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STABILITY OF SEQUENCES OF ZEROS

FOR CLASSES OF HOLOMORPHIC FUNCTIONS

OF MODERATE GROWTH IN THE UNIT DISK

F.B. KHABIBULLIN

Abstract. Let Λ = (𝜆𝑘) and Γ = (𝛾𝑘) be two sequences of points in the unit disk
D := {𝑧 ∈ C : |𝑧| < 1} of the complex plane C, and 𝐻 be a weight space of holomorphic
functions on D. Suppose that Λ is the zero subsequence of some nonzero function from
𝐻. We give conditions of closeness of the sequence Γ to the sequence Λ, under which the
sequence Γ is the zero sequence for some holomorphic function from space �̂� ⊃ 𝐻. The
space �̂� can be a little larger than 𝐻.

Keywords: holomorphic function, unit disk, weight space, zero sequence, zero subse-
quence, shift of zeros, stability of zero sequence

1. Introduction. Main ¡¡radial¿¿ results

As usually, N, R and C are sets of natural, real and complex numbers or their geometric
interpretations; D := {𝑧 ∈ C : |𝑧| < 1} is a unit circle.

Let us assume that Λ = (𝜆𝑘)𝑘∈N is a sequence of complex points, that can be repeated a
finite number of times, in a unit circle D and Λ does not have limit points in D; 𝐻 is a class of
functions holomorphic in D.

A set, or sequence, of all zeroes of the nonzero function 𝑓 holomorphic in D (we write
𝑓 ̸≡ 0), enumerated in view of the multiplicity (every point in D is counted the number of
times corresponding to the zero multiplicity of the function 𝑓 at this point) will be denoted by
Zero𝑓 . Λ is a sequence of zeroes or a null sequence, or a null set, for the class 𝐻 if there exists
a nonzero function 𝑓 ∈ 𝐻 such that Zero𝑓 = Λ.
The sequence Λ is a subsequence of zeroes, or a zero subset, for the class 𝐻 if there is a

nonzero function 𝑓 ∈ 𝐻, vanishing on Λ in the sense that zero multiplicity of the function 𝑓
at every point from Ω is no less than the number of iterations of this point in the sequence
Λ. If 𝐻 is a linear space then, a subsequence of zeroes for 𝐻 is termed as a sequence or set of
nonuniqueness for 𝐻.

The positivity of the number, function, measure etc. everywhere is considered as > 0, and
> 0 is a strict positivity; similar agreement is assumed for negativity as well. For 𝑎 ∈ R, as
usually, 𝑎+ := max{𝑎, 0}, [𝑎] is an integer part of the number 𝑎, and for 𝑎 > 0 we assume
log+ 𝑎 := max{log 𝑎, 0}, log𝛼 𝑎 :=

(︀
log 𝑎

)︀𝛼
. If the function 𝑓 is not equal identically to the

value 𝑎 ∈ [−∞,+∞], we write 𝑓 ̸≡ 𝑎.
For the subset 𝐷 ⊂ C, let us denote by 𝐷, 𝜕𝐷 and dist(𝑆,𝐷) the closure 𝐷, the boundary

of the set 𝐷 and the Euclidean distance from the subset 𝑆 ⊂ C to 𝐷, respectively.
The space of all holomorphic in 𝐷 functions is denoted by Hol(𝐷). The following weight

classes of functions holomorphic in a unit circle is considered.
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Let 𝑀 : D → [−∞,+∞). The class of all functions 𝑓 ∈ Hol(D), satisfying the estimate
|𝑓(𝑧)| 6 𝐶𝑓 exp𝑀(𝑧), 𝑧 ∈ D, where 𝐶𝑓 > 0 is a constant is denoted by Hol(D;𝑀).

It is natural to expect (see, e.g., stability theorems from [1, SS 18, 19] and D. Luecking’s result
[2, Theorem 6]), that if Λ ⊂ D is a (sub)sequence of zeroes for a certain class of holomorphic
functions 𝐻 ⊂ Hol(D) then, provided that there are ¡¡small shifts¿¿ of points 𝜆𝑘 to points
𝛾𝑘 of another sequence of points Γ := (𝛾𝑘), the latter generates a (sub)sequence of zeroes for

a certain, maybe wider, class �̂� ⊃ 𝐻 of holomorphic in D functions. The main results of
the work represent an explicit quantitative form of this observation: for weight spaces 𝐻 of
holomorphic functions, generated by classes of the form Hol(D;𝑀), the question of transition
of the subsequence of zeroes Λ for 𝐻 is investigated in case of a small shift to the sequence of
zeroes Γ for some space �̂� ⊃ 𝐻, that differs insignificantly from 𝐻 or even coinciding with 𝐻.
A symbiosis of the results from [1], [3]–[5] is used for our investigation. A part of the results was
discussed in [6], [7] without proofs. Here and in what follows, we do not dwell upon the history
of the issue, since it is described with sufficient details in the works [1] and [3]. We would only
like to mention a simple result following from the Nevanlinna theorem (see [8], [9]) of the 1920ies
for the classical algebra 𝐻∞ := Hol(D; 0) of bounded holomorphic functions in D. According
to the known Nevanlinna theorem about description of (sub)sequences of zeroes for the algebra
𝐻∞, the sequence Λ is a sequence of zeroes for 𝐻∞ if and only if

∑︀
𝑘∈N

(︀
1 − |𝜆𝑘|

)︀
< +∞ .

Whence, the following follows immediately.

Nevanlinna theorem (of stability for 𝐻∞). Let us assume that Λ := (𝜆𝑘)𝑘∈N and Γ :=
(𝛾𝑘)𝑘∈N are sequences of points in D, and Λ is a subsequence of zeroes for 𝐻∞. If

lim sup
𝑁→∞

𝑁∑︁
𝑘=1

(︀
|𝜆𝑘| − |𝛾𝑘|

)︀
< +∞,

then Γ is a sequence of zeroes for 𝐻∞.

