.

[^1]: 1__ indicates the sum of absolute values of all elements of the matrix