Denote by 𝐷(𝑡) an open circle with the centre at zero with the radius 𝑡. Let us assume that
𝜈rad(𝑡) := 𝜈

(︀
𝐷(𝑡)

)︀
for the measure 𝜈, determined in the circle. 𝐷(𝑡).

Our main interest is focused on three types of functions classes (not necessarily algebras!),
defined by the weights 𝑀 growing sufficiently slowly in the vicinity of the unit circle 𝜕D (broadly
speaking, slower than the functions 𝑧 ↦→ 1/(1 − |𝑧|) when 𝑧 → 𝜕D). Let us determine them
here first for arbitrary weight functions 𝑀 : D → [−∞,+∞) .

(A) Denote by 𝐴∞
𝑀 a class of functions 𝑓 ∈ Hol(D), satisfying the estimate⃒⃒

𝑓(𝑧)
⃒⃒
6 𝐶𝑓 exp

(︀
𝑐𝑓𝑀(𝑧)

)︀
, 𝑧 ∈ C (1)

for some positive constants 𝑐𝑓 , 𝐶𝑓 . If 𝑀 is a positive function, then 𝐴∞
𝑀 is an algebra. In

particular, if lim sup𝑧→𝜕D𝑀(𝑧) = +∞, this algebra can be otherwise defined as

𝐴∞
𝑀 :=

{︁
𝑓 ∈ Hol(D) : lim sup

𝑧→𝜕D

log |𝑓(𝑧)|
𝑀(𝑧)

< +∞
}︁
. (2)

(H1) Let 𝑀 be a positive function. The space

𝐻1−

𝑀 :=
⋃︁

06𝑐<1

Hol(D; 𝑐𝑀) (3)

consists of the functions 𝑓 ∈ Hol(D), satisfying the restriction

|𝑓(𝑧)| 6 𝐶𝑓 exp
(︀
𝑐𝑓𝑀(𝑧)

)︀
, 𝑧 ∈ D, (4)

with some positive constants 𝑐𝑓 < 1 and 𝐶𝑓 > 0. In particular, if lim sup𝑧→𝜕D𝑀(𝑧) = +∞,
the space can be otherwise defined as

𝐻1−

𝑀 :=
{︁
𝑓 ∈ Hol(D) : lim sup

𝑧→𝜕D

log |𝑓(𝑧)|
𝑀(𝑧)

< 1
}︁
. (5)
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(Hlog) The space 𝐻𝑀+log was defined in [1] as a set of all holomorphic in D functions 𝑓 , satisfying
the restriction

|𝑓(𝑧)| 6 𝐶𝑓

(︁ 1

1 − |𝑧|

)︁𝑐𝑓
exp𝑀(𝑧), 𝑧 ∈ D,

with some constants 𝐶𝑓 , 𝑐𝑓 > 0. Otherwise, this rather ¡¡rigid¿¿ space can be defined as

𝐻𝑀+log :=

{︃
𝑓 ∈ Hol(D) : lim sup

𝑧→𝜕D

log |𝑓(𝑧)| −𝑀(𝑧)

log 1
1−|𝑧|

< +∞

}︃
. (6)

In what follows, the moderate growth condition∫︁ 1

0

∫︁ 2𝜋

0

𝑝(𝑡𝑒𝑖𝜃) d𝜃 d𝑡 < +∞ (7)

will be always imposed on the weight function 𝑝 ̸≡ −∞, with respect to which the weights
𝑀 will be selected depending on the results. If 𝑝 a subharmonic function here with the Riesz
measure 𝜈𝑝 := 1

2𝜋
∆𝑝 > 0, where the Laplace operator acts in the meaning of the theory of

generalized functions, then the condition (7) is equivalently bounded (see the beginning of the
proof of [3, Theorem 2])∫︁ 1

0

(1 − 𝑡)2 d𝜈rad𝑝 (𝑡) < +∞, 𝜈𝑝(𝑡) := 𝜈𝑝
(︀
𝐷(𝑡)

)︀
. (8)

Thus, the moderate growth condition (7) for a radial function 𝑝, for which by definition 𝑝(𝑧) =
𝑝
(︀
|𝑧|

)︀
for all 𝑧 ∈ D, has an absolutely simple form:∫︁ 1

0

𝑝(𝑡) d𝑡 < +∞. (9)

Moreover, definite regularity conditions of the form

1

2𝜋

∫︁ 2𝜋

0

𝑝
(︀
𝑧 + 𝜀

(︀
1 − |𝑧|

)︀
𝑒𝑖𝜃

)︀
𝑑𝜃 + 𝑎 log

1

1 − |𝑧|
6 𝑏𝑝(𝑧) + 𝐶, 𝑧 ∈ D (10)

will be imposed. Here 𝑎, 𝑏, 𝐶 are some constants, with the choice limit due to specific spaces
under consideration and to the method of the work [1]. This condition will have the following
form for a radial increasing function 𝑝 :

𝑝 (𝑡+ 𝜀(1 − 𝑡)) + 𝑎 log
1

1 − 𝑡
6 𝑏𝑝(𝑡) + 𝐶, 0 6 𝑡 < 1. (11)

Simplest examples of radial increasing unbounded weights 𝑝, satisfying conditions of the form
(9) and (11) simultaneously, can be as follows:

[L]: logarithmic weight 𝑝 : 𝑧 ↦−→ log𝛼
1

1 − |𝑧|
, 𝛼 > 0, 𝑧 ∈ D,

[P]: power weight 𝑝 : 𝑧 ↦−→ 1

(1 − |𝑧|)𝛽
, 0 < 𝛽 < 1, 𝑧 ∈ D.

It should be mentioned that complete descriptions of zero sets for the algebras 𝐴∞
𝑝 with weight

functions of the form [P], when 𝛽 > 1 were obtained already by F. A. Shamoyan in [10]. While, a
complete description of zero sequences for ¡¡rigid¿¿ spaces Hol(D;𝑀), where 𝑀 is a logarithmic
weight from [L] with 0 < 𝛼 < 1, was given by K. Seip in [11]. At the same time, there are
a lot of open problems on description of zero sets and their stability even for specified spaces
and algebras defined by weight functions of the form [L] and [P] in accordance with 𝛼 > 1 and
0 < 𝛽 6 1.
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First, for the sake of better visibility, let us summarize the simplified results of the work
for the radial function 𝑝. On condition of a moderate growth (9), we introduce an auxiliary
function

𝑏𝑝(𝑟) :=
1

1 − 𝑟

∫︁ 1

𝑟

(1 − 𝑡) 𝑑𝑝(𝑡) =
1

1 − 𝑟

∫︁ 1

𝑟

𝑝(𝑡) d𝑡− 𝑝(𝑟), 0 6 𝑟 < 1, (12)

where the convergence of the integrals is provided by the moderate growth condition (9) and
the first equality in (25) from Lemma 1, proved in the following Section 2.

Theorem 1 (of stability for the radial weight). Let us assume that Λ = (𝜆𝑘)𝑘∈N and Γ =
(𝛾𝑘)𝑘∈N are two sequences of points in D and

∙ the function 𝑝 : [0, 1) → [0,+∞) is increasing right-continuous at zero;
∙ the composition 𝑝 ∘ exp is convex on (−∞, 0), i. e. the function 𝑝 is convex with respect to
a logarithmic function;

∙ the moderate growth condition (9) is satisfied;
∙ the function 𝑝 is extended on D as a radial one, namely: 𝑝(𝑧) ≡ 𝑝

(︀
|𝑧|

)︀
, 𝑧 ∈ D.

Then,

(S𝐴) if for 𝑎 = 1 and some constants 𝜀 ∈ (0, 1), 𝑏, 𝐶 > 0 the radial regularity condition (11) of
the weight 𝑝 is satisfied, and

lim sup
𝑘→∞

|𝜆𝑘 − 𝛾𝑘|
1 − max{|𝜆𝑘|, |𝛾𝑘|}

< +∞, (13)

and Λ is a subsequence of zeroes for the algebra 𝐴∞
𝑝 , then Γ is the zero sequence for the

algebra 𝐴∞
𝑀 , defined by the weight 𝑀 = 𝑝+ 𝑏𝑝;

(S1) if for any 𝑏 > 1 there are constants 𝜀 ∈ (0, 1) and 𝐶 > 0 such that the radial regularity
condition (11) of the weight 𝑝 is satisfied when 𝑎 = 1, and

lim
𝑘→∞

|𝜆𝑘 − 𝛾𝑘|
1 − max{|𝜆𝑘|, |𝛾𝑘|}

= 0, (14)

while Λ is a subsequence of zeroes for the space 𝐻1−
𝑝 , then there is a constant 𝑐 < 1, for

which Γ is a sequence of zeroes for the space Hol(D;𝑀) with the function 𝑀 := 𝑐𝑝+𝐵𝑐𝑏𝑝,
where 𝐵𝑐 > 0 of some constant.

(Slog) When 𝑏 = 1, if for some constants 𝜀 ∈ (0, 1) of a strictly negative 𝑎 < 0 and 𝐶 > 0, the
radial regularity condition (11) of the weight 𝑝 is satisfied, and

∞∑︁
𝑘=1

|𝜆𝑘 − 𝛾𝑘|
1 − max{|𝜆𝑘|, |𝛾𝑘|}

< +∞, (15)

and Λ is a subsequence of zeroes for Hol(D; 𝑝) then Γ is a sequence of zeroes for the space
𝐻𝑀+log with 𝑀 = 𝑝+𝐵𝑏𝑝, where 𝐵 > 0 is a certain constant.

The statements (S𝐴), (S1), (Slog) of this stability theorem are corollaries of Theorems 2, 3
and 4, respectively (see the justifications after their proofs).

Remark 1. The growth conditions of the right-continuity at zero and convexity with respect
to a logarithmic function on the function 𝑝 in Theorem 1 provide subharmonicity of the extended
function 𝑝 : 𝑧 ↦→ 𝑝(𝑧), 𝑧 ∈ D in a unit circle.

Remark 2. For a positive function 𝑝 increasing to +∞ on (0, 1), the condition of its
convexity with respect to a logarithmic function on the whole interval (0, 1) and its right-
continuity at zero can be substituted in the stability Theorem 1 by a weaker condition of
convexity of the function 𝑝 with respect to a logarithmic function on an interval (𝑡0, 1), where
0 < 𝑡0 < 1. Indeed, in this case we can extend the function 𝑝 to the interval [0, 𝑡0] by the rule
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𝑝(𝑡) := lim inf𝑡 → 𝑡0 + 0𝑝(𝑡). The function 𝑝 thus extended satisfies all the conditions of the
stability Theorem 1, and the spaces of holomorphic functions, determined via (2), (5), (6) by
the function 𝑝 = 𝑀 , are the same as determined by the extended function 𝑝 of the space from
(A), (𝐻1

𝑝 ), (𝐻log).

2. Nonradial stability theorem
of (sub)sequences of zeroes for wight algebras

Let 𝑝 be a subharmonic in D function with the Riesz measure 𝜈𝑝, 𝑝 ̸≡ −∞.
For 𝑧 = 𝑟𝑒𝑖𝜃, 0 6 𝑟 < 1, 𝜃 ∈ R and the numbers 𝑎 > 0, let us introduce a polar rectangular

�(𝑧; 𝑎) :=
{︁
𝜁 = 𝑡𝑒𝑖𝜓 :

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀+
6 𝑡 < 1, | sin(𝜓 − 𝜃)| < 𝑎(1 − 𝑟)

}︁
(16)

with respect to the size 𝑎, its 𝑠-slice when 𝑠 < 1

�𝑠(𝑧; 𝑎) :=
{︁
𝜁 = 𝑡𝑒𝑖𝜓 :

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀+
6 𝑡 < 𝑠, | sin(𝜓 − 𝜃)| < 𝑎(1 − 𝑟)

}︁
,

the function of the measure distribution 𝜈𝑝 in (16) by the rule 𝜈𝑝(𝑠, 𝑧; 𝑎) := 𝜈𝑝
(︀
�𝑠(𝑧; 𝑎)

)︀
, as

well as an 𝑎-extended auxiliary function

𝑏[𝑎]𝜈𝑝 (𝑧) :=
1

(1 − |𝑧|)2

∫︁
�(𝑧;𝑎)

(1 − |𝜁|)2 d𝜈𝑝(𝜁) =
1

(1 − 𝑟)2

∫︁ 1(︀
𝑟−𝑎(1−𝑟)

)︀+
(1 − 𝑠)2 d𝜈𝑝(𝑠, 𝑧; 𝑎), (17)

which is finite for all 𝑧 ∈ D on condition (8). Moreover, we will use a special notation for
averaging

Av
[𝜀]
𝑀(𝑧) :=

1

2𝜋

∫︁ 2𝜋

0

𝑀
(︀
𝑧 + 𝜀(1 − |𝑧|)𝑒𝑖𝜃

)︀
d𝜃, 0 < 𝜀 < 1 (18)

with the integrability condition for the function 𝑀 : D → [−∞,∞] with respect to circles.

Theorem 2. Let 𝑝 be a positive subharmonic function with the Riesz measure 𝜈𝑝, and the
condition (7) or the restriction (8) equivalent to it be satisfied. Moreover, we assume that 𝑝 for
𝑎 = 1 and some constants 𝜀 ∈ (0, 1), 𝑏, 𝐶 > 0 satisfies the nonradial regularity condition (10),
i. e.

Av[𝜀]
𝑝 (𝑧) + log

1

1 − |𝑧|
6 𝑏𝑝(𝑧) + 𝐶, 𝑧 ∈ D. (19)

If for two sequences of the points Λ = (𝜆𝑘)𝑘∈N and Γ = (𝛾𝑘)𝑘∈N in D the condition of their
closeness (13) is satisfied and Λ is a subsequence of zeroes for the algebra 𝐴∞

𝑝 , then Γ is a

sequence of zeroes for the algebra 𝐴∞
𝑀 for 𝑀 = 𝑝+ 𝑏

[6]
𝜈𝑝 .

Proof. It follows from conditions of Theorem 2 that all conditions from [1, Theorem 0.2(S1)]
for the convex domain Ω = D are satisfied. In view of the remark after the formulation of [1,
Theorem 0.2] on strengthening this result for convex domains we conclude that, the sequence
Γ is a subsequence of zeroes for the same algebra 𝐴∞

𝑝 (even without the conditions (7)–(8)).
In other words, Γ is a subsequence of zeroes for the class Hol(D;𝑀), where 𝑀 := 𝑐𝑝, 𝑐 is some
constant; 𝜈𝑀 is the Riesz measure of the subharmonic function 𝑀 .

Now under the conditions of Theorem 2, according to [3, Theorem 2(U)] the subsequence of

zeroes Γ for our space Hol(D;𝑀) becomes a sequence of zeroes for the space Hol
(︀
D;𝐴

[𝜀]
𝑀+𝐶𝜀𝑏

[6]
𝜈𝑀

)︀
with any constant 𝜀 ∈ (0, 1) and some constant 𝐶𝜀. However, it follows immediately from the
regularity condition (10) and the form of the function 𝑀 = 𝑐𝑝 that

𝐴
[𝜀]
𝑀 + 𝐶𝜀𝑏

[6]
𝜈𝑀
6 𝑏𝑝+ 𝐶𝑏[6]𝜈𝑀 6 max{𝑏, 𝐶𝑐}

(︀
𝑝+ 𝑏[6]𝜈𝑝

)︀
everywhere on D for some constants 𝑏, 𝐶, 𝑐 > 0. Thus, Γ is a sequence of zeroes for the algebra

𝐴∞
𝑀 with a larger weight 𝑀 = 𝑝+ 𝑏

[6]
𝜈𝑝 .
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Let us deduce the part (S𝐴) of the radial Theorem 1 from Introduction from Theorem 2.
By virtue of increment of the positive radial function 𝑝, the condition of its regularity (11) is
even stronger than the nonradial regularity condition (10) of Theorem 2. The condition (7) for
the radial function is (9). According to Remark 1, the extension of 𝑝 to D is a subharmonic
function. Thus, all conditions of Theorem 2 are satisfied.

When 𝑎 > 0, we introduce an 𝑎-extended auxiliary radial function

𝑏[𝑎]𝑝 (𝑟) :=
1

1 − 𝑟

∫︁ 1−(︀
𝑟−𝑎(1−𝑟)

)︀+
(1 − 𝑡) d𝑝(𝑡), 0 6 𝑟 < 1. (20)

It remains only to demonstrate that the following holds.

Proposition 1. Let the function 𝑝 : [0, 1) → [0,+∞) satisfy conditions of Theorem 1, and
its extension to D be denoted by 𝑝 as well. Then, for an 𝑎-extended auxiliary function from
(17) and the auxiliary function 𝑏𝑝 from (12), the estimates

𝑏[𝑎]𝜈𝑝 (𝑧) 6 𝑎𝑏[𝑎]𝑝 (𝑟) +𝐵𝑎 6 (8𝑎+ 1)𝑏𝑝(𝑟) + 𝐶𝑎, 0 6 𝑟 = |𝑧| < 1 (21)

hold for some constants 𝐵𝑎, 𝐶𝑎 > 0 in the notation 𝑟 := |𝑧|.

Proof. Let us denote the Riesz measure of the extended subharmonic function 𝑝 by 𝜈𝑝. The
density of the Rieasz measure for such function is readily written out in polar coordinates via
the initial function 𝑝 : [0, 1) → [0,+∞) by means of the Laplace operator, namely:

𝑑𝜈𝑝(𝑧) =
1

2𝜋
d𝜃 ⊗ d

(︀
𝑡𝑝′−(𝑡)

)︀
, 𝑧 = 𝑡𝑒𝑖𝜃, 𝑟 > 0,

where 𝑝′− is the left derivative, ⊗ is the product of measures. Then, by Definitions (17) and
(16) when 𝑧 = 𝑟𝑒𝑖𝜃 and with the condition that

𝑎

𝑎+ 1
6 𝑟 6 1 ⇐⇒

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀
> 0, (22)

taking into account that

𝑡ℎ𝑒function 𝑡 ↦→ 𝑡𝑝′−(𝑡) is increasing with respect to 𝑡 ∈ (0, 1] and is positive, (23)

for an increasing convex with respect to the logarithm of the function 𝑝, we have

𝑏[𝑎]𝜈𝑝 (𝑧) =
1

2𝜋(1 − 𝑟)2

∫︁ 𝜃+arcsin 𝑎(1−𝑟)

𝜃−arcsin 𝑎(1−𝑟)

∫︁ 1

𝑟−𝑎(1−𝑟)
(1 − 𝑡)2 d

(︀
𝑡𝑝′−(𝑡)

)︀
d𝜃

=
arcsin 𝑎(1 − 𝑟)

𝜋(1 − 𝑟)2

∫︁ 1

𝑟−𝑎(1−𝑟)
(1 − 𝑡)2 d

(︀
𝑡𝑝′−(𝑡)

)︀
6

𝑎(1 − 𝑟)

2(1 − 𝑟)2

(︂
lim
𝑡→1−0

(1 − 𝑡)2𝑟𝑝′−(𝑡) −
(︀
1 − 𝑟 + 𝑎(1 − 𝑟)

)︀2(︀
(𝑟 − 𝑎(1 − 𝑟))𝑝′−(𝑟 − 𝑎(1 − 𝑟))

)︀
+2

∫︁ 1

𝑟−𝑎(1−𝑟)
(1 − 𝑡)𝑡𝑝′−(𝑡) d𝑡

)︂
6

𝑎

2(1 − 𝑟)

⎛⎜⎝ lim
𝑡→1−0

(1 − 𝑡)2𝑝′−(𝑡) + 2

1∫︁
𝑟−𝑎(1−𝑟)

(1 − 𝑡) d𝑝(𝑡)

⎞⎟⎠ . (24)

In what follows we need

Lemma 1. For the function 𝑝 from Proposition 1, the auxiliary function (12) is finite on
(0, 1], and the equalities

lim
𝑟→1−0

(1 − 𝑟)𝑝(𝑟) = 0, lim
𝑟→1−0

(1 − 𝑡)2𝑝′−(𝑟) = 0 (25)

hold.
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Proof of Lemma 1. The moderate growth condition (9) and the growth of 𝑝 provide

0 = lim
𝑟→1−0

∫︁ 1

𝑟

𝑝(𝑡) d𝑡 > lim
𝑟→1−0

𝑝(𝑟)

∫︁ 1

𝑟

d𝑡 = lim
𝑟→1−0

𝑝(𝑟)(1 − 𝑟) > 0, (26)

and the first equality (25) is proved. Using it, one obtains∫︁ 1

𝑟

(1 − 𝑡) d𝑝(𝑡) = −(1 − 𝑟)𝑝(𝑟) +

∫︁ 1

𝑟

𝑝(𝑡) d𝑡 (27)

integrating by parts. This yields that the auxiliary function 𝑏𝑝 is finite according to the moderate
growth condition (9) for 𝑝. Moreover, the left-hand side is tending to zero when 𝑟 → 1 − 0. It
follows from (23) that∫︁ 1

𝑟

(1 − 𝑡) d𝑝(𝑡) =

∫︁ 1

𝑟

1 − 𝑡

𝑡
𝑡𝑝′−(𝑡) d𝑡 > 𝑟𝑝′−(𝑟)

∫︁ 1

𝑟

1 − 𝑡

𝑡
d𝑡 > 𝑟𝑝′−(𝑟)

1

2
(1 − 𝑟)2. (28)

Whence, the second equality from (25) follows. The lemma is proved.

According to the second equality from (25), one can exclude the limit in the right-hand side of
(24) and obtain the estimate

𝑏[𝑎]𝜈𝑝 (𝑧) 6
𝑎

(1 − 𝑟)

∫︁ 1

𝑟−𝑎(1−𝑟)
(1 − 𝑡) d𝑝(𝑡),

which proves the first inequality in (21) with the restriction (22). The function 𝑏
[𝑎]
𝜈𝑝 is upper

bounded by some constant independent of 𝑟. We have 𝑟 < 𝑎
1+𝑎

for the remaining values.
Let us turn to the proof of the second inequality from (21). Let us make the upper estimate

of the integral∫︁ 𝑟

𝑟−𝑎(1−𝑟)
(1 − 𝑡) d𝑝(𝑡) = (1 − 𝑟)𝑝(𝑟) −

(︀
1 − 𝑟 + 𝑎(1 − 𝑟)

)︀
𝑝
(︀
𝑟 − 𝑎(1 − 𝑟)

)︀
+

∫︁ 𝑟

𝑟−𝑎(1−𝑟)
𝑝(𝑡) d𝑡 6 (1 − 𝑟)𝑝(𝑟) − (1 − 𝑟)(1 + 𝑎)𝑝

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀
+ 𝑝

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀
𝑎(1 − 𝑟)

= (1 − 𝑟)
(︀
𝑝(𝑟) − 𝑝

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀)︀
via the auxiliary function 𝑏𝑝 with the condition (22). Whence,

1

1 − 𝑟

∫︁ 𝑟

𝑟−𝑎(1−𝑟)
(1 − 𝑡) d𝑝(𝑡) 6

(︀
𝑝(𝑟) − 𝑝

(︀
𝑟 − 𝑎(1 − 𝑟)

)︀)︀
. (29)

Upon substituting 𝑟 = 𝑒𝑥, 𝑟𝑎 = 𝑟 − 𝑎(1 − 𝑟) = 𝑒𝑥𝑎 for a convex function 𝑃 (𝑥) := 𝑝(𝑒𝑥),
−∞ < 𝑥 < 0, one obtains the estimate [12, Corrolary 1.1.6]

𝑝(𝑟) − 𝑝(𝑟𝑎) = 𝑃 (𝑥) − 𝑃 (𝑥𝑎) 6 𝑃 ′
−(𝑥)(𝑥− 𝑥𝑎) = 𝑝′−(𝑟)𝑟(log 𝑟 − log 𝑟𝑎)

= 𝑝′−(𝑟)𝑟 log
(︁

1 +
𝑎(1 − 𝑟)

𝑟 − 𝑎(1 − 𝑟)

)︁
6 𝑝′−(𝑟)

𝑎(1 − 𝑟)

𝑟 − 𝑎(1 − 𝑟)
.

Whence, if

𝑟 − 𝑎(1 − 𝑟) >
1

2
⇐⇒ 𝑟 >

𝑎+ 1/2

𝑎+ 1
, (30)

one obtains
𝑝(𝑟) − 𝑝(𝑟𝑎) 6 2𝑎(1 − 𝑟)𝑝′−(𝑟)

and according to (29)

1

1 − 𝑟

∫︁ 𝑟

𝑟−𝑎(1−𝑟)
(1 − 𝑡) d𝑝(𝑡) 6 2𝑎(1 − 𝑟)𝑝′−(𝑟). (31)
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On the other hand, due to (28) and (30)

1

1 − 𝑟

∫︁ 1

𝑟

(1 − 𝑡) d𝑝(𝑡) > 𝑟𝑝′−(𝑟)
1

2
(1 − 𝑟) >

1

4
(1 − 𝑟)𝑝′−(𝑟).

Whence, according to (31)

1

1 − 𝑟

∫︁ 𝑟

𝑟−𝑎(1−𝑟)
(1 − 𝑡) d𝑝(𝑡) 6 8𝑎

1

1 − 𝑟

∫︁ 1

𝑟

(1 − 𝑡) d𝑝(𝑡). (32)

The latter yields the second inequality from (21) by definition of an 𝑎-extended auxiliary radial

function 𝑏
[𝑎]
𝑝 from (20). The proposition is proved.

This demonstrates that the part (S𝐴) of the radial Theorem 1 is a direct corollary of Theorem 2.
Let us consider now the radial theorem applied to specific logarithmic and power weights 𝑝

from Propositions [L] and [P].

∙ For the logarithmic weight from [L] with 𝛼 > 1, the regularity condition of the weight
function of Theorem 1 from [S𝐴] is satisfied and

𝑏𝑝(𝑟) 6 𝐶𝛼 log𝛼−1 1

1 − 𝑟
, 𝐶𝛼 is a constant, (33)

when 𝑝(𝑟) := log𝛼
1

1 − 𝑟
, 0 6 𝑟 < 1 (see [5, Lemma 2]). Thus, in this case, the algebra

𝐴∞
𝑀 with the weight 𝑀 = 𝑝+ 𝑏𝑝 coincides with the initial algebra 𝐴∞

𝑝 , i. e. none extension
of the algebra 𝐴∞

𝑝 takes place.
∙ For the power weight from [P] with 0 6 𝛽 < 1, the regularity condition of the weight
function from Theorem 1 of Section [S𝐴] is satisfied. One can readily calculate that

𝑏𝑝(𝑟) 6 𝐶𝛽
1

(1 − 𝑟)𝛽
, 𝐶𝛽 is a constant,

when 𝑝(𝑟) :=
1

(1 − 𝑟)𝛽
, 0 6 𝑟 < 1. Thus, the algebra 𝐴∞

𝑀 with the weight 𝑀 = 𝑝 + 𝑏𝑝

coincides with the initial algebra 𝐴∞
𝑝 as well, i. e. none extension of the algebra 𝐴∞

𝑝 takes
place again.

Remark 3. In all results of the works [3]–[5], where a 6-extended auxiliary function 𝑏
[6]
𝑝 or

correspondingly 𝑏
[6]
𝑀 is involved in formulations for the radial function 𝑝 or 𝑀 in D, Proposition

1 allows us to substitute it by a simpler auxiliary function 𝑏𝑝 or 𝑏𝑀 , respectively.

Examples. Let us draw examples of nonradial weight functions to which the nonradial
stability Theorem 2 can be applied.

Let 𝐸 ⊂ 𝜕D be a subset on a unit circle. Assume that

𝑑D(𝑧, 𝐸) := inf{|𝑤 − 𝑧| : 𝑤 ∈ 𝜕D} = dist(𝑧, 𝐸), 𝑧 ∈ D,

is the distance from the point 𝑧 ∈ D to the unit circle.

(P𝐸) the functions

𝑝 : 𝑧 ↦→ 1(︀
𝑑𝐷(𝑧, 𝐸)

)︀𝛽 , 𝑧 ∈ D

are continuous positive subharmonic for constants 𝛽 > 0 (see [13]–[16] together with
applications), and when 0 6 𝛽 < 1, they satisfy the moderate growth condition (7),
because this function is majorized by a power function 𝑧 ↦→ 1

(1−|𝑧|)𝛽 , 𝑧 ∈ D.
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Let us consider the functions 𝑙1 : 𝑧 ↦→ log |𝑧| and 𝐿1 : 𝑧 ↦→ log(1 + |𝑧|), 𝑧 ∈ C in order to
construct examples of nonradial weights of the logarithmic growth similar to [L]. The functions
𝑙1 and 𝐿1 are subharmonic in C: 𝑙1 as a logarithm of the module of the holomorphic function
𝑧 ↦→ 𝑧, 𝑧 ∈ C, and 𝐿1 as a positive continuous function with the values of the Laplace operator
∆𝐿1(𝑧) = 1

𝑟(1+𝑟)2
> 0 positive everywhere when 𝑟 := |𝑧| > 0 and the value 𝐿1(0) = 0.

Let us consider a convex growing function

𝜓𝛼(𝑥) :=

{︃
0, 𝑥 6 0

𝑥𝛼, 𝑥 > 0

for the constant 𝛼 > 1, assuming that 𝜓𝛼(−∞) := lim𝑥→−∞ 𝜓𝛼(𝑥) = 0. According to [12,
Theorem 3.2.18], the compositions

(𝜓𝛼 ∘ 𝑙1)(𝑧) := (log+ |𝑧|)𝛼 := (log+)𝛼|𝑧|, (𝜓𝛼 ∘ 𝐿1)(𝑧) = log𝛼
(︀
1 + |𝑧|

)︀
, 𝑧 ∈ D,

are subharmonic as well for every 𝛼 > 1. Whence, it follows that compositions of these functions
with any function 𝑓 ∈ Hol(D), i. e. the functions (log+)𝛼|𝑓 | and log𝛼

(︀
1 + |𝑓 |

)︀
are subharmonic,

positive and continuous in D [17, Coprollary 2.5.7]. In particular, for every point 𝑤 ∈ 𝜕D, the
functions

𝑧 ↦→ (log+)𝛼
1

|𝑧 − 𝑤|
, 𝑧 ↦→ log𝛼

(︁
1 +

1

|𝑧 − 𝑤|

)︁
are the same when 𝛼 > 1 and 𝑓(𝑧) ≡ 1/(𝑧 − 𝑤), 𝑧 ∈ D. Hence, the exact upper boundaries of
these functions with respect to 𝑤 ∈ 𝐸, equal to

(log+)𝛼
1

𝑑D(·, 𝐸)
, log𝛼

(︁
1 +

1

𝑑D(·, 𝐸)

)︁
, (34)

respectively, being continuous are also subharmonic positive functions, but not radial if 𝐸 is a
subset of the circle 𝜕D which is not dense everywhere.

(L𝐸) The functions (34), nonradial when 𝐸 ̸= 𝜕D, are continuous positive and subharmonic
when 𝛼 > 1 and satisfy the moderate growth condition (7), because these functions are
majorized by the logarithmic function 𝑧 ↦→ log𝛼

(︀
1 + 1/(1 − |𝑧|)

)︀
, 𝑧 ∈ D.

3. Nonradial stability theorems
of (sub)sequences of zeroes for weighted spaces

Main results of this section deal with weight spaces of holomorphic functions, that are not
algebras, i. e. a product of two functions from the space can belong already not to this space.
The space 𝐻1−

𝑝 . Similarly to [1], we impose the following additional regularity condition1 on
a subharmonic positive weight function 𝑝 :

(LD1
0) when 𝑎 = 1 for any number 𝑏 > 1 there are numbers 𝜀, 0 < 𝜀 < 1, and 𝐶𝑏, such that (10)

is satisfied, i. e. in the notation (18), the restriction

Av[𝜀]
𝑝 (𝑧) + log

1

1 − |𝑧|
6 𝑏𝑝(𝑧) + 𝐶𝑏, 𝑧 ∈ D (35)

takes place for averaging Av[𝜀]
𝑝 .

Theorem 3. Let us assume that both the moderate growth condition (7) and the restriction
(LD1

0) hold for a positive subharmonic function 𝑝 in D. If for two sequences of points Λ =
(𝜆𝑘)𝑘∈N and Γ = (𝛾𝑘)𝑘∈N in D the condition of their closeness (14) is satisfied and Λ is a
sequence of zeroes for the space 𝐻1−

𝑝 , then there are constants 𝑐 < 1 and 𝐵𝑐 > 0 such that Γ is
a sequence of zeroes for the space Hol(D;𝑀) when

𝑀 = 𝑐𝑝+𝐵𝑐𝑏
[6]
𝜈𝑝 . (36)

1The numbering from [1] is used.



STABILITY OF SEQUENCES OF ZEROS FOR CLASSES OF HOLOMORPHIC FUNCTIONS . . . 155

In particular, if 𝑝 is a logarithmic weight of the form [L] with 𝛼 > 1, then the second addend
in the righthand side (36) disappears, and Λ is a sequence of zeroes for the space 𝐻1−

𝑝 .

Proof. [1, Theorem 0.2(S3)] proves that under the conditions of Theorem 3, the sequence of
points Γ is a sequence of nonuniqueness, or a subsequence of zeroes, for the space 𝐻1

𝑝 :=⋃︀
06𝑐<1 Hol(D, 𝑐𝑝) (even without equivalent conditions (7)–(8)), i.e. for some 𝑐′ < 1 for the

space Hol(D; 𝑐′𝑝). Moreover, for the function 𝑐′𝑝 and its Riesz measure 𝜈𝑐′𝑝, the equivalent
conditions (7)–(8) are still satisfied with the change of 𝑝 by 𝑐′𝑝. Under these conditions it is
claimed in [3, Theorem 2, section. (U)] that every subsequence of zeroes for the space Hol(D; 𝑐′𝑝)
for any 𝜀 ∈ (0, 1) becomes a sequence of zeroes for the space

Hol
(︀
D; Av

[𝜀]
𝑐′𝑝 +𝐶𝜀𝑏

[6]
𝑐′𝑝

)︀
. (37)

Obviously, 𝑏
[6]
𝑐′𝑝 = 𝑐′𝑏

[6]
𝑝 . Moreover, by virtue of the regularity condition (LD1

0) when the value
of the number 𝑏 > 1 is sufficiently small for which the restriction 𝑐 = 𝑐′𝑏 < 1 is satisfied, the
inequality

Av
[𝜀]
𝑐′𝑝(𝑧) 6 𝑐𝑝(𝑧) + 𝐶, 𝑧 ∈ D,

where 𝐶 is a constant, holds. Thus, the space (37) is embedded to the weight space Hol(D;𝑀)
with the weight 𝑀 from (36), and Γ is a sequence of zeroes for this space, which was to be
proved. In particular,

𝑝(𝑧) = log𝛼
1

1 − |𝑧|
, 𝛼 > 1, (38)

the conditions (7) and (LD1
0) are satisfied, and the estimate (33) provides

𝑏[6]𝜈𝑝 (𝑧) = 𝑂
(︁

log𝛼−1 1

1 − |𝑧|

)︁
, 𝑧 → 𝜕D (39)

for the logarithmic weight (38). Whence, with the same choice of the weight 𝑝, one can find

a constant 𝑑 ∈ (𝑐, 1) such that the inequality 𝑐𝑝(𝑧) + 𝐵𝑐𝑏
[6]
𝜈𝑝 (𝑧) 6 𝑑𝑝(𝑧) is satisfied for all

𝑧 ∈ D ∖ 𝐷(𝑡) for a given 𝑡 < 1. Since the holomorphic functions are bounded in the circles

𝐷(𝑡), it is sufficient for the space Hol
(︀
D; 𝑐𝑝+𝐵𝑐𝑏

[6]
𝜈𝑝

)︀
to be embedded to Hol(D; 𝑑𝑝) ⊂ 𝐻1−

𝑝 . The
theorem is proved.

Let us deduce the part (S1) of the stability Theorem 1 in Introduction from Theorem 3. Since
the function 𝑝 is growing, the conditions on it are even stronger than the regularity conditions
(LD1

0) of Theorem 3 such that (11) holds. The condition (7) for the radial function is (9).
According to Remark 1, the function 𝑝 extended to D is subharmonic. Finally, the estimate
(21) of Proposition 1 holds (see also Remark 3). This demonstrates that the part (S1) of the
stability Theorem 1 is a direct Corollary of Theorem 3.
The space 𝐻𝑝+log. In [1], an auxiliary regularity condition 1 was imposed on the weight, not
necessarily radial or positive, subharmonic function 𝑝, determining the space 𝐻𝑝+log,

(LD0
0) there are numbers 𝜀, 0 < 𝜀 < 1, and 𝑐, 𝐶 > 0 such that the inequality

Av[𝜀]
𝑝 (𝑧) 6 𝑝(𝑧) + 𝑐 log

1

1 − |𝑧|
+ 𝐶, 𝑧 ∈ D. (40)

holds in the notation (18) for averaging.

Theorem 4. Let us assume that for a function 𝑝 ̸≡ −∞ subharmonic in D the moderate
growth conditions (7) and the condition of the weight (LD0

0) regularity are satisfied. If for two
sequences of points Λ = (𝜆𝑘)𝑘∈N and Γ = (𝛾𝑘)𝑘∈N in D, the condition of their closeness (15) is

1The numbering from [1] is used again.
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satisfied, and Λ is a subsequence of zeroes for the space 𝐻𝑝+log, there are constants 𝐶,𝐵 > 0
such that Γ is a sequence of zeroes for the space Hol(D;𝑀) when

𝑀 = 𝑝+ 𝐶 log
1

1 − | · |
+𝐵𝑏[6]𝜈𝑝 . (41)

In particular, if 𝑝 is a logarithmic weight of the form [L] with 𝛼 > 1, then Γ is a sequence
of zeroes for the space Hol(D;𝑀), where

𝑀(𝑧) := 𝑝(𝑧) + 𝐶𝛼 logmax{1,𝛼−1} 1

1 − |𝑧|
, 𝑧 ∈ D, 𝐶𝛼 is a constant. (42)

Proof. Note that, the inequality (40) coincides with (10) when 0 > 𝑎 = −𝑐 and 𝑏 = 1. In
[1, Theorem 0.2(S4)] it is proved that, in the very conditions of Theorem 4, the sequence of
points Γ is a sequence of nonuniqueness or the subsequence of zeroes, for the space 𝐻𝑝+log (even
without the equivalence conditions (7)–(8)), i. e. 𝐷 is a constant for a certain 𝐶 > 0 for the

space Hol(D; �̂�), where �̂�(𝑧) := 𝑝(𝑧)+𝐷 log 1
1−|𝑧| , 𝑧 ∈ D is a subharmonic function. Moreover,

for the function �̂� and for its Riesz measure 𝜈�̂� , the equivalence moderate growth conditions

(7)–(8) are satisfied as before with the change of 𝑝 by �̂� . With these conditions in [3, Theorem

2, section . (U)] it is established, that every subsequence of zeroes for the space Hol(D; �̂�) for

any 𝜀 ∈ (0, 1) becomes a sequence of zeroes for the space Hol
(︀
D; Av

[𝜀]

�̂�
+𝐶𝜀𝑏

[6]

�̂�

)︀
. The regularity

conditions (LD0
0) readily provide that the latter space is embedded to the space Hol(D;𝑀) with

the weight 𝑀 from (41), and Γ is a sequence of zeroes for this space, which was to be proved.
In particular, the function from (41) is majorized by the function (42) according to (33) for

the logarithmic weight 𝑝, which proves the final part of Theorem 4.

Let us deduce the part (Hlog) from the stability Theorem 1 of Introduction from Theorem
4. By virtue of growth of the function 𝑝, conditions imposed on it, such that (11) holds, are
even stronger than the regularity conditions (LD0

0) of Theorem 4. The condition (7) for the
radial function is (9). The subharmonic property of the function 𝑝 extended to D was indicated
in Remark 1. Finally, the inequality (21) holds. This demonstrates that the part (Slog) of
Theorem 1 is a direct corollary of the stability Theorem 4.
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